JPH09122860A - Method for continuously casting aluminum - Google Patents

Method for continuously casting aluminum

Info

Publication number
JPH09122860A
JPH09122860A JP30514095A JP30514095A JPH09122860A JP H09122860 A JPH09122860 A JP H09122860A JP 30514095 A JP30514095 A JP 30514095A JP 30514095 A JP30514095 A JP 30514095A JP H09122860 A JPH09122860 A JP H09122860A
Authority
JP
Japan
Prior art keywords
ingot
casting
cooling
cast block
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30514095A
Other languages
Japanese (ja)
Inventor
Masaisa Tsunekawa
雅功 常川
Norifumi Hayashi
典史 林
Teruo Uno
照生 宇野
Yoshio Watanabe
良夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP30514095A priority Critical patent/JPH09122860A/en
Publication of JPH09122860A publication Critical patent/JPH09122860A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress the occurrence of defects at the bottom part of a cast block at the initial stage of continuous casting with a simple method without using a complicated equipment by film-boiling and cooling the surface of the cast block drawn out from the lower part of a mold at the initial stage of the casting and specifying the heat conduction from the surface of the cast block with a coefficient of heat conductivity. SOLUTION: In order to keep the film boiling and cooling, it is important that the heat conduction from the surface of the cast block is controlled to <=4000W/m<2> K the coefficient of heat conductivity so as not to lower the surface temp. of the cast block. Therefore, in the case of colliding the cooling water to the bottom part of the cast block at the initial stage of the continuous casting, since the film boiling and cooling are executed, the heat conduction from the surface of the cast block is suppressed, and the cooling rate is reduced, and since thermal stress is mitigated, the warping-up is not caused at the bottom part of the cast block and various kinds of the cast block defect caused by the warping-up is prevented. Particularly, in a vertical continuous casting of an aluminum ingot having rectangular cross section, the stable casting can be executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウムの連
続鋳造方法、詳しくは、アルミニウムの垂直連続鋳造に
おいて、鋳造の初期段階で生じる鋳塊底部の欠陥を低減
するアルミニウムの連続鋳造方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for aluminum, and more particularly, to an improvement in a continuous casting method for aluminum that reduces defects in the bottom of the ingot in the initial stage of casting in vertical continuous casting of aluminum.

【0002】[0002]

【従来の技術】アルミニウム(アルミニウム合金を含
む、以下同じ)の垂直連続鋳造は、上下に開放された筒
状鋳型の上部からアルミニウム溶湯を供給し、凝固した
鋳塊を鋳型の下部から引き出すことにより行われる。通
常、鋳造開始に際しては、鋳型内に底台を設置したの
ち、鋳型内に溶湯を供給して、底台および鋳型内に所定
量の溶湯が注入された段階で底台を鋳型の下方へ降下さ
せるとともに周囲から冷却水を供給して溶湯を凝固さ
せ、凝固した鋳塊を垂直方向に連続的に引き出す。
2. Description of the Related Art Vertical continuous casting of aluminum (including aluminum alloys, the same applies hereinafter) is performed by supplying molten aluminum from the upper part of a cylindrical mold opened up and down and pulling out the solidified ingot from the lower part of the mold. Done. Usually, at the start of casting, after the bottom stand is installed in the mold, the molten metal is supplied into the mold, and when the predetermined amount of molten metal is injected into the bottom stand and the mold, the bottom stand is lowered below the mold. At the same time, cooling water is supplied from the surroundings to solidify the molten metal, and the solidified ingot is continuously drawn out in the vertical direction.

【0003】この場合、とくに断面矩形状の圧延用イン
ゴットを鋳造する場合には、図1に示すように、鋳造の
初期段階において、鋳型1から引き出された鋳塊Cの底
部は冷却水3によって急冷される結果、鋳塊C底部の温
度が急激に低下し、鋳塊の縦方向に急温度勾配が生じて
熱応力が誘導されるとともに、鋳塊Cの中央部と端部と
の間の急温度勾配からも熱応力が生じ、このため鋳塊の
短辺側底部に反り上り4が発生する。鋳塊の短辺側底部
が反り上ると、その上部にはくびれ5が生じ、縦割れや
湯漏れの原因となる。なお、図1において、Mはアルミ
ニウム溶湯、Bは凝固界面である。
In this case, particularly when casting a rolling ingot having a rectangular cross section, as shown in FIG. 1, at the initial stage of casting, the bottom of the ingot C drawn from the mold 1 is cooled by the cooling water 3. As a result of the rapid cooling, the temperature of the bottom of the ingot C sharply decreases, a rapid temperature gradient is generated in the longitudinal direction of the ingot to induce thermal stress, and the temperature between the center and the end of the ingot C is increased. Thermal stress is also generated from the steep temperature gradient, and as a result, warpage 4 occurs at the bottom of the ingot on the short side. When the bottom portion of the ingot on the short side is warped, a constriction 5 is generated at the upper portion of the ingot, which causes vertical cracking and leakage of molten metal. In FIG. 1, M is a molten aluminum and B is a solidification interface.

【0004】また、反り上がり4の形成に起因して、鋳
塊Cの長辺側の中央部には引張応力がはたらくため縦割
れ6が生じ易くなり、反り上がり部においては、鋳型C
の底部と底台2の間に空隙部7が形成されるため、底台
2の方向への抜熱が低下して鋳塊底部が再溶解し、再溶
解部から割れが発生するという問題も生じる。
Further, due to the formation of the warp 4, a tensile stress is applied to the central portion of the ingot C on the long side, so that vertical cracks 6 easily occur, and the mold C is formed in the warp.
Since a void 7 is formed between the bottom of the base and the base 2, the heat removal in the direction of the base 2 is reduced, the bottom of the ingot is remelted, and a crack is generated from the remelted portion. Occurs.

【0005】連続鋳造の初期段階における鋳塊底部の冷
却による収縮を最適化して反り上がりをなくし、鋳塊底
部に発生する欠陥を防止するために、これまでいくつか
の技術が開発されている。例えば、鋳造の初期段階にお
いて、冷却媒体中に炭酸ガスなどのガスを混合させて鋳
塊からの熱抽出の速度を減少させ、鋳造の進行に従って
ガスの混合量を減少させ、冷却速度を通常の速度に戻し
て行く方法(特公昭55-42903号公報) 、鋳造の初期段階
において、冷却水を間欠的に供給して鋳塊底部の収縮を
制御するパルス冷却法( 米国特許第3,441,079 号明細
書) などが提案され、それぞれ実用化されている。
Several techniques have been developed so far in order to optimize the shrinkage due to cooling of the bottom of the ingot in the initial stage of continuous casting to prevent warpage and prevent defects occurring at the bottom of the ingot. For example, in the initial stage of casting, a gas such as carbon dioxide gas is mixed in the cooling medium to reduce the rate of heat extraction from the ingot, and the amount of gas mixed is reduced as the casting progresses. Method for returning to speed (Japanese Patent Publication No. 55-42903), pulse cooling method for controlling shrinkage of the bottom of the ingot by intermittently supplying cooling water in the initial stage of casting (US Pat. No. 3,441,079) ) Have been proposed and put into practical use.

【0006】上記の方式はいずれも、アルミニウムの連
続鋳造の初期段階の鋳塊底部の欠陥防止に効果的である
が、炭酸ガスを冷却媒体に混合する方法は、炭酸ガスの
発生、混合量の制御などのための大がかりな設備が必要
であり、パルス冷却法においては、冷却水のオン・オフ
を制御するための複雑な装置を要し、制御系に問題が発
生した場合には、鋳塊冷却が中断される結果、再溶解が
生じ鋳型壁が損傷するなどの難点もある。
Although any of the above methods is effective for preventing defects at the bottom of the ingot at the initial stage of continuous casting of aluminum, the method of mixing carbon dioxide with the cooling medium is effective in controlling the generation of carbon dioxide and the mixing amount. Large-scale equipment for control etc. is required, the pulse cooling method requires a complicated device for controlling on / off of cooling water, and when a problem occurs in the control system, an ingot is required. As a result of the interruption of cooling, remelting occurs and the mold wall is damaged.

【0007】[0007]

【発明が解決しようとする課題】本発明は、アルミニウ
ムの垂直連続鋳造において、鋳造初期段階において生じ
る鋳塊の欠陥を防止するための上記従来の方式の難点を
解消する方法を開発するために、高温のアルミニウム鋳
塊の冷却段階について基礎的な実験検討を行った結果と
してなされたものであり、その目的は、複雑な設備を使
用することなく、簡便な方法で連続鋳造の初期段階にお
ける鋳塊底部の欠陥の発生を抑制することができるアル
ミニウムの連続鋳造方法を提供することにある。
DISCLOSURE OF THE INVENTION The present invention aims to develop a method for overcoming the drawbacks of the above-mentioned conventional methods for preventing the defects of the ingot in the initial stage of casting in the vertical continuous casting of aluminum. This was done as a result of a basic experimental study on the cooling stage of a high-temperature aluminum ingot, the purpose of which is to use a simple method and a simple method without using complicated equipment. An object of the present invention is to provide a continuous casting method for aluminum that can suppress the occurrence of bottom defects.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるアルミニウムの連続鋳造方法は、鋳型
上部から溶湯を供給し、凝固した鋳塊を鋳型下部から引
き出すアルミニウムの垂直連続鋳造において、鋳造の初
期段階に、鋳型下部から引き出された鋳塊の表面を膜沸
騰冷却し、鋳塊表面からの熱抽出を熱伝導係数で400
0W/m2 K以下とすることを特徴とする。
A method for continuous casting of aluminum according to the present invention for achieving the above object is a vertical continuous casting of aluminum in which molten metal is supplied from an upper part of a mold and a solidified ingot is drawn out from a lower part of the mold. In the early stage of casting, the surface of the ingot pulled out from the lower part of the mold is cooled by film boiling, and the heat extraction from the surface of the ingot is 400 with a thermal conductivity coefficient.
It is characterized in that it is set to 0 W / m 2 K or less.

【0009】本発明は、アルミニウム溶湯を鋳型上部か
ら供給し、凝固した鋳塊を鋳型下部へ引き出すアルミニ
ウムの垂直連続鋳造のうち、とくに圧延用の矩形状イン
ゴットを鋳造する場合に有効であり、図1に示すよう
に、鋳型1内に底台2を設置し、鋳型内の底台2上に溶
湯Mを注入し、冷却水3を供給して鋳塊Cの底部を形成
する鋳造の初期段階において鋳塊の表面を膜沸騰冷却す
る。
INDUSTRIAL APPLICABILITY The present invention is effective particularly in the case of casting a rectangular ingot for rolling among the vertical continuous casting of aluminum in which molten aluminum is supplied from the upper part of the mold and the solidified ingot is drawn out to the lower part of the mold. As shown in FIG. 1, a bottom stand 2 is installed in a mold 1, a molten metal M is injected onto the bottom stand 2 in the mold, and cooling water 3 is supplied to form a bottom part of an ingot C at an initial stage of casting. In, the surface of the ingot is cooled by film boiling.

【0010】膜沸騰冷却によれば、冷却水が高温の鋳塊
表面で沸騰、気化して蒸気膜を形成し、鋳塊は直接、水
に曝されることなく、蒸気膜を通して冷却される。従っ
て、鋳塊表面からの熱抽出は著しく抑制される。その
後、鋳塊表面の温度が低下すると、蒸気膜が部分的にや
ぶれ、その部分が水と接触して気泡を発生する遷移沸騰
段階、蒸気膜が全体的になくなって鋳塊表面が冷却水と
接触し、気泡が生じる核沸騰段階に移行し、鋳塊表面か
らの熱抽出が増大して所定の冷却速度となり、定常の連
続鋳造が行われる。
According to the film boiling cooling, the cooling water boils and vaporizes on the surface of the hot ingot to form a vapor film, and the ingot is directly cooled through the vapor film without being exposed to water. Therefore, heat extraction from the surface of the ingot is significantly suppressed. After that, when the temperature of the ingot surface decreases, the vapor film partly shakes, the transition boiling stage in which the part comes into contact with water to generate bubbles, the vapor film entirely disappears and the ingot surface becomes cooling water. The nucleate boiling stage where they come into contact with each other and generate bubbles occurs, heat extraction from the surface of the ingot is increased to a predetermined cooling rate, and steady continuous casting is performed.

【0011】[0011]

【発明の実施の形態】本発明のアルミニウムの連続鋳造
において、鋳造初期に膜沸騰冷却状態を維持する方法と
しては、初期段階において、鋳造速度を大きくする方
法、冷却水の供給量を少なくする方法あるいはこれらを
組合わせる方法があるが、本発明の効果を達成するため
には、膜沸騰限界の熱抽出を熱伝導係数として4000
W/m2K以下にすることが必要である。
BEST MODE FOR CARRYING OUT THE INVENTION In the continuous casting of aluminum of the present invention, as a method for maintaining the film boiling cooling state at the initial stage of casting, a method of increasing the casting speed and a method of reducing the supply amount of cooling water in the initial stage Alternatively, there is a method of combining these, but in order to achieve the effect of the present invention, heat extraction at the film boiling limit is used as a thermal conductivity coefficient of 4,000.
It is necessary to set it to W / m 2 K or less.

【0012】上記の熱伝導係数は、鋳塊表面から5m
m、15mm内部の位置に熱電対を埋め込み、これらの
位置の温度変化を所定時間毎に測定して温度変化を求
め、水温を20℃として算出する。(住友軽金属技報、
第35巻、第1、第2号、1994年6月号、第99
頁、「アルミニウム連続鋳造用各種冷却法の冷却特
性」、2.2 冷却性能の評価方法の項参照)
The above thermal conductivity coefficient is 5 m from the surface of the ingot.
Thermocouples are embedded at positions inside m and 15 mm, temperature changes at these positions are measured at predetermined intervals to obtain temperature changes, and the water temperature is calculated as 20 ° C. (Sumitomo Light Metal Technical Report,
Volume 35, No. 1, No. 2, June 1994, No. 99
Page, "Cooling characteristics of various cooling methods for continuous casting of aluminum", 2.2 2.2 Evaluation method of cooling performance)

【0013】膜沸騰冷却を維持するためには、鋳塊表面
からの熱抽出を、熱伝導係数として4000W/m2
以下の制御して、鋳塊の表面温度を低下させないことが
重要であり、熱抽出量が多くなると、冷却形態が膜沸騰
から遷移沸騰、核沸騰に移行して、本発明の効果が得ら
れなくなる。しかしながら、例えば冷却水量が少な過ぎ
ると、鋳塊表面の温度が上昇して、湯漏れが生じるおそ
れがあるから、膜沸騰冷却を得るための冷却水量、鋳造
速度は、鋳造するアルミニウムの材質、鋳塊の寸法を考
慮して実験的に決定される。
In order to maintain the film boiling cooling, heat extraction from the surface of the ingot is performed as a heat transfer coefficient of 4000 W / m 2 K.
Controlling the following, it is important not to lower the surface temperature of the ingot, when the heat extraction amount is large, the cooling form transitions from film boiling to transition boiling, nucleate boiling, and the effect of the present invention is obtained. Disappear. However, for example, if the amount of cooling water is too small, the temperature of the ingot surface rises, and there is a risk of molten metal leakage, so the amount of cooling water for obtaining film boiling cooling, the casting speed, the material of the aluminum to be cast, the casting It is determined experimentally taking into account the size of the mass.

【0014】本発明によれば、連続鋳造の初期段階にお
いて、冷却水が鋳塊の底部に衝突する場合、膜沸騰冷却
が行われるから、鋳塊表面からの熱抽出が抑制されて、
冷却速度は小さくなり、熱応力が緩和されるため、鋳塊
底部に反り上りが生じることがなく、反り上りに起因す
る種々の鋳塊欠陥が防止される。
According to the present invention, in the initial stage of continuous casting, when cooling water collides with the bottom of the ingot, film boiling cooling is performed, so that heat extraction from the ingot surface is suppressed,
Since the cooling rate is reduced and the thermal stress is relieved, the bottom of the ingot does not warp, and various ingot defects caused by the warp are prevented.

【0015】[0015]

【実施例】【Example】

実施例1 JIS3004合金に相当する組成のアルミニウム合金
を、通常の垂直連続鋳造方式に従い、断面寸法が縦55
0mm、横170mmの矩形状インゴットに造塊した。
鋳造条件を表1に示す。なお、鋳造温度は700℃、鋳
型として有効鋳型長さ65mmのものを使用し、各条件
でそれぞれ50本づつのインゴットを鋳造した。
Example 1 An aluminum alloy having a composition equivalent to JIS 3004 alloy was produced by a normal vertical continuous casting method and had a cross-sectional dimension of 55 mm in length.
The ingot was formed into a rectangular ingot having a size of 0 mm and a width of 170 mm.
The casting conditions are shown in Table 1. In addition, the casting temperature was 700 ° C., an effective mold length of 65 mm was used as a mold, and 50 ingots were cast under each condition.

【0016】上記の連続鋳造においては、初期段階の鋳
塊表面の冷却が膜沸騰冷却により行われ、表2に示すよ
うに、平均反り上り量は4.6mm以下と小さく、反り
上りに起因する鋳塊の長辺側中央部の割れ、鋳塊短辺側
の割れ、湯漏れ、底部の再溶解から生じる割れなどは全
く発生しなかった。なお、表2において、熱伝達係数の
値は、鋳造初期段階に相当する鋳造開始から鋳込長さ1
50mmまでについてのものである。
In the above continuous casting, the ingot surface is cooled at the initial stage by film boiling cooling, and as shown in Table 2, the average amount of warpage is as small as 4.6 mm or less, which is caused by the warpage. There were no cracks at the center of the long side of the ingot, cracks at the short side of the ingot, leak of molten metal, or cracks resulting from remelting of the bottom. In Table 2, the value of the heat transfer coefficient is the casting length 1 from the start of casting corresponding to the initial stage of casting.
Up to 50 mm.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】比較例1 実施例1と同じ組成のアルミニウム合金を、実施例1と
同様、通常の垂直連続鋳造方式に従って、実施例1と同
一の断面寸法を有するインゴットに造塊した。鋳造条件
を表3に示す。なお、鋳造温度、使用した鋳型の有効長
は、実施例1と同じく、それぞれ700℃および65m
mとし、各条件でそれぞれ50本づつのインゴット鋳造
した。各条件での鋳造において、鋳造初期に相当する鋳
込長さが150mmまでの熱伝達係数を求め、平均反り
上り量、割れ発生状況を調べた。結果を表4に示す。
Comparative Example 1 An aluminum alloy having the same composition as in Example 1 was cast into an ingot having the same cross-sectional dimensions as in Example 1 according to the normal vertical continuous casting method as in Example 1. Table 3 shows the casting conditions. The casting temperature and the effective length of the mold used were 700 ° C. and 65 m, respectively, as in Example 1.
m, and 50 ingots were cast under each condition. In casting under each condition, the heat transfer coefficient up to a casting length of 150 mm, which corresponds to the initial stage of casting, was obtained, and the average amount of warpage and the crack occurrence state were examined. Table 4 shows the results.

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】表4に示すように、比較例に従って鋳造さ
れた試験No.6〜9では、膜沸騰冷却が行われず、反
り上り量が大きく、割れや、湯漏れが生じた。例えば、
試験No.6においては、反り上り量が15〜19m
m、平均反り上り量は17.1mmと大きく、反り上り
に起因して、2本のインゴットに鋳塊の長辺方向中央部
の割れ、1本のインゴットに鋳塊短辺部の割れが観察さ
れ、2本のインゴットにくびれ部の再溶解による湯漏れ
不良が発生した。
As shown in Table 4, the test No. In Nos. 6 to 9, film boiling cooling was not performed, the amount of warpage was large, and cracks and molten metal leak occurred. For example,
Test No. In 6, the warp amount is 15 to 19 m
m, the average amount of warpage was as large as 17.1 mm, and due to the warpage, two ingots were cracked at the center of the ingot in the long side direction, and one ingot was cracked at the short side of the ingot. As a result, defective molten metal leakage occurred due to the remelting of the necked portion in the two ingots.

【0023】また、試験No.1と試験No.6につい
て、鋳込長さに対する熱伝導係数の変化を算出した結果
を図2に示す。膜沸騰冷却が行われる試験No.1にお
いては、鋳造初期段階に相当する鋳込長さ150mmま
での熱伝導係数が4000W/m2 K以下であるが、膜
沸騰冷却が行われない試験No.6では最高16000
W/m2 Kに達する急冷が行われている。
Further, the test No. 1 and test No. FIG. 2 shows the result of calculating the change in the thermal conductivity coefficient with respect to the casting length for No. 6. Test No. in which film boiling cooling is performed In Test No. 1, which has a thermal conductivity coefficient of 4000 W / m 2 K or less up to a casting length of 150 mm corresponding to the initial stage of casting, film boiling cooling is not performed. 6 up to 16000
Quenching to reach W / m 2 K is taking place.

【0024】[0024]

【発明の効果】以上のとおり、本発明によれば、アルミ
ニウムの連続鋳造、とくに断面矩形状のアルミニウムイ
ンゴットの垂直連続鋳造において、鋳造初期段階におけ
る冷却速度が緩和され、鋳塊底部の反り上りが抑制され
るから、反り上りに起因して鋳造底部に生じる欠陥が防
止され、安定した鋳込みを行うことができる。
As described above, according to the present invention, in the continuous casting of aluminum, particularly the vertical continuous casting of an aluminum ingot having a rectangular cross section, the cooling rate in the initial stage of casting is moderated and the ingot bottom warps. Since it is suppressed, defects that occur in the casting bottom due to warpage can be prevented, and stable casting can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アルミニウムの垂直連続鋳造の概略を示す縦断
面図である。
FIG. 1 is a vertical cross-sectional view showing the outline of vertical continuous casting of aluminum.

【図2】膜沸騰冷却を行った場合と膜沸騰冷却を行わな
かった場合の、鋳込長さに対する熱伝達係数に変化を示
すグラフである。
FIG. 2 is a graph showing changes in a heat transfer coefficient with respect to a casting length, when film boiling cooling is performed and when film boiling cooling is not performed.

【符号の説明】[Explanation of symbols]

1 鋳型 2 底台 3 冷却水 4 反り上り 5 くびれ 6 縦割れ 7 間隙 C 鋳塊 M アルミニウム溶湯 B 凝固界面 1 Mold 2 Bottom 3 Cooling Water 4 Warpage 5 Constriction 6 Vertical Crack 7 Gap C Ingot M Aluminum Molten Metal B Solidification Interface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 良夫 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Watanabe 5-11-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋳型上部からアルミニウムの溶湯を供給
し、凝固した鋳塊を鋳型下部から引き出すアルミニウム
の垂直連続鋳造において、鋳造の初期段階に、鋳型下部
から引き出された鋳塊の表面を膜沸騰冷却し、鋳塊表面
からの熱抽出を熱伝達係数で4000W/m2 K以下に
することを特徴とするアルミニウムの連続鋳造方法。
1. In vertical continuous casting of aluminum, in which molten aluminum is supplied from the upper part of the mold and solidified ingot is drawn from the lower part of the mold, film boiling is performed on the surface of the ingot drawn from the lower part of the mold in the initial stage of casting. A continuous casting method for aluminum, which comprises cooling and extracting heat from the surface of the ingot to a heat transfer coefficient of 4000 W / m 2 K or less.
JP30514095A 1995-10-30 1995-10-30 Method for continuously casting aluminum Pending JPH09122860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30514095A JPH09122860A (en) 1995-10-30 1995-10-30 Method for continuously casting aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30514095A JPH09122860A (en) 1995-10-30 1995-10-30 Method for continuously casting aluminum

Publications (1)

Publication Number Publication Date
JPH09122860A true JPH09122860A (en) 1997-05-13

Family

ID=17941570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30514095A Pending JPH09122860A (en) 1995-10-30 1995-10-30 Method for continuously casting aluminum

Country Status (1)

Country Link
JP (1) JPH09122860A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513357A (en) * 2005-10-28 2009-04-02 ノベリス・インコーポレイテッド Homogenization and heat treatment of cast metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513357A (en) * 2005-10-28 2009-04-02 ノベリス・インコーポレイテッド Homogenization and heat treatment of cast metal
US8458887B2 (en) 2005-10-28 2013-06-11 Novelis Inc. Homogenization and heat-treatment of cast metals
US9073115B2 (en) 2005-10-28 2015-07-07 Novelis Inc. Homogenization and heat-treatment of cast metals
US9802245B2 (en) 2005-10-28 2017-10-31 Novelis Inc. Homogenization and heat-treatment of cast metals

Similar Documents

Publication Publication Date Title
US4515204A (en) Continuous metal casting
US2553921A (en) Continuous casting apparatus
US2740177A (en) Continuous metal casting process
JPH09122860A (en) Method for continuously casting aluminum
JP5774438B2 (en) Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy
JP6105296B2 (en) Continuous casting method of ingot made of titanium or titanium alloy
JPH09122862A (en) Continuous casting method of aluminum ingot
JP2015134377A (en) Melting continuous casting apparatus for high purity ingot and melting continuous casting method for high purity ingot
JP3580146B2 (en) Vertical continuous casting of aluminum alloy billet
JP2001225152A (en) Continuous casting method for steel
JP2013091072A (en) System for semi-continuous casting of aluminum and method for semi-continuous casting of aluminum using the same
JP2003071546A (en) Aluminum ingot, and continuous casting method therefor, and manufacturing method for aluminum foil for electrode of electrolytic capacitor using the aluminum ingot
JP2637005B2 (en) Evaluation method of powder for continuous casting of medium carbon steel
JPH11179492A (en) Mold for continuous casting
JPH06218497A (en) Mold for continuous casting
JPS6153143B2 (en)
Hirschfeld Pore formation in metals
RU1803326C (en) Ingot uphill casting method
JPH07204780A (en) Device for producing cast product and its production
JP2024004032A (en) Continuous casting method
CN113909462A (en) Rapid hot demolding method for cast ingot
KR970003116B1 (en) Method of continuous casting
JPS58187243A (en) Method and device for diagonal upward type continuous casting of metallic molding
JPS61276745A (en) Steel ingot making method
JPH09136144A (en) Mold for continuous casting