JPH09121370A - Stereoscopic television device - Google Patents

Stereoscopic television device

Info

Publication number
JPH09121370A
JPH09121370A JP7289495A JP28949595A JPH09121370A JP H09121370 A JPH09121370 A JP H09121370A JP 7289495 A JP7289495 A JP 7289495A JP 28949595 A JP28949595 A JP 28949595A JP H09121370 A JPH09121370 A JP H09121370A
Authority
JP
Japan
Prior art keywords
parallax
stereoscopic
unit
observer
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7289495A
Other languages
Japanese (ja)
Other versions
JP2848291B2 (en
Inventor
Kenya Uomori
謙也 魚森
Atsushi Morimura
森村  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7289495A priority Critical patent/JP2848291B2/en
Priority to US08/669,768 priority patent/US6005607A/en
Priority to EP01118033A priority patent/EP1168852B1/en
Priority to DE69619308T priority patent/DE69619308T2/en
Priority to DE69631496T priority patent/DE69631496T2/en
Priority to EP03009048A priority patent/EP1328129B1/en
Priority to EP96110505A priority patent/EP0751689B1/en
Priority to DE69632755T priority patent/DE69632755T2/en
Priority to KR1019960025862A priority patent/KR970004916A/en
Publication of JPH09121370A publication Critical patent/JPH09121370A/en
Application granted granted Critical
Publication of JP2848291B2 publication Critical patent/JP2848291B2/en
Priority to US09/447,638 priority patent/US6175379B1/en
Priority to US09/668,092 priority patent/US6268880B1/en
Priority to US09/880,287 priority patent/US6417880B1/en
Priority to US09/880,522 priority patent/US6353457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PROBLEM TO BE SOLVED: To automatically adjust parallax quantity between both eyes in accordance with the size of a screen and to attain more natural stereoscopic viewing to be easily observed by controlling right and left pictures so that a displayed stereoscopic picture is included within an observer's inter-eye merging area. SOLUTION: The resolution of an input picture is discriminated by detecting the horizontal-vertical frequency of an input picture signal by a resolution discriminating part 9. A parallax calculating part 8 calculates depth information (a parallax map) on each point of the input picture, based upon right and left picture signals and outputs the largest value (the inter-eye parallax of the farthest subject). Then a suitable parallax determining part 10 determines the parallel moving distances of the right and left pictures for enabling an observer of a stereoscopic TV to execute the inter-eye merging of the displayed stereoscopic picture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,3次元画像を表示
できる立体TV装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereoscopic TV device capable of displaying a three-dimensional image.

【0002】[0002]

【従来の技術】従来の3次元画像表示装置は、例えば図
5に示すようなものがある。これは、各々の表示面を直
交した偏光フィルタで覆った2台のCRTを用意し、こ
れをハーフミラーで合成し、観察者はこれに対応した偏
光フィルタで構成された眼鏡を装着し、左右眼に対応し
た画像を観察するものである。
2. Description of the Related Art A conventional three-dimensional image display device is, for example, one as shown in FIG. This is to prepare two CRTs whose display surfaces are covered with orthogonal polarization filters, combine them with a half mirror, and an observer wears spectacles composed of the corresponding polarization filters. The image corresponding to the eyes is observed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の立体TV装置では、入力される立体画像信号
が同じでも、画面サイズが異なると表示される両眼視差
が変化する。図6(a)(b)はこれを示したもので、
(a)は小さな表示面で両眼視差がΔs、(b)は大き
な表示面で両眼視差がΔLに拡大されている。この、両
眼視差があまり大きな値を持つと、観察者が立体視しに
くく疲れ易い、という問題点があった。
However, in such a conventional stereoscopic TV apparatus, the binocular parallax to be displayed changes when the screen size is different even if the input stereoscopic image signals are the same. 6 (a) and 6 (b) show this.
(A) shows a small display surface with binocular parallax of Δs, and (b) shows a large display surface with binocular parallax enlarged to ΔL. If the binocular parallax has a too large value, there is a problem in that the observer is hard to see stereoscopically and is easily tired.

【0004】立体視しにくいとは、図7(a)に示した
ように、両眼視差ΔNが大きく画像表示面と3D表現さ
れる被写体の位置Pが大きくかけ離れると観察者は目の
レンズ調節と立体視による距離が矛盾し、(これ以上P
が近付くと)両眼立体視出来なくなる、ということであ
る。また、同図(b)に示したように、∞の距離の被写
体は立体画像では丁度観察者の両眼間隔に表示される。
これ以上両眼視差ΔFが大きくなると、やはり観察者は
両眼立体視できなくなる。
As shown in FIG. 7 (a), it is difficult for the observer to see stereoscopically when the binocular parallax ΔN is large and the position P of the 3D-expressed object is far away from the image display surface. The distance between the adjustment and the stereoscopic view is inconsistent.
It means that binocular stereoscopic vision becomes impossible. Further, as shown in FIG. 7B, the subject at the distance of ∞ is displayed exactly in the distance between the eyes of the observer in the stereoscopic image.
If the binocular parallax ΔF becomes larger than this, the observer cannot also perform binocular stereoscopic viewing.

【0005】また、最近コンピュータグラフィック端末
においては、マルチ同期式のものが主流であり、画面の
解像度を切替えて使うものが多い。例えば、低解像度で
はパソコンで一般的に採用されている640×400画
素の画面、高解像度ではワークステーションの2000
×1000画素程度の画像まで、その解像度(画像周波
数)の範囲は広い。これらの画像信号を、一台のマルチ
同期式のディスプレイを用いて切替えて使用すると、画
面の大きさは一定であるので、ドット数が同じ画像は画
像信号の解像度によって、表示される画像の大きさが変
化する。
In recent years, in computer graphic terminals, the multi-synchronous type has become mainstream, and many of them are used by switching the screen resolution. For example, at low resolution, a screen of 640 x 400 pixels that is generally used in personal computers, and at high resolution, 2000 of a workstation.
The range of resolution (image frequency) is wide up to an image of about 1000 pixels. When these image signals are used by switching them using a single multi-synchronous display, the size of the screen is constant, so images with the same number of dots will have different sizes depending on the resolution of the image signal. Changes.

【0006】図6(c),(d)はこれを示したもの
で、(c)は低解像度の画像信号の場合、(d)は高解
像度画像信号の場合である。(d)においては小さく画
像が表示され、(c)での両眼視差ΔsはΔtとくらべ
て大きい。これにより、立体CG画像等を表示すると、
画像の解像度によって、表示される両眼視差が大きく変
化し、場合によっては観察者が両眼立体視しにくく疲れ
易い場合があった。
FIGS. 6 (c) and 6 (d) show this. FIG. 6 (c) shows the case of a low resolution image signal and FIG. 6 (d) shows the case of a high resolution image signal. A small image is displayed in (d), and the binocular parallax Δs in (c) is larger than Δt. As a result, when a stereoscopic CG image or the like is displayed,
The displayed binocular parallax changes greatly depending on the image resolution, and in some cases, the observer may not be able to stereoscopically view binocularly and may easily get tired.

【0007】また、現在放送されている画像信号はHD
TV、EDTV、NTSCの3種類である。これらは画
面の解像度以外にも画面のアスペクト比の違いや圧縮処
理を施されているため表示サイズが異なる。また、表示
方式がウインドウ環境のような大きさを変化させること
が出来る場合もあり、これによっても表示される両眼視
差の大きさが変化し、場合によっては観察者が両眼立体
視しにくく疲れ易い場合があった。
Further, the image signal currently being broadcast is HD
There are three types: TV, EDTV, and NTSC. In addition to the screen resolution, they have different screen aspect ratios and are subjected to compression processing, and therefore have different display sizes. In addition, there are cases where the display system can change the size such as the window environment, and this also changes the size of the binocular parallax that is displayed, and in some cases it is difficult for the observer to see stereoscopically. It was easy to get tired.

【0008】本発明は、上記課題を解決するもので、同
じ立体画像信号を入力しても、画面(ウインドウ)のサ
イズにより両眼視差量を自動的に調整し、観察し易くよ
り自然な立体視を可能とすることを目的とする。
The present invention solves the above-mentioned problems. Even if the same stereoscopic image signal is input, the binocular parallax amount is automatically adjusted according to the size of the screen (window) to make it easier to observe and more natural stereoscopic image. The purpose is to enable vision.

【0009】[0009]

【課題を解決するための手段】本発明は、画像表示部の
大きさのデータと、左右画像から両眼視差を計算しこれ
の最大または最小値を計算する視差計算部と、観察者の
視距離を測定する視距離測定部と、入力画像信号の同期
周波数を検知し入力画像信号の種類を判別する解像度判
別部と、表示画面の大きさと前記視差計算部の出力と観
察者の視距離と前記解像度判別部の出力を用いて表示さ
れる画像の両眼視差の大きさを計算し、これが観察者の
両眼融合範囲内に入るための視差変更量を算出する適正
視差決定部と、前記適正視差決定部に応じて左右画像を
水平に平行移動する視差制御部を有し、入力映像信号の
同期周波数が変化しても表示される立体画像が観察者の
両眼融合範囲内に入るように左右画像を制御することを
特徴とする立体TV装置である。
DISCLOSURE OF THE INVENTION The present invention is directed to a size data of an image display unit, a parallax calculation unit for calculating a binocular parallax from left and right images, and a maximum or minimum value of the binocular parallax; A visual distance measuring unit that measures a distance, a resolution determining unit that detects the synchronizing frequency of the input image signal and determines the type of the input image signal, a size of the display screen, an output of the parallax calculating unit, and an observer's visual distance. An appropriate parallax determination unit that calculates the size of the binocular parallax of the image displayed using the output of the resolution determination unit, and calculates the parallax change amount for this to fall within the binocular fusion range of the observer, It has a parallax control unit that horizontally moves the left and right images in parallel according to the appropriate parallax determination unit, so that the displayed stereoscopic image is within the fusion range of both eyes of the observer even if the synchronization frequency of the input video signal changes. A stereoscopic T characterized by controlling left and right images It is a device.

【0010】本発明は,前記した構成により,観察者の
視距離・入力画像信号の解像度(周波数)・表示画面の
大きさ・視差計算部の出力を用いて表示される画像の両
眼視差の大きさを計算し、これが観察者の両眼融合範囲
内に入るように左右画像を水平方向に平行移動し、表示
される両眼視差が観察者の両眼融合範囲内に自動的に入
るように動作する。
According to the present invention, the binocular parallax of the image displayed by using the above-described structure is obtained by using the visual distance of the observer, the resolution (frequency) of the input image signal, the size of the display screen, and the output of the parallax calculator. The size is calculated, and the left and right images are translated horizontally so that it is within the observer's binocular fusion range, and the displayed binocular parallax is automatically within the observer's binocular fusion range. To work.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は,本発明の第1の実施の形態におけ
る立体TV装置の構成を示すものである。図1におい
て、1,2はCRT、3,4は直線偏光板、5はハーフ
ミラー、6は偏光フィルタで構成された眼鏡、7は観察
者、8は視差計算部、9は解像度判別部、10は適正視
差決定部、11は基本同期タイミング発生部、12a、
bは同期部、13a、bは視差制御部、14a、bはR
GB分離部、15a、bはCRT駆動部、16は視距離
測定部である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 shows the configuration of a stereoscopic TV device according to the first embodiment of the present invention. In FIG. 1, 1 and 2 are CRTs, 3 and 4 are linear polarization plates, 5 is a half mirror, 6 is glasses composed of polarization filters, 7 is an observer, 8 is a parallax calculation unit, 9 is a resolution determination unit, 10 is an appropriate parallax determination unit, 11 is a basic synchronization timing generation unit, 12a,
b is a synchronization unit, 13a and b are parallax control units, and 14a and b are R
GB separation units, 15a and 15b are CRT drive units, and 16 is a visual distance measurement unit.

【0012】以上のように構成された本実施の形態の立
体TV装置の動作を説明する。まず右画像信号は解像度
判定部9と同期部12aと視差計算部8に入力される。
解像度判別部9は入力画像信号の水平周波数・垂直周波
数を検出し、入力画像の解像度を判別する。基本同期タ
イミング発生部11は検出された入力画像の水平周波数
・垂直周波数に合わせた同期タイミングデータを同期部
12abに出力し、同期部12abは入力画像信号に同
期し、後処理に必要な同期タイミングを発生する。
The operation of the stereoscopic TV apparatus of the present embodiment configured as described above will be described. First, the right image signal is input to the resolution determination unit 9, the synchronization unit 12a, and the parallax calculation unit 8.
The resolution determination unit 9 detects the horizontal frequency / vertical frequency of the input image signal and determines the resolution of the input image. The basic synchronization timing generation unit 11 outputs synchronization timing data matching the detected horizontal frequency / vertical frequency of the input image to the synchronization unit 12ab, and the synchronization unit 12ab synchronizes with the input image signal and the synchronization timing required for post-processing. To occur.

【0013】また、視差計算部8は右画像信号と左画像
信号とから、入力画像の各点での奥行き情報(これを視
差地図と定義する)を計算する。視差地図の計算方法は
色々提案されているが、ここでは相関演算を用いたブロ
ックマッチング法について説明する。図2において,大
きさN×Mの左右画像を考える。左画像でn×n画素
(図では3×3画素)のブロック窓を考える。このブロ
ック窓と同じ画像を右画像で同じサイズの窓を用いて探
し,この時の左右のブロック位置のずれを示すベクトル
(Δx,Δy)の水平成分Δxが,そのブロック窓の中
心座標での左右画像の両眼視差となる。基準となる左画
像のブロック窓の位置を全画面に渡って平行移動し,全
ての場合において右画像の対応するブロックの位置(両
眼視差)を求めれば,画面全体の視差地図(画面の各場
所での奥行き距離を示したもの)が求められる。ここで
画像の座標(x,y)における左右画像のずれ即ち両眼
視差Δxは
Further, the parallax calculator 8 calculates depth information (which is defined as a parallax map) at each point of the input image from the right image signal and the left image signal. Various methods for calculating a parallax map have been proposed, but here, a block matching method using correlation calculation will be described. In FIG. 2, consider left and right images of size N × M. Consider a block window of n × n pixels (3 × 3 pixels in the figure) in the left image. The same image as this block window is searched for in the right image using a window of the same size, and the horizontal component Δx of the vector (Δx, Δy) indicating the displacement of the left and right block positions at this time is the center coordinate of the block window. It becomes the binocular parallax of the left and right images. If the position of the block window of the reference left image is translated over the entire screen and the position of the corresponding block (binocular parallax) of the right image is obtained in all cases, the parallax map of the entire screen (each screen What shows the depth distance at the place) is required. Here, the shift between the left and right images at the image coordinates (x, y), that is, the binocular parallax Δx is

【0014】[0014]

【数1】 (Equation 1)

【0015】ここで,Here,

【0016】[0016]

【数2】 (Equation 2)

【0017】である。ただし、(数2)のΣは,n×n
のブロック窓内について座標xk,ykを変化させて絶対
値内の総和をとることを示す。また、GR(xk、y
k)、GL(xk、yk)はそれぞれ右、左画像の座標(x
k、yk)における輝度値である。
It is However, Σ in (Equation 2) is n × n
It is shown that the coordinates xk and yk are changed in the block window of No. to obtain the sum within the absolute value. Also, GR (xk, y
k) and GL (xk, yk) are the coordinates of the right and left images (x
The luminance value at k, yk).

【0018】両眼視差Δx,Δyの内,奥行き位置を直
接示すのはΔxであり、両眼視差の値が正の時は,基準
画像に対して右画像は右側,左画像は左側に位置し,両
眼視差0の奥行き位置より奥側を示し,両眼視差の値が
負の時は両眼視差0の奥行き位置より手前側に被写体が
存在することを示す。
Of the binocular parallaxes Δx and Δy, the depth position is directly indicated by Δx. When the binocular parallax value is positive, the right image is located on the right side and the left image is located on the left side with respect to the reference image. However, the depth side of the binocular parallax 0 is shown, and when the value of the binocular parallax is negative, it means that the subject exists on the front side of the depth position of the binocular parallax 0.

【0019】視差計算部8は、例えば以上のようにして
得られた視差地図のうち、最も大きい値(最も遠い被写
体の両眼視差)を出力する。この時、両眼視差の単純な
最大値抽出ではなく、空間的に低域ろ波処理を行なって
もよいし、複数の抽出領域を用意しておきこれらの中か
ら統計的手法により計算してもよい。
The parallax calculator 8 outputs the largest value (binocular parallax of the farthest subject) from the parallax map obtained as described above. At this time, rather than simply extracting the maximum value of binocular parallax, spatially low-pass filtering may be performed, or multiple extraction regions may be prepared and calculated by a statistical method from these. Good.

【0020】次に、適正視差決定部10は、解像度判別
部9の出力(検出された入力画像信号の種類の判定によ
り画像の解像度およびアスペクト比を判定した結果)と
画像の表示サイズ(この場合はCRTのインチ数)と、
視差計算部8の出力(視差地図)と視距離測定部16に
よる観察者と表示面の距離情報を元に、この立体TVの
観察者が表示される立体画像が両眼融合可能になるため
の左右画像の平行移動量を決定する。
Next, the proper parallax determination section 10 outputs the output of the resolution determination section 9 (the result of determining the resolution and aspect ratio of the image by determining the type of the detected input image signal) and the display size of the image (in this case). Is the number of inches on the CRT)
Based on the output (parallax map) of the parallax calculation unit 8 and the distance information between the observer and the display surface by the visual distance measurement unit 16, the stereoscopic image displayed by the observer of the stereoscopic TV can be fused with both eyes. Determine the amount of parallel movement of the left and right images.

【0021】これの決定手法について、ここで更に詳し
く説明する。視差計算部8の出力の最大両眼視差をΔ
(ドット)、解像度判定部9の出力による入力画像信号
の水平ドット数をDH、表示CRT1,2の水平長さを
L、視距離測定部16により測定された観察者の視距離
をdsとすると、画面上の最大視差Dmは
The method of determining this will now be described in more detail. The maximum binocular parallax of the output of the parallax calculator 8 is Δ
(Dot), assuming that the number of horizontal dots of the input image signal output from the resolution determination unit 9 is DH, the horizontal length of the display CRTs 1 and 2 is L, and the visual distance of the observer measured by the visual distance measurement unit 16 is ds. , The maximum parallax Dm on the screen is

【0022】[0022]

【数3】 (Equation 3)

【0023】となる。これが、ほぼ観察者の両眼平行条
件、またはこれよりも小さな角度になるように、左右画
像を平行移動する。例えば両眼視差の最大値が観察者の
両眼平行条件になるようにする場合は、平行移動量Dc
は、
It becomes The left and right images are moved in parallel so that this becomes a condition in which the two eyes of the observer are parallel to each other, or an angle smaller than this. For example, when the maximum value of binocular parallax is set to be the binocular parallel condition of the observer, the parallel movement amount Dc
Is

【0024】[0024]

【数4】 (Equation 4)

【0025】で示される。ただし、Weは観察者の両眼
間隔であり、実際は、左右画像をDc/2づつ水平反対
方向に平行移動して調整することになる。ただし、Dc
の決定はこの式により導出されたものを基本にして適宜
量を調節してもよい。
It is indicated by. However, We is the distance between the eyes of the observer, and in reality, the left and right images are adjusted in parallel by Dc / 2 in the horizontal opposite direction for adjustment. However, Dc
For the determination of, the amount may be adjusted appropriately based on the one derived by this equation.

【0026】以上のようにして得られた平行移動量Dc
を元にして、視差制御部13abは、左右画像をそれぞ
れ反対方向にDc/2だけ平行移動する。そして、RG
B分離部14abにより画像信号はRGB信号に分解さ
れ、CRT駆動部15abを介してCRT1、2に出力
される。CRT1,2により表示された画像は偏光板3,
4でお互いに直交した直線偏光となり、ハーフミラー5
により合成され、観察者7は偏光板3、4に対応した方
向に直線偏光方向がセットされた偏光眼鏡6により左右
画像がそれぞれ左右眼に分離され、観察者7が立体視す
る。
The parallel movement amount Dc obtained as described above
Based on, the parallax control unit 13ab translates the left and right images in opposite directions by Dc / 2. And RG
The B separation unit 14ab decomposes the image signal into RGB signals and outputs the RGB signals to the CRTs 1 and 2 via the CRT drive unit 15ab. The image displayed by the CRT 1, 2 is the polarizing plate 3,
It becomes a linearly polarized light which is orthogonal to each other at 4, and the half mirror 5
The observer 7 separates the left and right images into left and right eyes by the polarizing glasses 6 whose linear polarization directions are set to the directions corresponding to the polarizing plates 3 and 4, and the observer 7 stereoscopically views.

【0027】以上のように本実施の形態によれば、入力
画像信号の種類を判別し、表示面の大きさを計算するこ
とにより、観察者は常に適切な両眼視差で表示された自
然な立体画像を観察することが出来る。
As described above, according to the present embodiment, the type of the input image signal is discriminated and the size of the display surface is calculated, so that the observer can always display the natural binocular parallax with a proper natural binocular parallax. You can observe stereoscopic images.

【0028】図3は,本発明の第2の実施の形態におけ
る立体TV装置の構成図を示すものである。図3におい
て、1はCRT、18は液晶シャッタ眼鏡、7は観察
者、8は視差計算部、9は解像度判別部、10は適正視
差決定部、11は基本同期タイミング発生部、12は同
期部、13は視差制御部、14はRGB分離部、15は
CRT駆動部、16は視距離測定部、17は液晶シャッ
タ切換えパルス発生部である。この構成は、第1の実施
の形態での立体TV装置を時分割立体画像信号に対応さ
せたものである。
FIG. 3 is a block diagram of a stereoscopic TV apparatus according to the second embodiment of the present invention. In FIG. 3, 1 is a CRT, 18 is liquid crystal shutter glasses, 7 is an observer, 8 is a parallax calculation unit, 9 is a resolution determination unit, 10 is an appropriate parallax determination unit, 11 is a basic synchronization timing generation unit, and 12 is a synchronization unit. , 13 is a parallax control unit, 14 is an RGB separation unit, 15 is a CRT drive unit, 16 is a visual distance measurement unit, and 17 is a liquid crystal shutter switching pulse generation unit. This configuration corresponds to the time-division stereoscopic image signal of the stereoscopic TV device according to the first embodiment.

【0029】以上のように構成された本実施の形態の立
体TV装置の動作を説明する。基本的な動作は第1の実
施の形態と同様であるが、左右画像が図4に示すように
時間的に交互に入力される時分割立体画像であるため、
これに対応する処理が必要となる。この時、液晶シャッ
タ切換えパルス発生部17は、図4に示される液晶シャ
ッタ制御信号を出力し、液晶シャッタ眼鏡18は、左目
のシャッタが光を透過する場合には右目のシャッタは光
を遮断し、右目のシャッタが透過する場合にはその逆に
なる。
The operation of the stereoscopic TV apparatus of the present embodiment configured as described above will be described. The basic operation is the same as that of the first embodiment, but since the left and right images are time-division stereoscopic images that are alternately input in time as shown in FIG. 4,
A process corresponding to this is required. At this time, the liquid crystal shutter switching pulse generator 17 outputs the liquid crystal shutter control signal shown in FIG. 4, and the liquid crystal shutter glasses 18 cause the right eye shutter to block the light when the left eye shutter transmits the light. , And vice versa when the right-eye shutter is transparent.

【0030】まず、右画像信号は解像度判定部9と同期
部12と視差計算部8とに入力される。解像度判別部9
は入力画像信号の水平・垂直周波数を検出し、入力画像
の解像度を判別する。基本同期タイミング発生部11は
入力画像の水平・垂直周波数に合わせた同期タイミング
データ出力し、同期部12が画像信号のタイミングと同
期する。また、視差計算部8は時間的に交互に入力され
る右画像信号と左画像信号から、入力画像の視差地図を
計算する。視差地図の計算方法は第1の実施の形態と全
く同様に計算できる。
First, the right image signal is input to the resolution determination unit 9, the synchronization unit 12, and the parallax calculation unit 8. Resolution determination unit 9
Detects the horizontal and vertical frequencies of the input image signal and determines the resolution of the input image. The basic synchronization timing generation unit 11 outputs synchronization timing data that matches the horizontal and vertical frequencies of the input image, and the synchronization unit 12 synchronizes with the timing of the image signal. Further, the parallax calculation unit 8 calculates a parallax map of the input image from the right image signal and the left image signal that are alternately input with respect to time. The parallax map calculation method can be calculated in exactly the same way as in the first embodiment.

【0031】次に視差計算部8は、例えば以上のように
して得られた画像の各点での両眼視差のうち、最も遠い
被写体の両眼視差を出力する。この時、両眼視差の計算
に当たって空間的に低域ろ波処理を行なってもよいし、
複数の抽出領域を用意しておきこれらの中から統計的手
法により計算してもよい。
Next, the parallax calculation unit 8 outputs the binocular parallax of the farthest subject among the binocular parallax at each point of the image obtained as described above. At this time, in calculating the binocular parallax, low-pass filtering may be performed spatially,
It is also possible to prepare a plurality of extraction regions and calculate from these by a statistical method.

【0032】次に、適正視差決定部10は、解像度判別
部9の出力と画像の表示サイズと、視差計算部8の出力
と観察者と表示面の距離情報を元に、表示される立体画
像が両眼融合可能になるための左右画像の平行移動量を
決定する。これの決定手法についても、第1の実施の形
態と全く同じである。即ち、視差計算部8の出力の最大
両眼視差をΔ(ドット)、解像度判定部9の出力による
入力画像信号の水平ドット数をDH、表示CRT1,2の
水平長さをL、視距離測定部16により測定された観察
者の視距離をdsとし、画面上の最大視差Dmは(数3)
となり、両眼視差の最大値が観察者の両眼平行条件にな
るようにする場合は、平行移動量Dcは(数4)で示さ
れる。ただし、Dcの決定はこの式により導出されたも
のを基本にして適宜量を調節してもよい。
Next, the proper parallax determination unit 10 displays a stereoscopic image based on the output of the resolution determination unit 9 and the display size of the image, the output of the parallax calculation unit 8 and the distance information between the observer and the display surface. Determines the amount of parallel movement of the left and right images to enable binocular fusion. The method of determining this is also exactly the same as in the first embodiment. That is, the maximum binocular parallax of the output of the parallax calculation unit 8 is Δ (dots), the number of horizontal dots of the input image signal output from the resolution determination unit 9 is DH, the horizontal length of the display CRTs 1 and 2 is L, and the visual distance measurement is performed. The viewing distance of the observer measured by the unit 16 is ds, and the maximum parallax Dm on the screen is (Equation 3)
Therefore, when the maximum value of the binocular parallax is set to be the binocular parallel condition of the observer, the parallel movement amount Dc is represented by (Equation 4). However, the determination of Dc may be appropriately adjusted on the basis of the one derived by this equation.

【0033】以上のようにして得られた平行移動量Dc
を元にして、視差制御部13は、左右画像をそれぞれ反
対方向にDc/2だけ平行移動する。この時、左右画像
信号は時分割立体画像信号であるので、左右の画像が交
互に切り替わっている。そのため、画像の平行移動量
は、フィールド毎に+Dc/2、−Dc/2のように切り
換えることになる。そして、RGB分離部14により画
像信号はRGB信号に分解され、CRT駆動部15を介
してCRT1に出力される。CRT1により表示された
左右交互の立体画像は、液晶シャッタを装着した観察者
7の左右眼にそれぞれ両眼独立呈示される。
The parallel movement amount Dc obtained as described above
Based on, the parallax control unit 13 translates the left and right images in the opposite directions by Dc / 2. At this time, since the left and right image signals are time-division stereoscopic image signals, the left and right images are alternately switched. Therefore, the parallel movement amount of the image is switched between + Dc / 2 and -Dc / 2 for each field. Then, the RGB separation unit 14 decomposes the image signal into RGB signals, and outputs the RGB signals to the CRT 1 via the CRT drive unit 15. The left and right stereoscopic images displayed by the CRT 1 are independently presented to the left and right eyes of the observer 7 wearing the liquid crystal shutter.

【0034】以上のように本実施の形態によれば、入力
画像信号が時分割立体画像信号の場合においても観察者
は常に適切な両眼視差で表示された自然な立体画像を観
察することが出来る。
As described above, according to this embodiment, even when the input image signal is a time-division stereoscopic image signal, the observer can always observe a natural stereoscopic image displayed with an appropriate binocular parallax. I can.

【0035】図8は,本発明の第3の実施の形態におけ
る立体TV装置の構成図を示すものである。図8におい
て、1,2はCRT、3,4は直線偏光板、5はハーフ
ミラー、6は偏光フィルタで構成された眼鏡、7は観察
者、8は視差計算部、9は解像度判別部、10は適正視
差決定部、11は基本同期タイミング発生部、12a、
bは同期部、13a、bは視差制御部、14a、bはR
GB分離部、15a、bはCRT駆動部、16は視距離
測定部であり、以上は第1の実施の形態と同じものであ
る。
FIG. 8 shows a block diagram of a stereoscopic TV apparatus according to the third embodiment of the present invention. In FIG. 8, 1 and 2 are CRTs, 3 and 4 are linear polarization plates, 5 is a half mirror, 6 is glasses composed of polarization filters, 7 is an observer, 8 is a parallax calculation unit, 9 is a resolution determination unit, 10 is an appropriate parallax determination unit, 11 is a basic synchronization timing generation unit, 12a,
b is a synchronization unit, 13a and b are parallax control units, and 14a and b are R
The GB separation unit, 15a and 15b are CRT drive units, and 16 is a visual distance measurement unit. The above is the same as that of the first embodiment.

【0036】第1の実施の形態と異なる点は、新たにウ
インドウ情報管理部27、ウインドウ情報管理制御部2
6、マウス状態検出部25、ウインドウサイズ検出部2
2、ウインドウ生成消滅検出部23、ウインドウフォー
カス変化検出部24、マウス28が追加された点であ
る。
The difference from the first embodiment is that a window information management unit 27 and a window information management control unit 2 are newly added.
6, mouse state detection unit 25, window size detection unit 2
2, the window generation disappearance detection unit 23, the window focus change detection unit 24, and the mouse 28 are added.

【0037】以上のように構成された本実施の形態の立
体TV装置の動作を説明する。第1の実施の形態及び第
2の実施の形態では、画像を表示する大きさは入力され
る映像信号の同期周波数が異なっても表示装置自身の大
きさは固有なものであった。本実施の形態では、複数の
立体画像を最近主流のコンピュータ画面でのウインドウ
環境に表示するものである。また、観察者がマウス操作
により表示ウインドウの大きさを変化する事態に対応し
て視差を制御する。図8のCRT1、CRT2には、同
一画面上に複数の表示ウインドウが存在し、それの中の
一つのウインドウに立体画像を表示しているものとす
る。
The operation of the stereoscopic TV apparatus of the present embodiment configured as above will be described. In the first and second embodiments, the size of the image display is unique to the size of the display device itself even if the synchronizing frequency of the input video signal is different. In the present embodiment, a plurality of stereoscopic images are displayed in a window environment on a recent mainstream computer screen. Further, the parallax is controlled in response to the situation where the observer changes the size of the display window by operating the mouse. It is assumed that the CRT 1 and CRT 2 in FIG. 8 have a plurality of display windows on the same screen, and one of the windows displays a stereoscopic image.

【0038】通常、観察者は好みに応じてマウス28を
使用して、ウインドウの大きさを変更することが出来
る。これに対応して立体画像の大きさも変化する場合、
観察者の両眼融合範囲が変化するため、ウインドウサイ
ズを常に監視し、これにあわせて常に視差を制御する必
要がある。即ち、観察者のマウス操作によるウインドウ
に関する情報をウインドウ情報管理制御部26が検出す
る。ウインドウ情報管理制御部26は、ウインドウ生成
消滅検出部23により現在表示されているウインドウを
管理しており、その個々のウインドウサイズをウインド
ウサイズ検出部22により検出し、該当するウインドウ
の大きさデータを適正視差決定部10に出力する。
Generally, the observer can use the mouse 28 to change the size of the window as desired. If the size of the stereoscopic image changes correspondingly,
Since the binocular fusion range of the observer changes, it is necessary to constantly monitor the window size and control the parallax accordingly. That is, the window information management control unit 26 detects information about the window operated by the observer's mouse. The window information management control unit 26 manages the windows currently displayed by the window generation / disappearance detection unit 23, detects the size of each window by the window size detection unit 22, and obtains the size data of the corresponding window. It outputs to the appropriate parallax determination unit 10.

【0039】適正視差決定部10は、解像度判別部9と
ウインドウサイズ検出部22の出力によって、表示画面
の縦横のドット数と、各ウインドウのサイズ(ドット
数)を求め、これと画像表示領域全体の大きさ(CRT
が何インチのものか)の情報から、実際に表示されてい
るウインドウの大きさ(インチ、センチメートルなど)
を計算する。後の処理は、第1の実施の形態と同じであ
る。即ち、視差計算部8は右画像信号と左画像信号か
ら、入力画像の各点での奥行き情報を計算し、例えば最
大値もしくは最小値を出力する。
The proper parallax determination unit 10 obtains the number of dots in the vertical and horizontal directions of the display screen and the size (the number of dots) of each window by the outputs of the resolution determination unit 9 and the window size detection unit 22, and this and the entire image display area. Size (CRT
The size of the window that is actually displayed (inch, centimeter, etc.)
Is calculated. Subsequent processing is the same as that of the first embodiment. That is, the parallax calculator 8 calculates the depth information at each point of the input image from the right image signal and the left image signal, and outputs the maximum value or the minimum value, for example.

【0040】次に、適正視差決定部10は、解像度判別
部9の出力(検出された入力画像信号の種類の判定によ
り画像の解像度およびアスペクト比を判定した結果)と
画像全体の表示サイズ(この場合はCRTのインチ数)
と、ウインドウ情報管理部27の出力である表示ウイン
ドウの大きさ(ドット数)から、表示ウインドウの実際
の大きさを求め、視差計算部8の出力(視差地図)と視
距離測定部16による観察者と表示面の距離情報を元
に、(数3)、(数4)を用いてこの立体TVの観察者
が表示される立体画像が両眼融合可能になるための左右
画像の平行移動量を決定する。
Next, the proper parallax determining section 10 outputs the output of the resolution determining section 9 (the result of determining the resolution and aspect ratio of the image by determining the type of the detected input image signal) and the display size of the entire image (this In case of CRT inches)
Then, the actual size of the display window is obtained from the size of the display window (the number of dots) output from the window information management unit 27, and the output of the parallax calculation unit 8 (parallax map) and the observation by the visual distance measurement unit 16 are performed. Based on the distance information between the viewer and the display surface, the amount of translation of the left and right images so that the stereoscopic image displayed by the observer of this stereoscopic TV can be fused with both eyes using (Equation 3) and (Equation 4). To decide.

【0041】以上のようにして得られた平行移動量を元
にして、視差制御部13abは、左右画像をそれぞれ反
対方向にDc/2だけ平行移動する。そして、RGB分
離部14abにより画像信号はRGB信号に分解され、
ウインドウ情報管理制御部26を通り表示画面中の指定
されたウインドウにCRT駆動部15abを介してCR
T1、2に出力される。
Based on the amount of translation obtained as described above, the parallax control unit 13ab translates the left and right images in opposite directions by Dc / 2. Then, the RGB separation unit 14ab decomposes the image signal into RGB signals,
CR through the CRT drive unit 15ab to the designated window on the display screen through the window information management control unit 26.
It is output to T1 and T2.

【0042】また、入力される画像信号を複数個の大き
さの異なるウインドウに表示する際は、それぞれのウイ
ンドウについて独立に、前述の平行移動量を算出して適
用すれば良い。更に、入力画像信号が複数あり、これを
それぞれ独立な大きさのウインドウに表示する場合も同
様に各ウインドウ毎独立に処理を行なえば良い。
When the input image signal is displayed in a plurality of windows having different sizes, the above-mentioned parallel movement amount may be calculated and applied to each window independently. Furthermore, when there are a plurality of input image signals and each of them is displayed in a window having an independent size, the processing may be performed independently for each window.

【0043】また、観察者がマウス28を用いてウイン
ドウの大きさを変更した場合にも、ウインドウサイズ検
出部22がウインドウの大きさ変化を検出し、それに対
応した左右画像の平行移動量を適正視差決定部10が直
ちに計算され、表示画面に反映される。
Further, even when the observer changes the size of the window using the mouse 28, the window size detection unit 22 detects the change in the size of the window and appropriately adjusts the parallel movement amount of the left and right images. The parallax determination unit 10 is immediately calculated and reflected on the display screen.

【0044】また、複数の立体画像を複数のウインドウ
で表示する場合、観察者のマウス操作により指定された
ウインドウのみ、前述のカメラパラメータ変更をウイン
ドウフォーカス変化検出部24を用いてマウスにより指
定されたウインドウを検出し、これを観察者が注目して
いるウインドウとしてこれに表示された立体画像のみ、
両眼融合範囲内に収められた画像を表示し本発明の動作
の効率化を測ることもできる。
Further, when a plurality of stereoscopic images are displayed in a plurality of windows, the above-mentioned camera parameter change is designated by the mouse using the window focus change detecting section 24 only in the window designated by the observer's mouse operation. Only the stereoscopic image displayed on this is detected as a window that the observer is paying attention to.
The efficiency of the operation of the present invention can be measured by displaying the image contained in the binocular fusion range.

【0045】以上のようにすることにより、大きさが変
化するようなウインドウ環境をもつ表示システムにおい
ても、個々のウインドウサイズをウインドウ情報管理部
27により監視することにより、ウインドウに表示され
た立体画像を観察者の融合範囲内に収めるようにするこ
とができる。
As a result of the above, even in a display system having a window environment in which the size changes, a stereoscopic image displayed in a window can be displayed by monitoring the individual window size by the window information management unit 27. Can be within the fusion range of the observer.

【0046】また、第1・2・3の実施の形態におい
て、視距離を視距離測定部16で測定したが、CRTの
大きさから得られる推奨観察距離等を用いて固定値にし
てもよい。
Further, in the first, second, and third embodiments, the visual distance is measured by the visual distance measuring unit 16, but it may be set to a fixed value by using the recommended observation distance obtained from the size of the CRT. .

【0047】また、第1・2・3の実施の形態におい
て、視距離測定部16は複数人数の観察者の視距離を測
定し、これの平均値・各視距離の重みづけ平均値・最大
最小値を出力し、観察者全員の視距離を考慮した視差制
御動作としてもよい。また、複数人数が異なるウインド
ウを観察する場合、これに対応してウインドウ毎に独立
の視距離を設定して両眼視差を制御すれば、各人毎に最
適な立体画像を表示することもできる。
Further, in the first, second and third embodiments, the visual distance measuring unit 16 measures the visual distances of a plurality of observers, and the average value / weighted average value / maximum value of each visual distance is calculated. The minimum value may be output and the parallax control operation may be performed in consideration of the visual distances of all the observers. Further, when a plurality of people observe different windows, if an independent viewing distance is set for each window and binocular parallax is controlled accordingly, an optimal stereoscopic image can be displayed for each person. .

【0048】また、第1・2・3の実施の形態におい
て、適正視差決定部10は視差計算部8の出力、解像度
判定部9の出力、表示CRT1、2の水平長さL、視距
離測定部16により測定された観察者の視距離dsによ
り画面上の最大視差Dmを計算したが、入力画像信号に
よっては表示CRT画面全体を使用しない場合もある。
このため、解像度判定部9が入力画像信号の種類(HD
TV、NTSC、EDTV、コンピュータ画像等)と表
示画面の大きさの関係のデータベースを持っており、入
力される画像信号の種類により表示される両眼視差の大
きさを正しく認識できるように構成しても良い。
Further, in the first, second and third embodiments, the proper parallax determining section 10 outputs the output of the parallax calculating section 8, the output of the resolution determining section 9, the horizontal length L of the displays CRT1 and 2, and the visual distance measurement. Although the maximum parallax Dm on the screen is calculated from the viewing distance ds of the observer measured by the unit 16, the entire display CRT screen may not be used depending on the input image signal.
Therefore, the resolution determination unit 9 determines that the type of the input image signal (HD
(TV, NTSC, EDTV, computer image, etc.) and the size of the display screen are stored in the database, and the size of the binocular parallax displayed according to the type of the input image signal can be correctly recognized. May be.

【0049】また、第1・2・3の実施の形態におい
て、視差計算部8の出力は両眼視差の最大値を用いた
が、最小値を用いて表示面から最も飛び出す被写体の視
差が観察者の両眼融合範囲内に収まるように設定しても
よい。この場合、視距離や画面サイズをパラメータとし
て許容できる両眼視差の大きさは変化するため、許容で
きる両眼視差の値をデータベースとして持っておく必要
がある。
Further, in the first, second and third embodiments, the maximum value of the binocular parallax is used as the output of the parallax calculating section 8. However, the parallax of the subject most popping out from the display surface is observed using the minimum value. You may set it so that it may fit in the binocular fusion range of a person. In this case, the size of the binocular parallax that can be accepted as a parameter such as the visual distance or the screen size changes, so it is necessary to store the value of the binocular parallax that can be accepted as a database.

【0050】また、第1・2・3の実施の形態におい
て、マルチスキャンのモニターを例にして説明したが、
固定の周波数の画像信号専用のモニタの場合は、解像度
判別部は必要なく、製品のスペックとして固定値を与え
ても良い。更に、画面サイズの1/2、1/3のサイズ
等の代表的な画像表示サイズについては固定値で与えら
れるようにしてもよい。
In the first, second and third embodiments, the multi-scan monitor has been described as an example.
In the case of a monitor dedicated to an image signal having a fixed frequency, the resolution determination unit is not necessary, and a fixed value may be given as the product specification. Further, fixed values may be given to typical image display sizes such as 1/2 and 1/3 of the screen size.

【0051】また、第1・2・3の実施の形態におい
て、視差制御部13は、常に計算された平行移動量Dc
を用いて動作してもよいし、動作開始時と入力画像の両
眼視差が大きく変化した時のみ動作させてもよい。
In the first, second, and third embodiments, the parallax control unit 13 always calculates the parallel movement amount Dc.
May be used, or may be operated only at the start of the operation and when the binocular parallax of the input image changes significantly.

【0052】また、第1・2・3の実施の形態におい
て、観察者が両眼視差を調整したい時のみ、ボタンSW
やリモコンなどで調整命令をすることも考えられる。
In the first, second and third embodiments, the button SW is pressed only when the observer wants to adjust the binocular parallax.
It is also possible to give an adjustment command using a remote controller or the like.

【0053】また、第2の実施の形態において、最終の
立体画像表示は液晶シャッタを用いた時分割方式を用い
て説明したが、レンチキュラレンズを用いた眼鏡なし方
式やパララクス・バリヤ方式等、どのような立体表示方
式でもよい。
Further, in the second embodiment, the final stereoscopic image display is explained by using the time division method using the liquid crystal shutter, but any method such as a method without glasses using the lenticular lens or a parallax barrier method is used. Such a stereoscopic display method may be used.

【0054】[0054]

【発明の効果】以上のように本発明によれば,立体TV
装置の表示画面の大きさと、入力画像信号の解像度(周
波数)及びウインドウの大きさを考慮して表示される画
像の両眼視差の大きさを計算し、これが観察者の両眼融
合範囲内に入るように左右画像を水平方向に予め平行移
動するように自動設定されることにより、観察者は常に
自然な立体画像を観賞することができる。
As described above, according to the present invention, a stereoscopic TV is provided.
The size of the binocular parallax of the displayed image is calculated in consideration of the size of the display screen of the device, the resolution (frequency) of the input image signal, and the size of the window, and this is within the binocular fusion range of the observer. By automatically setting the left and right images to move in parallel in the horizontal direction in advance, the observer can always see a natural stereoscopic image.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における第1の実施の形態の立体TV装
置の構成図
FIG. 1 is a configuration diagram of a stereoscopic TV device according to a first embodiment of the present invention.

【図2】本発明における視差計算部の動作を示す図FIG. 2 is a diagram showing an operation of a parallax calculator in the present invention.

【図3】本発明における第2の実施の形態の立体TV装
置の構成図
FIG. 3 is a configuration diagram of a stereoscopic TV device according to a second embodiment of the present invention.

【図4】本発明における第2の実施の形態の時分割立体
信号を示す図
FIG. 4 is a diagram showing a time-division stereoscopic signal according to the second embodiment of the present invention.

【図5】従来の立体TVの構成図FIG. 5 is a block diagram of a conventional stereoscopic TV.

【図6】(a)〜(d)は両眼視差と表示画像サイズ・画像解
像度の関係を示す図
6A to 6D are diagrams showing the relationship between binocular parallax and display image size / image resolution.

【図7】(a),(b)は観察者の両眼融合範囲を示す図7 (a) and 7 (b) are diagrams showing the binocular fusion range of the observer.

【図8】本発明における第3の実施の形態の立体TV装
置の構成図
FIG. 8 is a configuration diagram of a stereoscopic TV device according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 CRT 2 CRT 3 偏光板 4 偏光板 5 ハーフミラー 6 偏光板を用いた眼鏡 7 観察者 8 視差計算部 9 解像度判別部 10 適正視差決定部 11 基本同期タイミング発生部 12ab 同期部 13ab 視差制御部 14ab RGB分離部 15ab CRT駆動部 16 視距離測定部 17 液晶シャッタ切換えパルス発生部 18 液晶シャッタ眼鏡 22 ウインドウサイズ検出部 23 ウインドウ生成・消滅検出部 24 ウインドウフォーカス変化検出部 25 マウス状態検出部 26 ウインドウ情報管理制御部 27 ウインドウ情報管理部 28 マウス DESCRIPTION OF SYMBOLS 1 CRT 2 CRT 3 Polarizing plate 4 Polarizing plate 5 Half mirror 6 Glasses using polarizing plate 7 Observer 8 Parallax calculating unit 9 Resolution determining unit 10 Proper parallax determining unit 11 Basic synchronization timing generating unit 12ab Synchronizing unit 13ab Parallax controlling unit 14ab RGB separation unit 15ab CRT drive unit 16 Visual distance measurement unit 17 Liquid crystal shutter switching pulse generation unit 18 Liquid crystal shutter glasses 22 Window size detection unit 23 Window generation / disappearance detection unit 24 Window focus change detection unit 25 Mouse state detection unit 26 Window information management Control unit 27 Window information management unit 28 Mouse

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】画像表示部の大きさのデータと、左右画像
から両眼視差を計算しこれの最大値または最小値を計算
する視差計算部と、観察者の視距離を測定する視距離測
定部と、入力画像信号の同期周波数を検知し入力画像信
号の種類を判別する解像度判別部と、表示画面の大きさ
と前記視差計算部の出力と観察者の視距離と前記解像度
判別部の出力を用いて表示される画像の両眼視差の大き
さを計算し、これが観察者の両眼融合範囲内に入るため
の視差変更量を算出する適正視差決定部と、前記適正視
差決定部に応じて左右画像を水平に平行移動する視差制
御部を有し、入力映像信号の同期周波数が変化しても表
示される立体画像が観察者の両眼融合範囲内に入るよう
に左右画像を制御することを特徴とする立体TV装置。
1. A size data of an image display unit, a parallax calculation unit for calculating binocular parallax from left and right images and calculating a maximum value or a minimum value thereof, and a visual distance measurement for measuring a visual distance of an observer. Section, a resolution determination section that detects the synchronization frequency of the input image signal and determines the type of the input image signal, a display screen size, the output of the parallax calculation section, the viewing distance of the observer, and the output of the resolution determination section. Calculate the size of the binocular parallax of the image displayed using, the appropriate parallax determination unit that calculates the amount of parallax change for this to enter the binocular fusion range of the observer, according to the appropriate parallax determination unit. Having a parallax control unit that translates the left and right images horizontally, and controlling the left and right images so that the displayed stereoscopic image falls within the fusional range of both eyes of the observer even if the synchronization frequency of the input video signal changes. 3D TV device characterized by.
【請求項2】複数の立体画像をウインドウ環境にて同時
に表示するシステムにおいて、入力画像信号の同期周波
数を検知し入力画像信号の種類を判別する解像度判別部
と、立体画像表示しているそれぞれのウインドウの大き
さを検出するウインドウ情報管理部と、観察者の視距離
を測定する視距離測定部と、左右画像から両眼視差を計
算しこれの最大値または最小値を計算する視差計算部
と、前記解像度判別部と前記ウインドウ情報管理部の出
力から各ウインドウの実際の画像の大きさを計算し、こ
れと前記視差計算部と前記視距離測定部の出力から計算
される画像の両眼視差の大きさを計算し、これが観察者
の両眼融合範囲内に入るための視差変更量を算出する適
正視差決定部と、前記適正視差決定部に応じて左右画像
を水平に平行移動する視差制御部を有し、観察者の操作
により個々のウインドウサイズや入力映像信号の同期周
波数が変化しても個々のウインドウ表示において表示さ
れる立体画像が独立に観察者の両眼融合範囲内に入るよ
うに左右画像を制御することを特徴とする立体TV装
置。
2. In a system for simultaneously displaying a plurality of stereoscopic images in a window environment, a resolution discriminating section for detecting a synchronizing frequency of an input image signal and discriminating the kind of the input image signal, and each of the stereoscopic image displayed. A window information management unit that detects the size of the window, a visual distance measurement unit that measures the visual distance of the observer, and a parallax calculation unit that calculates the binocular parallax from the left and right images and calculates the maximum or minimum value thereof. , The actual size of the image of each window is calculated from the output of the resolution determination unit and the window information management unit, and the binocular parallax of the image calculated from this and the output of the parallax calculation unit and the visual distance measurement unit. And the appropriate parallax determination unit that calculates the amount of parallax change to enter the binocular fusion range of the observer, and the left and right images are translated in parallel in accordance with the appropriate parallax determination unit. Has a parallax control unit, and the stereoscopic image displayed in each window display is independently within the binocular fusion range of the observer even if the window size or the synchronization frequency of the input video signal changes due to the operation of the observer. A stereoscopic TV device characterized by controlling left and right images so as to enter.
【請求項3】視距離測定部の出力は立体TVの推奨視距
離を固定値で出力することを特徴とする請求項1または
2記載の立体TV装置。
3. The stereoscopic TV device according to claim 1, wherein the visual distance measuring unit outputs a recommended visual distance of the stereoscopic TV as a fixed value.
【請求項4】視距離測定部は、複数の観察者の視距離を
測定し、これらの平均値または加重平均値または最大値
・最小値を出力することを特徴とする請求項1または2
記載の立体TV装置。
4. The visual distance measuring unit measures visual distances of a plurality of observers and outputs an average value, a weighted average value, or a maximum value / minimum value thereof.
The three-dimensional TV device described.
【請求項5】視差計算部の出力は、これを予め決められ
た固定値で出力することを特徴とする請求項1または2
記載の立体TV装置。
5. The output of the parallax calculation section is output as a fixed value determined in advance.
The three-dimensional TV device described.
【請求項6】解像度判別部の出力は、入力画像が1種類
であることを仮定して固定値とすることを特徴とする請
求項1または2記載の立体TV装置。
6. The stereoscopic TV apparatus according to claim 1, wherein the output of the resolution determining unit is a fixed value on the assumption that there is one type of input image.
【請求項7】解像度判別部は、入力画像信号の種類とし
て、HDTV・ED・NTSC信号及び種々の解像度の
コンピュータ用画像信号の検出を行ない、これらの解像
度、アスペクト比を判定し、表示部分での有効画像の大
きさを適正視差決定部が認識できるようにすることを特
徴とした請求項1または2記載の立体TV装置。
7. The resolution discriminating unit detects HDTV / ED / NTSC signals and computer image signals of various resolutions as the types of the input image signals, determines the resolutions and aspect ratios thereof, and displays them in the display portion. 3. The stereoscopic TV apparatus according to claim 1, wherein the size of the effective image of is recognized by the appropriate parallax determination unit.
【請求項8】視差制御部は、画像を常に平行移動して両
眼視差を制御することを特徴とする請求項1または2記
載の立体TV装置。
8. The stereoscopic TV apparatus according to claim 1, wherein the parallax control unit controls the binocular parallax by constantly moving the image in parallel.
【請求項9】視差制御部は、表示される画像の両眼視差
が大きく変化した時のみ画像を平行移動して両眼視差を
制御することを特徴とする請求項1または2記載の立体
TV装置。
9. The stereoscopic TV according to claim 1, wherein the parallax control unit controls the binocular parallax by moving the image in parallel only when the binocular parallax of the displayed image is significantly changed. apparatus.
【請求項10】視差制御部は、観察者が両眼視差を調整
したい時のみ、ボタンSWやリモコンなどで調整命令を
指示することにより画像を平行移動して両眼視差を制御
することを特徴とする請求項1または2記載の立体TV
装置。
10. The parallax control unit controls the binocular parallax by moving an image in parallel by instructing an adjustment command with a button SW or a remote controller only when an observer wants to adjust the binocular parallax. The stereoscopic TV according to claim 1 or 2.
apparatus.
【請求項11】視差制御部は、観察者が両眼視差を調整
したいウインドウを指定した時のみ、左右画像を平行移
動して両眼視差を制御することを特徴とする請求項2記
載の立体TV装置。
11. The stereoscopic control according to claim 2, wherein the parallax control unit controls the binocular parallax by translating the left and right images in parallel only when the observer specifies a window for which binocular parallax is to be adjusted. TV device.
JP7289495A 1995-06-29 1995-11-08 3D TV device Expired - Fee Related JP2848291B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP7289495A JP2848291B2 (en) 1995-08-24 1995-11-08 3D TV device
US08/669,768 US6005607A (en) 1995-06-29 1996-06-27 Stereoscopic computer graphics image generating apparatus and stereoscopic TV apparatus
DE69632755T DE69632755T2 (en) 1995-06-29 1996-06-28 Device for generating computer-generated stereoscopic images
DE69631496T DE69631496T2 (en) 1995-06-29 1996-06-28 Stereoscopic television
EP03009048A EP1328129B1 (en) 1995-06-29 1996-06-28 Apparatus for generating computer generated stereoscopic images
EP96110505A EP0751689B1 (en) 1995-06-29 1996-06-28 Stereoscopic image generating apparatus and display therefor
EP01118033A EP1168852B1 (en) 1995-06-29 1996-06-28 Stereoscopic TV apparatus
DE69619308T DE69619308T2 (en) 1995-06-29 1996-06-28 Device for generating stereoscopic images and displaying the same
KR1019960025862A KR970004916A (en) 1995-06-29 1996-06-29 A stereoscopic CG image generating apparatus and stereoscopic television apparatus
US09/447,638 US6175379B1 (en) 1995-06-29 1999-11-23 Stereoscopic CG image generating apparatus and stereoscopic TV apparatus
US09/668,092 US6268880B1 (en) 1995-06-29 2000-09-22 Stereoscopic CG image generating apparatus and stereoscopic TV apparatus
US09/880,287 US6417880B1 (en) 1995-06-29 2001-06-13 Stereoscopic CG image generating apparatus and stereoscopic TV apparatus
US09/880,522 US6353457B2 (en) 1995-06-29 2001-06-13 Stereoscopic computer graphics image generating apparatus and stereoscopic TV apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21584195 1995-08-24
JP7-215841 1995-08-24
JP7289495A JP2848291B2 (en) 1995-08-24 1995-11-08 3D TV device

Publications (2)

Publication Number Publication Date
JPH09121370A true JPH09121370A (en) 1997-05-06
JP2848291B2 JP2848291B2 (en) 1999-01-20

Family

ID=26521085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7289495A Expired - Fee Related JP2848291B2 (en) 1995-06-29 1995-11-08 3D TV device

Country Status (1)

Country Link
JP (1) JP2848291B2 (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003284093A (en) * 2002-03-27 2003-10-03 Sanyo Electric Co Ltd Stereoscopic image processing method and apparatus therefor
WO2003098942A1 (en) * 2002-05-21 2003-11-27 Sony Corporation Information processing apparatus, information processing system, and dialogist displaying method
JP2004007396A (en) * 2002-03-27 2004-01-08 Sanyo Electric Co Ltd Stereoscopic image processing method and device
WO2004049734A1 (en) * 2002-11-28 2004-06-10 Seijiro Tomita Three-dimensional image signal producing circuit and three-dimensional image display apparatus
JP2004180069A (en) * 2002-11-28 2004-06-24 Seijiro Tomita Three-dimensional video signal generating circuit and three dimensional video displaying device
WO2004082297A1 (en) * 2003-03-11 2004-09-23 Seijiro Tomita Stereoscopic image display device
WO2004093467A1 (en) * 2003-04-17 2004-10-28 Sharp Kabushiki Kaisha 3-dimensional image creation device, 3-dimensional image reproduction device, 3-dimensional image processing device, 3-dimensional image processing program, and recording medium containing the program
JP2004349736A (en) * 2003-05-08 2004-12-09 Sharp Corp Apparatus and program for stereoscopic image processing, and recording medium recorded the program
WO2005020591A1 (en) * 2003-08-26 2005-03-03 Sharp Kabushiki Kaisha 3-dimensional video reproduction device and 3-dimensional video reproduction method
JP2005073013A (en) * 2003-08-26 2005-03-17 Sharp Corp Device and method for stereo image display, program for making computer execute the method, and recording medium recording the program
JPWO2004084559A1 (en) * 2003-03-20 2006-06-29 富田 誠次郎 Video display device for vehicle
JPWO2004084560A1 (en) * 2003-03-20 2006-06-29 富田 誠次郎 3D image display system
JP2008538871A (en) * 2005-04-08 2008-11-06 リアルデー Autostereoscopic display with planar pass-through
JP2008294530A (en) * 2007-05-22 2008-12-04 Fujifilm Corp Imaging apparatus, image reproducing device, imaging method, image reproducing method, and program
JP2010045584A (en) * 2008-08-12 2010-02-25 Sony Corp Solid image correcting apparatus, solid image correcting method, solid image display, solid image reproducing apparatus, solid image presenting system, program, and recording medium
JP2010098479A (en) * 2008-10-15 2010-04-30 Sony Corp Display apparatus, display method, and display system
JP2010102137A (en) * 2008-10-24 2010-05-06 Fujifilm Corp Three-dimensional photographing device, method and program
US7724271B2 (en) 2004-07-15 2010-05-25 Samsung Electronics Co., Ltd. Apparatus and method of transforming multidimensional video format
JP2010171646A (en) * 2009-01-21 2010-08-05 Sony Corp Signal processing device, image display device, signal processing method, and computer program
WO2011087145A1 (en) * 2010-01-13 2011-07-21 Sharp Kabushiki Kaisha Methods and a display device for displaying a pair of stereoscopic images on a display for reducing viewing discomfort
WO2011086932A1 (en) * 2010-01-13 2011-07-21 パナソニック株式会社 Three-dimensional video display device
WO2011099296A1 (en) * 2010-02-15 2011-08-18 パナソニック株式会社 Three-dimensional video image display device
JP2011166761A (en) * 2010-02-05 2011-08-25 Sony Corp Image processing apparatus, image processing method, and program
WO2011111349A1 (en) * 2010-03-10 2011-09-15 パナソニック株式会社 3d video display device and parallax adjustment method
JP2011188108A (en) * 2010-03-05 2011-09-22 Mitsubishi Electric Corp Image processing apparatus, three-dimensional image display device, and image processing method
JP2011259289A (en) * 2010-06-10 2011-12-22 Fa System Engineering Co Ltd Viewing situation adaptive 3d display device and 3d display method
JP2012010136A (en) * 2010-06-25 2012-01-12 Kddi Corp Video adjusting device, television receiver and program
JP2012009010A (en) * 2010-05-25 2012-01-12 Mitsubishi Electric Corp Image processing device, image processing method and image display device
JP2012019399A (en) * 2010-07-08 2012-01-26 For-A Co Ltd Stereoscopic image correction device, stereoscopic image correction method, and stereoscopic image correction system
JP2012044308A (en) * 2010-08-16 2012-03-01 Sharp Corp Three dimensional image output device and three dimensional image display device
US8131064B2 (en) 2002-03-27 2012-03-06 Sanyo Electric Co., Ltd. Method and apparatus for processing three-dimensional images
JP2012049987A (en) * 2010-08-30 2012-03-08 Toshiba Corp Glasses for stereoscopic view and stereoscopic video display system
JP2012085284A (en) * 2010-09-23 2012-04-26 Thomson Licensing Adaptation of 3d video content
JP2012095275A (en) * 2010-09-30 2012-05-17 Fujifilm Corp Three-dimensional image editing device and three-dimensional image editing method
JP2012130008A (en) * 2010-12-16 2012-07-05 Korea Electronics Telecommun Three-dimensional video display device and method
JP2012142922A (en) * 2010-12-17 2012-07-26 Canon Inc Imaging device, display device, computer program, and stereoscopic image display system
WO2012101916A1 (en) * 2011-01-25 2012-08-02 富士フイルム株式会社 Stereoscopic video processor, stereoscopic video processing program and recording medium therefor, stereoscopic imaging device and stereoscopic video processing method
WO2012105121A1 (en) * 2011-02-03 2012-08-09 富士フイルム株式会社 3d video playing device, 3d video playing program and recording medium for same, 3d display device, 3d imaging device, and 3d video playing method
WO2012105120A1 (en) * 2011-02-03 2012-08-09 富士フイルム株式会社 3d video playing device, 3d video playing program, recording medium for same, 3d display device, 3d imaging device, and 3d video playing method
JP5002066B1 (en) * 2011-04-06 2012-08-15 シャープ株式会社 Image processing apparatus, image processing method, computer program, and recording medium
WO2012108201A1 (en) * 2011-02-10 2012-08-16 富士フイルム株式会社 Stereoscopic image display device
JP2012156816A (en) * 2011-01-26 2012-08-16 Toshiba Corp Image display apparatus and image display method
JP2012169822A (en) * 2011-02-14 2012-09-06 Nec Personal Computers Ltd Image processing method and image processing device
JP2012220888A (en) * 2011-04-13 2012-11-12 Nikon Corp Imaging device
JP2012227956A (en) * 2012-07-18 2012-11-15 Toshiba Corp Electronic apparatus and image display method
JP2013500664A (en) * 2009-07-27 2013-01-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Combining 3D video and auxiliary data
WO2013027305A1 (en) * 2011-08-22 2013-02-28 パナソニック株式会社 Stereoscopic image processing device and stereoscopic image processing method
WO2013035261A1 (en) * 2011-09-06 2013-03-14 ソニー株式会社 Video signal processing apparatus and video signal processing method
WO2013035442A1 (en) * 2011-09-06 2013-03-14 シャープ株式会社 Stereoscopic image information processing device, stereoscopic image information processing method, stereoscopic image processing program, and recoding medium which recorded program
JP2013055629A (en) * 2011-08-10 2013-03-21 Toshiba Corp Video output device and video output method
WO2013047007A1 (en) * 2011-09-29 2013-04-04 富士フイルム株式会社 Parallax adjustment device and operation control method therefor
JPWO2011070774A1 (en) * 2009-12-09 2013-04-22 パナソニック株式会社 3D video processing apparatus and 3D video processing method
JP2013182209A (en) * 2012-03-02 2013-09-12 Toshiba Corp Stereoscopic image display apparatus, stereoscopic image display method, and control device
JP2014500674A (en) * 2010-12-08 2014-01-09 トムソン ライセンシング Method and system for 3D display with adaptive binocular differences
JP2015039073A (en) * 2011-04-26 2015-02-26 株式会社東芝 Apparatus and method for processing stereoscopic image
US9019261B2 (en) 2009-10-20 2015-04-28 Nintendo Co., Ltd. Storage medium storing display control program, storage medium storing library program, information processing system, and display control method
US9128293B2 (en) 2010-01-14 2015-09-08 Nintendo Co., Ltd. Computer-readable storage medium having stored therein display control program, display control apparatus, display control system, and display control method
WO2015178576A1 (en) * 2014-05-23 2015-11-26 삼성전자 주식회사 Image display device and image display method
US9224232B2 (en) 2010-09-15 2015-12-29 Sharp Kabushiki Kaisha Stereoscopic image generation device, stereoscopic image display device, stereoscopic image adjustment method, program for causing computer to execute stereoscopic image adjustment method, and recording medium on which the program is recorded
US9277207B2 (en) 2011-08-08 2016-03-01 Sony Corporation Image processing apparatus, image processing method, and program for generating multi-view point image
WO2016208246A1 (en) * 2015-06-24 2016-12-29 ソニー・オリンパスメディカルソリューションズ株式会社 Three-dimensional observation device for medical use, three-dimensional observation method for medical use, and program
US9693039B2 (en) 2010-05-27 2017-06-27 Nintendo Co., Ltd. Hand-held electronic device
WO2019235492A1 (en) * 2018-06-04 2019-12-12 オリンパス株式会社 Endoscope processor, display setting method, and display setting program
JPWO2019044188A1 (en) * 2017-08-29 2020-08-13 ソニー株式会社 Information processing apparatus, information processing method, and program
US11089290B2 (en) 2009-11-04 2021-08-10 Nintendo Co., Ltd. Storage medium storing display control program, information processing system, and storage medium storing program utilized for controlling stereoscopic display

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8879824B2 (en) 2002-03-27 2014-11-04 Sanyo Electric Co., Ltd. Method and apparatus for processing three-dimensional images
US8254668B2 (en) 2002-03-27 2012-08-28 Sanyo Electric Co., Ltd. Method and apparatus for processing three-dimensional images
JP2004007396A (en) * 2002-03-27 2004-01-08 Sanyo Electric Co Ltd Stereoscopic image processing method and device
US8417024B2 (en) 2002-03-27 2013-04-09 Sanyo Electric Co., Ltd. Method and apparatus for processing three-dimensional images
US8559703B2 (en) 2002-03-27 2013-10-15 Sanyo Electric Co., Ltd. Method and apparatus for processing three-dimensional images
US8577127B2 (en) 2002-03-27 2013-11-05 Sanyo Electric Co., Ltd. Method and apparatus for processing three-dimensional images
US8472702B2 (en) 2002-03-27 2013-06-25 Sanyo Electric Co., Ltd. Method and apparatus for processing three-dimensional images
US8369607B2 (en) 2002-03-27 2013-02-05 Sanyo Electric Co., Ltd. Method and apparatus for processing three-dimensional images
US8577128B2 (en) 2002-03-27 2013-11-05 Sanyo Electric Co., Ltd. Method and apparatus for processing three-dimensional images
US8131064B2 (en) 2002-03-27 2012-03-06 Sanyo Electric Co., Ltd. Method and apparatus for processing three-dimensional images
JP2003284093A (en) * 2002-03-27 2003-10-03 Sanyo Electric Co Ltd Stereoscopic image processing method and apparatus therefor
US8724886B2 (en) 2002-03-27 2014-05-13 Sanyo Electric Co., Ltd. Method and apparatus for processing three-dimensional images
WO2003098942A1 (en) * 2002-05-21 2003-11-27 Sony Corporation Information processing apparatus, information processing system, and dialogist displaying method
US7528879B2 (en) 2002-05-21 2009-05-05 Sony Corporation Information processing apparatus, information processing system, and conversation partner display method while presenting a picture
JP2004048644A (en) * 2002-05-21 2004-02-12 Sony Corp Information processor, information processing system and interlocutor display method
WO2004049734A1 (en) * 2002-11-28 2004-06-10 Seijiro Tomita Three-dimensional image signal producing circuit and three-dimensional image display apparatus
JP2004180069A (en) * 2002-11-28 2004-06-24 Seijiro Tomita Three-dimensional video signal generating circuit and three dimensional video displaying device
JPWO2004082297A1 (en) * 2003-03-11 2006-06-15 富田 誠次郎 3D image display device
WO2004082297A1 (en) * 2003-03-11 2004-09-23 Seijiro Tomita Stereoscopic image display device
JPWO2004084559A1 (en) * 2003-03-20 2006-06-29 富田 誠次郎 Video display device for vehicle
JPWO2004084560A1 (en) * 2003-03-20 2006-06-29 富田 誠次郎 3D image display system
WO2004093467A1 (en) * 2003-04-17 2004-10-28 Sharp Kabushiki Kaisha 3-dimensional image creation device, 3-dimensional image reproduction device, 3-dimensional image processing device, 3-dimensional image processing program, and recording medium containing the program
US7889196B2 (en) 2003-04-17 2011-02-15 Sharp Kabushiki Kaisha 3-dimensional image creating apparatus, 3-dimensional image reproducing apparatus, 3-dimensional image processing apparatus, 3-dimensional image processing program and recording medium recorded with the program
US7636088B2 (en) 2003-04-17 2009-12-22 Sharp Kabushiki Kaisha 3-Dimensional image creation device, 3-dimensional image reproduction device, 3-dimensional image processing device, 3-dimensional image processing program, and recording medium containing the program
JP2004349736A (en) * 2003-05-08 2004-12-09 Sharp Corp Apparatus and program for stereoscopic image processing, and recording medium recorded the program
US8035683B2 (en) 2003-08-26 2011-10-11 Sharp Kabushiki Kaisha Stereoscopic image reproducing apparatus and stereoscopic image reproducing method
WO2005020591A1 (en) * 2003-08-26 2005-03-03 Sharp Kabushiki Kaisha 3-dimensional video reproduction device and 3-dimensional video reproduction method
JP2005073013A (en) * 2003-08-26 2005-03-17 Sharp Corp Device and method for stereo image display, program for making computer execute the method, and recording medium recording the program
JP2005073049A (en) * 2003-08-26 2005-03-17 Sharp Corp Device and method for reproducing stereoscopic image
KR100820129B1 (en) * 2003-08-26 2008-04-08 샤프 가부시키가이샤 3-dimensional video reproduction device and 3-dimensional video reproduction method
US7724271B2 (en) 2004-07-15 2010-05-25 Samsung Electronics Co., Ltd. Apparatus and method of transforming multidimensional video format
JP2008538871A (en) * 2005-04-08 2008-11-06 リアルデー Autostereoscopic display with planar pass-through
JP2008294530A (en) * 2007-05-22 2008-12-04 Fujifilm Corp Imaging apparatus, image reproducing device, imaging method, image reproducing method, and program
US8723933B2 (en) 2008-08-12 2014-05-13 Sony Corporation Three-dimensional image correction device, three-dimensional image correction method, three-dimensional image display device, three-dimensional image reproduction device, three-dimensional image provision system, program, and recording medium
US8289379B2 (en) 2008-08-12 2012-10-16 Sony Corporation Three-dimensional image correction device, three-dimensional image correction method, three-dimensional image display device, three-dimensional image reproduction device, three-dimensional image provision system, program, and recording medium
JP2010045584A (en) * 2008-08-12 2010-02-25 Sony Corp Solid image correcting apparatus, solid image correcting method, solid image display, solid image reproducing apparatus, solid image presenting system, program, and recording medium
JP2010098479A (en) * 2008-10-15 2010-04-30 Sony Corp Display apparatus, display method, and display system
JP2010102137A (en) * 2008-10-24 2010-05-06 Fujifilm Corp Three-dimensional photographing device, method and program
US8564645B2 (en) 2009-01-21 2013-10-22 Sony Corporation Signal processing device, image display device, signal processing method, and computer program
JP2010171646A (en) * 2009-01-21 2010-08-05 Sony Corp Signal processing device, image display device, signal processing method, and computer program
JP2013500664A (en) * 2009-07-27 2013-01-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Combining 3D video and auxiliary data
JP2015092669A (en) * 2009-07-27 2015-05-14 コーニンクレッカ フィリップス エヌ ヴェ Combining 3d video and auxiliary data
US10021377B2 (en) 2009-07-27 2018-07-10 Koninklijke Philips N.V. Combining 3D video and auxiliary data that is provided when not reveived
US9019261B2 (en) 2009-10-20 2015-04-28 Nintendo Co., Ltd. Storage medium storing display control program, storage medium storing library program, information processing system, and display control method
US11089290B2 (en) 2009-11-04 2021-08-10 Nintendo Co., Ltd. Storage medium storing display control program, information processing system, and storage medium storing program utilized for controlling stereoscopic display
JPWO2011070774A1 (en) * 2009-12-09 2013-04-22 パナソニック株式会社 3D video processing apparatus and 3D video processing method
WO2011086932A1 (en) * 2010-01-13 2011-07-21 パナソニック株式会社 Three-dimensional video display device
WO2011087145A1 (en) * 2010-01-13 2011-07-21 Sharp Kabushiki Kaisha Methods and a display device for displaying a pair of stereoscopic images on a display for reducing viewing discomfort
US9128293B2 (en) 2010-01-14 2015-09-08 Nintendo Co., Ltd. Computer-readable storage medium having stored therein display control program, display control apparatus, display control system, and display control method
JP2011166761A (en) * 2010-02-05 2011-08-25 Sony Corp Image processing apparatus, image processing method, and program
WO2011099296A1 (en) * 2010-02-15 2011-08-18 パナソニック株式会社 Three-dimensional video image display device
JP2011188108A (en) * 2010-03-05 2011-09-22 Mitsubishi Electric Corp Image processing apparatus, three-dimensional image display device, and image processing method
WO2011111349A1 (en) * 2010-03-10 2011-09-15 パナソニック株式会社 3d video display device and parallax adjustment method
JP2012009010A (en) * 2010-05-25 2012-01-12 Mitsubishi Electric Corp Image processing device, image processing method and image display device
US9693039B2 (en) 2010-05-27 2017-06-27 Nintendo Co., Ltd. Hand-held electronic device
JP2011259289A (en) * 2010-06-10 2011-12-22 Fa System Engineering Co Ltd Viewing situation adaptive 3d display device and 3d display method
JP2012010136A (en) * 2010-06-25 2012-01-12 Kddi Corp Video adjusting device, television receiver and program
JP2012019399A (en) * 2010-07-08 2012-01-26 For-A Co Ltd Stereoscopic image correction device, stereoscopic image correction method, and stereoscopic image correction system
JP2012044308A (en) * 2010-08-16 2012-03-01 Sharp Corp Three dimensional image output device and three dimensional image display device
JP2012049987A (en) * 2010-08-30 2012-03-08 Toshiba Corp Glasses for stereoscopic view and stereoscopic video display system
US9224232B2 (en) 2010-09-15 2015-12-29 Sharp Kabushiki Kaisha Stereoscopic image generation device, stereoscopic image display device, stereoscopic image adjustment method, program for causing computer to execute stereoscopic image adjustment method, and recording medium on which the program is recorded
JP2012085284A (en) * 2010-09-23 2012-04-26 Thomson Licensing Adaptation of 3d video content
US9204122B2 (en) 2010-09-23 2015-12-01 Thomson Licensing Adaptation of 3D video content
JP2012095275A (en) * 2010-09-30 2012-05-17 Fujifilm Corp Three-dimensional image editing device and three-dimensional image editing method
JP2014500674A (en) * 2010-12-08 2014-01-09 トムソン ライセンシング Method and system for 3D display with adaptive binocular differences
JP2012130008A (en) * 2010-12-16 2012-07-05 Korea Electronics Telecommun Three-dimensional video display device and method
JP2012142922A (en) * 2010-12-17 2012-07-26 Canon Inc Imaging device, display device, computer program, and stereoscopic image display system
WO2012101916A1 (en) * 2011-01-25 2012-08-02 富士フイルム株式会社 Stereoscopic video processor, stereoscopic video processing program and recording medium therefor, stereoscopic imaging device and stereoscopic video processing method
US9380290B2 (en) 2011-01-25 2016-06-28 Fujifilm Corporation Stereoscopic video processor, recording medium for stereoscopic video processing program, stereoscopic imaging device and stereoscopic video processing method
JP2012156816A (en) * 2011-01-26 2012-08-16 Toshiba Corp Image display apparatus and image display method
CN103339947B (en) * 2011-02-03 2014-07-30 富士胶片株式会社 3D video playing device, 3D video playing program and recording medium for same, 3D display device, 3D imaging device, and 3D video playing method
JP5486697B2 (en) * 2011-02-03 2014-05-07 富士フイルム株式会社 Stereoscopic video playback device, stereoscopic video playback program and recording medium thereof, stereoscopic display device, stereoscopic imaging device, and stereoscopic video playback method
CN103339947A (en) * 2011-02-03 2013-10-02 富士胶片株式会社 3D video playing device, 3D video playing program and recording medium for same, 3D display device, 3D imaging device, and 3D video playing method
WO2012105121A1 (en) * 2011-02-03 2012-08-09 富士フイルム株式会社 3d video playing device, 3d video playing program and recording medium for same, 3d display device, 3d imaging device, and 3d video playing method
WO2012105120A1 (en) * 2011-02-03 2012-08-09 富士フイルム株式会社 3d video playing device, 3d video playing program, recording medium for same, 3d display device, 3d imaging device, and 3d video playing method
US8982189B2 (en) 2011-02-03 2015-03-17 Fujifilm Corporation 3D video reproduction device, non-transitory recording medium, 3D display device, 3D imaging device, and 3D video reproduction method
JP5466773B2 (en) * 2011-02-03 2014-04-09 富士フイルム株式会社 Stereoscopic video playback device, stereoscopic video playback program and recording medium thereof, stereoscopic display device, stereoscopic imaging device, and stereoscopic video playback method
US9210394B2 (en) 2011-02-03 2015-12-08 Fujifilm Corporation 3D video reproduction device, non-transitory computer-readable medium, 3D display device, 3D imaging device, and 3D video reproduction method
CN103339948A (en) * 2011-02-03 2013-10-02 富士胶片株式会社 3D video playing device, 3D video playing program, recording medium for same, 3D display device, 3D imaging device, and 3D video playing method
WO2012108201A1 (en) * 2011-02-10 2012-08-16 富士フイルム株式会社 Stereoscopic image display device
JP2012169822A (en) * 2011-02-14 2012-09-06 Nec Personal Computers Ltd Image processing method and image processing device
US9189893B2 (en) 2011-04-06 2015-11-17 Sharp Kabushiki Kaisha Image processing device, image processing method, and recording medium
WO2012137520A1 (en) * 2011-04-06 2012-10-11 シャープ株式会社 Image processing device, image processing method, computer program, and recording medium
JP5002066B1 (en) * 2011-04-06 2012-08-15 シャープ株式会社 Image processing apparatus, image processing method, computer program, and recording medium
JP2012220888A (en) * 2011-04-13 2012-11-12 Nikon Corp Imaging device
JP2015039073A (en) * 2011-04-26 2015-02-26 株式会社東芝 Apparatus and method for processing stereoscopic image
US9277207B2 (en) 2011-08-08 2016-03-01 Sony Corporation Image processing apparatus, image processing method, and program for generating multi-view point image
JP2013055629A (en) * 2011-08-10 2013-03-21 Toshiba Corp Video output device and video output method
WO2013027305A1 (en) * 2011-08-22 2013-02-28 パナソニック株式会社 Stereoscopic image processing device and stereoscopic image processing method
WO2013035442A1 (en) * 2011-09-06 2013-03-14 シャープ株式会社 Stereoscopic image information processing device, stereoscopic image information processing method, stereoscopic image processing program, and recoding medium which recorded program
JP2013055565A (en) * 2011-09-06 2013-03-21 Sony Corp Video signal processing apparatus and video signal processing method
JP2013055619A (en) * 2011-09-06 2013-03-21 Sharp Corp Stereoscopic image information processor, stereoscopic image information processing method, stereoscopic image processing program, and recording medium with recorded program
WO2013035261A1 (en) * 2011-09-06 2013-03-14 ソニー株式会社 Video signal processing apparatus and video signal processing method
WO2013047007A1 (en) * 2011-09-29 2013-04-04 富士フイルム株式会社 Parallax adjustment device and operation control method therefor
JP5581452B2 (en) * 2011-09-29 2014-08-27 富士フイルム株式会社 Parallax adjustment device and operation control method thereof
JP2013182209A (en) * 2012-03-02 2013-09-12 Toshiba Corp Stereoscopic image display apparatus, stereoscopic image display method, and control device
JP2012227956A (en) * 2012-07-18 2012-11-15 Toshiba Corp Electronic apparatus and image display method
US10674133B2 (en) 2014-05-23 2020-06-02 Samsung Electronics Co., Ltd. Image display device and image display method
WO2015178576A1 (en) * 2014-05-23 2015-11-26 삼성전자 주식회사 Image display device and image display method
WO2016208246A1 (en) * 2015-06-24 2016-12-29 ソニー・オリンパスメディカルソリューションズ株式会社 Three-dimensional observation device for medical use, three-dimensional observation method for medical use, and program
JPWO2016208246A1 (en) * 2015-06-24 2018-04-26 ソニー・オリンパスメディカルソリューションズ株式会社 Medical stereoscopic observation apparatus, medical stereoscopic observation method, and program
US10561304B2 (en) 2015-06-24 2020-02-18 Sony Olympus Medical Solutions Inc. Medical stereoscopic observation device, medical stereoscopic observation method, and program
JPWO2019044188A1 (en) * 2017-08-29 2020-08-13 ソニー株式会社 Information processing apparatus, information processing method, and program
EP3678370A4 (en) * 2017-08-29 2020-08-19 Sony Corporation Information processing device, information processing method, and program
US11064176B2 (en) 2017-08-29 2021-07-13 Sony Corporation Information processing apparatus, information processing method, and program for display control to arrange virtual display based on user viewpoint
JP2019213036A (en) * 2018-06-04 2019-12-12 オリンパス株式会社 Endoscope processor, display setting method, and display setting program
WO2019235492A1 (en) * 2018-06-04 2019-12-12 オリンパス株式会社 Endoscope processor, display setting method, and display setting program
US11467392B2 (en) 2018-06-04 2022-10-11 Olympus Corporation Endoscope processor, display setting method, computer-readable recording medium, and endoscope system

Also Published As

Publication number Publication date
JP2848291B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
JP2848291B2 (en) 3D TV device
EP1168852B1 (en) Stereoscopic TV apparatus
US9451242B2 (en) Apparatus for adjusting displayed picture, display apparatus and display method
JP5014979B2 (en) 3D information acquisition and display system for personal electronic devices
US4870600A (en) Three-dimensional image display system using binocular parallax
KR101763592B1 (en) Method for processing image of display system outputting 3 dimensional contents and display system enabling of the method
Ezra et al. New autostereoscopic display system
US20040238732A1 (en) Methods and systems for dynamic virtual convergence and head mountable display
TW201405483A (en) Image data processing method and stereoscopic image display using the same
JPH0974573A (en) Stereoscopic cg image generator
WO2014000370A1 (en) Depth-of-field retaining device, 3d display system and display method
US20010010508A1 (en) Apparatus and method for displaying stereoscopic images
JP3579585B2 (en) Multi-view simultaneous observation type horizontally arranged stereoscopic image display system
JP2004102526A (en) Three-dimensional image display device, display processing method, and processing program
JPH10322724A (en) Stereoscopic vision inspection device and computer readable recording medium recording stereoscopic vision inspection program
JPH08201941A (en) Three-dimensional image formation
JP2010267192A (en) Touch control device for three-dimensional imaging
JPH11341517A (en) Horizontal layout stereoscopic image display system
JPH07154829A (en) Spectacles video display device
JPH06169475A (en) Three-dimensional picture showing device
WO2012035927A1 (en) Remote video monitoring system
JP3088326B2 (en) 3D image display device
JPH0787600B2 (en) Parallax correction device
KR100400209B1 (en) Apparatus for generating three-dimensional moving pictures from tv signals
KR100766087B1 (en) Real-time 3-dimensional image capture and display system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees