JPH09122127A - Ultrasonic diagnostic device - Google Patents
Ultrasonic diagnostic deviceInfo
- Publication number
- JPH09122127A JPH09122127A JP30968095A JP30968095A JPH09122127A JP H09122127 A JPH09122127 A JP H09122127A JP 30968095 A JP30968095 A JP 30968095A JP 30968095 A JP30968095 A JP 30968095A JP H09122127 A JPH09122127 A JP H09122127A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- signals
- blood flow
- conversion
- ultrasonic diagnostic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超音波診断装置に
関し、特に超音波カラードプラ診断に好適なドプラ信号
処理機能を備えた超音波診断装置に関わる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic diagnostic apparatus, and more particularly to an ultrasonic diagnostic apparatus having a Doppler signal processing function suitable for ultrasonic color Doppler diagnosis.
【0002】[0002]
【従来の技術】超音波診断装置において、カラーフロー
マッピングとよばれる二次元血流カラー描画機能は、ド
プラ効果を用いて血管の走行状態をリアルタイムで描画
することが可能なことから、今日臨床現場で盛んに用い
られている。2. Description of the Related Art In an ultrasonic diagnostic apparatus, a two-dimensional blood flow color drawing function called color flow mapping is capable of drawing the running state of blood vessels in real time using the Doppler effect. It is widely used in Japan.
【0003】二次元血流カラー描画機能では、血流の走
行状態を表現するのに、血流の流れる方向が探触子に対
して、近づいてくる方向か、離れていく方向かによっ
て、それぞれ赤系統、青系統の色相を付与している。
又、血流の速度情報はそのパワーを表示して血管の臓器
内の分布状態を表示している。In the two-dimensional blood flow color drawing function, the running state of the blood flow is expressed depending on whether the flow direction of the blood flow is closer to or farther from the probe. Red and blue hues are added.
Further, the power of the blood flow velocity information is displayed to show the distribution state of blood vessels in the organ.
【0004】このような二次元血流カラー描画機能を備
えた超音波診断装置では、図4に示すように探触子40
により受信された信号を検波した後、Bモード信号或い
はMモード信号としてビデオ処理回路42、スキャンコ
ンバータ43に送る系に加えて、血流の速度、分散、パ
ワー等の血流情報を演算するための信号処理系を備えて
いる。この信号処理系は、主として超音波信号を位相が
互いに90度異なる2つの参照周波数信号と混合し復調
する直交復調器44と、復調された複素信号をデジタル
化するA/D変換器45と、心臓壁などの不要固定反射
信号を除去するためのMTIフィルタ46と、自己相関
法などにより血流の速度、分散、パワー等の演算を行う
ための演算部47とを備えている。In the ultrasonic diagnostic apparatus having such a two-dimensional blood flow color drawing function, as shown in FIG.
In order to calculate blood flow information such as blood flow velocity, dispersion, and power in addition to a system for detecting the signal received by the device and sending it to the video processing circuit 42 and the scan converter 43 as a B mode signal or an M mode signal. It is equipped with a signal processing system. This signal processing system mainly includes a quadrature demodulator 44 that mixes an ultrasonic signal with two reference frequency signals having phases different from each other by 90 degrees and demodulates the same, and an A / D converter 45 that digitizes the demodulated complex signal. An MTI filter 46 for removing unnecessary fixed reflection signals from the heart wall and the like, and a computing unit 47 for computing the velocity, dispersion, power, etc. of the blood flow by the autocorrelation method or the like.
【0005】このような超音波診断装置では、受信回路
で受信された超音波信号は、整相回路41において、探
触子40が単一素子かアレイ形探触子かに応じて、超音
波ビームを偏向・集束するための処理が実行され、更に
Bモード信号としてスキャンコンバータ43に送られる
信号は、ディスプレイ49のダイナミックレンジや輝度
特性に合せて対数圧縮、γ補正等の処理がなされる。一
方、整相回路41の出力は参照周波数信号と混合復調し
た後、各複素信号をデジタル化し、MTIフィルタ46
で固定成分を除去した後、実数部と虚数部の比に逆正接
をとるなどの演算が行われる。演算部47における演算
結果は、カラー処理部48において血流の流れる方向に
より色相が付与されるとともに、そのパワーに応じた色
調が付与され、Bモード信号とともに或いは個別にディ
スプレイ49に表示される。In such an ultrasonic diagnostic apparatus, the ultrasonic signal received by the receiving circuit is ultrasonic waved in the phasing circuit 41 depending on whether the probe 40 is a single element or an array type probe. Processing for deflecting / focusing the beam is executed, and the signal sent to the scan converter 43 as a B-mode signal is subjected to processing such as logarithmic compression and γ correction in accordance with the dynamic range and brightness characteristics of the display 49. On the other hand, the output of the phasing circuit 41 is mixed and demodulated with the reference frequency signal, and then each complex signal is digitized, and the MTI filter 46 is output.
After the fixed component is removed by, the calculation such as taking the arctangent of the ratio of the real part and the imaginary part is performed. The calculation result in the calculation unit 47 is given a hue by the direction of blood flow in the color processing unit 48 and a color tone according to the power thereof, and is displayed on the display 49 together with the B mode signal or individually.
【0006】また整相回路の出力をデジタル化し、カラ
ードプラのための信号処理(復調、血流描出のための演
算等)をDSP(デジタルシグナルプロセッサ)で行な
う超音波診断装置も開発されている。An ultrasonic diagnostic apparatus has also been developed in which the output of the phasing circuit is digitized and signal processing for color Doppler (demodulation, calculation for blood flow visualization, etc.) is performed by a DSP (digital signal processor). .
【0007】[0007]
【発明が解決しようとする課題】ところで、二次元血流
カラー描画機能の目的は、血管の走行状態を知ると共
に、微細血管の有無・分布状況を識別することに有る。
カラー描画機能として表示すべきドプラ信号は大は組織
の運動から小は末梢血管まで100dBに及ぶ信号を取
り扱わなくてはならないが、従来技術においては、直交
復調或いはA/D変換等における素子のダイナミックレ
ンジ不足のために微細な血管まで描出することが困難で
あった。By the way, the purpose of the two-dimensional blood flow color drawing function is to know the running state of blood vessels and to identify the presence / absence / distribution status of fine blood vessels.
A Doppler signal to be displayed as a color drawing function must handle a signal of 100 dB from a large amount of tissue motion to a small amount of peripheral blood vessels, but in the prior art, dynamics of elements in quadrature demodulation or A / D conversion are used. It was difficult to visualize even minute blood vessels due to lack of range.
【0008】例えばデジタル処理による速度・パワー計
算のために復調信号をデジタル化するA/D変換器は、
たかだか10〜14ビットで、その入力ダイナミックレ
ンジは約60〜84dBにすぎない。従って腎臓のよう
に、全視野内に前述のような幅広いダイナミックレンジ
を要する血流情報を描画することが困難であった。For example, an A / D converter for digitizing a demodulated signal for speed / power calculation by digital processing is
At most 10-14 bits, its input dynamic range is only about 60-84 dB. Therefore, it has been difficult to draw blood flow information requiring a wide dynamic range as described above in the entire visual field like the kidney.
【0009】そこで本発明の目的は、カラードプラ信号
処理において狭いダイナミックレンジの信号処理手段を
通過しなければならない場合にその信号処理手段のダイ
ナミックレンジを実効的に拡大して、幅広い範囲の血流
情報を二次元カラー表示する機能を有する超音波診断装
置を提供することにある。Therefore, an object of the present invention is to effectively expand the dynamic range of the signal processing means when it has to pass through the signal processing means having a narrow dynamic range in the color Doppler signal processing so that the blood flow in a wide range. It is to provide an ultrasonic diagnostic apparatus having a function of displaying information in two-dimensional color.
【0010】[0010]
【発明を解決するための手段】上記目的を達成する本発
明の超音波診断装置は、生体内からの血流信号を受信し
て電気信号に変換する受信手段と、受信信号をドプラ信
号処理する信号処理手段と、処理後の信号を用いて血流
情報を演算する手段と、該演算結果を表示する手段とを
備えた超音波診断装置において、信号処理手段は、少な
くとも受信信号を復調する復調手段及びA/D変換手段
を備え、更に復調手段又はA/D変換手段の前段に、信
号を圧縮する手段が設けられ、演算手段の前段に、圧縮
された信号を伸張する手段が設けられたものである。The ultrasonic diagnostic apparatus of the present invention which achieves the above-mentioned object, includes a receiving means for receiving a blood flow signal from a living body and converting it into an electric signal, and a Doppler signal processing of the received signal. In an ultrasonic diagnostic apparatus including signal processing means, means for calculating blood flow information using the processed signal, and means for displaying the calculation result, the signal processing means is a demodulator for demodulating at least a received signal. Means and an A / D conversion means, further, a means for compressing the signal is provided in a stage before the demodulation means or the A / D conversion means, and a means for expanding the compressed signal is provided in a stage before the arithmetic means. It is a thing.
【0011】ここで信号処理手段は、受信信号を復調し
た後、A/D変換するもの、即ち復調手段、A/D変換
手段の順に信号処理されるものであっても、また受信信
号をデジタル化した後復調するものであってもよく、い
ずれの場合にも、圧縮手段は復調手段又はA/D変換手
段のいずれかの前段に設けられる。圧縮手段は復調手段
又はA/D変換手段のいずれかダイナミックレンジの狭
い方のダイナミックレンジに受信信号のダイナミックレ
ンジを縮小する。Here, the signal processing means demodulates the received signal and then performs A / D conversion, that is, even if the signal processing is performed in the order of the demodulation means and the A / D conversion means, the received signal is digitally processed. It may be demodulated and then demodulated, and in any case, the compression means is provided before either the demodulation means or the A / D conversion means. The compression means reduces the dynamic range of the received signal to the narrower dynamic range of either the demodulation means or the A / D conversion means.
【0012】一方、伸張手段は復調、A/D変換後の受
信信号をもとのダイナミックレンジに伸張し、演算手段
に送る。演算手段は伸張されたダイナミックレンジの信
号を処理する。これにより、100dBにおよぶ幅広い
ダイナミックレンジを有する血流信号をA/D変換器等
の比較的狭いダイナミックレンジに制限されることな
く、演算処理することが可能となり、組織運動といった
大振幅のドプラ信号から末梢血管といった微弱な信号ま
で、飽和や微少信号の欠落といった事態にいたることな
く描画することができる。On the other hand, the expansion means expands the received signal after demodulation and A / D conversion to the original dynamic range and sends it to the arithmetic means. The computing means processes the expanded dynamic range signal. As a result, a blood flow signal having a wide dynamic range of 100 dB can be processed without being restricted to a relatively narrow dynamic range of an A / D converter or the like, and a large amplitude Doppler signal such as tissue motion can be obtained. It is possible to draw from a weak signal such as to a peripheral blood vessel without causing a situation such as saturation or lack of a minute signal.
【0013】本発明において圧縮手段と伸張手段の変換
特性は、例えば対数変換と指数変換のように互いに逆特
性であることが好ましい。これにより信号圧縮によるス
ペクトル等への影響を最小限にすることができる。In the present invention, the conversion characteristics of the compression means and the decompression means are preferably inverse characteristics such as logarithmic conversion and exponential conversion. This can minimize the influence of signal compression on the spectrum and the like.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施例を図面を用
いて具体的に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be specifically described below with reference to the drawings.
【0015】図1は本発明による超音波診断装置の1実
施例を示す図で、送波ユニット11及び受信回路12か
らなる超音波探触子10と、探触子が単一素子かアレイ
形探触子かに応じて超音波ビームの偏向・収束操作を行
なう整相回路13と、整相回路13の出力に対し、対数
圧縮や検波などの処理を行ないBモード信号を形成する
ビデオ処理回路14と、受信信号(整相回路13出力)
をドプラ信号処理する信号処理手段20と、ビデオ処理
回路14からのBモード信号と信号処理手段20からの
演算結果である血流情報とを入力するスキャンコンバー
タ15と、ディスプレイ16とを備えている。FIG. 1 is a diagram showing an embodiment of an ultrasonic diagnostic apparatus according to the present invention. An ultrasonic probe 10 comprising a transmitting unit 11 and a receiving circuit 12 and a single element or array type probe are used. A phasing circuit 13 that performs deflection / convergence operation of an ultrasonic beam according to the probe, and a video processing circuit that performs a logarithmic compression or detection process on the output of the phasing circuit 13 to form a B-mode signal. 14 and received signal (phase adjusting circuit 13 output)
Signal processing means 20 for performing Doppler signal processing, a scan converter 15 for inputting the B-mode signal from the video processing circuit 14 and blood flow information which is the calculation result from the signal processing means 20, and a display 16. .
【0016】信号処理手段20は、受信信号を互いに位
相が90度ずれた参照周波数信号で復調する1組の直交
復調器21a、21bと、これら直交復調器21a、2
1bからの複素信号をそれぞれA/D変換するA/D変
換器22a、22bと、心臓壁などの不要固定反射信号
を除去するためのMTIフィルタ23a、23bと、デ
ジタルドプラ信号を基に速度・分散・パワー等の血流情
報を演算する演算部24とを備えている。直交復調器2
1a、21bは、それぞれ図示しない0度参照周波数信
号発生器及び90度参照周波数信号発生器に接続され、
入力信号を各参照周波数信号と混合復調する。A/D変
換器22a、22bは、一般には10〜14ビットのも
のが使用されるが、本実施例では12ビットのA/D変
換器を用いている。尚、図示していないが、演算部24
には、演算結果である血流情報に基づき血流方向を青及
び赤で、速度(ドプラ周波数)を輝度で表示するための
カラー表示回路が備えられている。また直交復調器21
a、21bの後段にはローパスフィルタを設けてもよ
い。The signal processing means 20 includes a pair of quadrature demodulators 21a and 21b for demodulating a received signal with reference frequency signals having a phase difference of 90 degrees from each other, and these quadrature demodulators 21a and 2b.
A / D converters 22a and 22b for A / D converting the complex signal from 1b, MTI filters 23a and 23b for removing unnecessary fixed reflection signals such as the heart wall, and velocity / speed based on the digital Doppler signal. And a calculator 24 for calculating blood flow information such as dispersion and power. Quadrature demodulator 2
1a and 21b are connected to a 0-degree reference frequency signal generator and a 90-degree reference frequency signal generator (not shown),
The input signal is mixed and demodulated with each reference frequency signal. As the A / D converters 22a and 22b, those of 10 to 14 bits are generally used, but in the present embodiment, 12-bit A / D converters are used. Although not shown, the calculation unit 24
Is provided with a color display circuit for displaying the blood flow directions in blue and red and the velocity (Doppler frequency) in luminance based on the blood flow information which is the calculation result. In addition, the quadrature demodulator 21
A low pass filter may be provided in the subsequent stage of a and 21b.
【0017】更に信号処理手段20は、A/D変換器2
2a、22bの前段に圧縮手段として非線形アナログ圧
縮器25a、25bが、MTIフィルタ23a、23b
の前段に伸張手段として非線形伸張器26a、26bが
備えられている。本実施例において、非線形圧縮器とし
ては、入力される約102dBの復調信号の振幅を約6
0dBの信号に圧縮するようなアナログ圧縮器を用いて
おり、その変換特性としては対数変換を用いている。
又、非線形伸張器としては、入力アドレスがA/D変換
後の信号の振幅情報(約60dB:0から29)に対応
し、出力アドレスが伸張変換された信号(約102d
B:0から±216)に対応するようなROMテーブルを
用いており、その変換特性としては指数変換を用いてい
る。Further, the signal processing means 20 is an A / D converter 2
Nonlinear analog compressors 25a and 25b are provided as compression means in front of 2a and 22b, and MTI filters 23a and 23b.
The non-linear expanders 26a and 26b are provided in the preceding stage as expansion means. In this embodiment, the non-linear compressor has an input demodulated signal of about 102 dB and an amplitude of about 6
An analog compressor for compressing a 0 dB signal is used, and logarithmic conversion is used as its conversion characteristic.
As the nonlinear stretcher, amplitude information of the input address is A / D converted signal (about 60 dB: 0 to 2 9) corresponds to a signal output address is decompression conversion (about 102d
A ROM table corresponding to B: 0 to ± 2 16 ) is used, and exponential conversion is used as its conversion characteristic.
【0018】このような構成における超音波診断装置の
信号処理について説明する。まず送波ユニット11から
探触子10により生体1内に超音波を送信する。生体内
で反射した反射超音波信号は、同じ探触子10で受信さ
れ、受信回路12において電気信号に変換され、探触子
が単一素子かアレイ形探触子かに応じて適切な整相回路
13により、超音波ビームの偏向・収束操作が実施され
る。整相回路の出力は、検波などのビデオ処理回路14
を介して、Bモード信号としてスキャンコンバータ15
に送られ、ディスプレイ16に表示される。The signal processing of the ultrasonic diagnostic apparatus having such a configuration will be described. First, the ultrasonic wave is transmitted from the wave transmission unit 11 into the living body 1 by the probe 10. The reflected ultrasonic signal reflected in the living body is received by the same probe 10 and converted into an electric signal by the receiving circuit 12, and an appropriate alignment is performed depending on whether the probe is a single element or array type probe. The phase circuit 13 performs the deflection / convergence operation of the ultrasonic beam. The output of the phasing circuit is the video processing circuit 14 for detection and the like.
Via the scan converter 15 as a B-mode signal.
And is displayed on the display 16.
【0019】他方、整相回路13の出力Sは、直交復調
器21a、21bにも分配され、0度及び90度の各参
照周波数信号S0、S90と混合復調され、同相成分Iと
90度成分Qとに分離される。このように復調された信
号は、血流による超音波の変調であり、約102dB
(16ビットに対応)の信号である。これまで血流信号
中、高周波成分はノイズとしてローパスフィルタでカッ
トした後A/D変換されていたが、高ビットの信号の中
に抹消血管等の重要な情報が含まれることがわかってき
た。従って、ここでは血流信号の高周波成分をローパス
フィルタでカットすることなく、対数圧縮してA/D変
換する。即ち復調された復素信号I、Qは、それぞれ非
線形圧縮器25a、25bにて約60dB(10ビッ
ト)に圧縮された後、12ビットA/D変換器22a、
22bにてデシタル変換される。On the other hand, the output S of the phasing circuit 13 is also distributed to the quadrature demodulators 21a and 21b, mixed and demodulated with the reference frequency signals S0 and S90 of 0 degree and 90 degrees, respectively, and the in-phase component I and the 90 degree component are obtained. Separated into Q and. The signal demodulated in this way is a modulation of ultrasonic waves due to blood flow, and is approximately 102 dB.
This is a signal (corresponding to 16 bits). Up to now, high-frequency components have been A / D-converted as noise in a blood flow signal after being cut by a low-pass filter, but it has been found that high-bit signals include important information such as peripheral blood vessels. Therefore, here, the high frequency component of the blood flow signal is logarithmically compressed and A / D converted without being cut by the low pass filter. That is, the demodulated composite signals I and Q are compressed to about 60 dB (10 bits) by the non-linear compressors 25a and 25b, respectively, and then the 12-bit A / D converter 22a,
It is digitally converted at 22b.
【0020】デジタル化されたドプラ信号は、非線形圧
縮器25a、25bの逆の変換特性を有する非線形伸張
器26a、26bによってそのダイナミックレンジが回
復される。即ち、非線形伸張器26a、26bは内蔵す
るROMテーブルによって、入力された約10ビットの
振幅情報を16ビットの情報に対応付けて出力する。こ
のように逆変換(伸張)された信号Id、Qdは、MTI
フィルタ23a、23bで不要固定反射信号を除去した
後、演算部24に供給され、たとえば次式に示すように
実数部・虚数部の比の逆正接をとるなどの演算により V=tan-1(Q/I) 速度・分散・パワー等の血流情報が演算抽出される。こ
の演算結果は、カラー表示部において色調を付加された
後、スキャンコンバーター15に供給されて、Bモード
信号と平列または個別にディスプレイ16に描画され
る。The dynamic range of the digitized Doppler signal is restored by the non-linear expanders 26a and 26b having the inverse conversion characteristics of the non-linear compressors 25a and 25b. That is, the non-linear decompressors 26a and 26b output the inputted amplitude information of about 10 bits in association with the 16-bit information by the built-in ROM table. The signals Id and Qd inversely converted (expanded) in this way are MTI.
After removing unnecessary fixed reflection signals by the filters 23a and 23b, the signals are supplied to the arithmetic unit 24, and V = tan -1 (is calculated by taking the arctangent of the ratio of the real number part and the imaginary number part as shown in the following equation. Q / I) Blood flow information such as velocity, dispersion, and power is calculated and extracted. The result of this calculation is added to the color tone in the color display section, and then supplied to the scan converter 15 and drawn on the display 16 in parallel or individually with the B mode signal.
【0021】かかる構成により、幅広いダイナミックレ
ンジを有する血流信号をA/D変換器の比較的狭いダイ
ナミックレンジに制限されることなく、演算処理すると
いったことが可能となり、組織運動といった大振幅のド
プラ信号から末梢血管といった微弱な信号まで、飽和や
微少信号の欠落といった事態にいたることなく描画する
ことができる。さらに、本実施例では、A/D変換の前
で圧縮しているため、いわゆる量子化雑音の影響を受け
にくい。With this configuration, blood flow signals having a wide dynamic range can be processed without being restricted by the relatively narrow dynamic range of the A / D converter, and Doppler with a large amplitude such as tissue motion can be processed. It is possible to draw from a signal to a weak signal such as a peripheral blood vessel without causing a situation such as saturation or lack of a minute signal. Furthermore, in this embodiment, since the data is compressed before A / D conversion, it is less susceptible to so-called quantization noise.
【0022】尚、圧縮器による非線形処理のスペクトル
形状への影響は、伸張変換の効果で比較的軽微であり、
平均速度を求めるカラーフロー表示においては影響は認
められなかった。またスペクトルの形状を問わないパワ
ー表示においてもその影響は視認できない程度であっ
た。The influence of the non-linear processing by the compressor on the spectrum shape is relatively small due to the effect of expansion conversion.
No effect was observed in the color flow display for determining the average speed. Moreover, the influence was not visible even in the power display regardless of the shape of the spectrum.
【0023】次に本発明の超音波診断装置の第2の実施
例を説明する。図2は、第2の実施例による超音波診断
装置の概要を示す図で、図1と同じ構成部分は同一の番
号で示している。図2の超音波診断装置において、整相
回路13からビデオ処理回路14を通ってスキャンコン
バータ15へ送られる信号処理系は図1の装置と同様で
あるが、ドプラ信号処理のための信号処理手段20の構
成が異なり、非線形圧縮器25a、25bはそれぞれ直
交復調器21a、21bの前段に配置される。Next, a second embodiment of the ultrasonic diagnostic apparatus of the present invention will be described. FIG. 2 is a diagram showing an outline of the ultrasonic diagnostic apparatus according to the second embodiment, and the same components as those in FIG. 1 are indicated by the same numbers. In the ultrasonic diagnostic apparatus of FIG. 2, the signal processing system sent from the phasing circuit 13 to the scan converter 15 through the video processing circuit 14 is the same as that of the apparatus of FIG. 1, but a signal processing means for Doppler signal processing. The configuration of 20 is different, and the non-linear compressors 25a and 25b are arranged before the quadrature demodulators 21a and 21b, respectively.
【0024】この構成では、整相回路13の出力は、非
線形圧縮器25a、25bにて圧縮された後、直交復調
器21a、21bに分配され、各々0度参照周波数信号
及び90度参照周波数信号と混合復調される。以後は図
1の実施例と同様、複素信号はそれぞれ、12ビットA
/D変換器22a、22bにてデジタル変換され、非線
形伸張器26a、26bによってそのダイナミックレン
ジが回復された後、MTIフィルタ23a、23bを経
由した後、演算部24に供給され、速度・分散・パワー
等の血流情報が演算抽出される。この演算結果は、色調
を付加された後、スキャンコンバーター15に供給され
て、図示していないパルスドップラ信号とBモード信号
と並列または個別にディスプレイ16に描画される。In this configuration, the output of the phasing circuit 13 is compressed by the non-linear compressors 25a and 25b and then distributed to the quadrature demodulators 21a and 21b, and the 0-degree reference frequency signal and the 90-degree reference frequency signal, respectively. Is mixed and demodulated. Thereafter, similar to the embodiment of FIG. 1, the complex signal is 12 bits A respectively.
After being digitally converted by the D / D converters 22a and 22b and the dynamic range thereof being restored by the non-linear expanders 26a and 26b, they are supplied to the calculation unit 24 after passing through the MTI filters 23a and 23b, and the speed / dispersion / Blood flow information such as power is calculated and extracted. After the color tone is added, the calculation result is supplied to the scan converter 15 and drawn on the display 16 in parallel or individually with the pulse Doppler signal and the B-mode signal (not shown).
【0025】本実施例においては、図1の実施例と異な
り、受信信号を復調変換する前に非線形圧縮変換し、復
調変換した後A/D変換するようにしたので、A/D変
換器22の狭いダイナミックレンジの影響を低減するば
かりでなく、アナログ直交復調器21の狭いダイナミッ
クレンジの影響も低減することができる。また図1の実
施例と同様、A/D変換の前で圧縮しているため、量子
化雑音の影響を受けにくいという利点を有する。In the present embodiment, unlike the embodiment shown in FIG. 1, since the received signal is subjected to nonlinear compression conversion before demodulation conversion, and after A / D conversion after demodulation conversion, the A / D converter 22 is used. The effect of the narrow dynamic range of the analog quadrature demodulator 21 can be reduced. Further, similarly to the embodiment of FIG. 1, since the data is compressed before A / D conversion, it has an advantage that it is hardly affected by quantization noise.
【0026】以上説明した実施例では、ドプラ信号処理
手段が復調後の信号をA/D変換し演算部にて演算する
構成の超音波診断装置について説明したが、本発明はア
レイ型探触子の各受信信号を並列A/D変換した後、各
デジタル信号を遅延制御した後加算して得られたデジタ
ル受信信号をデジタルミキサにより復調する構成の超音
波診断装置にも適用できる。In the above-described embodiments, the ultrasonic diagnostic apparatus having a configuration in which the Doppler signal processing means A / D-converts the demodulated signal and calculates it in the calculation section has been described. However, the present invention is an array type probe. Also, the present invention can be applied to an ultrasonic diagnostic apparatus having a configuration in which each received signal is subjected to parallel A / D conversion, and then each digital signal is subjected to delay control and then added to demodulate a digital received signal obtained by a digital mixer.
【0027】図3は、そのような構成を示すもので、各
並列A/D変換器31のビット数は12、従って72d
Bのダイナミックレンジを有する。これらのA/D変換
器(例えば256チャンネル)の並列加算を行うと出力
信号は20ビット、約120dBとなる。このデジタル
化した信号は、次に2つのデジタル復調器32により、
それぞれ8ビットの参照周波数信号と混合されるが、一
般にデジタル復調器32の能力は16ビット程度であ
る。従ってここでは加算出力(整相出力)31aと復調
器32との間に、非線形圧縮器33を配置し、20ビッ
トの信号を16ビットに圧縮する。また復調器32の後
段に非線形伸張器34を配置する。この場合、非線形圧
縮器33は図1又は図2の非線形伸張器26と同様にR
OMテーブルを用いたデジタル圧縮器を用いることがで
きる。即ち、入力アドレスが約120dBの復調信号の
振幅情報(0から±219)に対応し、出力アドレスが圧
縮変換された約102dB(0から±215)に対応する
ようなROMテーブルが用いられる。FIG. 3 shows such a configuration. The number of bits of each parallel A / D converter 31 is 12, and therefore 72d.
It has a dynamic range of B. When the parallel addition of these A / D converters (for example, 256 channels) is performed, the output signal becomes 20 bits, about 120 dB. This digitized signal is then processed by the two digital demodulators 32.
Although each is mixed with an 8-bit reference frequency signal, the capability of the digital demodulator 32 is generally about 16 bits. Therefore, here, the nonlinear compressor 33 is arranged between the addition output (phased output) 31a and the demodulator 32 to compress the 20-bit signal to 16 bits. Further, a non-linear expander 34 is arranged in the subsequent stage of the demodulator 32. In this case, the non-linear compressor 33 is similar to the non-linear expander 26 of FIG. 1 or FIG.
A digital compressor using an OM table can be used. That is, a ROM table is used in which the input address corresponds to the amplitude information (0 to ± 2 19 ) of the demodulated signal of about 120 dB, and the output address corresponds to the compressed and converted about 102 dB (0 to ± 2 15 ). .
【0028】このように圧縮された16ビットの信号は
復調器32により復調された後、非線形伸張器34によ
りダイナミックレンジが回復され、それ以降は図1及び
図2の実施例と同様にMTIフィルタを通過し演算部に
送られる。The 16-bit signal compressed in this way is demodulated by the demodulator 32 and then the dynamic range is restored by the non-linear decompressor 34. After that, the MTI filter is used as in the embodiment of FIGS. And is sent to the calculation unit.
【0029】本実施例では、デジタル復調器32の前段
に圧縮器33、後段に伸張器34をそれぞれ配置するこ
とにより、デジタル復調器32の比較的狭いダイナミッ
クレンジを実効的に拡張することができる。In this embodiment, the compressor 33 and the decompressor 34 are arranged in the front stage and the rear stage of the digital demodulator 32, respectively, whereby the relatively narrow dynamic range of the digital demodulator 32 can be effectively expanded. .
【0030】尚、本発明において非線形圧縮器及び非線
形伸張器は、ROMテーブルではなく、DSPによる演
算で、圧縮変換・伸張変換をソフトウェア的に実施する
ことも可能である。In the present invention, the non-linear compressor and the non-linear decompressor can perform the compression conversion / expansion conversion by software, not by the ROM table, but by calculation by the DSP.
【0031】また圧縮変換・伸張変換の特性は、対数変
換・指数変換のみならず、本発明の趣旨を逸脱しない範
囲で開平・二乗、三乗根・立方、折れ線近似等の組み合
わせを用いても有効である。さらに、圧縮手段と伸張手
段の変換特性が互いに逆特性であることが望ましいが、
必ずしもこれに限定されるものではない。The characteristics of the compression conversion / expansion conversion are not limited to logarithmic conversion / exponential conversion, but may be combinations of square root / square, cube root / cubic, polygonal line approximation, etc. within the scope of the present invention. It is valid. Further, it is desirable that the conversion characteristics of the compression means and the decompression means are opposite to each other.
It is not necessarily limited to this.
【0032】更に上述の各実施例では、本発明をカラー
フローマッピングとよばれる実時間2次元血流描画機能
に適用した例について説明したが、本発明はいわゆるパ
ルスドプラなどのスペクトル波形を表示する機能を有す
る超音波診断装置の信号処理においても、同様に適応可
能であり、この場合、非線形処理・逆非線形処理に伴う
スプリアスノイズの発生が比較的少ない正規分布を有す
るスペクトラムの場合に特に有効であった。Further, in each of the above-described embodiments, an example in which the present invention is applied to a real-time two-dimensional blood flow drawing function called color flow mapping has been described. However, the present invention has a function of displaying a spectral waveform such as so-called pulse Doppler. Similarly, it can be applied to the signal processing of the ultrasonic diagnostic apparatus having the above. In this case, it is particularly effective in the case of a spectrum having a normal distribution in which the spurious noise accompanying the non-linear processing / inverse non-linear processing is relatively small. It was
【0033】[0033]
【発明の効果】本発明によれば、ドプラ信号処理の過程
においてA/D変換器等の比較的狭いダイナミックレン
ジの処理手段を信号が通過する場合でも、このような処
理手段の前段及び後段にそれぞれ信号圧縮手段及び伸張
手段を設けることにより、比較的幅広いダイナミックレ
ンジを有する血流信号を信号処理手段の比較的狭いダイ
ナミックレンジに制限されることなく演算処理すること
が可能となり、組織運動といった大振幅のドプラ信号か
ら末梢血管といった微弱な信号まで、飽和や微少信号の
欠落といった事態にいたることなく描画することができ
る。According to the present invention, even when a signal passes through a processing means having a relatively narrow dynamic range such as an A / D converter in the process of Doppler signal processing, the processing is performed before and after such processing means. By providing the signal compressing means and the expanding means, respectively, the blood flow signal having a relatively wide dynamic range can be processed without being limited to the relatively narrow dynamic range of the signal processing means, and a large amount of motion such as tissue motion can occur. It is possible to draw from a Doppler signal of amplitude to a weak signal such as a peripheral blood vessel without causing a situation such as saturation or lack of a minute signal.
【0034】これにより、微細血管を含めた体内の血管
走行状態の描出が容易となり、特にカラーフロー診断装
置の有用性を高めることができる。As a result, the running state of blood vessels in the body including the micro blood vessels can be easily visualized, and the usefulness of the color flow diagnostic apparatus can be particularly enhanced.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明に係る超音波カラードプラ診断装置の1
実施例を示す図FIG. 1 is an ultrasonic color Doppler diagnostic apparatus 1 according to the present invention.
Figure showing an example
【図2】本発明に係る超音波カラードプラ診断装置の別
の実施例を示す図FIG. 2 is a diagram showing another embodiment of the ultrasonic color Doppler diagnostic apparatus according to the present invention.
【図3】本発明に係る超音波カラードプラ診断装置の別
の実施例を示す図FIG. 3 is a diagram showing another embodiment of the ultrasonic color Doppler diagnostic apparatus according to the present invention.
【図4】従来の超音波カラードプラ診断装置を示す図FIG. 4 is a diagram showing a conventional ultrasonic color Doppler diagnostic apparatus.
10・・・・・・超音波探触子 11・・・・・・送波ユニット 12・・・・・・受信回路 13・・・・・・整相回路 14・・・・・・ビデオ処理回路 15・・・・・・スキャンコンバータ 16・・・・・・ディスプレイ 21a、21b・・・・・・直交復調器 22a、22b・・・・・・A/D変換器 23a、23b・・・・・・MTIフィルタ 24・・・・・・演算部 25a、25b・・・非線形圧縮器 26a、26b・・・非線形伸張器 10- ・ Ultrasonic probe 11- ・ Transmission unit 12- ・ Reception circuit 13- ・ Phase adjustment circuit 14- ・ Video processing Circuit 15 ... Scan converter 16 ... Display 21a, 21b .... Quadrature demodulator 22a, 22b ..... A / D converter 23a, 23b ... ... MTI filter 24 ... Calculator 25a, 25b ... Nonlinear compressor 26a, 26b ... Nonlinear expander
Claims (2)
に変換する受信手段と、前記受信信号を信号処理する信
号処理手段と、処理後の信号を用いて血流情報を演算す
る手段と、該演算結果を表示する表示手段とを備えた超
音波診断装置において、 前記信号処理手段は、少なくとも受信信号を復調する復
調手段及びA/D変換手段を備え、前記復調手段又は前
記A/D変換手段の前段に設けられ、信号を圧縮する手
段と、前記演算手段の前段に設けられ、圧縮された信号
を伸張する手段とを具備せることを特徴とする超音波診
断装置。1. A receiving means for receiving a blood flow signal from the inside of a living body and converting it into an electric signal, a signal processing means for processing the received signal, and a blood flow information using the processed signal. In the ultrasonic diagnostic apparatus comprising means and display means for displaying the calculation result, the signal processing means includes at least demodulation means and A / D conversion means for demodulating a received signal, and the demodulation means or the A An ultrasonic diagnostic apparatus comprising: a signal compression means provided before the A / D conversion means; and a signal expansion means provided before the calculation means.
互いに逆特性であることを特徴とする請求項1記載の超
音波診断装置。2. The ultrasonic diagnostic apparatus according to claim 1, wherein the conversion characteristics of the compression means and the expansion means are opposite to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30968095A JP3645631B2 (en) | 1995-11-06 | 1995-11-06 | Ultrasonic diagnostic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30968095A JP3645631B2 (en) | 1995-11-06 | 1995-11-06 | Ultrasonic diagnostic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09122127A true JPH09122127A (en) | 1997-05-13 |
JP3645631B2 JP3645631B2 (en) | 2005-05-11 |
Family
ID=17995992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30968095A Expired - Fee Related JP3645631B2 (en) | 1995-11-06 | 1995-11-06 | Ultrasonic diagnostic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3645631B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007082806A (en) * | 2005-09-22 | 2007-04-05 | Toshiba Corp | Ultrasonic diagnostic apparatus |
-
1995
- 1995-11-06 JP JP30968095A patent/JP3645631B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007082806A (en) * | 2005-09-22 | 2007-04-05 | Toshiba Corp | Ultrasonic diagnostic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3645631B2 (en) | 2005-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5437281A (en) | Direct demodulation in ultrasound instruments | |
US7713204B2 (en) | Image data processing method and apparatus for ultrasonic diagnostic apparatus, and image processing apparatus | |
JP5256210B2 (en) | Ultrasonic image processing method and ultrasonic image processing apparatus | |
KR19990014883A (en) | Ultrasonic Diagnostic Device | |
JPH01310648A (en) | Ultrasonic blood circulation imaging device | |
JPH0751270A (en) | Ultrasonic diagnostic device | |
US8123690B2 (en) | Ultrasound observation apparatus | |
JPH0278334A (en) | Compression extension communication system using processor | |
JP4473388B2 (en) | Ultrasonic diagnostic equipment | |
JP3645631B2 (en) | Ultrasonic diagnostic equipment | |
JP2002034985A (en) | Ultrasonograph | |
JP3285673B2 (en) | Ultrasound image display | |
US20030023165A1 (en) | Ultrasonic tomography apparatus and ultrasonic tomography method | |
JP2002186615A (en) | Ultrasonic daignostic device | |
JP3451025B2 (en) | Ultrasound Doppler diagnostic equipment | |
JP2004195091A (en) | Ultrasonic diagnostic equipment | |
KR102022143B1 (en) | Ultrasound system and method for adaptively compensating spectral downshift of signals | |
JPH05111486A (en) | Ultrasonic doppler diagnostic device | |
JP3432627B2 (en) | Ultrasound diagnostic equipment | |
JP3447150B2 (en) | Ultrasound imaging device | |
JP2001128968A (en) | Band limiting method and echo processor in ultrasonographic apparatus | |
JP3332090B2 (en) | Ultrasound diagnostic equipment | |
JPS6125536A (en) | Ultrasonic diagnostic apparatus | |
JP2000163364A (en) | Ultrasonic diagnostic system | |
JPH1156847A (en) | Ultrasonograph |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040517 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040706 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040902 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041005 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050118 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050204 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080210 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130210 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140210 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |