JPH0912390A - Production of planar material - Google Patents

Production of planar material

Info

Publication number
JPH0912390A
JPH0912390A JP15884195A JP15884195A JPH0912390A JP H0912390 A JPH0912390 A JP H0912390A JP 15884195 A JP15884195 A JP 15884195A JP 15884195 A JP15884195 A JP 15884195A JP H0912390 A JPH0912390 A JP H0912390A
Authority
JP
Japan
Prior art keywords
plate
raw material
shaped
silicon
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15884195A
Other languages
Japanese (ja)
Inventor
Arata Sakaguchi
新 阪口
Toru Yamada
透 山田
Masatsugu Kamioka
正嗣 上岡
Teruhiko Hirasawa
照彦 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP15884195A priority Critical patent/JPH0912390A/en
Publication of JPH0912390A publication Critical patent/JPH0912390A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To reduce cost by forming a melting zone in a planar raw material by high-frequency induction heating and moving this melting zone in the planar raw material and crystallizing or purifying the planar raw material, thereby producing the planar material. CONSTITUTION: The planar raw material 12, such as polycrystal Si, is held perpendicularly in its longitudinal direction in an inert gaseous atmosphere of N2 , etc., contg. <=1000ppm impurity and highfrequency current is passed to a coil 11 for hating having a slitlike groove 14 held horizontally so as to enclose the planar raw material 12. The limited part of the planar raw material 12 enclosed by the coil 11 is melted to a band form by high-frequency induction heating and the planar crystal 13' which is a seed is fused to this molten part; thereafter, the position of the coil 11 is moved from the seed crystal toward the planar raw material 12 to move the melting zone, by which the planar material, such as planar single crystal Si, is produced. An element for imparting electrical conductivity of n-type or p-type is incorporated into the planar raw material 12 or the atmosphere gas, by which the electrical conductivity and electric conductivity of the Si to be produced are adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は板状材料、特には太陽電
池用基板材料として有用な板状シリコン結晶の新しい製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for producing a plate-like material, particularly a plate-like silicon crystal useful as a substrate material for solar cells.

【0002】[0002]

【従来の技術】太陽電池、特にシリコン等の半導体材料
を用いた太陽電池は、近年の地球温暖化をはじめとする
環境対策の面からクリーンな代替エネルギー発生源とし
て注目されている。シリコン太陽電池としては、使用す
るシリコン素材の結晶構造からみても単結晶、多結晶、
アモルファスの三種類が、またその太陽電池セルの構成
や構造からみても幾多の提案がなされ、一部はすでに実
用化されているが、太陽電池の特性及び代替エネルギー
のコストからみて多くの課題をかかえている。従来のシ
リコン太陽電池としては、図2に示すように、例えばp
型のシリコン半導体基板1の表面に、Pなどを拡散させ
たn層2、その上に反射防止膜3を介して表面電極4を
形成し、裏面にはAlペーストの印刷などにより形成し
た層を焼成してp+ 層5、その上に同じくAlペースト
の印刷により裏面電極6を形成したものが一般的であ
る。この太陽電池に太陽光7を照射すると、シリコン中
に入射した光エネルギーによって自由電子および正孔対
が発生し、裏面電極6と表面電極4の間で外部の回路に
電流を取り出すことができ、太陽エネルギーを直接電気
エネルギーに変換することができる。
2. Description of the Related Art Solar cells, especially solar cells using a semiconductor material such as silicon, are attracting attention as a clean alternative energy source from the viewpoint of environmental measures such as global warming in recent years. As a silicon solar cell, single crystal, polycrystal,
A number of proposals have been made for the three types of amorphous, and also for the configuration and structure of the solar cell, and some of them have already been put into practical use, but there are many problems in view of the characteristics of solar cells and the cost of alternative energy. I have it. As a conventional silicon solar cell, as shown in FIG.
On the surface of the silicon semiconductor substrate 1 of the mold, an n layer 2 in which P or the like is diffused, a surface electrode 4 is formed thereon via an antireflection film 3, and a layer formed by printing an Al paste or the like is formed on the back surface. In general, the p + layer 5 is fired and the back electrode 6 is formed on the p + layer 5 by printing an Al paste. When this solar cell is irradiated with sunlight 7, light electrons incident on silicon generate free electron and hole pairs, and a current can be taken out to an external circuit between the back electrode 6 and the front electrode 4. Solar energy can be directly converted into electrical energy.

【0003】しかして、従来から太陽電池のコストの中
に占める結晶基板のコストを低減するために、薄いリボ
ン状ないしは板状のシリコンを製造する方法が研究提案
されており、代表的な方法として、スリット状の開口部
を有する治具を用い毛細管現象でシリコン融液を上昇さ
せ、その上端部で結晶化させて板状結晶を育成するEF
G(Edge-defined Film fed Growth)法や、シリコン融
液を同じくスリット状開口部から直接引出し結晶化させ
るゴンペルツ−ステパノフ法、あるいはこれらの変形と
して、シリコン融液を下方に引出す方法、またはシリコ
ン融液表面を過冷却状態に保って治具を用いないで板状
結晶を育成するデンドライト育成法、ないしはWeb法
等の方法が研究提案されている。しかしながらこれらの
方法は、いずれの方法においても板状シリコンが成長す
る固液界面の温度を全域に渡って安定に保つことが困難
であるため、厚さが一定の板状シリコンを連続して安定
に育成することが極めて困難であるという欠点を有す
る。
However, in order to reduce the cost of the crystal substrate in the cost of the solar cell, a method for producing thin ribbon-shaped or plate-shaped silicon has been researched and proposed as a typical method. EF for growing a plate crystal by raising the silicon melt by capillarity using a jig having a slit-shaped opening and crystallizing at the upper end thereof
G (Edge-defined Film fed Growth) method, Gompertz-Stepanov method of directly pulling out and crystallizing a silicon melt from the slit-shaped opening, or a modification of these methods, a method of pulling out a silicon melt downward, or a silicon melt. Research and proposals have been made on methods such as a dendrite growing method for growing plate crystals without using a jig while keeping the liquid surface in a supercooled state, or a Web method. However, in any of these methods, it is difficult to keep the temperature of the solid-liquid interface where the plate-like silicon grows stable over the entire area, so that plate-like silicon with a constant thickness is continuously stable. It has a drawback that it is extremely difficult to grow.

【0004】すなわち従来技術による板状シリコンの製
造方法においては、育成速度は、発生する固化熱と板状
シリコンと融液の間の固液界面近傍の温度分布によって
定まる固液界面からの熱の移動量によって決定される。
したがって板状シリコンを一定速度で安定に育成するに
は、固液界面の温度ならびにその近傍の温度分布を精密
に制御することが必要であり、育成中の板状シリコンの
幅と厚みを計測して温度、およびその分布状態にフィー
ドバックをかけて制御することが望ましいが、育成炉の
構造、部材の熱容量から考えて温度制御系の時定数は一
般に大きく応答性に劣るため、制御の時間遅れが大きく
なり、その結果として育成速度を低く抑えなければな
い。さらに例えばEFG法の場合には、固液界面への融
液の供給は治具の開口部における毛細管現象に依存して
いるため、治具と融液との界面の性状によっても育成速
度が影響を受けるので、安定した製造がより困難とな
る。さらにまた、治具を用いる方法ではシリコン融液と
治具材料との化学的反応による治具表面層の変質と形状
変化が生じること、治具材料からの汚染によってシリコ
ンの純度が低下することがさけられず、とくに単結晶を
育成する場合、これらの原因によって結晶の乱れが生じ
て結晶欠陥が多く、さらには多結晶となって安定した単
結晶の板状シリコンを得ることは困難である。
That is, in the plate-like silicon manufacturing method according to the prior art, the growth rate is determined by the heat of solidification generated and the heat from the solid-liquid interface determined by the temperature distribution near the solid-liquid interface between the plate-like silicon and the melt. Determined by the amount of movement.
Therefore, in order to grow plate-like silicon stably at a constant rate, it is necessary to precisely control the temperature at the solid-liquid interface and the temperature distribution in the vicinity of it, and measure the width and thickness of the plate-like silicon during growth. It is desirable to control the temperature and its distribution by feedback.However, considering the structure of the growth furnace and the heat capacity of the members, the time constant of the temperature control system is generally large and the response is inferior. However, the growth rate must be kept low as a result. Further, for example, in the case of the EFG method, since the supply of the melt to the solid-liquid interface depends on the capillary phenomenon at the opening of the jig, the growth rate also depends on the properties of the interface between the jig and the melt. Therefore, stable manufacturing becomes more difficult. Furthermore, in the method using the jig, the quality and shape of the jig surface layer may change due to the chemical reaction between the silicon melt and the jig material, and the purity of the silicon may decrease due to contamination from the jig material. Inevitably, when growing a single crystal in particular, it is difficult to obtain a stable single crystal plate-like silicon which becomes crystalline and has many crystal defects due to these causes.

【0005】また、これらの方法はいずれも原料シリコ
ン融液を耐熱性容器に収容し、これより板状結晶を育成
するので前述の治具と同じく容器材料からシリコンが汚
染される上、育成の進行と共に容器内シリコン量が減少
することによって結晶成長の固液界面近傍の熱的条件が
変化し、一定形状の板状結晶を作成することは極めて困
難となる。このような従来からの板状結晶育成法の欠点
を克服するための板状の原料から板状結晶を育成させる
RTR(Ribon to Ribon)法が提案されている。この方
法は板状の原料の長さ方向と垂直な方向から板状材料の
側面にレーザーを入射させて板状原料の一部を極めて薄
い帯状に溶融し、この溶融帯を原料板の一端から他端に
向けて移動させることによって板状結晶を作成するが、
この方法では育成させる板状結晶の巾全長に亘ってレー
ザービームで一様に加熱するため、高出力のレーザー光
源と複雑かつ精密な光学系が必要となる。また、長時間
に亘ってレーザービームの安定性を確保するために特別
の設備が必要で、これらのことから装置が極めて高価と
なる他、レーザーの出力エネルギーの入力エネルギーに
対する効率は極めて低いために経済的な板状結晶の製造
には問題が多い。
In each of these methods, the raw material silicon melt is housed in a heat-resistant container, and plate crystals are grown from this, so that the silicon is contaminated from the container material as in the case of the above-mentioned jig, and the growth of the crystal is promoted. As the amount of silicon in the container decreases with the progress, the thermal condition near the solid-liquid interface of crystal growth changes, and it becomes extremely difficult to form a plate-shaped crystal having a constant shape. An RTR (Ribon to Ribon) method for growing a plate-shaped crystal from a plate-shaped raw material has been proposed in order to overcome the drawbacks of the conventional plate-shaped crystal growing method. In this method, a laser is incident on the side surface of the plate-shaped material from a direction perpendicular to the lengthwise direction of the plate-shaped material to melt a part of the plate-shaped material into an extremely thin band, and this molten band is cut from one end of the material plate. A plate crystal is created by moving it toward the other end,
In this method, a plate-shaped crystal to be grown is uniformly heated by a laser beam over the entire width, so a high-power laser light source and a complicated and precise optical system are required. In addition, special equipment is required to secure the stability of the laser beam for a long time, which makes the device extremely expensive, and the efficiency of the laser output energy with respect to the input energy is extremely low. There are many problems in the economical production of plate crystals.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
問題点に鑑みなされたもので、板状材料、特に太陽電池
用基板材料として有用な板状シリコン結晶を高品質、高
精度かつ低コスト、高生産性で得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a plate-shaped material, particularly a plate-shaped silicon crystal useful as a substrate material for a solar cell, with high quality, high accuracy and low cost. The purpose is to obtain at high cost and high productivity.

【0007】[0007]

【課題を解決するための手段】本発明者らは、高周波誘
導加熱方式を用い、板状原料を安定して高品質の板状材
料とすることに成功したもので、その要旨は、高周波誘
導加熱によって板状原料に溶融帯を形成させ、該溶融帯
を板状原料の中を移動させて、板状原料を結晶化又は純
化する板状材料を製造する方法である。またこの際、板
状原料の長さ方向が鉛直になる様にその一端を保持し、
他端を高周波誘導加熱によって溶融液化したのち、該融
液に種となる板状結晶を融着し、溶融部分を帯状に保ち
つつ該板状原料の保持された一端に向けて移動させて、
板状原料を結晶化又は純化するとよい。そしてこれらの
方法は不活性ガスの雰囲気、例えばアルゴン、ヘリウ
ム、窒素のうち少なくとも一種、又は減圧下で行うのが
好ましく、用いる雰囲気ガスの不純物は1,000ppm以下、
そして、雰囲気中の水分含有量が25℃における蒸気圧で
10-3気圧以下であるのが良い。さらに、これらの方法で
は製造される板状材料の形状を高周波加熱電力又は板状
材料の固化速度、又はそれら両者によって制御すること
が可能である。また、板状原料をシリコンとして、板状
シリコン結晶を作成するのに有用である。この場合、板
状原料あるいは雰囲気ガス中又はその両者にシリコンに
対しn型あるいはp型の導電性を付与する元素を含ませ
て、製造される板状シリコンの導電性および導電率を調
整することが可能である。そして、この方法で得られる
板状シリコン結晶は高品質、低コストであるので太陽電
池用基板として用いることができ、高効率、低コストの
太陽電池が提供される。
The present inventors have succeeded in stably producing a plate-shaped raw material into a high-quality plate-shaped material by using a high-frequency induction heating method. This is a method of producing a plate-shaped material by crystallizing or purifying the plate-shaped raw material by forming a melting zone in the plate-shaped raw material by heating and moving the melting zone in the plate-shaped raw material. At this time, hold one end of the plate-shaped raw material so that the lengthwise direction is vertical,
After melt-liquefying the other end by high-frequency induction heating, a plate-like crystal serving as a seed is fused to the melt, and the melted portion is moved toward one end where the plate-like raw material is held while keeping the band-like shape,
It is preferable to crystallize or purify the plate-shaped raw material. And these methods are preferably carried out in an atmosphere of an inert gas, for example, at least one of argon, helium, and nitrogen, or under reduced pressure. Impurities of the atmosphere gas used are 1,000 ppm or less,
And the moisture content in the atmosphere is the vapor pressure at 25 ℃
It should be 10 -3 atm or less. Furthermore, in these methods, the shape of the plate-shaped material produced can be controlled by high-frequency heating power, the solidification rate of the plate-shaped material, or both. Further, it is useful for producing a plate-shaped silicon crystal by using the plate-shaped raw material as silicon. In this case, the conductivity and the conductivity of the plate-like silicon to be produced should be adjusted by adding an element that imparts n-type or p-type conductivity to silicon in the plate-like raw material or the atmosphere gas or both. Is possible. Since the plate-shaped silicon crystal obtained by this method has high quality and low cost, it can be used as a substrate for solar cells, and a high-efficiency, low-cost solar cell is provided.

【0008】以下、本発明につき詳述する。本発明は前
記の従来技術の欠点、問題点を克服し経済的に安定した
品質の板状材料、特には板状シリコン結晶の新しい製造
方法を提供するものである。以下、シリコンの板状結晶
を製造する場合を中心として本発明を説明するが、本発
明はシリコンに限定されるものではない。本発明の方法
では主としてレーザー加熱RTR法の問題を解決するた
め高周波加熱によって板状原料、特には板状シリコンの
長さ方向に垂直な溶融帯を形成することがその特徴であ
る。すなわち、本発明者らはすでに高周波加熱によって
太さが1mm以下の細線状シリコンを作成する方法を開発
し特許出願済みであるが(特願平6-326012号)、この方
法の開発によって高周波加熱によればレーザー加熱に比
べ少量のエネルギーによって有効に溶融帯を形成するこ
とが出来ること、またコイルに流れる高周波電流を精密
にコントロールすることによって溶融帯を安定に保つこ
とが出来ること、さらには加熱用コイルの上下に補助の
リングを配置することによって溶融帯の上下のシリコン
に望ましい温度分布を形成させ溶融帯の移動速度、換言
すれば結晶の育成速度をかなり高い値にまで精緻に制御
することが出来ることを見出し、板状シリコン結晶を作
成する方法に適用したところ、細線状シリコンの作成と
同様に低エネルギー消費によって安定かつ高速に板状シ
リコン結晶を作成することが出来ることが明らかとなっ
た。
Hereinafter, the present invention will be described in detail. The present invention provides a new method for producing a plate-like material, particularly a plate-like silicon crystal, which has economically stable quality and overcomes the above-mentioned drawbacks and problems of the prior art. Hereinafter, the present invention will be described focusing on the case of producing a plate crystal of silicon, but the present invention is not limited to silicon. The method of the present invention is characterized mainly in that a melting zone perpendicular to the longitudinal direction of the plate-shaped raw material, particularly plate-shaped silicon, is formed by high-frequency heating in order to solve the problems of the laser heating RTR method. That is, the present inventors have already developed a method for producing fine linear silicon having a thickness of 1 mm or less by high frequency heating and applied for a patent (Japanese Patent Application No. 6-326012). According to the method, it is possible to effectively form a melting zone with a small amount of energy compared to laser heating, and it is possible to keep the melting zone stable by precisely controlling the high frequency current flowing in the coil. By arranging auxiliary rings above and below the working coil to form a desirable temperature distribution in the silicon above and below the melting zone and precisely control the moving speed of the melting zone, in other words, the crystal growth rate to a considerably high value. It was discovered that it was possible to apply it to the method for producing plate-shaped silicon crystals, and it achieved low energy consumption similar to the production of thin-line silicon. Therefore, it became clear that a plate-shaped silicon crystal can be produced stably and at high speed.

【0009】板状シリコン結晶を作成する場合は、例え
ば図1に示す様に原料となる板状のシリコン12の長さ方
向を鉛直方向に保持し、水平に保持され該板状原料シリ
コンを取り囲む様にスリット状の溝14を有する加熱用コ
イル11に高周波電源からの電流を流し、コイルに取り囲
まれた板状原料シリコンの長さ方向の極めて限られた部
分を帯状に溶融し、コイル位置を板状原料シリコンの長
さ方向(鉛直方向)に相対的に移動させることによって
溶融帯を板状原料シリコン中を上又は下の一方向に移動
させ、コイルから相対的に離される側のシリコンを結晶
化させることが出来る。
When a plate-shaped silicon crystal is produced, for example, as shown in FIG. 1, the plate-shaped silicon 12 as a raw material is held vertically in the longitudinal direction and horizontally held to surround the plate-shaped raw material silicon. Similarly, a current from a high frequency power source is applied to the heating coil 11 having the slit-shaped groove 14, and the extremely limited portion in the length direction of the plate-shaped raw material silicon surrounded by the coil is melted in a strip shape to change the coil position. By relatively moving the plate-shaped raw material silicon in the lengthwise direction (vertical direction), the melting zone is moved in one direction upward or downward in the plate-shaped raw material silicon to remove the silicon on the side relatively separated from the coil. It can be crystallized.

【0010】板状あるいはリボン状の単結晶シリコンを
作成する場合には、板状原料シリコンの一端を保持し、
他端を前述の如きスリット状溝を有する高周波加熱コイ
ルによって直接、又は補助ヒーターを併用して溶融した
のち、この溶融部分に板状ないしはリボン状の単結晶シ
リコン種を融着させるか、あるいは板状原料シリコンの
保持していない一端に板状もしくはリボン状の単結晶シ
リコンの一端を出来る限り空隙の生じない様に接触さ
せ、この接触部分を前記高周波コイルによって溶融させ
たのち、コイル位置を単結晶シリコンから板状原料シリ
コンの方向に相対的に動かし、溶融帯を移動させること
によって作成することができる。この板状ないしはリボ
ン状の単結晶シリコンを作成するさいの方法は例えば他
にも厚い原料シリコン板から薄いシリコン板を作成する
場合のように、コイルのスリット巾よりも板状原料シリ
コンの厚さが大きい場合にも応用できる。
In the case of producing plate-shaped or ribbon-shaped single crystal silicon, one end of the plate-shaped raw material silicon is held,
The other end is melted directly by a high-frequency heating coil having a slit-shaped groove as described above, or after being melted by using an auxiliary heater together, and then a plate-shaped or ribbon-shaped single crystal silicon seed is fused to the melted portion, or a plate One end of the plate-shaped or ribbon-shaped single crystal silicon is brought into contact with one end of the raw material silicon which is not held so as not to create voids as much as possible, and the contact portion is melted by the high frequency coil, and then the coil position is changed to a single position. It can be created by moving the molten zone relatively from the crystalline silicon toward the plate-shaped raw material silicon and moving the melting zone. The method of making this plate-shaped or ribbon-shaped single crystal silicon is, for example, when making a thin silicon plate from a thick raw material silicon plate, the thickness of the plate-shaped raw material silicon is larger than the slit width of the coil. It can also be applied when the value is large.

【0011】板状原料シリコンは多結晶でも単結晶でも
いずれでも良く、その品位は生成板状シリコン結晶の特
性と密接に関係する。生成板状シリコン結晶は表面積の
体積に対する比が格段に大きいため、板状シリコン作成
の前後を通じ揮発性の不純物が揮発除去され易く、また
点状欠陥や転位も外部に拡散するため、極めて高純度、
高品位のシリコンが得られやすい。しかし、板状原料シ
リコンの中に含まれる不純物が 0.1%を越えると、この
ような不純物除去効果があるにしても、得られる板状シ
リコン結晶は高純度とはならないので、これを 0.1%以
下とするのが好ましい。また、育成する雰囲気からの汚
染も問題で、極めて高純度の板状シリコン結晶を得るに
は減圧、例えば1Torr以下、好ましくは10-3Torr以下と
するか、あるいはArあるいはHeの如き希ガスやN2
の如き不活性ガス雰囲気を用い、その中に含まれる酸素
や水素あるいはハイドロカーボンの如き不純物を1,000p
pm以下に制御することが好ましい。雰囲気中の水分は、
25℃における蒸気圧で10-3気圧以下とすることが好まし
い。さらに、板状シリコンの電気特性、すなわちその導
電型や抵抗値は板状原料シリコンに予めシリコンにn
型、ないしはp型の導電性を与える元素をドープするこ
とによって、または板状シリコンを育成する際の雰囲気
中にこれらの元素を化合物の形(たとえばB2H6、PH3
で含有させることによって任意に制御することが可能で
ある。
The plate-shaped raw material silicon may be either polycrystalline or single crystal, and its quality is closely related to the characteristics of the produced plate-shaped silicon crystal. Since the generated plate-like silicon crystal has a significantly large surface area to volume ratio, volatile impurities are easily volatilized and removed before and after the plate-like silicon is made, and point defects and dislocations are also diffused to the outside. ,
It is easy to obtain high-quality silicon. However, if the impurities contained in the plate-shaped raw material silicon exceed 0.1%, the obtained plate-shaped silicon crystals do not have high purity even if such an impurity removing effect is obtained. Is preferred. Further, contamination from the growing atmosphere is also a problem, and in order to obtain an extremely high-purity plate-like silicon crystal, the pressure is reduced, for example, 1 Torr or less, preferably 10 −3 Torr or less, or a rare gas such as Ar or He or N 2
Using an inert gas atmosphere such as, 1000p of impurities such as oxygen, hydrogen or hydrocarbons contained in it
It is preferable to control to pm or less. The moisture in the atmosphere is
The vapor pressure at 25 ° C is preferably 10 -3 atmospheres or less. Furthermore, the electrical characteristics of the plate-shaped silicon, that is, its conductivity type and resistance value, are the same as those of the plate-shaped raw material silicon.
-Type or p-type conductivity-imparting elements or by doping these elements into the compound form (for example, B 2 H 6 , PH 3 ) in the atmosphere when growing plate-like silicon.
It is possible to control it arbitrarily by including in.

【0012】また、作成する板状シリコン結晶の形状を
精度よくコントロールするには、シリコン溶融帯の形
状、寸法を例えばCCDカメラ等によって拡大して観
測、又は計測し、その変動量を高周波電力あるいは板状
原料シリコンと生成板状シリコン結晶との相対的移動速
度(板状材料の固化速度)にフィードバックさせるか、
あるいはその両者にフィードバック制御させることによ
って生成板状シリコン結晶の形状や、成長速度を極めて
安定に制御することが可能である。
In order to precisely control the shape of the plate-like silicon crystal to be produced, the shape and size of the silicon melting zone are enlarged and observed or measured by, for example, a CCD camera or the like, and the variation is measured by high frequency power or It is fed back to the relative movement speed (solidification speed of the plate-shaped material) between the plate-shaped raw material silicon and the generated plate-shaped silicon crystal,
Alternatively, it is possible to control the shape of the produced plate-like silicon crystal and the growth rate extremely stably by performing feedback control on both of them.

【0013】尚、当然のことながら本発明の方法はシリ
コン単結晶インゴット作成法の一つである浮遊帯域法
(Floating Zone 、略してFZ法)と同一原理に基づい
ており、条件によって板状シリコンの単結晶化が可能で
あると共に、原料となる板状シリコンを高純度化するこ
とが出来る。したがって、本発明の方法はシリコン以外
の他の材料、例えばFe、Cu、Al等の金属材等特別
に高純度化が求められる場合、又は単結晶化ないしは特
別に結晶粒を成長させることが望ましい場合にも応用す
ることが出来る。
As a matter of course, the method of the present invention is based on the same principle as the floating zone method (FZ method for short) which is one of the methods for producing a silicon single crystal ingot. Can be single-crystallized and the plate-shaped silicon as a raw material can be highly purified. Therefore, in the method of the present invention, it is desirable that a material other than silicon, for example, a metal material such as Fe, Cu, Al, etc. is required to have a high degree of purification, or single crystallization or special crystal grains are grown. It can also be applied to cases.

【0014】[0014]

【実施例】【Example】

(実施例1)図1(a)に示したようなFZ法によるシ
リコン単結晶育成装置と同様の装置を用い、厚さ2mm、
巾10mm、長さ 100mm、n型 500Ωcmの板状の原料シリコ
ン多結晶を長さ方向を鉛直方向とし、上端を上部駆動軸
に保持した。これを育成室内に水平に保持され、外部高
周波電源に接続した、巾3mm、長さ20mmの角型スリット
状溝を有する銅製の高周波コイルのスリットに同心状に
貫通させて配置し、さらに該板状シリコン多結晶の下端
を下部駆動軸に固定した。コイルの位置は、板状シリコ
ン多結晶の下端より上10mmのところとした。育成室内を
アルゴン雰囲気(1気圧)とし、コイルに高周波電源か
らの高周波(2MHz)電流を制御しつつ流し、板状原料シリ
コンのコイルで囲まれた部分に溶融帯を形成させた。溶
融帯形状をCCDカメラによって観察しながら下部駆動
軸を下方に2mm/minの速さで移動させ、他方上部駆動軸
を平均1mm/minの速さで下方に移動させることによっ
て、溶融帯の下の部分に巾10mm、厚さ1mmの板状シリコ
ン結晶を作成した。得られた板状シリコン結晶は同じく
多結晶であったが、巾10mm、厚さ1mmに精度よく制御さ
れており、抵抗は約 600Ωcmであった。
(Embodiment 1) Using a device similar to the silicon single crystal growth device by the FZ method as shown in FIG.
A plate-shaped raw material silicon polycrystal having a width of 10 mm, a length of 100 mm and an n-type of 500 Ωcm was set to have a vertical direction in its length direction, and its upper end was held by an upper drive shaft. This was held horizontally in the growth chamber and was concentrically penetrated through the slit of a copper high-frequency coil having a rectangular slit-shaped groove with a width of 3 mm and a length of 20 mm, which was connected to an external high-frequency power source, and was placed concentrically. The lower end of the silicon polycrystal was fixed to the lower drive shaft. The position of the coil was 10 mm above the lower end of the plate-like silicon polycrystal. An argon atmosphere (1 atm) was applied in the growth chamber, and a high frequency (2 MHz) current from a high frequency power source was controlled to flow through the coil to form a molten zone in a portion surrounded by the plate-shaped raw material silicon coil. While observing the shape of the melting zone with a CCD camera, the lower drive shaft is moved downward at a speed of 2 mm / min, while the upper drive shaft is moved downward at an average speed of 1 mm / min, thereby A plate-like silicon crystal having a width of 10 mm and a thickness of 1 mm was prepared in the area of. The obtained plate-like silicon crystal was also polycrystalline, but the width was 10 mm and the thickness was 1 mm, and the resistance was about 600 Ωcm.

【0015】(実施例2)実施例1と同様の装置を用い
板状原料シリコンに巾10mm、厚さ2mm、長さ 100mm、n
型 500Ωcmの多結晶を用い、その長さ方向が鉛直方向に
一致するようにその上端を上部駆動軸に固定した。実施
例1と同様のコイルを用い、同じ様に板状原料シリコン
をコイルのスリットと同心状に配置した。下部駆動軸に
は巾10mm、厚さ 0.8mm、長さ20mmの単結晶シリコン種板
を長さ方向が鉛直方向に一致する様に固定したのち、そ
の上端を上部駆動軸に固定した板状原料シリコン多結晶
の下端に両者の板面が一致するように接触させた状態を
保ち、上部および下部駆動軸を用いて移動させコイルの
スリット部分に原料と種結晶板の接触部位が位置する様
にセットする。高周波電流(周波数2MHz)によって接
触部位に溶融帯を形成したのち、溶融帯をCCDカメラ
で観察しつつ下部駆動軸を平均2mm/min、上部駆動軸を
平均 0.8mm/minの速さで下方に移動させ種結晶板の上方
にシリコン単結晶板を成長させた。雰囲気は 50ppmのB2
H6を含有させたアルゴン (流量2L/min)1気圧とし、B2
H6以外の不純物は 50ppm、露点は−50℃とした。その結
果、巾10±0.5mm 、厚さ 0.8±0.1mm 、長さ 200mmの板
状シリコン単結晶が育成され、このものは種結晶板と同
一方位の単結晶でp型10Ωcmであった。
(Embodiment 2) Using a device similar to that of Embodiment 1, a plate-shaped raw material silicon is formed with a width of 10 mm, a thickness of 2 mm, a length of 100 mm, and n.
Type 500 Ωcm polycrystal was used, and its upper end was fixed to the upper drive shaft so that its length direction was aligned with the vertical direction. The same coil as in Example 1 was used, and the plate-shaped raw material silicon was arranged concentrically with the slit of the coil. A plate-shaped raw material in which a single-crystal silicon seed plate with a width of 10 mm, a thickness of 0.8 mm, and a length of 20 mm was fixed to the lower drive shaft so that the length direction was aligned with the vertical direction, and then the upper end was fixed to the upper drive shaft. Keep the plate contacted with the lower end of the silicon polycrystal so that they are in contact with each other, and move them using the upper and lower drive shafts so that the contact part between the raw material and the seed crystal plate is located in the slit part of the coil. set. After forming a melting zone at the contact area with a high frequency current (frequency 2MHz), while observing the melting zone with a CCD camera, the lower drive shaft moves downward at an average speed of 2mm / min and the upper drive shaft moves downwards at an average speed of 0.8mm / min. It was moved to grow a silicon single crystal plate above the seed crystal plate. Atmosphere is B 2 at 50 ppm
Argon containing H 6 (flow rate 2 L / min) at 1 atm, B 2
Impurities other than H 6 were 50 ppm, and the dew point was -50 ° C. As a result, a plate-like silicon single crystal having a width of 10 ± 0.5 mm, a thickness of 0.8 ± 0.1 mm and a length of 200 mm was grown, and this was a single crystal having the same orientation as the seed crystal plate and having a p-type of 10 Ωcm.

【0016】(実施例3)実施例2で得られたシリコン
単結晶板を長さ10mmで切断し、 850℃にてリンを拡散さ
せてpn接合を形成した後、裏面拡散層を除去し、TiO2
射防止膜をn型表面に形成し、フォトリソグラフィーに
て Al-Si表面電極を、また裏面には同様にAl-Siの裏面
電極を形成して図2に示したごとき太陽電池セルを作製
した。この太陽電池セルをAM 1.5、 100mW/cm2、28℃の
条件で変換効率を測定し14.5%の値を得た。
Example 3 The silicon single crystal plate obtained in Example 2 was cut to a length of 10 mm, phosphorus was diffused at 850 ° C. to form a pn junction, and then the back surface diffusion layer was removed. A TiO 2 antireflection film is formed on the n-type surface, an Al-Si surface electrode is formed by photolithography, and an Al-Si back surface electrode is similarly formed on the back surface to form a solar cell as shown in FIG. It was made. The conversion efficiency of this solar cell was measured under the conditions of AM 1.5, 100 mW / cm 2 , and 28 ° C., and a value of 14.5% was obtained.

【0017】[0017]

【発明の効果】本発明により、高純度、高精度の板状材
料、特に板状シリコン結晶を安定して、かつ低コストで
得ることができる。従って、このような板状シリコン結
晶から作成される太陽電池のコスト低減化に資するた
め、太陽電池の普及に寄与できる。
According to the present invention, a highly pure and highly accurate plate-shaped material, particularly a plate-shaped silicon crystal, can be stably obtained at low cost. Therefore, it contributes to the cost reduction of the solar cell made from such a plate-like silicon crystal, which can contribute to the spread of the solar cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の板状材料の製造方法の概略図である。 (a)断面図 (b)溶融域を拡大した斜視図FIG. 1 is a schematic view of a method for producing a plate-shaped material of the present invention. (A) Sectional view (b) Perspective view of enlarged fusion zone

【図2】従来の太陽電池の断面図である。FIG. 2 is a cross-sectional view of a conventional solar cell.

【符号の説明】[Explanation of symbols]

1…p型のシリコン半導体基板 11…高周波加
熱コイル 2…n層 12…板状原料
シリコン 3…反射防止膜 13…板状シリ
コン結晶 4…表面電極 14…スリット
状溝 5…p+ 層 6…裏面電極 7…太陽光
DESCRIPTION OF SYMBOLS 1 ... P-type silicon semiconductor substrate 11 ... High frequency heating coil 2 ... N layer 12 ... Plate-shaped raw material silicon 3 ... Antireflection film 13 ... Plate-shaped silicon crystal 4 ... Surface electrode 14 ... Slit-shaped groove 5 ... P + layer 6 ... Back electrode 7 ... sunlight

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上岡 正嗣 神奈川県川崎市高津区坂戸3丁目2番1号 信越化学工業株式会社コーポレートリサ ーチセンター内 (72)発明者 平沢 照彦 神奈川県川崎市高津区坂戸3丁目2番1号 信越化学工業株式会社コーポレートリサ ーチセンター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masatsugu Ueoka 3-2-1 Sakado, Takatsu-ku, Kawasaki City, Kanagawa Prefecture Corporate Research Center, Shin-Etsu Chemical Co., Ltd. (72) Teruhiko Hirasawa, Sakado, Takatsu-ku, Kawasaki City, Kanagawa Prefecture 3-2-1, Shin-Etsu Chemical Co., Ltd. Corporate Research Center

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 高周波誘導加熱によって板状原料に溶融
帯を形成させ、該溶融帯を板状原料の中を移動させて、
板状原料を結晶化又は純化する板状材料を製造する方
法。
1. A melting zone is formed in a plate-shaped raw material by high-frequency induction heating, and the melting zone is moved in the plate-shaped raw material,
A method for producing a plate-shaped material by crystallizing or purifying a plate-shaped raw material.
【請求項2】 板状原料の長さ方向が鉛直になる様にそ
の一端を保持し、他端を高周波誘導加熱によって溶融液
化したのち、該融液に種となる板状結晶を融着し、溶融
部分を帯状に保ちつつ該板状原料の保持された一端に向
けて移動させて、板状原料を結晶化又は純化する板状材
料を製造する方法。
2. A plate-shaped raw material is held at one end so that the lengthwise direction is vertical, and the other end is melted and liquefied by high frequency induction heating, and then a plate-shaped crystal serving as a seed is fused to the melt. A method for producing a plate-shaped material for crystallizing or purifying the plate-shaped raw material by moving the molten portion toward one end where the plate-shaped raw material is held while keeping the melted portion in a band shape.
【請求項3】 不活性ガス雰囲気中で行なう請求項1又
は請求項2の方法。
3. The method according to claim 1, which is carried out in an inert gas atmosphere.
【請求項4】 不活性ガスがアルゴン、ヘリウム、窒素
のうち少なくとも一種である請求項1又は請求項2、請
求項3の方法。
4. The method according to claim 1, 2 or 3, wherein the inert gas is at least one of argon, helium and nitrogen.
【請求項5】 減圧の下で実施する請求項1又は請求項
2ないし請求項4の方法。
5. The method according to claim 1 or claim 2 to claim 4, which is carried out under reduced pressure.
【請求項6】 雰囲気ガスの不純物が1,000ppm以下であ
る請求項1又は請求項2ないし請求項5の方法。
6. The method according to claim 1 or claim 2 or claim 5, wherein the impurities in the atmospheric gas are 1,000 ppm or less.
【請求項7】 雰囲気中の水分含有量が25℃における蒸
気圧で10-3気圧以下である請求項6の方法。
7. The method according to claim 6, wherein the water content in the atmosphere is 10 −3 atm or less in vapor pressure at 25 ° C.
【請求項8】 製造される板状材料の形状を高周波加熱
電力又は板状材料の固化速度、又はそれら両者によって
制御する請求項1又は請求項2ないし請求項7の方法。
8. The method according to claim 1, wherein the shape of the plate-shaped material to be manufactured is controlled by high-frequency heating power, the solidification rate of the plate-shaped material, or both of them.
【請求項9】 板状原料がシリコンである請求項1又は
請求項2ないし請求項8の方法。
9. The method according to claim 1, wherein the plate-shaped raw material is silicon.
【請求項10】 板状原料あるいは雰囲気ガス中又はそ
の両者にシリコンに対しn型あるいはp型の導電性を付
与する元素を含ませて、製造される板状シリコンの導電
性および導電率を調整する請求項9の方法。
10. A plate-shaped raw material, an atmosphere gas, or both of them are mixed with an element that imparts n-type or p-type conductivity to silicon, thereby adjusting the conductivity and conductivity of the plate-shaped silicon produced. The method of claim 9, wherein
【請求項11】 請求項9又は請求項10の方法で作成
された板状シリコン結晶。
11. A plate-like silicon crystal produced by the method according to claim 9.
【請求項12】 請求項11の板状シリコン結晶を用い
て作成される太陽電池。
12. A solar cell produced by using the plate-like silicon crystal according to claim 11.
JP15884195A 1995-06-26 1995-06-26 Production of planar material Pending JPH0912390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15884195A JPH0912390A (en) 1995-06-26 1995-06-26 Production of planar material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15884195A JPH0912390A (en) 1995-06-26 1995-06-26 Production of planar material

Publications (1)

Publication Number Publication Date
JPH0912390A true JPH0912390A (en) 1997-01-14

Family

ID=15680583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15884195A Pending JPH0912390A (en) 1995-06-26 1995-06-26 Production of planar material

Country Status (1)

Country Link
JP (1) JPH0912390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090864A1 (en) 2007-01-25 2008-07-31 National Institute Of Advanced Industrial Science And Technology Apparatus and method for manufacturing silicon substrate, and silicon substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090864A1 (en) 2007-01-25 2008-07-31 National Institute Of Advanced Industrial Science And Technology Apparatus and method for manufacturing silicon substrate, and silicon substrate

Similar Documents

Publication Publication Date Title
US4594229A (en) Apparatus for melt growth of crystalline semiconductor sheets
EP0738791A1 (en) Process for producing spherical crystal
JP3002479B2 (en) Solar cell manufacturing method
US20050066881A1 (en) Continuous production method for crystalline silicon and production apparatus for the same
JPH0912390A (en) Production of planar material
US7175706B2 (en) Process of producing multicrystalline silicon substrate and solar cell
CA1047655A (en) Manufacture of semiconductor films made from the liquid phase
JPH06191820A (en) Production of silicon thin plate
JPH0912394A (en) Production of planar crystal
JPH0873297A (en) Substrate material for solar cell and solar cell using the same
US4602422A (en) Flash compression process for making photovoltaic cells
JPS6261771A (en) Melting and directional solidifying method of metal
WO2005016821A1 (en) Ga-DOPED CRYSTALLINE SILICON, PROCESS FOR PRODUCING THE SAME, Ga-DOPED CRYSTALLINE SILICON PRODUCTION APPARATUS FOR USE IN THE PROCESS, SOLAR CELL INCLUDING SUBSTRATE OF GA-DOPED CRYSTALLINE SILICON AND PROCESS FOR PRODUCING THE SAME
JP4282278B2 (en) Substrate, plate manufacturing method using the substrate, plate and solar cell produced from the plate
JP2947529B2 (en) Shaped crystal manufacturing method and manufacturing apparatus
US4125425A (en) Method of manufacturing flat tapes of crystalline silicon from a silicon melt by drawing a seed crystal of silicon from the melt flowing down the faces of a knife shaped heated element
JP4638012B2 (en) Semiconductor substrate, solar cell using the same, and manufacturing method thereof
JPS5932434B2 (en) Band-shaped silicon crystal production equipment
JP2002154896A (en) METHOD FOR PRODUCING Ga-DOPED SILICON SINGLE CRYSTAL
KR100799144B1 (en) Process for producing monocrystal thin film and monocrystal thin film device
CN114945712A (en) Thin plate-like single crystal manufacturing apparatus and thin plate-like single crystal manufacturing method
CA1062588A (en) Making a continuous crystalline tape of semiconductor material
JPS603001B2 (en) Method for manufacturing ribbon-shaped silicon crystals
JPH09315891A (en) Production of plate silicon crystal and solar cell manufactured with the plate crystal
JP2005086033A (en) Photoelectric converter