JPH06319945A - Removing agent and detecting agent of harmful component - Google Patents

Removing agent and detecting agent of harmful component

Info

Publication number
JPH06319945A
JPH06319945A JP5284843A JP28484393A JPH06319945A JP H06319945 A JPH06319945 A JP H06319945A JP 5284843 A JP5284843 A JP 5284843A JP 28484393 A JP28484393 A JP 28484393A JP H06319945 A JPH06319945 A JP H06319945A
Authority
JP
Japan
Prior art keywords
agent
detecting
removing agent
reaction
copper hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5284843A
Other languages
Japanese (ja)
Other versions
JP2561616B2 (en
Inventor
Tadaharu Watanabe
忠治 渡辺
Hiroaki Imai
宏明 今井
Hitoshi Kikuchi
▲均▼ 菊池
Fumiyoshi Endou
文誉 遠藤
Shinji Ichimura
信二 市村
Emi Yoshida
恵美 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP5284843A priority Critical patent/JP2561616B2/en
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to PCT/JP1994/000431 priority patent/WO1994021355A1/en
Priority to EP94910032A priority patent/EP0642822B1/en
Priority to KR1019940704093A priority patent/KR950701542A/en
Priority to KR1019940704093A priority patent/KR0148162B1/en
Priority to DE69431615T priority patent/DE69431615T2/en
Publication of JPH06319945A publication Critical patent/JPH06319945A/en
Application granted granted Critical
Publication of JP2561616B2 publication Critical patent/JP2561616B2/en
Priority to US08/867,790 priority patent/US5853678A/en
Priority to KR1019980700646A priority patent/KR0153129B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To obtain an agent for removing a greater amount of a harmful component such as silane and an agent for detecting the generation etc., of a harmful component by using copper hydroxide as a main component in a reaction. CONSTITUTION:A removing agent and a detecting agent are obtained by using copper hydroxide, especially crystalline copper hydroxide, as a main component in a reaction. The removing agent can remove efficiently a harmful component in exhaust gas etc., such as a volatile inorganic hydrogen compound (e.g. silane), a volatile inorganic halogen compound (e.g. boron trifluoride), and an organometallic compound (e.g. dimethylzinc) to downsize the reaction tube or to extend the exchange cycle of the removing agent. The removing agent, having enough removing power even with a smaller specific surface, can reduce its manufacturing cost. Since the removing agent is discolored by the reaction with a harmful component, the behavior of the agent is detected by the color change, so that the agent can also be used as a detecting agent of a harmful component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス等に含まれる有
害成分の除去剤及び検知剤に関し、詳しくは、半導体製
造工場等で使用される揮発性無機水素化物,揮発性無機
ハロゲン化物、有機金属化合物等の有害成分を含む排ガ
ス中の有害成分の除去剤及び検知剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a removing agent and a detecting agent for harmful components contained in exhaust gas, etc., and more particularly to volatile inorganic hydrides, volatile inorganic halides and organic compounds used in semiconductor manufacturing plants. The present invention relates to a remover and a detector for harmful components in exhaust gas containing harmful components such as metal compounds.

【0002】[0002]

【従来の技術】揮発性無機水素化物,揮発性無機ハロゲ
ン化物、有機金属化合物等の有害ガス成分を使用する半
導体製造工程等からは、これらの有害成分を含む排ガス
が排出される。これらの有害成分は、毒性や可燃性を有
する危険なものであり、該排気ガスを大気中に放出する
前に無害化する必要がある。
2. Description of the Related Art Exhaust gas containing these harmful components is discharged from a semiconductor manufacturing process using harmful gas components such as volatile inorganic hydrides, volatile inorganic halides and organometallic compounds. These harmful components are toxic and flammable and dangerous and must be rendered harmless before the exhaust gas is released into the atmosphere.

【0003】半導体製造工場における排ガス中の有害成
分の無害化処理は、従来のスクラバー等による湿式乃至
湿潤状態の除去剤による半湿式の方法から、近年は、乾
式による処理技術へと移行してきている。例えば、特公
平3−64166号公報及び特公平3−64167号公
報には、ヒ素を含有する有害ガスの除去剤として酸化銅
を主体とした除去剤が、また、特公平4−17082号
公報には、ガス状ケイ素化合物の除去剤として酸化銅又
は酸化銅と酸化亜鉛との混合物を主体とした除去剤が、
それぞれ記載されている。さらに、特公平4−1988
6号公報には、シラン系ガスの除去剤として金属酸化物
を主成分とした除去剤が記載されている。
Detoxification treatment of harmful components in exhaust gas in a semiconductor manufacturing plant has been shifted from a conventional wet or wet semi-wet method using a removing agent to a dry treatment technology in recent years. . For example, Japanese Examined Patent Publication No. 3-64166 and Japanese Examined Patent Publication No. 3-64167 disclose a remover mainly composed of copper oxide as a remover of a harmful gas containing arsenic. Is a remover mainly composed of copper oxide or a mixture of copper oxide and zinc oxide as a remover of a gaseous silicon compound,
Each is listed. Furthermore, Japanese Patent Publication 4-1988
No. 6 discloses a silane-based gas removing agent containing a metal oxide as a main component.

【0004】上記のような除去剤を使用して有害ガス成
分を除去する方法としては、一般に、該除去剤を充填し
た充填筒に有害成分を含む排ガスを通して有害成分を除
去剤に接触させ、該有害成分を除去する方法が採られて
いる。この方法で有害成分を含む排ガスを処理する際、
除去処理の進行に伴い、除去剤の除去能力が低下して除
去剤の能力が破過すると、除去剤充填筒を通過した排ガ
ス中の有害成分が所定濃度を超えてしまう。したがっ
て、除去剤の除去能力が低下する前に除去剤を交換し、
再充填しなければならないが、除去剤の能力の低下、す
なわち、除去剤の破過を事前に確認するために、充填筒
の後段に高価な分析計を取付けるのでは、設備費と手間
がかかる。そこで、除去剤の破過を簡便に、しかも確実
に検知するための検知剤の開発も種々行われている。
As a method for removing harmful gas components using the above-mentioned removing agent, generally, the harmful components are brought into contact with the removing agent through exhaust gas containing the harmful components in a filling cylinder filled with the removing agent. A method of removing harmful components is adopted. When treating exhaust gas containing harmful components by this method,
When the removing ability of the removing agent is lowered and the ability of the removing agent is exceeded as the removing process progresses, the harmful component in the exhaust gas passing through the removing agent-filled cylinder exceeds a predetermined concentration. Therefore, replace the scavenger before the scavenging ability of the scavenger decreases,
It has to be refilled, but it costs a lot of equipment and labor to mount an expensive analyzer in the latter stage of the packing cylinder in order to confirm the deterioration of the capacity of the remover, that is, the breakthrough of the remover in advance. . Therefore, various detection agents have been developed to detect the breakthrough of the remover easily and reliably.

【0005】検知剤としては、例えば、アルシン,ホス
フィン,ジボラン,セレン化水素,ゲルマン,モノシラ
ン,ジシラン,ジクロロシラン等を含む有害ガスを検知
する検知剤として、塩基性炭酸銅を変色成分とする検知
剤(特公平4−79576号公報)、有機酸の銅塩を変
色成分とする検知剤(特公平4−79577号公報)、
第二銅塩とパラジウム塩との混合物を変色成分とする検
知剤(特公平4−79578号公報)等が提案されてい
る。これらに対して、特開平4−97752公報には、
安価で変色が鋭敏であり、退色もない検知剤として硝酸
銅が提案されている。
As the detection agent, for example, a detection agent for detecting harmful gas containing arsine, phosphine, diborane, hydrogen selenide, germane, monosilane, disilane, dichlorosilane, etc., using basic copper carbonate as a discoloring component Agent (Japanese Patent Publication No. 4-79576), a detection agent containing a copper salt of an organic acid as a discoloring component (Japanese Patent Publication No. 4-79577),
A detection agent (Japanese Patent Publication No. 4-79578) that uses a mixture of a cupric salt and a palladium salt as a discoloring component has been proposed. On the other hand, in JP-A-4-97752,
Copper nitrate has been proposed as a detection agent that is inexpensive, is sensitive to discoloration, and has no discoloration.

【0006】また、金属のアルキル化合物等の有機金属
化合物を含む有害ガスを検知する検知剤としては、銅塩
と金塩との混合物を変色成分とする検知剤(特開平2−
110369号公報,特開平2−110370号公報)
が提案されている。
Further, as a detecting agent for detecting a harmful gas containing an organic metal compound such as an alkyl compound of a metal, a detecting agent containing a mixture of a copper salt and a gold salt as a discoloring component (Japanese Patent Laid-Open No. HEI 2)
110369, Japanese Patent Laid-Open No. 2-110370)
Is proposed.

【0007】[0007]

【発明が解決しようとする課題】しかし、上述した酸化
銅等の金属酸化物を反応主成分とする従来の除去剤で
は、シランに対する除去能力が小さく、このため、細粒
化処理を行うとともに、アルミナ等の担体に担持させて
比表面積を大きくする必要があり、除去剤自体の製造も
面倒であった。このようなことから、より除去能力の大
きな除去剤の出現が望まれていた。
However, the conventional scavenger containing the above-mentioned metal oxide such as copper oxide as a reactive main component has a small ability to remove silane. It was necessary to support the carrier on alumina or the like to increase the specific surface area, and it was troublesome to manufacture the removing agent itself. Therefore, the appearance of a removing agent having a larger removing ability has been desired.

【0008】さらに、銅及び銅以外の金属の酸化物を主
成分とした前記除去剤は、交換時期を的確に把握するた
めに、その除去能力の破過を検知するための検知剤を併
用する必要がある。
Further, the above-mentioned removing agent containing copper and an oxide of a metal other than copper as a main component is used together with a detecting agent for detecting breakthrough of its removing ability in order to accurately grasp the replacement time. There is a need.

【0009】一方、除去剤の破過を検知する検知剤につ
いては、パラジウム塩や金塩のように、原料が高価であ
ったり、銅塩の溶解、沈澱、ろ過、乾燥等といった製造
プロセスにコストもかかる。また、変色成分を硝酸銅と
した検知剤は、検知剤としては優れた性能を有するもの
の、対象ガスとの反応が過度に進行すると、酸化窒素を
発生するおそれがあり、除去剤として使用することは好
ましくない。
On the other hand, as for the detecting agent for detecting the breakthrough of the removing agent, the raw material is expensive such as palladium salt and gold salt, and the cost for manufacturing process such as dissolution, precipitation, filtration and drying of copper salt is high. Also takes. In addition, the detection agent that uses copper nitrate as the discoloring component has excellent performance as a detection agent, but if the reaction with the target gas proceeds excessively, it may generate nitric oxide, so use it as a removal agent. Is not preferable.

【0010】そこで、本発明者らは、シラン系の有害成
分にも十分な除去能力を有するとともに、アルシン系や
ホスフィン系、さらには、半導体製造工程で使用される
各種有機金属化合物等、多種類の有害成分に対して効果
的な除去剤の開発を第一の目的とし、併せて、除去能力
の破過を自ら検知する能力を有し、検知剤の不要な除去
剤を開発することを第二の目的として鋭意研究を重ね
た。その結果、水酸化銅が、シラン系の有害ガスに対し
て、従来の酸化銅に比べて約4倍の除去能力があるこ
と、同時に、その他のアルシンやホスフィン等の揮発性
無機水素化合物や、前記揮発性無機ハロゲン化物、さら
には、有機金属化合物をも効果的に除去することができ
るとともに、その色が、反応によって青から黒に鮮明に
変色することによって破過をも検知できることを見出
し、本発明を完成するに至った。
Therefore, the present inventors have a sufficient ability to remove silane-based harmful components, and have various types such as arsine-based and phosphine-based compounds, and various organometallic compounds used in semiconductor manufacturing processes. The first purpose is to develop a remover effective against harmful components of the plant, and at the same time, to develop a remover that has the ability to detect breakthrough of the removal ability by itself and does not require a detector. As a secondary purpose, he has conducted extensive research. As a result, copper hydroxide has about four times the ability to remove silane-based harmful gases compared to conventional copper oxide, and at the same time, other volatile inorganic hydrogen compounds such as arsine and phosphine, The volatile inorganic halide, further, it is possible to effectively remove the organometallic compound, and the color thereof is found to be able to detect breakthrough by vividly changing color from blue to black by the reaction, The present invention has been completed.

【0011】[0011]

【課題を解決するための手段】すなわち、本発明の除去
剤又は検知剤は、水酸化銅を反応主成分とすることを特
徴とするものであり、特に、前記水酸化銅が結晶性の水
酸化銅であることを特徴としている。
That is, the removing agent or detecting agent of the present invention is characterized by containing copper hydroxide as a reaction main component, and in particular, the copper hydroxide is a crystalline water. It is characterized by being copper oxide.

【0012】本発明の対象となる有害成分は、半導体製
造工場等で使用される揮発性無機水素化物,揮発性無機
ハロゲン化物,有機金属化合物等である。前記揮発性無
機水素化物としては、ジボラン,シラン,ジシラン,ゲ
ルマン,アンモニア,ホスフィン,アルシン,硫化水
素,セレン化水素等を挙げることができ、また、揮発性
無機ハロゲン化物としては、三フッ化ホウ素,三塩化ホ
ウ素,四フッ化ケイ素,ジクロルシラン,トリクロルシ
ラン,四塩化ケイ素,トリクロルアルシン,六フッ化タ
ングステン,フッ素,塩素,フッ化水素,塩化水素,臭
化水素等、ハロゲンガスも含む各種ガスを挙げることが
できる。
The harmful components to which the present invention is applied include volatile inorganic hydrides, volatile inorganic halides, organometallic compounds and the like used in semiconductor manufacturing plants and the like. Examples of the volatile inorganic hydride include diborane, silane, disilane, germane, ammonia, phosphine, arsine, hydrogen sulfide, hydrogen selenide, and the like, and volatile inorganic halides include boron trifluoride. , Boron trichloride, silicon tetrafluoride, dichlorosilane, trichlorosilane, silicon tetrachloride, trichloroarsine, tungsten hexafluoride, fluorine, chlorine, hydrogen fluoride, hydrogen chloride, hydrogen bromide, etc. Can be mentioned.

【0013】さらに、有機金属化合物としては、アルキ
ル基を含むものとして、ジメチル亜鉛,ジエチル亜鉛,
トリメチルアルミニウム,トリエチルアルミニウム,ト
リメチルガリウム,トリエチルガリウム,トリメチルイ
ンジウム,トリエチルインジウム,テトラメチル錫,テ
トラエチル錫,ターシャリーブチルホスフィン,トリメ
チルアルシン,トリエチルアルシン,ターシャリーブチ
ルアルシン等を、アルコキシド基を含むものとして、ジ
メトキシ亜鉛,トリブトキシガリウム,トリメトキシボ
ロン,トリエトキシボロン,テトラメトキシシラン,テ
トラエトキシシラン,テトラメトキシゲルマン,テトラ
エトキシゲルマン,テトラターシャリーブトキシ錫,ト
リメトキシホスフィン,トリエトキシホスフィン,トリ
メトキシアルシン,トリエトキシアルシン,テトラエト
キシセレン,テトラメトキシチタン,テトラエトキシチ
タン,テトライソプロポキシチタン,テトライソプロポ
キシジルコニウム,テトラターシャリーブトキシジルコ
ニウム,ペンタメトキシタンタル,ペンタエトキシタン
タル等をそれぞれ挙げることができる。
Further, as the organometallic compound, those containing an alkyl group include dimethyl zinc, diethyl zinc,
Trimethylaluminum, triethylaluminum, trimethylgallium, triethylgallium, trimethylindium, triethylindium, tetramethyltin, tetraethyltin, tert-butylphosphine, trimethylarsine, triethylarsine, tert-butylarsine, etc., containing alkoxide groups, Dimethoxyzinc, tributoxygallium, trimethoxyboron, triethoxyboron, tetramethoxysilane, tetraethoxysilane, tetramethoxygermane, tetraethoxygermane, tetratert-butoxytin, trimethoxyphosphine, triethoxyphosphine, trimethoxyarsine, tri Ethoxyarsine, tetraethoxyselenium, tetramethoxytitanium, tetraethoxytitanium, tetraiso Ropokishichitan, tetraisopropoxy zirconium, tetra-tertiary-butoxy zirconium, pentamethoxy tantalum, pentaethoxytantalum etc. can be mentioned, respectively.

【0014】また、主成分となる水酸化銅は、上記除去
対象ガスと接触して反応すると、青色から黒色に鮮明に
変色するので、除去筒に充填して使用する場合、上流側
から破過前線が進行して行くので、検知剤を使用する必
要がないばかりでなく、必要に応じて、該除去対象ガス
の検知剤としても使うことができる。
Further, when the copper hydroxide as the main component is brought into contact with the above-mentioned gas to be removed and reacts with it, the color changes sharply from blue to black. Since the front advances, it is not necessary to use a detection agent, but it can be used as a detection agent for the gas to be removed, if necessary.

【0015】[0015]

【作 用】前記有害成分を含む排ガスを水酸化銅に接触
させると、該排ガス中の有害成分は、水酸化銅と反応し
て除去される。特にシランの場合、反応主成分である水
酸化銅の単位重量当たりのシラン除去量は、従来の除去
剤である前記酸化銅よりもはるかに多い。この原因は種
々考えられるが、一つには、水酸化銅の方が酸化銅より
も反応に寄与する除去成分の割合が高いためと思われ
る。例えば、酸化銅の場合、微少な粉末にして担体に担
持させて比表面積を大きくしても、個々の酸化銅の直径
は、最小でも数ミクロン程度であり、反応は表面の数オ
ングストローム(直径の1000分の1程度の厚み)程
度で行われ、物質の表面だけが反応に寄与し、内部の酸
化銅は未反応のまま残るのに対し、水酸化銅の場合は、
反応が物質の内部まで進むためであろうと推定される。
実際、水酸化銅の場合は、比表面積が小さくても大量に
シランを除去することができる。したがって、本発明の
除去剤は、担体に担持させても、また、単独で錠剤の形
状にして用いても十分な除去能力を発揮する。これら
は、本発明者らが種々考究して得た知見である。
[Operation] When the exhaust gas containing the harmful component is brought into contact with copper hydroxide, the harmful component in the exhaust gas reacts with the copper hydroxide to be removed. Particularly in the case of silane, the amount of silane removed per unit weight of the reaction main component copper hydroxide is much larger than that of the conventional remover copper oxide. There are various possible causes for this, but one is probably that copper hydroxide has a higher proportion of the removal component contributing to the reaction than copper oxide. For example, in the case of copper oxide, even if it is made into a fine powder and supported on a carrier to increase the specific surface area, the diameter of each copper oxide is about several microns at the minimum, and the reaction is several angstroms (diameter of the surface). (Thickness about 1/1000), only the surface of the substance contributes to the reaction, and the copper oxide inside remains unreacted, whereas in the case of copper hydroxide,
It is presumed that this is because the reaction proceeds to the inside of the substance.
In fact, in the case of copper hydroxide, a large amount of silane can be removed even if the specific surface area is small. Therefore, the removing agent of the present invention exerts sufficient removing ability even when it is carried on a carrier or when it is used alone in the form of tablets. These are findings obtained by the present inventors through various studies.

【0016】本発明において主成分となる水酸化銅と
は、主に水酸化第二銅(Cu(OH)2 )を意味する
が、水酸化第一銅を含んでいても良い。また、水酸化銅
としては、結晶性のものと非晶質のものの両方が使用で
きるが、結晶性のものの方が非晶質のものより温度に対
する安定性が高いので、有害成分の濃度が高く、反応熱
が高い場合に、より安定的に使用できる。なお、本発明
における反応は発熱反応であるが、発熱量は従来の除去
剤である前記酸化銅とほぼ同等である。
In the present invention, the main component, copper hydroxide, means mainly cupric hydroxide (Cu (OH) 2 ), but it may also contain cuprous hydroxide. As the copper hydroxide, both crystalline and amorphous ones can be used, but since the crystalline one is more stable against temperature than the amorphous one, the concentration of harmful components is high. It can be used more stably when the reaction heat is high. Although the reaction in the present invention is an exothermic reaction, the calorific value is almost the same as that of the above-mentioned copper oxide which is a conventional removing agent.

【0017】また、上記水酸化銅は、前記有害成分に接
触すると、該有害成分が僅かの濃度でもそれと敏感に反
応して除去し、同時に、青色から黒色に変色するため、
その破過を検知できる。したがって、該水酸化銅の変色
状況を監視することによって、除去剤としての破過を確
認できる。具体的には、本発明の除去剤を、透明乃至透
明窓を設けた充填筒に充填すれば、上流側から破過前線
が推移してゆく状況を変色により観察できるので、余裕
をもって除去剤の交換時期を知ることができる。
Further, when the above-mentioned copper hydroxide comes into contact with the harmful component, the harmful component reacts sensitively with it even at a small concentration to remove it, and at the same time, changes color from blue to black.
The breakthrough can be detected. Therefore, the breakthrough as a remover can be confirmed by monitoring the discoloration state of the copper hydroxide. Specifically, if the filling agent provided with a transparent or transparent window is filled with the removing agent of the present invention, the transition of the breakthrough front from the upstream side can be observed by discoloration, so that the removing agent can be prepared with a margin. You can know when to replace.

【0018】また、本発明の検知剤は、他の除去剤の破
過を検知するための検知剤としてのみ使用することもで
きる。
Further, the detecting agent of the present invention can be used only as a detecting agent for detecting the breakthrough of other removing agents.

【0019】なお、本発明方法及び除去剤においては、
除去剤として水酸化銅を単体で用いてもよく、他の成分
と混合して用いてもよい。また、従来と同様の細粒化処
理を施し、アルミナやシリカ又はケイソウ土等のケイ酸
塩の担体に担持させて比表面積を大きくすることによ
り、更に性能を向上させることも可能である。
In the method and remover of the present invention,
Copper hydroxide may be used alone as a removing agent, or may be used as a mixture with other components. Further, it is possible to further improve the performance by subjecting to a carrier of silicate such as alumina, silica or diatomaceous earth to increase the specific surface area by subjecting to the same fine-graining treatment as in the prior art.

【0020】また、従来の酸化銅を主成分とした除去剤
中には、酸化銅を製造する工程における残留物として微
量の水酸化銅が含まれていることがあるが、従来の除去
剤においては、この水酸化銅はあくまでも不純物として
残留しているものであって、本発明のように、除去剤あ
るいは検知剤の主成分として用いるものとは、本質的に
異なるものである。
In addition, the conventional remover containing copper oxide as a main component may contain a trace amount of copper hydroxide as a residue in the step of producing copper oxide. This copper hydroxide remains as an impurity to the last, and is essentially different from that used as the main component of the removing agent or the detecting agent as in the present invention.

【0021】[0021]

【実施例】以下、本発明の参考例及び実施例を説明す
る。 実施例1 まず、除去剤及び試験ガスとして下記のものを用意し、
これらの除去剤を内径43mm,高さ685mmのカラ
ム内に300mmの高さで充填するとともに、このカラ
ムに有害成分としてシランを含む試験ガスを流通させ、
各種除去剤の処理能力を測定した。各除去剤の処理能力
の測定は、カラム出口でのシランの濃度を検知器(日本
酸素製AD−10分析計)で測定し、出口でのシラン濃
度が5ppmに達したときを除去剤の使用限度とし、使
用限度に到達するまでのシランの導入量から除去剤1k
gあたりのシラン処理量を算出することにより行った。
また、各除去剤の比表面積を、周知のBET法により測
定した。
EXAMPLES Reference examples and examples of the present invention will be described below. Example 1 First, the following are prepared as a remover and a test gas,
A column having an inner diameter of 43 mm and a height of 685 mm was filled with these removers at a height of 300 mm, and a test gas containing silane as a harmful component was passed through the column.
The throughput of various removers was measured. The treatment capacity of each scavenger was measured by measuring the silane concentration at the column outlet with a detector (AD-10 analyzer manufactured by Nippon Oxygen), and using the scavenger when the silane concentration at the outlet reached 5 ppm. As a limit, the amount of silane introduced until the usage limit is reached depends on the removal agent 1k
It was performed by calculating the amount of silane treatment per g.
The specific surface area of each remover was measured by the well-known BET method.

【0022】除去剤 A:市販の水酸化第二銅粉末(関東化学製)の成型品。 B:1モル/リットルの硫酸銅溶液と、1モル/リット
ルの水酸化ナトリウムを混合した際の沈澱物(水酸化
銅)を乾燥した後の成型品。 C:市販の酸化第二銅粉末(関東化学製)の成型品。 D:塩基性炭酸銅を焼成して得た酸化第二銅の成型品。 E:硝酸銅水溶液,硝酸アルミニウム水溶液,炭酸ナト
リウム水溶液の3種の水溶液を混合して得た沈澱物を焼
成することにより,酸化第二銅を酸化アルミニウムに担
持させたもの。 なお、除去剤A,Bはいずれも結晶性のものである。ま
た、各成型品は押出成型品であり、その大きさは、それ
ぞれ直径1.5mm,長さ5mmである。
Remover A: Commercially available cupric hydroxide powder (manufactured by Kanto Kagaku). B: A molded product after drying a precipitate (copper hydroxide) obtained by mixing 1 mol / l of a copper sulfate solution and 1 mol / l of sodium hydroxide. C: Molded product of commercially available cupric oxide powder (manufactured by Kanto Kagaku). D: Cupric oxide molded product obtained by firing basic copper carbonate. E: Cupric oxide supported on aluminum oxide by firing a precipitate obtained by mixing three kinds of aqueous solutions of an aqueous solution of copper nitrate, an aqueous solution of aluminum nitrate and an aqueous solution of sodium carbonate. The removers A and B are both crystalline. Each molded product is an extrusion molded product, and its size is 1.5 mm in diameter and 5 mm in length.

【0023】試験ガス G1:窒素ベースでシラン濃度1%、流量1.0リット
ル/分。 G2:窒素ベースでシラン濃度10%、流量0.1リッ
トル/分。
Test gas G1: Silane concentration 1% based on nitrogen, flow rate 1.0 l / min. G2: Silane concentration 10% based on nitrogen, flow rate 0.1 liter / min.

【0024】各除去剤の処理能力の測定結果を表1に示
す。
Table 1 shows the measurement results of the treating ability of each removing agent.

【表1】 [Table 1]

【0025】表1から明らかなように、水酸化銅からな
る除去剤A,Bは、従来の各種除去剤C,D,Eに比べ
て処理能力が極めて高いことが判る。また、従来品で
は、必要十分な処理能力を得るためには比表面積を大き
くする必要があり、できるだけ粒径を小さくし、かつ、
担体に担持させるなどの手法で比表面積の拡大を図る必
要があるが、水酸化銅からなる除去剤は、従来品の中で
比表面積の最も大きな除去剤Eの1/2の比表面積でも
5倍以上の処理能力を有しているため、特別な比表面積
拡大処理を行わなくても十分な処理能力が得られる。し
たがって、除去剤を充填する反応管の小型化や除去剤の
交換周期の延長が図れる。
As is clear from Table 1, the removal agents A and B made of copper hydroxide have a very high processing capacity as compared with the conventional removal agents C, D and E. Further, in the conventional product, it is necessary to increase the specific surface area in order to obtain the necessary and sufficient processing capacity, and to reduce the particle size as much as possible, and
Although it is necessary to increase the specific surface area by loading it on a carrier, the removal agent consisting of copper hydroxide has a specific surface area of half that of the removal agent E, which has the largest specific surface area among conventional products. Since it has a processing capacity more than double, sufficient processing capacity can be obtained without special special surface area expansion processing. Therefore, it is possible to miniaturize the reaction tube filled with the removing agent and extend the exchanging cycle of the removing agent.

【0026】実施例2 実施例1の除去剤Aに用いたものと同じ水酸化第二銅粉
末を1mmφ×3mmに成型し、内径40mm、高さ5
00mmの透明なカラムに約220g充填した(充填
長:150mm)。カラムを窒素ガスでパージした後、
カラム出口ガスを冷原子吸光型のガスモニタで常時監視
しながら、窒素ベースでシラン濃度1%の試験ガスを7
50ml/min(空塔速度:1.0cm/sec)で
通気した。時間の経過とともに充填層が上流から下流に
向けて青色から黒色に変色し、黒色/青色前線の移動が
観察された。通気開始後3670分で、黒色/青色の変
色前線の位置が充填層最下流部から約10mmのところ
に達し、出口ガスのシラン濃度が5ppmになった。こ
のときのシラン処理量は、125リットル/kgであっ
た。
Example 2 The same cupric hydroxide powder as that used for the remover A of Example 1 was molded into a size of 1 mmφ × 3 mm, and the inner diameter was 40 mm and the height was 5 mm.
About 200 g was packed in a 00 mm transparent column (packing length: 150 mm). After purging the column with nitrogen gas,
While constantly monitoring the column outlet gas with a cold atomic absorption type gas monitor, use a nitrogen-based test gas with a silane concentration of 1%.
Aeration was performed at 50 ml / min (superficial velocity: 1.0 cm / sec). Over time, the packed bed changed color from blue to black from upstream to downstream, and the movement of the black / blue front was observed. At 3670 minutes after the start of aeration, the position of the black / blue discoloration front reached about 10 mm from the most downstream portion of the packed bed, and the silane concentration of the outlet gas became 5 ppm. The amount of silane treated at this time was 125 liter / kg.

【0027】本実施例により、水酸化第二銅をシランの
除去剤として使用するときに、その充填層を目視できる
ようにすれば、シランの除去と同時に、その破過をも検
知できるので、別に検知剤を使用する必要はない。
According to this embodiment, when cupric hydroxide is used as a silane remover, if the filling layer is made visible, the breakthrough can be detected simultaneously with the removal of silane. It is not necessary to use a separate sensing agent.

【0028】また、水酸化第二銅からなる除去剤を、内
部を目視できない材料で作成したカラムに充填してシラ
ンの除去を行う際には、カラムの充填層の最下流部に1
0mm以上の目視窓を設けておくか、あるいは、充填層
の下流に水酸化第二銅を10mm以上の長さ充填した透
明なカラムを直列に連結しておけば、除去剤の破過を事
前に検知することができる。また、自ら破過の検知能力
のない除去剤を使用する時にも、水酸化第二銅を破過の
検知剤として使用することができる。
When a column made of a material the inside of which is invisible is filled with a remover composed of cupric hydroxide to remove silane, 1 is added to the most downstream portion of the packed layer of the column.
If a visual window of 0 mm or more is provided, or if a transparent column filled with cupric hydroxide for a length of 10 mm or more is connected in series downstream of the packed bed, breakthrough of the remover can be performed in advance. Can be detected. Further, cupric hydroxide can be used as a breakthrough detection agent even when a remover having no ability to detect breakthrough is used.

【0029】実施例3 試験ガスを水素ベースでアルシン濃度1%とし、カラム
出口ガスを実施例1と同じ検知器で監視した以外は、実
施例2と同様に行った。その結果、時間の経過とともに
充填層が上流から下流に向けて青色から黒色に変色し、
黒色/青色前線の移動が観察された。通気開始後455
0分で、黒色/青色の変色前線の位置が充填層最下流部
から約10mmのところに達し、出口ガスのアルシン濃
度が0.05ppmになった。このときのアルシン処理
量は、155リットル/kgであった。
Example 3 Example 2 was repeated except that the test gas was a hydrogen-based arsine concentration of 1% and the column outlet gas was monitored by the same detector as in Example 1. As a result, the packed bed changes color from blue to black from upstream to downstream over time,
A black / blue front shift was observed. 455 after starting ventilation
At 0 minutes, the position of the black / blue discoloration front reached about 10 mm from the most downstream portion of the packed bed, and the arsine concentration of the outlet gas became 0.05 ppm. The amount of arsine treated at this time was 155 liters / kg.

【0030】実施例4 試験ガスを水素ベースでホスフィン濃度1%とした以外
は、実施例3と同様に行った。その結果、通気開始後3
870分で、黒色/青色の変色前線の位置が充填層最下
流部から約10mmのところに達し、出口ガスのホスフ
ィン濃度が0.3ppmになった。このときのホスフィ
ン処理量は、132リットル/kgであった。
Example 4 Example 4 was repeated except that the phosphine concentration was 1% based on hydrogen as the test gas. As a result, 3
At 870 minutes, the position of the black / blue discoloration front reached about 10 mm from the most downstream portion of the packed bed, and the phosphine concentration of the outlet gas became 0.3 ppm. The treatment amount of phosphine at this time was 132 liters / kg.

【0031】実施例5 試験ガスを窒素ベースでジクロルシラン濃度1%とし、
カラム出口ガスを、ハロゲンモニタ(日本バイオニクス
社製ハロゲンモニタTG−3400)にて監視した以外
は、実施例2と同様に行った。その結果、通気開始後4
690分で、黒色/青色の変色前線の位置が充填層最下
流部から約10mmのところに達し、出口ガスのジクロ
ルシラン濃度が5ppmになった。このときのジクロル
シラン処理量は、160リットル/kgであった。
Example 5 The test gas was a nitrogen-based dichlorosilane concentration of 1%,
The procedure of Example 2 was repeated, except that the column outlet gas was monitored by a halogen monitor (halogen monitor TG-3400 manufactured by Nippon Bionics Co., Ltd.). As a result, 4
At 690 minutes, the position of the black / blue discoloration front reached about 10 mm from the most downstream part of the packed bed, and the concentration of dichlorosilane in the outlet gas became 5 ppm. The amount of dichlorosilane treated at this time was 160 liters / kg.

【0032】実施例6 試験ガスを窒素ベースでターシャリーブチルアルシン濃
度1%とした以外は実施例3と同様に行った。その結
果、通気開始後2640分で、黒色/青色の変色前線の
位置が充填層最下流部から約10mmのところに達し、
出口ガスのターシャリーブチルアルシン濃度が0.03
ppmになった。このときのターシャリーブチルアルシ
ン処理量は、90リットル/kgであった。
Example 6 Example 3 was repeated except that the test gas was a nitrogen-based tertiary butylarsine concentration of 1%. As a result, at 2640 minutes after the start of aeration, the position of the black / blue discoloration front reaches about 10 mm from the most downstream portion of the packed bed,
The tertiary butyl arsine concentration in the outlet gas is 0.03
became ppm. The amount of tertiary butyl arsine treated at this time was 90 liters / kg.

【0033】[0033]

【発明の効果】以上説明したように、本発明の除去剤
は、排ガス等に含まれる揮発性無機水素化物,揮発性無
機ハロゲン化物、有機金属化合物等の有害成分を効率よ
く除去することができ、反応管の小型化あるいは除去剤
の交換周期の延長が図れる。また、比表面積が小さくて
も十分な除去能力を有しているので、細粒化処理を行っ
たり、担体に担持させたりする必要がなく、除去剤自体
の製造コストの低減も図れ、極めて実施効果が大きい。
As described above, the removing agent of the present invention can efficiently remove harmful components such as volatile inorganic hydrides, volatile inorganic halides and organometallic compounds contained in exhaust gas. It is possible to reduce the size of the reaction tube or extend the exchange period of the removing agent. Also, since it has sufficient removal ability even if the specific surface area is small, it is not necessary to carry out a fine-graining treatment or to support it on a carrier, and it is possible to reduce the manufacturing cost of the removing agent itself, which is extremely effective. Great effect.

【0034】また、この除去剤は、有害成分との反応に
より変色するので、変色状況を監視することによって除
去剤の破過を知ることができ、交換時期を確実に知るこ
とができる。また、この変色を利用することにより、有
害成分の検知剤としても使用することができる。
Further, since this removing agent changes color by the reaction with harmful components, it is possible to know the breakthrough of the removing agent by monitoring the color change condition, and it is possible to surely know the replacement time. Further, by utilizing this discoloration, it can be used as a detecting agent for harmful components.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C01G 3/02 (72)発明者 遠藤 文誉 山梨県北巨摩郡高根町下黒沢3054−3 日 本酸素株式会社内 (72)発明者 市村 信二 神奈川県幸区塚越4−320 日本酸素株式 会社内 (72)発明者 吉田 恵美 神奈川県幸区塚越4−320 日本酸素株式 会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location C01G 3/02 (72) Inventor Fumitaka Endo 3054-3 Shimokurosawa, Takane-cho, Kitakoma-gun, Yamanashi Nihon Oxygen Co., Ltd. (72) Inventor Shinji Ichimura 4-320 Tsukagoshi, Sachio-ku, Kanagawa Nihon Oxygen Co., Ltd. (72) Inventor Emi Yoshida 4-320 Tsukakoshi, Sachi-ku, Kanagawa Nihon Oxygen, Co. Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水酸化銅を反応主成分とすることを特徴
とする有害成分の除去剤。
1. A remover for harmful components, which comprises copper hydroxide as a main reaction component.
【請求項2】 前記水酸化銅が結晶性の水酸化銅である
ことを特徴とする請求項1記載の有害成分の除去剤。
2. The remover for harmful components according to claim 1, wherein the copper hydroxide is crystalline copper hydroxide.
【請求項3】 水酸化銅を主成分とすることを特徴とす
る有害成分ガスの検知剤。
3. A detector for a harmful component gas, which comprises copper hydroxide as a main component.
JP5284843A 1993-03-17 1993-11-15 Solid remover for harmful components Expired - Fee Related JP2561616B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP5284843A JP2561616B2 (en) 1993-03-17 1993-11-15 Solid remover for harmful components
EP94910032A EP0642822B1 (en) 1993-03-17 1994-03-17 Methods of removing and detecting harmful component in a gas
KR1019940704093A KR950701542A (en) 1993-03-17 1994-03-17 METHODS OF REMOVING AND DETECTING HARMFUL COMPONENT
KR1019940704093A KR0148162B1 (en) 1993-03-17 1994-03-17 Method of removing and detecting harmful component
PCT/JP1994/000431 WO1994021355A1 (en) 1993-03-17 1994-03-17 Methods of removing and detecting harmful component
DE69431615T DE69431615T2 (en) 1993-03-17 1994-03-17 METHODS FOR REMOVING AND DETECTING A HARMFUL COMPONENT IN A GAS
US08/867,790 US5853678A (en) 1993-03-17 1997-06-03 Method for removing hydrides, alkoxides and alkylates out of a gas using cupric hydroxide
KR1019980700646A KR0153129B1 (en) 1993-03-17 1998-01-26 Method of detecting harmful component and apparatus thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5665393 1993-03-17
JP5-56653 1993-03-17
JP5284843A JP2561616B2 (en) 1993-03-17 1993-11-15 Solid remover for harmful components

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP812496A Division JP2932056B2 (en) 1993-03-17 1996-01-22 Solid detection agent for harmful components

Publications (2)

Publication Number Publication Date
JPH06319945A true JPH06319945A (en) 1994-11-22
JP2561616B2 JP2561616B2 (en) 1996-12-11

Family

ID=26397614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5284843A Expired - Fee Related JP2561616B2 (en) 1993-03-17 1993-11-15 Solid remover for harmful components

Country Status (1)

Country Link
JP (1) JP2561616B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052817A1 (en) * 1998-04-09 1999-10-21 Uhp Materials, Inc. Preparation and purification of diborane
JP2002211921A (en) * 2000-11-14 2002-07-31 Japan Pionics Co Ltd Method for recovering depurative
JP2002356325A (en) * 2001-05-31 2002-12-13 Japan Pionics Co Ltd Method for recovering detergent
US8568672B2 (en) 2009-03-27 2013-10-29 Sued-Chemie Catalysts Japan Inc. Agent for detoxifying discharge gas containing volatile inorganic hydride and method of detoxifying discharge gas containing volatile inorganic hydride

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139075A (en) * 1974-04-25 1975-11-06
JPS6415135A (en) * 1987-07-09 1989-01-19 Nissan Girdler Catalyst Honeycomb molded body and process for removing harmful component by using the molded body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139075A (en) * 1974-04-25 1975-11-06
JPS6415135A (en) * 1987-07-09 1989-01-19 Nissan Girdler Catalyst Honeycomb molded body and process for removing harmful component by using the molded body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052817A1 (en) * 1998-04-09 1999-10-21 Uhp Materials, Inc. Preparation and purification of diborane
US6165434A (en) * 1998-04-09 2000-12-26 Uhp Materials, Inc Purification of diborane
JP2002211921A (en) * 2000-11-14 2002-07-31 Japan Pionics Co Ltd Method for recovering depurative
JP2002356325A (en) * 2001-05-31 2002-12-13 Japan Pionics Co Ltd Method for recovering detergent
US8568672B2 (en) 2009-03-27 2013-10-29 Sued-Chemie Catalysts Japan Inc. Agent for detoxifying discharge gas containing volatile inorganic hydride and method of detoxifying discharge gas containing volatile inorganic hydride

Also Published As

Publication number Publication date
JP2561616B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
EP0546464B1 (en) Process for cleaning harmful gas
US6649082B2 (en) Harm-removing agent and method for rendering halogen-containing gas harmless and uses thereof
KR100318353B1 (en) How to purify exhaust gas
US5853678A (en) Method for removing hydrides, alkoxides and alkylates out of a gas using cupric hydroxide
JP2001338910A (en) Abatement agent for halogen type gas, abatement method and its use
JPH06319945A (en) Removing agent and detecting agent of harmful component
JP2932056B2 (en) Solid detection agent for harmful components
JP2972975B2 (en) Hazardous exhaust gas abatement method and abatement agent
JP2926459B2 (en) Remover and detector for harmful components
JP3574973B2 (en) Method and apparatus for removing harmful components in exhaust gas discharged from semiconductor manufacturing plants and liquid crystal manufacturing plants
JP3260825B2 (en) How to purify harmful gases
WO1994021355A1 (en) Methods of removing and detecting harmful component
JP2691927B2 (en) How to remove harmful components
JP3227601B2 (en) Harmful exhaust gas abatement agent
US7067091B2 (en) Treating agent for metal-hydride-containing exhaust gas and method of preparing the same as well as method of treating metal-hydride-containing exhaust gas
KR0148162B1 (en) Method of removing and detecting harmful component
JP2998002B2 (en) Organometallic compound abatement agent and harmful gas abatement method
JPH08206444A (en) Detoxification of harmful gas
JP3703538B2 (en) Hazardous gas removal method and removal agent
JPS6190726A (en) Removing agent
JP3507994B2 (en) Remover of harmful components
JPS60175522A (en) Composition for treating waste gas during semiconductor manufacturing process
EP1493486B1 (en) Treating agent for exhaust gas containing metal hydride compound and method for treating exhaust gas containing metal hydride compound
JPH0819725A (en) Harmful component removing agent
JP3000431B2 (en) Method for testing abatement agents and their raw materials

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 17

LAPS Cancellation because of no payment of annual fees