JPH09122437A - Gas treatment process - Google Patents

Gas treatment process

Info

Publication number
JPH09122437A
JPH09122437A JP7288568A JP28856895A JPH09122437A JP H09122437 A JPH09122437 A JP H09122437A JP 7288568 A JP7288568 A JP 7288568A JP 28856895 A JP28856895 A JP 28856895A JP H09122437 A JPH09122437 A JP H09122437A
Authority
JP
Japan
Prior art keywords
gas
bismuth sulfate
volatile inorganic
contact
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7288568A
Other languages
Japanese (ja)
Inventor
Akihiko Morita
明彦 森田
Tadaharu Watanabe
忠治 渡辺
Yoshiaki Sugimori
由章 杉森
Maya Yamada
まや 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP7288568A priority Critical patent/JPH09122437A/en
Publication of JPH09122437A publication Critical patent/JPH09122437A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To effectively remove a volatile inorganic hydrogenated material and effectively refine the hydrogenated material of silicon by bringing gas into contact with a treatment agent composed mainly of bismuth sulfate when the removal, refinement and detection of the gas containing volatile inorganic hydrogenated material are carried out. SOLUTION: When the removal, refinement and detection of gas containing volatile inorganic hydrogenated material handled in a semiconductor manufacturing plant or the like is carried out, gas is brought into contact with a treatment agent composed mainly of bismuth sulfate. In the process of removing gas, the gas containing volatile inorganic hydrogenated material is brought into contact with the treatment agent composed of bismuth sulfate as a main reaction component, and in the process of refinement, the gas composed mainly of a hydrogenated material of silicon is brought into contact with a treatment agent composed of bismuth sulfate as a reaction component. When the detection of the volatile inorganic hydrogenated material or a volatile amine compound or an inorganic metal compound is carried out, the gas is brought into contact with a treatment agent composed of one kind of bismuth sulfate, iron nitrate and the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスの処理方法に
関し、詳しくは、半導体製造工場等で取扱われる揮発性
無機水素化物等の除害処理や、ケイ素の水素化物の精製
処理、さらに、各種の揮発性無機水素化物,揮発性アミ
ン化合物,有機金属化合物の検知処理を行う方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas treatment method, and more specifically, to a detoxification treatment of volatile inorganic hydrides handled in semiconductor manufacturing plants and the like, a purification treatment of silicon hydrides, and various other treatments. The present invention relates to a method for detecting a volatile inorganic hydride, a volatile amine compound and an organometallic compound.

【0002】[0002]

【従来の技術】半導体製造工程では、シラン,アルシ
ン,ホスフィン,セレン化水素等の揮発性無機水素化物
をはじめとして、各種の揮発性アミン化合物,有機金属
化合物が原料ガスとして使われる。中でもシランは、ケ
イ素系の半導体の原料として大量に使用されており、そ
の他のアルシン,ホスフィン,セレン化水素等も、半導
体素子の多様化に伴って使用量が増加している。
2. Description of the Related Art In the semiconductor manufacturing process, various volatile amine compounds and organometallic compounds are used as raw material gases, including volatile inorganic hydrides such as silane, arsine, phosphine and hydrogen selenide. Among them, silane is used in large quantities as a raw material for a silicon-based semiconductor, and the amount of other arsine, phosphine, hydrogen selenide, etc. is increasing with the diversification of semiconductor elements.

【0003】前記揮発性無機水素化物は、爆発の危険性
や人体への毒性等を有する有害ガスであるので、工程中
での漏洩防止や排ガスの除害等の措置がとられている。
例えば、前記揮発性無機水素化物を含む排ガスを、酸化
銅やその他の金属酸化物に接触させて除害処理する方法
が行われている(特公平4−19886号公報,特公平
4−57368号公報など参照)。
Since the volatile inorganic hydride is a harmful gas having a risk of explosion and toxicity to human body, measures such as leakage prevention and exhaust gas removal in the process are taken.
For example, a method has been performed in which exhaust gas containing the volatile inorganic hydride is brought into contact with copper oxide or other metal oxides to remove the harmful substances (Japanese Patent Publication No. 4-19886 and Japanese Patent Publication No. 4-57368). See the bulletin etc.).

【0004】しかし、半導体製造工程では、前記揮発性
無機水素化物を原料ガスとして用いる際に、これをキャ
リアガスで希釈し、キャリアガスに同伴させて半導体製
造装置に供給している。そして、キャリアガスには水素
ガスを用いる場合が多く、半導体製造装置から排出され
る排ガス中には、通常、大量の水素ガスが含まれてい
る。
However, in the semiconductor manufacturing process, when the volatile inorganic hydride is used as a raw material gas, it is diluted with a carrier gas and supplied to a semiconductor manufacturing apparatus while being entrained in the carrier gas. Hydrogen gas is often used as the carrier gas, and the exhaust gas discharged from the semiconductor manufacturing apparatus usually contains a large amount of hydrogen gas.

【0005】このように水素ガスを含む排ガスを除害処
理するために、前記酸化銅やその他の金属酸化物に排ガ
スを接触させる方法を採用すると、予期に反して処理効
果が低下することがある。これは、還元性の強い水素ガ
スにより、前記酸化銅やその他の金属酸化物が還元され
て性能が劣化するためであろうと推測される。このた
め、還元性雰囲気でも確実に揮発性無機水素化物の除害
処理を行うことができる処理剤の出現が望まれていた。
If a method of contacting the exhaust gas with the above-mentioned copper oxide or other metal oxides is adopted to remove the exhaust gas containing hydrogen gas as described above, the treatment effect may be unexpectedly lowered. . It is presumed that this is because hydrogen gas having a strong reducing property reduces the copper oxide and other metal oxides and deteriorates the performance. Therefore, it has been desired to develop a treatment agent that can surely remove volatile inorganic hydrides even in a reducing atmosphere.

【0006】一方、半導体は、極微量の不純物でも製品
の特性を損なうので、前記原料ガスも極めて高い純度が
要求されており、ガスの精製処理も重要である。例え
ば、原料としてのシラン中に、不純物として、アルシ
ン,ホスフィン,セレン化水素等が極微量でも含まれて
いると、得られた半導体素子が所望の電気的特性を発現
できなくなる。
On the other hand, semiconductors impair the characteristics of the product even with a very small amount of impurities, so that the raw material gas is required to have an extremely high purity, and the gas refining treatment is also important. For example, if silane as a raw material contains a very small amount of arsine, phosphine, hydrogen selenide, etc. as impurities, the obtained semiconductor element cannot exhibit desired electrical characteristics.

【0007】そこで、シラン中に極微量に含まれるアル
シン,ホスフィン,セレン化水素等を除害する方法が種
々研究され、該ガスを種々の固体処理剤に接触させる方
法が提案されている。例えば、特公平6−45447号
公報や特公平6−92246号公報では、処理剤にゼオ
ライトを用いており、特公平6−99128号公報で
は、酸化銅/酸化亜鉛をシランガスでパッシベーション
した処理剤が、特公平6−99129号公報では、酸化
亜鉛/酸化アルミナをシランガスでパッシベーションし
た処理剤が、それぞれ開示されている。
Therefore, various studies have been conducted on methods for removing arsine, phosphine, hydrogen selenide and the like contained in silane in a trace amount, and methods for bringing the gas into contact with various solid processing agents have been proposed. For example, in Japanese Examined Patent Publication No. 6-45447 and Japanese Examined Patent Publication No. 6-92246, zeolite is used as a treating agent, and in Japanese Examined Patent Publication No. 6-99128, a treating agent obtained by passivating copper oxide / zinc oxide with silane gas is used. Japanese Patent Publication No. 6-99129 discloses a treating agent in which zinc oxide / alumina oxide is passivated with silane gas.

【0008】しかし、シランやジシラン等のケイ素の水
素化物の中に含まれるアルシン,ホスフィン,セレン化
水素等を除害するための上記各処理剤において、前記ゼ
オライトは、アルシン,ホスフィン,セレン化水素等を
吸着させるために、−20℃以下の低温に冷却しなけれ
ばならず、装置が大がかりとなり、経済的負担も大き
い。また、酸化銅/酸化亜鉛や酸化亜鉛/酸化アルミナ
等の処理剤を用いる方法においても、該処理剤をパッシ
ベーションするために、原料であるシランガスを大量に
消費するので、経済的損失が大きい。
However, in each of the above treatment agents for removing arsine, phosphine, hydrogen selenide and the like contained in silicon hydrides such as silane and disilane, the zeolite is arsine, phosphine and hydrogen selenide. In order to adsorb, etc., it has to be cooled to a low temperature of −20 ° C. or less, which requires a large scale of equipment and a large economical burden. Further, also in a method using a treating agent such as copper oxide / zinc oxide or zinc oxide / alumina oxide, a large amount of silane gas, which is a raw material, is consumed for passivating the treating agent, resulting in a large economical loss.

【0009】したがって、シラン等のケイ素の水素化物
中に含まれるアルシン,ホスフィン,セレン化水素等の
除去を目的としたシラン等の精製処理剤として提案され
ている上記の従来方法は、実用的には大きな問題があ
り、工業的に採用するには至っていない。このため、シ
ラン等に含まれるアルシン,ホスフィン,セレン化水素
等を除害するための実用的な処理剤の出現が望まれてい
た。
Therefore, the above conventional method proposed as a refining agent for silane or the like for the purpose of removing arsine, phosphine, hydrogen selenide or the like contained in silicon hydride such as silane is practically used. Has major problems and has not yet been adopted industrially. Therefore, it has been desired to develop a practical treatment agent for removing arsine, phosphine, hydrogen selenide and the like contained in silane and the like.

【0010】さらに、前記揮発性無機水素化物や揮発性
アミン化合物,有機金属化合物を有害成分として含むガ
スの漏洩防止や除害措置においては、これらの有害成分
が微量に存在するときでも、これを検知するため、従来
から、各種の検知方法が提案されており、例えば、有害
ガスの漏洩を簡便に検知する一手段として、検知剤を充
填した検知管による方法が知られている。また、前記有
害成分を含む排ガスを除害剤を充填した除害筒等で除害
処理した後に、排ガスが適切に除害されていることを確
認するためにも、検知剤を充填した検知管に処理後の排
ガスを流通させることが行われている。
Further, in the leakage prevention and detoxification measures of the gas containing the volatile inorganic hydride, the volatile amine compound, and the organometallic compound as harmful components, even if a small amount of these harmful components is present, the Various detection methods have been conventionally proposed for detection. For example, a method using a detection tube filled with a detection agent is known as one means for easily detecting leakage of harmful gas. In addition, a detector tube filled with a detecting agent is also used to confirm that the exhaust gas is properly removed after removing the exhaust gas containing the harmful component with a removing tube filled with a removing agent. The exhaust gas after treatment is distributed in the market.

【0011】従来から、主としてシラン,アルシン,ホ
スフィン等の揮発性無機水素化物を検知するための検知
剤については、盛んに研究開発が行われてきている。例
えば、反応主成分が、金塩に、銅塩,ニッケル塩あるい
は亜鉛塩を混合したもの(特開平2−32254号公
報,同5−60126号公報,同5−226008号公
報)、塩基性炭酸銅を反応主成分とするもの(特公平4
−79576号公報)、有機酸の銅塩を反応主成分とす
るもの(特公平4−79577号公報)、第二銅塩とパ
ラジウム塩との混合物を反応主成分とするもの(特公平
4−79578号公報)、硝酸銅を反応主成分とするも
の(特開平4−97752号公報)、酸性・塩基性指示
薬を反応主成分とするもの(特開昭62−19765号
公報)等、多数の検知剤が知られている。
Conventionally, much research and development has been conducted on detection agents for detecting volatile inorganic hydrides such as silane, arsine, and phosphine. For example, the main component of the reaction is a mixture of a copper salt, a nickel salt or a zinc salt with a gold salt (JP-A-2-32254, JP-A-5-60126, and JP-A-5-226008); The one with copper as the main reaction component
JP-79576-A), a compound containing a copper salt of an organic acid as a main reaction component (Japanese Patent Publication No. 4-79577), and a mixture containing a mixture of a cupric salt and a palladium salt as a main reaction component (JP-B-4-79577). No. 79578), those containing copper nitrate as the main reaction component (JP-A-4-97752), those containing an acidic / basic indicator as the main reaction component (JP-A-62-19765), and many others. Sensing agents are known.

【0012】しかし、有機金属化合物の検知剤について
は、第二銅塩と金塩との混合物を反応主成分としたもの
が特開平2−110369号公報,同2−110370
号公報に記載されているが、開発が遅れているのが実情
である。また、金塩を使うものは、光や熱に不安定で、
変色し易く、判断を誤り易いという問題があり、特に、
水素ガスによって還元されて黒変するという不都合があ
る。また、銅塩を反応主成分とするものは、変色感度が
鈍く、特に、塩基性炭酸銅は、毒性が強く、取り扱いに
注意を要するという問題があった。
However, as the detection agent for the organometallic compound, one having a mixture of a cupric salt and a gold salt as a reaction main component is disclosed in JP-A-2-110369 and JP-A-2-110370.
However, the fact is that development is delayed. Also, those using gold salt are unstable to light and heat,
There is a problem that it is easy to change color and it is easy to make a mistake, especially
There is an inconvenience that it is reduced by hydrogen gas and turns black. Further, those containing a copper salt as a main reaction component have a low discoloration sensitivity, and particularly, basic copper carbonate has a problem that it is highly toxic and requires careful handling.

【0013】そこで本発明は、ケイ素の水素化物を除く
揮発性無機水素化物の除害処理やケイ素の水素化物の精
製処理を効果的に行うことができ、また、ガス中に有害
成分として含まれる揮発性無機水素化物や揮発性アミン
化合物,有機金属化合物を確実に検知することができる
ガスの処理方法を提供することを目的としている。
Therefore, according to the present invention, it is possible to effectively carry out the detoxification treatment of volatile inorganic hydrides other than silicon hydrides and the purification treatment of silicon hydrides, and to include them as harmful components in gas. An object of the present invention is to provide a gas treatment method capable of reliably detecting a volatile inorganic hydride, a volatile amine compound, and an organometallic compound.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するた
め、本発明のガスの処理方法は、揮発性無機水素化物を
含むガスの除害処理,精製処理,検知処理を行うにあた
り、前記ガスを、硫酸ビスマスを反応主成分とする処理
剤に接触させることを特徴とするものであって、除害処
理は、有害成分として揮発性無機水素化物(ケイ素の水
素化物を除く)を含むガスを、硫酸ビスマスを反応主成
分とする処理剤に接触させることを特徴とし、精製処理
は、ケイ素の水素化物を主成分とするガスを、硫酸ビス
マスを反応主成分とする処理剤に接触させてガス中に存
在する不純物としての微量のアルシンやホスフィンを除
去することを特徴としている。
In order to achieve the above object, the gas treatment method of the present invention uses a gas containing a volatile inorganic hydride to remove harmful gas, purify it, and detect it. Characterized in that bismuth sulfate is brought into contact with a treating agent containing a reactive main component, and the detoxification treatment is performed by using a gas containing a volatile inorganic hydride (excluding hydride of silicon) as a harmful component, The purification treatment is characterized by bringing bismuth sulfate into contact with a treating agent containing bismuth sulfate as a reaction main component. It is characterized by removing traces of arsine and phosphine as impurities present in.

【0015】さらに、本発明のガスの処理方法は、ガス
中に含まれる揮発性無機水素化物,揮発性アミン化合
物,有機金属化合物の検知処理を行うにあたり、前記ガ
スを、硫酸ビスマス,硝酸ビスマス,硝酸鉄の内の少な
くともいずれか一種を反応主成分とする処理剤に接触さ
せることを特徴としている。
Further, in the gas treatment method of the present invention, when the volatile inorganic hydride, the volatile amine compound and the organometallic compound contained in the gas are detected, the gas is bismuth sulfate, bismuth nitrate, It is characterized in that at least one of iron nitrate is brought into contact with a treating agent containing a reaction main component.

【0016】本発明方法で用いる反応主成分の硫酸ビス
マス(Bi2 (SO4 3 )は、酸化銅等の金属酸化物
に比べて還元性の強い水素ガスに対して化学的に極めて
安定であり、また、揮発性が低く、熱や光にも安定であ
る。そして、硫酸ビスマスは、シラン,アルシン,ホス
フィン,セレン化水素等の揮発性無機水素化物、トリメ
チルアミン等の揮発性アミン化合物、金属アルキル化合
物や金属アルコキシド等の有機金属化合物に接触する
と、白色から黒色に鋭敏に変色する。
The bismuth sulfate (Bi 2 (SO 4 ) 3 ) which is the main component of the reaction used in the method of the present invention is chemically extremely stable against hydrogen gas which is more reductive than metal oxides such as copper oxide. Also, it has low volatility and is stable to heat and light. When bismuth sulfate comes into contact with volatile inorganic hydrides such as silane, arsine, phosphine, and hydrogen selenide, volatile amine compounds such as trimethylamine, and organometallic compounds such as metal alkyl compounds and metal alkoxides, white becomes black. Discolors sharply.

【0017】さらに、硫酸ビスマスは、揮発性無機水素
化物の内で、シラン等のケイ素の水素化物以外の揮発性
無機水素化物、例えば、アルシン,ホスフィン,セレン
化水素等とは敏感に反応してこれらを除害する。なお、
前述のように、硫酸ビスマスは、シラン等のケイ素の水
素化物や、各種揮発性アミン化合物,有機金属化合物に
接触すると白色から黒色に変色はするが、ケイ素の水素
化物等、これらの化合物を除害することはできず、硫酸
ビスマスとこれらの化合物とを接触させても、これらの
化合物の量にはほとんど変化を生じない。
Further, bismuth sulfate reacts sensitively with volatile inorganic hydrides other than silicon hydrides such as silane, such as arsine, phosphine, hydrogen selenide, among volatile inorganic hydrides. Remove these. In addition,
As described above, bismuth sulfate discolors from white to black when it comes into contact with hydrides of silicon such as silane, various volatile amine compounds and organometallic compounds, but these compounds such as hydrides of silicon are removed. It cannot be harmed and contacting bismuth sulphate with these compounds causes little change in the amount of these compounds.

【0018】したがって、硫酸ビスマスは、各種ガス中
に除害対象の有害成分として含まれる、ケイ素の水素化
物を除くアルシン,ホスフィン,セレン化水素等の揮発
性無機水素化物を効率よく除害処理することができると
ともに、ケイ素の水素化物を含む揮発性無機水素化物を
はじめとして各種揮発性アミン化合物,有機金属化合物
を確実に検知することができる。
Therefore, bismuth sulfate efficiently removes volatile inorganic hydrides such as arsine, phosphine, hydrogen selenide and the like, which are contained in various gases as harmful components to be removed, except hydrides of silicon. In addition to the above, various volatile amine compounds and organometallic compounds including volatile inorganic hydrides containing hydrides of silicon can be reliably detected.

【0019】さらに、硫酸ビスマスは、ケイ素の水素化
物をほとんど除害しないこと、すなわち除去しないこと
から、ケイ素の水素化物中に不純物として含まれるアル
シン,ホスフィン,セレン化水素等のケイ素の水素化物
以外の揮発性無機水素化物を除去することができ、ケイ
素の水素化物の精製処理を行うことができる。
Further, since bismuth sulfate hardly removes silicon hydride, that is, does not remove it, other than silicon hydrides such as arsine, phosphine and hydrogen selenide contained as impurities in the silicon hydride. The volatile inorganic hydride can be removed, and the silicon hydride can be purified.

【0020】また、硝酸鉄(Fe(NO3 3 ・9H2
O)、硝酸ビスマス(Bi(NO33 )は、前記揮発
性無機水素化物,揮発性アミン化合物,有機金属化合物
に接触すると、硝酸鉄は白色から黄色に、硝酸ビスマス
は白色から黒色に、それぞれ変色するので、これらの検
知処理に使用することができる。
Further, iron nitrate (Fe (NO 3) 3 · 9H 2
O) and bismuth nitrate (Bi (NO 3 ) 3 ) are contacted with the volatile inorganic hydride, volatile amine compound and organometallic compound, iron nitrate turns from white to yellow, bismuth nitrate turns from white to black, Since each color changes, it can be used for these detection processes.

【0021】なお、本発明方法において、硫酸ビスマス
等は、市販の粉末状のものをそのままペレット等に成型
して使用してもよいし、これらをシリカゲル等の担体に
担持させて使用してもよい。また、これらを複数種混合
したり、適宜な安定化剤等を添加混合することもでき、
他の除害剤や検知剤と併用することもできる。
In the method of the present invention, as the bismuth sulfate or the like, commercially available powdery ones may be directly molded into pellets or the like, or they may be supported on a carrier such as silica gel and used. Good. It is also possible to mix a plurality of these, or to add and mix an appropriate stabilizer and the like,
It can also be used in combination with other harmful agents and detection agents.

【0022】[0022]

【実施例】以下、本発明の実施例及び比較例を説明す
る。 実施例1 市販の硫酸ビスマスの粉末を、打錠機で直径6mm,長
さ3mmのペレットに成型し、これを内径43mmのガ
ラス製カラムに、充填高さが200mmになるように充
填した。カラム内を窒素ガスでパージした後、カラム上
部の入口から水素ガス中に1%のアルシンを含む試験ガ
スを空筒速度1cm/秒で導入し、カラム下部の出口か
ら排出されるガス中のアルシン濃度を分析器(日本酸素
(株)製HD−1)で測定した。その結果、出口ガス中
のアルシン濃度は、900分後に破過濃度(許容濃度)
である0.05ppmに達した。このときのアルシンの
動的吸着量は、剤1Kg当たり31リットルであった。
また、試験ガスをカラムに流し始めると、充填層上部か
ら下方に向かって白色から黒色への変色前線(破過前
線)が進行するのが観察され、前線が充填層下部から約
30mmに達した時、出口のアルシン濃度が0.05p
pmを超えた。
EXAMPLES Examples and comparative examples of the present invention will be described below. Example 1 Commercially available bismuth sulfate powder was molded into pellets having a diameter of 6 mm and a length of 3 mm with a tableting machine, and the pellets were packed in a glass column having an inner diameter of 43 mm so that the packing height was 200 mm. After purging the inside of the column with nitrogen gas, a test gas containing 1% arsine in hydrogen gas was introduced from the inlet at the top of the column at an empty space velocity of 1 cm / sec, and the arsine in the gas discharged from the outlet at the bottom of the column was introduced. The concentration was measured with an analyzer (HD-1 manufactured by Nippon Oxygen Co., Ltd.). As a result, the concentration of arsine in the outlet gas was the breakthrough concentration (allowable concentration) after 900 minutes.
Of 0.05 ppm. At this time, the dynamic adsorption amount of arsine was 31 liters per 1 kg of the agent.
Also, when the test gas was started to flow through the column, it was observed that a white-to-black discoloration front (breakthrough front) progressed downward from the top of the packed bed, and the front reached about 30 mm from the bottom of the packed bed. At the time, the arsine concentration at the outlet is 0.05p
exceeded pm.

【0023】実施例2 試験ガスとして、水素ガス中に1%のホスフィンを含む
ガスを用い、カラム下部から排出されるガス中のホスフ
ィン濃度を測定した以外は実施例1と同様にした。その
結果、600分後に出口ガス中のホスフィン濃度が0.
3ppmとなり、処理剤が破過した。このときのホスフ
ィンの動的吸着量は、剤1Kg当たり18リットルであ
った。また、破過点に達した時、変色前線が充填剤の充
填層下部から約30mmの位置にあることが観察され
た。
Example 2 The same as Example 1 except that a gas containing 1% of phosphine in hydrogen gas was used as a test gas and the concentration of phosphine in the gas discharged from the lower part of the column was measured. As a result, after 600 minutes, the phosphine concentration in the outlet gas was 0.
It became 3 ppm, and the treating agent broke through. The dynamic adsorption amount of phosphine at this time was 18 liters per 1 kg of the agent. It was also observed that when the breakthrough point was reached, the discoloration front was located approximately 30 mm from the bottom of the filler packed bed.

【0024】比較例1 市販の酸化銅(CuO)を実施例1と同じ大きさのペレ
ットに成型し、これを前記同様の内径43mmのガラス
製カラムに充填して水素ガスを空筒速度1cm/秒で流
した。その結果、3時間後に外壁の温度が20℃上昇し
たので、ガラス製カラムによる実験を中止し、工場等で
実際に用いられている内径300mmのステンレス製カ
ラムに上記酸化銅ペレットを充填して実験を行った。カ
ラム内を窒素ガスでパージした後、水素ガスを空筒速度
1cm/秒で流したところ、3時間後にカラム内の充填
剤の温度が90℃になり、その30分後には外壁の温度
が300℃に達したので、窒素パージに切換えて冷却し
た。冷却後に実施例1と同じ試験ガスを導入したが、カ
ラム出口のアルシン濃度は低下せず、除害効果はなかっ
た。カラムから剤を取出してX線回折により調べた結
果、銅が検出されたことから、酸化銅が水素ガスによっ
て還元されてしまったことが判明した。
Comparative Example 1 Commercially available copper oxide (CuO) was molded into pellets having the same size as in Example 1, and the pellets were filled in the same glass column having an inner diameter of 43 mm as described above, and the hydrogen gas was discharged at an empty space velocity of 1 cm /. Shed in seconds. As a result, the temperature of the outer wall increased by 20 ° C. after 3 hours, so the experiment using the glass column was stopped, and the copper oxide pellets were packed into a stainless steel column with an inner diameter of 300 mm that is actually used in factories and the like. I went. After purging the inside of the column with nitrogen gas, hydrogen gas was flown at an empty space velocity of 1 cm / sec, and the temperature of the packing material in the column reached 90 ° C. after 3 hours, and after 30 minutes, the temperature of the outer wall was 300 ° C. Since the temperature reached ℃, it was switched to nitrogen purge and cooled. After cooling, the same test gas as in Example 1 was introduced, but the arsine concentration at the column outlet did not decrease and there was no detoxifying effect. As a result of taking out the agent from the column and examining it by X-ray diffraction, it was found that copper was reduced by hydrogen gas because copper was detected.

【0025】実施例3 試験ガスとして、下記のA及びBの2種類のガスを使用
した以外は、実施例1と同様に操作を行い、カラム出口
おけるガス組成をモニターした。 A:アルシンを50ppm含むシランガス B:ホスフィンを50ppm含むシランガス 試験ガスA,B共に、10時間経過してもカラム出口で
はシランのみが検出され、アルシンやホスフィンは破過
濃度に達しなかった。すなわち、シランガス中に不純物
として含まれる微量のアルシンやホスフィンが除去され
てシランの精製処理が行われたことになる。
Example 3 The same operation as in Example 1 was carried out except that the following two gases A and B were used as the test gas, and the gas composition at the column outlet was monitored. A: Silane gas containing 50 ppm arsine B: Silane gas containing 50 ppm phosphine For both test gases A and B, only silane was detected at the column outlet even after 10 hours, and arsine and phosphine did not reach the breakthrough concentration. That is, a small amount of arsine and phosphine contained as impurities in the silane gas was removed, and the silane was purified.

【0026】実施例4 硫酸ビスマスをジエチルエーテルに溶解し、ここにシリ
カゲルを浸漬して硫酸ビスマスを1重量%の割合でシリ
カゲル担体に担持させた直径約3mmの球状処理剤を得
た。この処理剤を内径20mmのガラス製カラムに充填
し、ここにアルシン50ppmとホスフィン50ppm
とを含むシランガスを流したところ、カラム出口のアル
シン及びホスフィンの濃度は、検出限界(アルシン:
0.01ppm,ホスフィン:0.01ppm)以下で
あった。また、時間の経過とともに、処理剤充填層の白
色から黒色への変色前線がカラム出口に向かって進行し
て行くのが観察された。
Example 4 Bismuth sulfate was dissolved in diethyl ether, and silica gel was immersed therein to obtain a spherical treating agent having a diameter of about 3 mm and having 1% by weight of bismuth sulfate supported on a silica gel carrier. This treating agent was packed in a glass column having an inner diameter of 20 mm, and 50 ppm of arsine and 50 ppm of phosphine were placed therein.
When a silane gas containing and was flowed, the concentrations of arsine and phosphine at the column outlet were detected at the detection limits (arsine:
0.01 ppm, phosphine: 0.01 ppm) or less. In addition, it was observed that, with the passage of time, the discoloration front of the treatment agent-packed layer from white to black progressed toward the column outlet.

【0027】実施例5 有害ガス成分として、揮発性無機水素化物であるシラ
ン,アルシン及びセレン化水素と、有機金属化合物であ
るターシャリーブチルアルシンとを、それぞれ10pp
m含む窒素ガスを用い、硫酸ビスマスのペレット(白
色:処理剤A),硝酸ビスマスのペレット(白色:処理
剤B),硝酸鉄のペレット(白色:処理剤C)を充填し
たガラス製カラムにそれぞれ導入して変色状況を観察し
た。その結果を次に示す。なお、各ペレットは、直径6
mm,長さ3mmに打錠機で成型したものである。
Example 5 As toxic gas components, silane, arsine, and hydrogen selenide, which are volatile inorganic hydrides, and tertiary butyl arsine, which is an organometallic compound, are each added to 10 pp.
Using a nitrogen gas containing m, glass columns filled with bismuth sulfate pellets (white: treating agent A), bismuth nitrate pellets (white: treating agent B), iron nitrate pellets (white: treating agent C), respectively. It was introduced and the discoloration situation was observed. The results are shown below. Each pellet has a diameter of 6
mm and length 3 mm, which was molded by a tableting machine.

【0028】 変色状況及び変色時間 有害ガス成分 処理剤A 処理剤B 処理剤C シラン 黒:2分 黒:2分 黒:2分 アルシン 黒:1分 黒:1分 黒:1分 セレン化水素 黒:1分 黒:1分 黒:1分 ターシャリーブチルアルシン 黒:2分 黒:2分 黒:2分Discoloration status and discoloration time Hazardous gas component Treatment agent A Treatment agent B Treatment agent Silane Black: 2 minutes Black: 2 minutes Black: 2 minutes Arsine black: 1 minute Black: 1 minute Black: 1 minute Hydrogen selenide black 1 minute Black: 1 minute Black: 1 minute Tertiary butyl arsine Black: 2 minutes Black: 2 minutes Black: 2 minutes

【0029】比較例2 塩化金酸と硫酸銅とを水に溶かし、シリカゲルに含浸さ
せた後、40℃で5時間真空乾燥させて検知剤とした。
このときの塩化金酸と硫酸銅の含有量は、それぞれ0.
1重量%,1重量%であった。なお、塩化金酸の量が多
いとすぐに黒変してしまうので、塩化金酸は少なめにし
ている。
Comparative Example 2 Chloroauric acid and copper sulfate were dissolved in water, impregnated in silica gel, and then vacuum dried at 40 ° C. for 5 hours to obtain a detection agent.
At this time, the contents of chloroauric acid and copper sulfate are each 0.1.
1% by weight and 1% by weight. In addition, since a large amount of chloroauric acid will cause blackening immediately, the amount of chloroauric acid is reduced.

【0030】この検知剤を、内径30mmのカラムに充
填し、ホスフィンを10ppm含む窒素ガスを流した
が、白色から黒色に変化するまでに約30分を要した。
また、シランを10ppm含む窒素ガスの場合は、白色
から黒色に変化するまでに約60分を要した。
A column having an inner diameter of 30 mm was filled with this detection agent, and nitrogen gas containing 10 ppm of phosphine was passed through the column, but it took about 30 minutes until the color changed from white to black.
Further, in the case of nitrogen gas containing 10 ppm of silane, it took about 60 minutes to change from white to black.

【0031】[0031]

【発明の効果】以上説明したように、本発明のガスの処
理方法は、水素ガスのような還元性の強い雰囲気中でも
安定して効率よく除害処理や精製処理、検知処理を行う
ことができ、常温で、かつ、特別に煩雑な前処理を必要
とせずに、ケイ素の水素化物を除く揮発性無機水素化物
の除害処理や、ケイ素の水素化物を主成分とするガスの
精製処理を効果的に行え、しかも、検知処理を同時に行
えるので、別に検知手段を設ける必要がない。さらに、
ガス中に有害成分として含まれる揮発性無機水素化物や
揮発性アミン化合物,有機金属化合物の検知も確実に行
うことができる。
As described above, the gas treatment method of the present invention enables stable and efficient detoxification, purification, and detection treatments even in a highly reducing atmosphere such as hydrogen gas. Effective at room temperature and without the need for special complicated pretreatment, to remove harmful volatile inorganic hydrides except silicon hydride and to purify gas containing silicon hydride as a main component. Since it can be performed automatically and the detection process can be performed at the same time, it is not necessary to provide a separate detection means. further,
It is also possible to reliably detect volatile inorganic hydrides, volatile amine compounds, and organometallic compounds contained as harmful components in the gas.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 まや 山梨県北巨摩郡高根町下黒沢3054−3 日 本酸素株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Maya Yamada 3054-3 Shimokurosawa Shimokurosawa, Takane Town, Kitakoma District, Yamanashi Prefecture Nihon Oxygen Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 揮発性無機水素化物を含むガスの除害処
理,精製処理,検知処理を行うにあたり、前記ガスを、
硫酸ビスマスを反応主成分とする処理剤に接触させるこ
とを特徴とするガスの処理方法。
1. When performing a detoxification treatment, a purification treatment, or a detection treatment of a gas containing a volatile inorganic hydride, the gas is
A method for treating a gas, which comprises bringing bismuth sulfate into contact with a treating agent containing a reaction main component.
【請求項2】 有害成分として揮発性無機水素化物(ケ
イ素の水素化物を除く)を含むガスを、硫酸ビスマスを
反応主成分とする処理剤に接触させることを特徴とする
ガスの除害処理方法。
2. A method for detoxifying a gas, which comprises contacting a gas containing a volatile inorganic hydride (excluding hydride of silicon) as a harmful component with a treatment agent containing bismuth sulfate as a reaction main component. .
【請求項3】 ケイ素の水素化物を主成分とするガス
を、硫酸ビスマスを反応主成分とする処理剤に接触させ
ることを特徴とするガスの精製処理方法。
3. A method for purifying a gas, wherein a gas containing silicon hydride as a main component is brought into contact with a processing agent containing bismuth sulfate as a main reaction component.
【請求項4】 ガス中に含まれる揮発性無機水素化物,
揮発性アミン化合物,有機金属化合物の検知処理を行う
にあたり、前記ガスを、硫酸ビスマス,硝酸ビスマス,
硝酸鉄の内の少なくともいずれか一種を反応主成分とす
る処理剤に接触させることを特徴とするガスの検知処理
方法。
4. A volatile inorganic hydride contained in the gas,
When performing detection processing of volatile amine compounds and organometallic compounds, the gas is bismuth sulfate, bismuth nitrate,
A method for detecting and treating a gas, which comprises contacting at least one of iron nitrate with a treating agent containing a reaction main component.
JP7288568A 1995-11-07 1995-11-07 Gas treatment process Pending JPH09122437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7288568A JPH09122437A (en) 1995-11-07 1995-11-07 Gas treatment process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7288568A JPH09122437A (en) 1995-11-07 1995-11-07 Gas treatment process

Publications (1)

Publication Number Publication Date
JPH09122437A true JPH09122437A (en) 1997-05-13

Family

ID=17731947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7288568A Pending JPH09122437A (en) 1995-11-07 1995-11-07 Gas treatment process

Country Status (1)

Country Link
JP (1) JPH09122437A (en)

Similar Documents

Publication Publication Date Title
US4786483A (en) Process for removing hydrogen sulfide and mercury from gases
US5051117A (en) Process for removing gaseous contaminating compounds from carrier gases containing halosilane compounds
KR100828237B1 (en) Method and Materials for Purifying Hydride Gases, Inert Gases, and Non-Reactive Gases
EP0194366A1 (en) Method of cleaning exhaust gases
KR100318353B1 (en) How to purify exhaust gas
KR920003770B1 (en) Purifying process of exhaust gas
US5512262A (en) Process for cleaning harmful gas
JPH04292413A (en) Method of refining ammonia
JP4843635B2 (en) Method for producing carbonyl fluoride with reduced hydrogen fluoride content
JPH09122437A (en) Gas treatment process
JPS63185431A (en) Removal of silicon hydride and gas treatment apparauts used therein
KR20010061933A (en) Cleaning agent and cleaning process of harmful gas
JPH08243347A (en) Treating agent for gas and its treatment
JP2691927B2 (en) How to remove harmful components
JP2932056B2 (en) Solid detection agent for harmful components
JPH06319945A (en) Removing agent and detecting agent of harmful component
JP3838977B2 (en) Exhaust gas treatment agent, method for producing the same, and exhaust gas treatment method
US4296078A (en) Separation of hydrogen chloride from gaseous mixtures
JPH0457368B2 (en)
JPH08206432A (en) Gas treatment method and gas treatment agent
US7476373B2 (en) Treating agent for exhaust gas containing metal hydride compound and method for treating exhaust gas containing metal hydride compound
EP0642822B1 (en) Methods of removing and detecting harmful component in a gas
JP4859384B2 (en) Metal fluoride deoxidizer and method for producing the same
JPH09187623A (en) Harmful matter removing agent for organometallic compound and removing method of harmful matter in harmful gas
JP3362918B2 (en) Exhaust gas purification method