WO2003098942A1 - Information processing apparatus, information processing system, and dialogist displaying method - Google Patents

Information processing apparatus, information processing system, and dialogist displaying method Download PDF

Info

Publication number
WO2003098942A1
WO2003098942A1 PCT/JP2003/006155 JP0306155W WO03098942A1 WO 2003098942 A1 WO2003098942 A1 WO 2003098942A1 JP 0306155 W JP0306155 W JP 0306155W WO 03098942 A1 WO03098942 A1 WO 03098942A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
information processing
image display
processing apparatus
display means
Prior art date
Application number
PCT/JP2003/006155
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiko Kuroki
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US10/515,288 priority Critical patent/US7528879B2/en
Priority to EP03725814A priority patent/EP1507419A4/en
Priority to KR1020047018744A priority patent/KR100976002B1/en
Publication of WO2003098942A1 publication Critical patent/WO2003098942A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/14Systems for two-way working
    • H04N7/141Systems for two-way working between two video terminals, e.g. videophone
    • H04N7/142Constructional details of the terminal equipment, e.g. arrangements of the camera and the display
    • H04N7/144Constructional details of the terminal equipment, e.g. arrangements of the camera and the display camera and display on the same optical axis, e.g. optically multiplexing the camera and display for eye to eye contact
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/14Systems for two-way working
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/307Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using fly-eye lenses, e.g. arrangements of circular lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/14Systems for two-way working
    • H04N7/141Systems for two-way working between two video terminals, e.g. videophone
    • H04N7/142Constructional details of the terminal equipment, e.g. arrangements of the camera and the display
    • H04N2007/145Handheld terminals

Definitions

  • the present invention relates to an information processing apparatus such as a mobile communication terminal capable of displaying an image of a communication partner.
  • the present invention relates to an information processing apparatus, an information processing system, and a method for displaying an interlocutor using a mobile communication terminal or the like for displaying the other party's line of sight according to the terminal user.
  • mobile communication terminals such as mobile phones have become extremely popular. In addition to voice communication functions, these mobile communication terminals are capable of sending and receiving e-mail, accessing the Internet, Various functions, such as receiving still images and moving images captured by the other party's camera, have become available. In recent years, not only mobile phones, but also two-way video communication systems such as video conference systems and video phones that connect remote locations with a video-voice communication network have become widespread.
  • Some mobile phones and two-way video communication systems are configured so that an image of a communication partner is displayed on an image display device arranged near a camera that images a user's face and the like.
  • a user of such a mobile phone or a two-way video communication system usually proceeds with a conversation while watching an image such as a face of a call partner displayed on an image display device.
  • the size of the image display unit is 50 mm. Even if it is as small as four sides, if the imaging device is arranged in the left and right areas or the upper and lower areas of the image display unit, the line of sight of the captured face image indicates the other party As long as you look at the image display, you will not face the imaging device. As a result, in such a device, a face image that does not match the line of sight is displayed on the image display unit. Therefore, in such a device, since the user talks with the other party with an image that does not match the line of sight, there is a problem that an unnatural feeling cannot be denied and the sense of reality is lost as the impression of the dialogue.
  • FIG. 27A, FIG. 27B, FIG. 28A, and FIG. 28B are diagrams showing examples in which the viewing directions do not match on the image display unit of the terminal.
  • the camera is located 65 mm from the center of the image display, the user's face is positioned at a distance of about 25 cm, and the user looks at the center of the image display. The image is shown.
  • FIG. 27A and Figure 27B show the appearance of the image displayed on the image display unit when the camera is placed in one of the left and right areas of the image display unit, which is about 50 mm square. It is a figure which shows typically.
  • FIG. 27A is a camera image when the camera is arranged on the left side toward the image display unit
  • FIG. 27B is a camera image when the camera is arranged on the right side toward the image display unit. In this way, all camera images have an unnatural dialogue screen because their eyes are not directed toward the user from the image display unit.
  • FIGS. 28A and 28B are displayed on the image display section when the camera is arranged in one of the upper area and the lower area of the image display section of about 50 mm square and picked up. It is a figure which shows the mode of an image typically.
  • Figure 28A shows a camera image when the camera is placed above the image display section.
  • B is a camera image when the camera is arranged below the display screen. In this case as well, the camera image does not look directly at the user from the image display unit, resulting in an unnatural dialog screen.
  • a micromirror of a substantially flat plate shape is arranged on the surface of the image display unit, and an image displayed on the image display unit is displayed through the micromirror and displayed by the user.
  • an image is captured by receiving reflected light reflected on the surface of a minute half mirror with an imaging camera.
  • an image display unit having a structure capable of transmitting light is provided, and a camera is arranged behind the image display unit for a user.
  • the image display unit repeats the display state and the transmission state in a time-division manner, and when the image display unit is in the transmission state, an image of the user is taken.
  • a required video signal is sent to the image display unit during a period different from the transmission state, and an image of the other party is displayed.
  • the display is performed with the eyes aligned. It becomes possible.
  • a display / imaging device as described in Japanese Patent Application Laid-Open No. 4-166790 is known.
  • minute holes are provided over the entire surface of the image display unit, the end of the optical fiber faces each of the minute holes, and the other end of the optical fiber is connected to the camera. It is configured to connect.
  • the display and imaging device Since the relationship between the end of the optical fiber 1 facing the hole and the image display unit does not deviate in position, it is possible to perform display in line of sight.
  • the conventional techniques described above are realized by aligning the optical axis of the image display unit with the optical axis of the imaging device.
  • Japanese Patent Application Laid-Open No. H10-75432 discloses a housing placed on a table provided with an imaging unit composed of a camera and an image display unit.
  • a three-dimensional video phone is disclosed, which is configured using a three-dimensional liquid crystal display element without glasses of the split-type system, and in which force lenses are arranged at right and left positions of the image display unit.
  • Japanese Patent Application Laid-Open No. Hei 10-747532 discloses that by selectively combining and fusing images captured by two cameras provided at left and right positions of an image display unit, It states that a pseudo-stereoscopic frontal face image can be obtained, and that conversation with eyes can be performed.
  • the imaging device is arranged with some positional relationship with respect to the image display unit itself.
  • the present invention has been made in view of such circumstances, and in a portable information processing apparatus such as a mobile communication terminal, an information processing apparatus that realizes a natural eye-gaze conversation with a partner is provided.
  • System and interlocutor display The aim is to provide a method.
  • the present invention also provides an information processing apparatus, an information processing system, and an interlocutor display for realizing a conversation in which a natural gaze is matched with a partner while avoiding a problem caused by a parallax between two captured images being too large.
  • the aim is to provide a method. Disclosure of the invention
  • An information processing apparatus that achieves the above object is a portable information processing apparatus that performs a dialogue with a video, and an image display unit that displays a required image according to an image signal;
  • An image display means is provided on each of the left and right sides of the image display means.
  • the right imaging means captures the image viewed from the right front of the user as an image.
  • the image pickup means captures a state viewed from the front left of the user as an image.
  • the image taken from the left side and the image taken from the right side are displayed together as required image display on an image display means such as a terminal on the other side.
  • the viewer of the image display means sees both images at the same time, and the discrepancy between the left and right gaze directions is grasped in a corrected form. Therefore, a display can be realized in which the eyes are aligned without particularly aligning the optical axis of the imaging means with the optical axis of the image display unit.
  • an information processing apparatus that achieves the above object is a portable information processing apparatus that performs a dialogue with a video, comprising: a portable housing; an image display unit that displays a desired image in response to the signal, the t casing a surface of which is characterized by comprising an imaging means provided on each of the right and left sides of the image display unit such
  • the information processing apparatus It has a structure in which the device is mounted in a portable housing, and the imaging means mounted on each of the left and right sides is formed on the surface of the housing, so it must have a thin structure as a whole.
  • the information processing device can be configured with a small and lightweight housing.
  • an information processing apparatus that achieves the above object is a portable information processing apparatus that performs a dialogue with a video, and includes a plurality of pixels that perform display based on a left-eye signal and a right-eye image. It is characterized by comprising image display means in which a plurality of pixels for performing display based on signals are mixed, and image pickup means provided on each of the left and right sides of the image display means.
  • the image pickup means on each of the left and right sides of the image display means, it is possible not to adjust the position of the image display means in particular, for example, to avoid a positional relationship of overlapping. Since the imaging means is mounted, a small and thin structure as a whole is realized. Since the image display means includes a plurality of pixels for performing display based on the signal for the left eye and a plurality of pixels for performing display based on the signal for the right eye, no special device such as polarized glasses is required. It is possible to proceed with the conversation while keeping the gaze with the other party.
  • the information processing apparatuses of the three forms according to the present invention as described above each generate a new image in which parallax is interpolated, based on the two images captured by the imaging unit. It is preferable that an image processing unit is provided, and two new images generated by the image processing unit are displayed on the display surface of the image display unit. '
  • the information processing apparatus it is possible to avoid a problem in displaying images due to an excessively large parallax between two images captured by the imaging unit.
  • a plurality of portable information processing terminals that are configured to include means for performing a dialogue with a video are provided, and the information processing terminals can communicate with each other.
  • the imaging means is provided on each of the right and left sides, so that the imaging means on the side has a view from the right front of the user, and the imaging means on the left has the user The images viewed from the left front of are captured as images.
  • each of the information processing terminals is configured to generate a new image in which parallax is interpolated based on two images obtained by the imaging unit. It is preferable that the information processing terminal has a processing means, and two new images generated by the image processing means are displayed on a display surface of the image display means of the information processing terminal of the other party.
  • the information processing system it is possible to avoid a problem in displaying images due to an excessively large parallax between two images captured by the imaging unit, and therefore, the communication partner It is possible to optimize the stereoscopic display for matching the eyes with the eyes, and to make the images easy to see and natural.
  • the method for displaying an interlocutor according to the present invention includes a pair of imaging devices provided on both left and right sides of an image display unit of a portable terminal.
  • a video of a user is captured by a pair of imaging means, and a signal relating to a left image and a signal relating to a right image of the user are obtained.
  • These signals are sent to the image display means of the terminal of the communication partner, and the pixels of the left image and the pixels of the right image are mixed and displayed, for example, so that the user's line of sight coincides with the viewpoint of the communication partner. Can be displayed.
  • the interlocutor display method includes an image processing step of generating a new image in which parallax is interpolated based on the two images captured in the video capturing step. It is desirable that two new images generated in the image processing step be displayed on the display surface of the image display means.
  • the interlocutor display method it is possible to avoid a problem in display due to an excessively large parallax between the two images captured by the imaging unit. It is possible to optimize the stereoscopic display to match the line of sight with the other party, and to make it easier to view and natural images.
  • an information processing apparatus that achieves the above-described object is an information processing apparatus that performs a dialogue with a video, and includes an image display unit that displays a required image in accordance with an image signal; Imaging means provided on each of the right and left sides of the means, and image processing means for generating a new image with parallax interpolated based on the two images obtained by the imaging means.
  • the display screen of the image display means displays two new images generated by the image processing means c.
  • imaging means are provided on both left and right sides of the image display means, and a new parallax-interpolated image is obtained based on the two images obtained by the imaging means.
  • an information processing apparatus that achieves the above-mentioned object is an information processing apparatus that performs a dialogue with a video, wherein the information processing apparatus is mounted on a surface of the housing, and required according to an image signal.
  • Image display means for displaying the image of the image display means, imaging means provided on the left and right sides of the image display means on the surface of the housing, and two images obtained by the imaging means.
  • Image processing means for generating a new image in which parallax is interpolated, and two new images generated by the image processing means are displayed on the display surface of the image display means. It is characterized by that.
  • Such an information processing apparatus has a structure in which the above information processing apparatus is mounted on a portable housing, and the imaging means mounted on each of the left and right sides is a surface of the housing. Since it is formed above, it is possible to take a thin structure as a whole, and the information processing device can be configured with a small and lightweight housing.
  • An information processing apparatus that achieves the above object is an information processing apparatus that performs a dialogue with a video, and includes a plurality of pixels that perform display based on a left-eye signal and a display based on a right-eye signal.
  • Image display means in which a plurality of pixels for performing Image capturing means provided, and image processing means for generating a new image with parallax interpolated based on the two images captured by the image capturing means, and provided on a display surface of the image display means. Is characterized in that two new images generated by the image processing means are displayed.
  • the imaging means is mounted without adjusting the position of the image display means, for example, without a positional relationship such that they are superimposed on each other.
  • the image display means includes a plurality of pixels performing display based on the signal for the left eye and a plurality of pixels performing display based on the signal for the right eye, and is obtained by being imaged by the imaging means.
  • the newly generated image is displayed by interpolating the parallax based on the two images, so the stereoscopic display to match the line of sight with the other party is optimized without the need for special equipment such as polarized glasses. This makes it possible to proceed with the conversation while keeping the gaze with the other party under a more natural image that is easier to see.
  • the information processing system includes, in addition to providing image display means capable of displaying an image including a face part of a call partner, image pickup means on each of the left and right sides of the image display means.
  • a plurality of information processing terminals for performing a dialogue with video each of the information processing terminals having a new parallax-interpolated based on two images captured by the imaging means.
  • Image processing means for generating a unique image, and when communicating between the information processing terminals, the two new images generated by the image processing means are transmitted to the information processing terminal of the other party.
  • the image is displayed on the display surface of the image display means.
  • the image pickup means is provided on each of the left and right sides, so that the right image pickup means looks from the right front of the user, and the left image pickup means shows the user's view.
  • the state seen from the front left is Each is captured as an image.
  • the image taken from the left side and the image taken from the right side are displayed together by the image display means of the information processing terminal on the other side.
  • the image display means displays a newly generated image by interpolating the parallax based on the two images obtained by the image pickup means, so that it is possible to match the gaze with the other party.
  • the 3D display can be optimized, and an image that is extremely easy to see and has a natural gaze direction can be obtained.
  • the method for displaying an interlocutor comprises: An image processing step of generating a new image with parallax interpolated based on the two images captured in the video capturing step, and an image display means of the other party's terminal displaying the image in the image processing step. And displaying the two new images so that the user's line of sight coincides with the viewpoint of the other party.
  • a user's video is captured by a pair of imaging means, and a new image in which parallax is interpolated based on the captured two images is generated.
  • the signal concerning the left image and the signal concerning the right image of the user are obtained.
  • the three-dimensional display to match the line of sight with the other party is optimized. This makes it possible to match the line of sight of the user with the viewpoint of the other party and display the same.
  • FIG. 1 is a schematic diagram of an example of the information processing device of the present invention.
  • 2A to 2C are schematic diagrams illustrating the principle of an example of the information processing device of the present invention.
  • FIG. 3 is a block diagram showing a schematic circuit configuration of an example of the information processing apparatus of the present invention.
  • FIG. 4 is a diagram showing a use state of a system using the information processing device of the present invention.
  • FIG. 5 is an explanatory diagram (X direction) of an emission angle of a light beam in the image display unit of the information processing device of the present invention.
  • FIG. 6 is an explanatory diagram (y-direction) of an emission angle of a light ray in the image display unit of the information processing device of the present invention.
  • FIG. 7 is a diagram illustrating a mounting position of a camera on an image display unit of an example of the information processing apparatus of the present invention.
  • FIG. 8 is a schematic diagram illustrating a configuration of a pixel of an image display unit of an example of the information processing device of the present invention.
  • FIGS. 9A to 9E are diagrams illustrating an example of an array pattern of left-eye pixels (L) and right-eye pixels (R) of an image display unit of an example of the information processing apparatus according to the present invention.
  • FIG. 10 is a schematic diagram showing a configuration near a pixel of an image display unit of an example of the information processing apparatus of the present invention. .
  • FIG. 11 is a cross-sectional view of an image display unit of an example of the information processing apparatus according to the present invention, and is a cross-sectional view in a case where the axes of the light emitting element and the microphone aperture lens are not shifted.
  • FIG. 12 is a cross-sectional view of an image display unit of an example of the information processing apparatus of the present invention, and is a cross-sectional view in a case where the axes of the light emitting element and the microphone aperture lens are misaligned.
  • FIGS. 13A and 13B are diagrams showing the spread of light rays by the light emitting element and the microlens as an example of the information processing apparatus of the present invention.
  • FIG. 13A shows the axis of the light emitting element and the microlens.
  • Figure 13B shows the spread of the light beam when the axis of the light emitting element and the microphone aperture lens are misaligned. It is the figure which simulated each of these.
  • FIGS. 14A to 14C are graphs showing optical calculation results on the size and the positional relationship between the microlens and the light-emitting element as an example of the information processing apparatus according to the present invention.
  • FIG. Fig. 14B is a graph showing the result of optical calculation of the element diameter and the spread angle of the light beam.
  • Fig. 14B is a graph showing the result of calculating the position of the lens and the optical axis direction and the spread of the light beam.
  • FIGS. 15A and 15B are graphs showing calculation results of an in-plane direction position of a light emitting element and an emission angle of a light ray.
  • FIGS. 15A and 15B show microlenses used as an example of the information processing apparatus of the present invention.
  • FIG. 15A is a diagram showing an example
  • FIG. 15A is a front view
  • FIG. 15B is a cross-sectional view.
  • FIG. 16 is a conceptual diagram for explaining the concept of image processing as a function of an example of the information processing apparatus of the present invention, and is a diagram for explaining a state of image processing for finding an image closest to a template from an image. is there.
  • FIG. 17 is a diagram showing parameters for parallax.
  • FIGS. 18A and 18B are diagrams showing an image display section of another example of the information processing apparatus of the present invention
  • FIG. 18A is a cross-sectional view showing the vicinity of a light emitting element and a cone type micro lens.
  • FIG. 18B is a perspective view of the cone-type microlens.
  • FIG. 19 is a schematic view illustrating parameters for explaining a relationship between light emission and an emission angle when a microlens or the like is used.
  • FIG. 20 is a schematic diagram illustrating the relationship between the partial area ratio to the global area and the exit angle ⁇ when a micro lens or the like is used.
  • FIG. 21 is a cross-sectional view showing an image display unit of still another example of the information processing device of the present invention.
  • FIGS. 22A and 22B are schematic diagrams showing an experiment in which the impression of an image whose gaze direction and the gaze direction were matched was examined.
  • FIG. 22B is a diagram when a monaural image is obtained.
  • FIGS. 23A and 23B are graphs showing the results of the experiments of FIGS. 22A and 22B, and FIG. 23A is a diagram when a stereoscopic image is obtained. B is a diagram when a monaural image is obtained.
  • FIG. 24 is a conceptual diagram illustrating the concept of interpolating parallax in the information processing apparatus of the present invention, and is based on two images captured by two cameras provided on the left and right sides of the image display unit.
  • FIG. 8 is a diagram for explaining how to generate a new image with small parallax as if it were obtained by being virtually imaged by two virtual cameras provided at a smaller interval than the two cameras.
  • FIG. 25 is a conceptual diagram illustrating the concept of image processing as a function of an example of the information processing apparatus according to the present invention, in which two images captured by two cameras provided on the left and right sides of the image display unit are shown.
  • FIG. 7 is a diagram for explaining a state of image processing for obtaining corresponding points of the image processing.
  • Figure 26 is a diagram schematically showing an example of an image generated by moving the image by half the number of pixels of the amount of displacement indicating parallax, taken from the center of the two cameras that took the two images
  • FIG. 8 is a diagram for explaining how an image equivalent to the generated image is generated.
  • FIGS. 27A and 27B are diagrams schematically showing a display screen when a camera is arranged on one of the left and right sides of a screen having a predetermined angle
  • FIG. 27A is a case on the left side
  • FIG. 27B is a diagram of the case on the right side.
  • FIGS. 28A and 28B are diagrams schematically showing a display screen when a camera is arranged on one of the upper and lower sides of a screen having a predetermined angle, and FIG. 28A shows an upper side of the screen.
  • FIG. 28B is a diagram of the lower case.
  • the mobile communication terminal 10 as an information processing apparatus has a housing 12 having a size that can be held by a user with one hand, and the longitudinal direction of the housing 12 is a vertical direction. It is configured to enable dialogue with An image display section 11 having a size of about 10 mm square to about 100 mm square is provided on the front side of the housing 12 so that its display surface is exposed to the outside. On the left and right sides of the image display section 11, a left camera 13L as an imaging section and a right camera 13R are provided.
  • a minor monitor 14 for monitoring the image of the face of the user is provided, and on the side of the minor monitor 14, the face of the user is displayed.
  • An indicator 17 is provided for notifying by flashing or the like when a large departure from the imaging region has occurred.
  • a button 15 and a key input unit 16 are formed below the minor monitor 14. In the portable communication terminal 10, the operation of the button 15 and the key input section 16 enables the dialing of a telephone number, the input of characters of an e-mail, the function control of the portable communication terminal 10, and the like. Become.
  • the left camera 13L and the right camera 13R as imaging units are disposed on the left and right sides of the image display unit 11, respectively.
  • the left camera 13L is provided so as to take an image from a slightly left front of the user using the mobile communication terminal 10
  • the right camera 13R is provided to take an image from a slightly right front of the user. It is provided as follows.
  • the left camera 13 L and the right camera 13 R are each composed of, for example, an optical system in which an M ⁇ S (Metal-Oxide Semiconductor) image sensor or a CCD (Charge Coupled Devices) image sensor and a lens are combined, Specifically, in the mobile communication terminal 10, the left camera 13 L and the right camera For example, a small and lightweight solid-state imaging device is used as the 13R.
  • M ⁇ S Metal-Oxide Semiconductor
  • CCD Charge Coupled Devices
  • the image display unit 11 is configured by mixing a plurality of pixels performing display based on the left-eye signal and a plurality of pixels performing display based on the right-eye signal.
  • the image display section 11 has emission means for independently emitting light to both eyes of the user.
  • a light emitting unit that generates required light based on a left-eye signal or a right-eye signal as an emission unit, and an emission angle that controls light from this light-emitting unit to emit in a predetermined angle direction
  • a control unit is composed of a plurality of light emitting diodes arranged, and the emission angle control section is composed of a micro lens array in which a plurality of micro lenses are arranged in a matrix. Note that the structure of the emitting means here is merely an example.
  • the injection angle control unit can also have various structures as described later. A method of mixing a plurality of pixels performing display based on the left-eye signal and a plurality of pixels performing display based on the right-eye signal will be described later.
  • the mobile communication terminal 10 shown as an embodiment of the present invention is a device that can compensate for this relatively easily perceived shift in the line of sight between left and right to realize realistic communication.
  • 2A to 2C are illustrations that briefly illustrate the concept.
  • FIG. 2A is an image from the left camera 13L. Since the left camera 13L is located on the left side of the center, the user's line of sight appears from the right.
  • FIG. 2B is an image from the right camera 13. Since the right camera 13 R is located on the right side of the center, the user's line of sight appears from the left. Then, FIG.
  • 2C shows a case where a plurality of pixels performing display based on the signal for the left eye and a plurality of pixels performing display based on the signal for the right eye are mixed and independently for both eyes of the user.
  • 3 shows a display screen when an image is displayed using the image display unit 11 having a mechanism for emitting light. That is, the mobile communication terminal 10 emits light toward the left eye of the user from each pixel of the image display unit 11 to which the signal for the left eye is sent exclusively, and emits the emitted light. Reaches the left eye of the user. Similarly, the mobile communication terminal 10 emits light toward the right eye of the user from each pixel of the image display unit 11 to which the signal for the right eye is sent exclusively, and the emitted light is used. Reaches his right eye.
  • the user sees a different image between the two eyes, but the user's cerebrum has the function of synthesizing and seeing it, and as a result, as shown in Fig.
  • the image may be a still image or a moving image.
  • the mobile communication terminal 10 can transmit and receive real-time video if there is enough transmission and reception bandwidth, but it is configured to transmit and receive compressed or thinned-out image data. Is also good.
  • FIG. 3 is a block diagram showing a circuit configuration example of the mobile communication terminal 10.
  • the control circuit 21 includes a CPU (Central Processing Unit), a video memory, and a required image information processing circuit, and the control circuit 21 also performs signal processing for preventing camera shake as described later.
  • the data processed by the control circuit 21 can be transmitted by the transmission / reception unit 28, and the data received by the transmission / reception unit 28 is transmitted to the control circuit 21.
  • the key input section 27 for example, a numeric keypad and a function setting button are arranged, and further, a jog dial, an input pad, other extended function devices, and the like may be arranged.
  • a signal from the left camera 24L and a signal from the right camera 24R are independently supplied to the control circuit 21.
  • the signal from the left camera 24 L includes video data captured from the user's slightly forward left, and the signal from the right camera 24 R captures an image from the user's slightly forward right. Includes video and overnight.
  • signals from the left camera 24 L and the right camera 24 R are transmitted to the transmission / reception unit 28 via the control circuit 21, and transmitted from the transmission / reception unit 28. Received by other mobile communication terminals. In the mobile communication terminal 10, it is possible to perform a call by transmitting and receiving such data overnight. In particular, in the present embodiment, as shown in FIG. Being able to see it means that a natural call can be made with the eyes aligned.
  • the signals from the left camera 24L and the right camera 24R are sent to other portable communication terminals, respectively, and can be projected on a small monitor screen via the control circuit 21. That is, the left camera 24 L and the right camera The signals from 24 R are sent to the minor monitor 25 via the control circuit 21 and the driver 26, respectively.
  • This allows the portable communication terminal 10 to see its own face while talking on a relatively small screen such as the minor monitor 14 shown in FIG. If you want to talk on a relatively small screen such as a main monitor 14 without checking your face, depending on the angle of the mobile communication terminal 10, the left camera 24 L and the right camera 2 At the center of the 4R, it may not be possible to capture your own face, and the face may be out of the camera's imaging range.
  • the minor monitor 25 is a device that prompts visual confirmation, but in the mobile communication terminal 10, signals from the left camera 24 L and the right camera 24 R are sent to the control circuit 21, respectively.
  • steady image processing such as camera shake prevention processing may be performed, and if an appropriate face cannot be displayed, the indicator 29 may be made to blink, and the minor monitor Control may be performed so as to display this on the screen of the main monitor 22 or the main monitor 22.
  • the signal from the other party is sent from the transmission / reception unit 28 to the control circuit 21, divided into a left-eye signal LE and a right-eye signal RE, and output from the control circuit 21.
  • the left-eye signal LE is sent to the left-eye driver 23 L for driving the left-eye pixel
  • the right-eye signal RE is sent to the right-eye driver 23L for driving the right-eye pixel.
  • the main monitor 22 that displays the other person's face is driven by signals from the left-eye driver 23 L and the right-eye driver 23 R. As described above, on the main monitor 22, pixels for the left eye and pixels for the right eye are mixed, for example, even lines are for the right eye and odd lines are for the left eye.
  • the block diagram shown in FIG. 3 merely shows an example of the mobile communication terminal 10, and other circuit configurations are possible.
  • the mobile communication terminal 10 only one of the signal LE for the left eye and the signal RE for the right eye may be sent to both drivers 23 L and 23 R by a button operation or the like. Also, it may be controlled so that the signal of the main monitor 122 and the signal of the minor monitor 25 are switched in accordance with a button operation, etc. It is also possible to display as follows. In the mobile communication terminal 10, not only the image but also the sound may be stereo simultaneously. Further, in the mobile communication terminal 10, signal reproduction for the left eye and signal reproduction for the right eye are performed only when necessary, and in a normal case, the screen is displayed with a signal that does not distinguish between left and right.
  • FIG. 4 is a diagram schematically showing a state in which a call is made using two mobile communication terminals 35 and 38 having the same configuration as the above-described mobile communication terminal 10.
  • the mobile communication terminal 35 carried by the user 33 has an image display section 36 and a pair of Cameras 37 L and 37 R are mounted.
  • the image display section 36 shows the face of the other party 34, and the face image is a natural-shaped image whose eyes are aligned according to the principle described above with reference to FIGS. 2A to 2C. It is said.
  • the portable communication terminal 38 held by the other party 34 has an image display unit 39 and a pair of cameras 40L and 40R.
  • the image display section 38 shows the face of the user 33, and similarly, the face image has a line of sight according to the principle described above with reference to FIGS. 2A to 2C. It is considered to be a natural shaped image that fits.
  • FIG. 5 is a diagram when the image display unit of the mobile communication terminal shown as the present embodiment is viewed from above.
  • a region bl indicates a range in which light emitted or reflected from the pixel on the left end of the display surface of the image display unit is strong enough to be seen.
  • the region b2 is a range of light emitted or reflected from the rightmost pixel on the display surface of the image display unit.
  • the angle Q continuously changes between the two so that they substantially overlap each other at a distance L apart from the display surface of the image display unit.
  • the distance is a dimension normally assumed as the distance to look at the display surface.
  • this distance L is set to 250 mm, which is called the clear vision distance of a person.
  • the distance L 2 is the assumed dimensions further consideration to see stretched out arm.
  • this distance L 2 is assumed to be 400 mm.
  • black dots b 3 and b 4 indicate the positions of the left eye E L1 and the right eye E R 1 at the distance L of the viewer of the display surface of the mobile communication terminal, respectively. Furthermore, black points b 3 ′ and b 4 ′ indicate the positions of both eyes at a distance L 2 , respectively.
  • the light in the regions indicated by the regions bl and b2 does not enter the right eye but can be seen only by the left eye.
  • the light angle is reversed left and right, pixels that can be seen only by the right eye can be set. Therefore, by displaying these images for the left and right eyes for each line and for each pixel with respect to the entire display pixels, stereoscopic vision becomes possible.
  • the distance D is the horizontal size of the display surface of the image display unit.
  • the width of the image display section of a portable device is about 20 mm to 80 mm due to a requirement that the image display section can be held in a hand.
  • D is 40 mm.
  • the values are designed so that the light spread is 10 ° so that the light for both eyes is not mixed as much as possible and there is no gap, so that the light reaches the eyes sufficiently.
  • the distance at which a part of the display surface becomes theoretically invisible in this setting is geometrically the shortest at 202 mm and the longest at 657 mm.
  • the divergence angle of this ray may be larger than 0.10 ° if the light can be separated into both eyes.
  • this spread is large, it is necessary to increase the exit angle of light rays, which makes optical design difficult.
  • the object of the present invention is a device that assumes that the user is an individual, it is not necessary to spread the light more than necessary in terms of privacy protection and energy consumption reduction. There are advantages.
  • the black spots b 3 ′ and b 4 ′ are at the same position (L 2 ).
  • this can be further generalized by the following equations.
  • the distance D x max from the center to the edge of the display surface of the image display unit is shorter than the distance E R 1 which is half the binocular distance.
  • the size of the display surface of the image display unit is small.
  • the distance 1 ⁇ is a dimension normally assumed as a distance for viewing the display surface, and is, for example, a clear visual distance of a person.
  • the distance L 2 is the assumed dimensions further consideration to see stretched out arm.
  • the distance Dx is the distance in the X direction (horizontal direction)
  • the distance Dy is the distance in the y direction (vertical direction). In other words, the calculation can be performed assuming that the position of the pixel for which the angular direction of the ejection is found exists in (D x D y).
  • the distance D x max from the center to the end of the display surface of the image display unit is longer than the half distance E R 1 of the binocular distance In this case, the size of the display surface of the image display unit is large.
  • the exit angle of the light beam is set as shown in the following equation (3).
  • the emission direction can be determined by calculating each of the pixels using the above equations (1) to (3). It is. For example, when the pixels for the right eye and the left eye are on a line-by-line basis, several points are extracted on the line, and the extracted points are expressed by the above equations (1) to (3). It is also possible to calculate using each of these, and for each point between the extraction points, set the data on the exit angle by a method such as linear interpolation.
  • the image display section 31 has a structure in which pixels are arranged in a matrix, and its outer shape is substantially rectangular. Although at least one camera is provided on each of the right and left sides, more cameras may be provided, for example, different types of cameras may be provided. One of the left and right cameras is a normal camera, and the other can be combined with a relatively simplified camera for synthesizing the eyes.
  • the position of each camera includes a position within a predetermined range from the left and right ends of the substantially rectangular image display unit 31 in the horizontal direction and from the upper and lower ends of the left and right ends, for example, in FIG.
  • the camera can be placed in the areas indicated by the areas 32L and 32R.
  • Region 3 2 L, 3 2 R shown in FIG. 7 is a side horizontal left right end of the image display unit 3 1 includes a strip-shaped region having a width H 2, the upper and under end of the substantially rectangular shape
  • the distance from the corner of the image display unit 31 is, for example, within a radius r. In the height direction, it also includes an area that extends above the substantially rectangular image display unit 31 by a distance of 11 inches.
  • the width H 2 is not particularly limited, for example, when the previous radius r about 2 0 mm likewise the width H 2 may be about 2 0 mm. It is preferable that the camera position as described above is fixed to the image display unit 31 because each of the optical systems (not shown) is provided. However, the camera itself can be freely moved in and out of the side of the image display unit 31. In addition, both or one of the pair of cameras may be attached at the time of imaging. It may be a structure that can be used. A glass or plastic lens is attached to the front end of the camera, but it can be covered with a cover when not in use to prevent scratches.
  • FIG. 8 is an enlarged view of a display pixel, and a region 51 indicated by a substantially square block corresponds to one pixel.
  • Four light-emitting elements 52 R, 52 G, 52 B, and 52 G are arranged in the area 51 of each pixel so as to occupy the positions of the four points of the dice.
  • the light emitting elements 52 R, 52 G, 52 B, 52 G are composed of semiconductor light emitting elements such as light emitting diodes.
  • the light-emitting element 52R is an element that emits red light
  • the light-emitting element 52G is an element that emits green light
  • the light-emitting element 52B is an element that emits blue light.
  • the light-emitting elements 52G that emit green light are more easily resolved by human eyes than elements that emit other light-emitting colors, so the green light-emitting elements 52G are densely arranged. By doing so, it is possible to give a uniform impression.
  • a transmissive display element having a color filter such as a color liquid crystal may be used as an element constituting the image display unit, or some kind of reflective display element. You may.
  • images In order to configure an image display unit capable of performing required stereoscopic viewing by emitting light beams to the left and right eyes using the pixel region 51 as described above, images must be distributed for each line and each pixel. Just set it.
  • FIGS. 9A to 9E are diagrams showing examples of left and right video distribution patterns for realizing stereoscopic vision.
  • “L” is a pixel that generates light according to data for the left eye, and emits a light beam toward the left eye.
  • “R” is a pixel that generates light based on data for the right eye, and emits a light beam toward the right eye.
  • FIG. 9A shows a pattern in which pixels for the left eye indicated by "L” and pixels for the right eye indicated by "R” are alternately arranged for each horizontal line.
  • FIG. 9B shows a pattern in which pixels for the left eye indicated by "L” and pixels for the right eye indicated by “R” are alternately arranged for each vertical line.
  • FIG. 9C shows a checkered pattern. This figure shows a pattern in which pixels for the left eye and pixels for the eye appear alternately.One pixel for the left eye and one pixel for the right eye appear alternately on a horizontal line, one pixel at a time. The horizontal line indicates a pattern in which a similar pattern appears shifted by one pixel in the horizontal direction.
  • FIG. 9D shows a case where a checkered pattern is formed for each pixel size of 2 ⁇ 2 pixels, similar to FIG. 9C.
  • FIG. 9D shows a case where a checkered pattern is formed for each pixel size of 2 ⁇ 2 pixels, similar to FIG. 9C.
  • FIGS. 9A to 9E two pixels for the left eye and pixels for the right eye appear alternately every two pixels in one horizontal line, and a similar pattern appears horizontally in the current horizontal line and the next horizontal line.
  • This figure shows a pattern that appears to be shifted by each pixel.
  • the patterns shown in FIGS. 9A to 9E are examples, and other patterns can be formed. The entire surface can be formed with the same pattern.However, for example, different patterns may be used on the center side of the image display area and near the periphery. May be arranged. Also, instead of assigning the left-eye pixels and right-eye pixels to a regular pattern, the wiring for the left-eye pixels and the right-eye pixels is assigned in an irregular pattern although the wiring is complicated. You may.
  • microlenses which are minute lenses
  • FIG. 10 is a diagram showing a state in which four light emitting elements 63G, 63B, 63R composed of semiconductor light emitting elements such as light emitting diodes and semiconductor lasers are arranged for one pixel 61. It is.
  • Light emitting element 63 R emits red light
  • the light emitting element 63 G is an element that emits green light
  • the light emitting element 63 B is an element that emits blue light.
  • the green light-emitting element 63 G emits green light more easily than the other light-emitting elements. By arranging them densely, it is possible to give a uniform impression.
  • microlenses 62 made of a spherical transparent body are arranged on the surface side of the image display section, which is the light emission side of such light emitting elements 63G, 63B, 63R.
  • the microlens 62 is an emission angle control unit that controls the light from the light emitting elements 63G, 63B, and 63R so as to emit the light in a predetermined angle direction to the left eye or the right eye. It is formed of a transparent synthetic resin such as polymethyl methacrylate) or glass.
  • the shape of the microlens is not limited to a sphere, but may be a cone, a pyramid, or a rectangle.
  • each microlens 62 has a function of controlling the light emission angle, an opening for each light-emitting element pointing to one of both eyes of the user is provided on a shielding plate or the like for that purpose.
  • a method of shifting the position of the microlens 62 from the optical axis of light from the light emitting elements 63G, 63B, 63R is also possible.
  • FIGS. 11 and 12 are schematic cross-sectional views for explaining an example in which the emission direction of the light beam is controlled by the position of the microlens 62.
  • FIG. FIG. 12 shows an example in which the axes of the microlens 62 and the microlens 62 coincide with each other.
  • FIG. 12 shows an example in which the axes of the light emitting element 63G and the microlens 62 are misaligned.
  • the size of the light emitting element 630 is indicated by ⁇ . ! ⁇ Is about 30 im, which is representative of a light emitting element 63 G that emits green light.
  • the z-axis direction is the normal direction of the display surface of the image display unit, and here, the z-axis direction is the light emission direction.
  • the light-emitting element 63G is, for example, a GaN-based light-emitting diode, and a blue light-emitting diode can also be constituted by a GaN-based semiconductor or the like. Further, the light-emitting element 63R that emits red light may be composed of a GaAs-based compound semiconductor or the like.
  • Each light emitting element 63G is adhered on a support substrate 65, and is arranged in a matrix at a pitch of about 300m to 300m.
  • a molded holding member 66 which functions as a holding member for the microlenses 62 and also functions as a shielding plate for restricting light from the light emitting element to an appropriate angle, is provided on the support substrate 65.
  • the molded holding member 66 has an opening corresponding to the position of each light emitting element. From the opening, the diameter is enlarged with a substantially frustoconical shape, and a micro end is provided at the end opposite to the light emitting element.
  • the black lens 62 is configured to be fitted. The molded holding member 66 and the microlens 62, and the molded holding member 66 and the support substrate 65 are adhered and fixed to each other.
  • the microlenses 62 are connected and held by a holding portion 64 that holds the lens at the maximum diameter portion.
  • the diameter LENS of each microlens 62 is set to about 300 m here. ing. With such a configuration, a gap is formed at the bottom of the microlens 62 attached to the opening of the molded holding member 66 by a distance d between the microlens 62 and the light emitting element 63G, and light passes through the gap. It passes through and is introduced into the micro lens 62.
  • FIG. 12 shows an example in which the axes of the light emitting element 63G and the microlens 62 are shifted as described above.
  • the light emitting element 63 G is positioned at a distance from a line passing through the center of the microlens 62 and parallel to the z-axis. It is arranged at a position shifted by the distance y. If the light-emitting element 63G is arranged at such a position shifted by the distance ⁇ y, light emitted from the light-emitting element 63G is bent from the misalignment of the axis of the microlens 62. From the setting of such a positional relationship, light can be emitted in the direction toward the right eye and the left eye.
  • the method of shifting the axis of the light emitting element 6 3 G and the micro lens 6 2 includes a method of shifting the position of the light emitting element 6 3 on the support substrate 65, a method of shifting the position of the micro lens 62, and a method of shifting the micro lens 6.
  • a method of shifting the position of the microlens 62 by shifting the position of the opening of the molding and holding member 66 may be used.
  • the method of shifting the position of the microlens 62 is adopted, and the center of the opening of the molded holding member 66 is fixed so that the axis of the microlens 62 does not match. I have.
  • FIG. 12 only the displacement in the y direction is shown, but not only in the y direction but also in the z direction and the X direction in order to enable light to be emitted in the direction toward the right and left eyes. The deviation may be included.
  • FIG. 13A simulates the spread of light rays when the axes of the light-emitting element 63G and the microlens 62 are coincident.
  • Fig. 13B shows the light-emitting element 63G and the microlens. This is a simulation of the spread of light rays when the axis is shifted from 62. That is, FIG. 13A shows the relationship between the light emitting element having the structure of FIG. 11 and the microlens, and FIG. 13B shows the relationship between the light emitting element having the structure of FIG. 12 and the microlens. It shows the relationship.
  • the center is about the z-axis, which is the normal direction of the display surface of the image display section.
  • the axes of the light emitting element 6 3 G and the microlens 62 are misaligned, an angle is given to the light emitting direction as shown in FIG. Slightly diagonally above The light rays will be emitted toward the other side.
  • the material of the microphone aperture lens is PMMA
  • the size is 300 m in diameter
  • the size of the light emitting element is 30 m in diameter
  • the distance between the light emitting element and the microlens is Is set to 50 m, FIG.
  • the refractive index changes according to the wavelength.
  • the following table shows the relationship. The calculation is performed using the data shown in the following table.
  • optical calculations as shown in FIGS. 14A to 14C are performed.
  • the graph shown in FIG. 14A shows the result of optical calculation of the diameter of the light emitting element and the spread angle of the light beam.
  • the conditions were the same as in the case shown in Fig. 13A, the material of the microlens was PMMA, the size was 300 m in diameter, and the distance between the light emitting element and the microphone aperture lens was 50 ⁇ m.
  • the size of the light emitting element is changed.
  • the size of the light emitting element is preferably about 30 m in diameter. Since the comparison between the size of the microphone aperture lens and the size of the light emitting element is relative, for example, the size ratio between the micro lens and the light emitting element is set to 30: 1 to 5: 1. Is preferred.
  • the graph shown in Fig. 14B shows the result of calculating the effect of the distance between the light emitting element and the microlens on the spread angle of the light beam.
  • the conditions are the same as in the case of Fig. 14A.
  • the material of the microlens is PMM A, the size is 300 mm, the size of the light emitting element is 3 Om, and the light emitting element and the micro lens are And the distance d is variable. From these results, it can be seen that it is preferable to set the distance between the light emitting element and the micro-aperture lens to about 50 im in order to set the spread angle of the light beam to 10 °.
  • the upper and lower angles mean the range of 0 in the light spread area shown in FIG.
  • the center is a plot of the center of those angles. From the explanation of Fig. 5, it is necessary to change from 0.43 ° to 19.57 ° depending on the position of the display surface in order to distribute images to the left and right eyes. From the graph shown in Fig. 14C, it can be seen that in order to satisfy this condition, the distance ⁇ y should be changed linearly from approximately 0 to 35 m. Such a linear calculation can be approximately given by the following equation (4).
  • Vy relative position of the light emitting element in the horizontal direction with respect to the lens
  • the advantages of using a microlens include, as described above, high light use efficiency and low power consumption, as well as reflection of external light obliquely entering the eye.
  • High contrast, high image quality, and the lens effect increases the apparent size of the pixels, which reduces the apparent pixel spacing and visually separates the pixels. For example, it is possible to prevent the image from being seen visually, and to obtain a continuous image with a relatively small number of pixels.
  • FIGS. 15A and 15B Next, an example of a microlens will be described with reference to FIGS. 15A and 15B.
  • FIG. 15A is a front view of the microlens
  • FIG. 15B is a cross-sectional view of the microlens.
  • the microlenses shown in FIGS. 15A and 15B have a structure in which the individual microlenses formed of substantially transparent spheres are held by a substantially flat holding member at the maximum diameter portion. They are arranged densely. The diameter of each micro lens is, for example, about 300 m. It is also possible to form an image display section by bonding such individual microphone aperture lenses to an array of light emitting elements while holding them on a substantially flat holding member, and it is possible to position individual micro lenses. Since it becomes unnecessary, the manufacturing cost of the mobile communication terminal can be reduced. Next, as an example of the image processing applied to the present embodiment, a method of keeping the position of the eye stable will be described.
  • the cameras 13 L and 13 R that capture the face are respectively installed on both sides of the image display section 11, and the minor monitor 14 has its own for confirmation. Since the face is displayed, it can be adjusted to some extent so that the face is within the imaging range of the camera. However, the positional relationship between the displayed image of the face of the interlocutor and the camera usually fluctuates greatly when it is hand-held. The shift in the direction of the line of sight does not become extremely large as long as the face of the interlocutor is almost included on the display surface.However, in order to further match the line of sight and reduce the blur of the screen, It is preferable to provide a function for stabilizing the position.
  • the method of stabilizing the eye position is to provide a margin in the area imaged by the cameras 13L and 13R, and to image an area one size larger than the face. Then, on the display side, the position of the eye of the interlocutor is adjusted by image processing so as to be on a line connecting the cameras 13 L and 13 R and their centers approaching each other, and then displayed.
  • a method of detecting the position of the eyes from the face image a widely known image recognition method can be used.
  • a method based on correlation detection will be described.
  • FIG. 16 is a conceptual diagram illustrating the process of finding the closest to the template from the image. This correlation detection uses a calculation formula of a correlation value represented by the following equation (5). Correlation coefficient covariance variance
  • the coordinate value (i, j) at which the correlation coefficient c; j becomes maximum gives the matching position.
  • g is a template image. In this case, images of a standard eye, nose, eyebrows, mouth, etc. are registered in the memory in advance.
  • F is the target display image.
  • FIG. 17 illustrates parameters related to parallax, and the calculation is performed using the following equation (6).
  • Absolute parallax convergence angle: y f , y f
  • a template of a face part of appropriate size can be used. Then, the input screen is searched using the template, and the position of the face eye is grasped by finding the position having the largest correlation value. Then, the screen is translated or rotated, or enlarged or reduced so that the position of the eye overlaps as much as possible in the left and right images and the center thereof approaches the position corresponding to the center of the camera on the display screen. Also at this time, it is possible to perform appropriate display by using a matrix as shown in the above equation (7) for converting the image. Next, another example of the structure of the image display unit will be described with reference to FIGS. 18A and 18B.
  • FIG. 18A and FIG. 18B are examples of an image display unit using a cone type lens.
  • FIG. 18A is a cross-sectional view of the image display unit
  • FIG. 18B is a lens. It is a perspective view of.
  • light-emitting elements 74 and 75 such as light-emitting diodes are arranged on a support substrate 77.
  • the light emitting element 74 is formed at a substantially central portion of a gap 76 formed by the molding and holding member 3 so that the direction of the emitted light beam is substantially the z direction, and the light emitting element 75 emits light.
  • the molding and holding member 73 is formed by the molding and holding member 73 to shift the direction of the light beam in the y direction, and is formed by shifting in the y direction from a substantially central portion of the gap 76.
  • the molded holding member 73 is a member formed by molding a required synthetic resin, functions as a holding member for the cone-shaped micro lenses 71 and 72, and restricts light from the light emitting element to an appropriate angle. It also functions as a shield plate for
  • the micro lenses 71 and 72 have cone shapes, and the large-diameter end on the bottom side has light emitting elements 74 and 7. It is configured so as to face the space 5 via a gap 76, and is arranged such that the narrowed end faces 78, 799 having a small diameter are on the display surface side.
  • the axial direction of the microlenses 7 1 and 7 2 coincides with the light emission direction, if the micro lenses 7 1 and 7 2 are inclined in the direction in which light rays should be emitted, the desired light emission The angle can be adjusted.
  • the light from 4, 7 5 can be collected and emitted from the end faces 7 8, 7 9.
  • Figure 19 shows the sphere area S with respect to the angle ⁇ from the origin, and illustrates the parameters over time.
  • r is the radius of the virtual sphere, and h gives the diameter of the portion where the ray of angle ⁇ intersects the virtual sphere.
  • S is the sphere area cut off by a cone according to the angle s rati . Is the ratio of the spherical area S to the global area.
  • FIG. 20 shows the angle ⁇ calculated from the equations shown on the left side of FIG. 19 and the sphere area ratio S rat ; FIG. In particular, when the angle ⁇ > force is 10 ° (0.174 rad), the sphere area ratio is S rat ;. May be an extremely small value of 0.001 920 265.
  • the angle of the emitted light beam is narrowed down to within 10 ° and emitted, so that the amount of light of 1 Z 2 63 is sufficient. It is suggested that a good image can be obtained by controlling the angle of the emitted light beam without increasing the amount of light. In addition, this means that the contrast can be increased when driving the light emitting device with the same power.
  • a clear line of sight can be obtained. An interactive screen will be displayed.
  • FIG. 21 is a cross-sectional view illustrating still another example of the structure of the image display unit.
  • light emitting elements 83 and 84 such as light emitting diodes are mounted on a substrate 82, and these light emitting elements 83 and 84 are arranged in a matrix.
  • Micro-diffraction plates 85 L and 85 R are formed on the front side of the substrate 82.
  • Transparent substrate 81 is attached.
  • the micro-diffraction plates 85 L and 85 R have the function of bending the light beams emitted from the light emitting elements 83 and 84 by the diffraction phenomenon, respectively. And sent to the user.
  • the micro-diffraction plate 85L controls the exit angle of the light beam so that it can be seen by the left eye of the user, and the micro-diffraction plate 85R can emit the light beam so that it can be seen by the right eye of the user. Control the angle.
  • the function of synthesizing and viewing it in the cerebrum of the user works, and as a result, as shown in Fig. 2C, the screen that matches the eyes is displayed. This will enable a natural call that matches the gaze.
  • a method of mixing a plurality of pixels performing display based on the left-eye signal and a plurality of pixels performing display based on the right-eye signal in the image display unit is spatially mixed.
  • Display based on the left-eye signal is performed by switching between display based on the left-eye signal and display based on the right-eye signal in a time-division manner.
  • a plurality of pixels and a plurality of pixels performing display based on the right-eye signal may be mixed.
  • Fig. 22A and Fig. 22B are diagrams showing the state of an experiment for examining the impression of gaze direction and gaze coincidence
  • Fig. 22A is a diagram when images are captured from the left and right cameras
  • 22B is a diagram when a camera is assumed to be at the center of the virtual screen.
  • the cameras are on both sides of the virtual screen and have the structure of the mobile communication terminal described as the present embodiment.
  • the distance between the pair of force lenses is 65 mm, which is the same as the distance between both eyes.
  • 7 points of interest are set in the vertical direction and 7 points in the horizontal direction.
  • the results of examining the impression at that time are shown in FIGS. 23A and 23B.
  • the distance between the gazing points is 12.5 mm, and this distance is equivalent to an angle of 2.56 °.
  • the subject looked at the point of gaze at a position 280 mm from the virtual screen.
  • the mobile communication terminal described as the present embodiment has a camera on each of the left and right sides of the image display unit, so that it is possible to interact with the other party while keeping their eyes on the same, thereby providing a sense of presence. It is possible to have a dialogue.
  • higher light use efficiency enables lower power consumption, and high contrast images can be viewed even in bright outdoor environments.
  • a mobile communication terminal has a structure in which imaging devices are arranged on both left and right sides of a display screen, so that it can be downsized and is extremely useful as a portable device.
  • cameras are provided on each of the left and right sides of the image display unit, and three-dimensional display for matching the line of sight with the other party is performed based on the two images captured by the cameras.
  • three-dimensional display for matching the line of sight with the other party is performed based on the two images captured by the cameras.
  • the parallax is small as if the image was obtained by two virtual cameras V R , VL provided at a smaller interval than the two cameras R R , RL
  • the parallax can be set to an appropriate size, thereby realizing an extremely easy-to-see natural image display.
  • the disparity is defined as the relative disparity as the difference in the angle of convergence as shown in the above equation (6), but here, for simplicity, the two cameras provided on the left and right sides of the image display unit are used. Therefore, the difference between the corresponding points of the two images captured is treated as the number of pixels.
  • an image recognition method based on correlation detection can be used to find a corresponding point between two images. That is, in a mobile communication terminal, as shown in FIG. 25, a predetermined area such as a contour of a face with respect to a background and positions of eyes and nose from an image taken by a camera provided on the left side of an image display unit.
  • the control circuit 21 extracts an area of 2 u ⁇ 2 v with the center coordinate value (i, j) from the image L as a template image g. , P and q are variable, and a search is made for a 2uX by 2v region where the center coordinate value is (i + P, j + q), and by finding a region where the correlation coefficient pq is maximum.
  • the search range of the target image f corresponding to the template image g is determined according to the position of the template image g in the image L. Can be limited in advance, and processing can be performed efficiently. Note that this correlation detection uses the equation for calculating the correlation value expressed by the following equation (8).
  • g ′ indicates the average value of the template image ′ and f ′ indicates the average value of the target image f.
  • P, q where ⁇ pq is the maximum indicates the number of pixels of the displacement amount of the target image f with respect to the template image g, and corresponds to the parallax. . Therefore, in the mobile communication terminal, an image of an arbitrary parallax can be generated from one of the images R and L by adjusting the amount of the shift.
  • the displacement amount indicating parallax is 1
  • the image is generated by moving the image L by the number of pixels of (p / 2, Q / 2) / 2
  • the image is captured from the center of the two cameras that captured the images R and L, as shown in Fig. 26.
  • Image that is, an image equivalent to an image of a subject viewed from the front can be generated.
  • a mobile communication terminal In the case of a mobile communication terminal, if there is no pixel to be drawn at the original position where the pixel is moved, the pixel is filled with a pixel obtained by interpolating from the pixel such as the left and right or the left and right and up and down of the pixel. Deficiency can be avoided. Also, in a mobile communication terminal, when there is a large parallax between the images R and L, if there is a hidden portion called so-called occlusion that appears only in one image and does not appear in the other image, In some cases, an appropriate point of correspondence cannot be found. However, this occlusion occurs even in situations where people are looking at the natural world, and if it is equal to this degree, it will hardly cause any discomfort.
  • the process of calculating the number of pixels of the shift amount of the target image ⁇ ⁇ corresponding to the template image g is preferably performed on the entire image range, and the predetermined pixel based on the number of pixels of the obtained shift amount is determined.
  • Two new images are generated by moving two images R and L by the number.
  • the mobile communication terminal generates two new images with small parallax as if they were obtained by two virtual cameras provided at a smaller interval than the images R and L. be able to.
  • the mobile communication terminal by displaying these two newly generated images on the image display unit, the user can reduce the distance between cameras and reduce the parallax. You can see two images, and you can feel as if a stereoscopic image with very easy-to-view high-quality eyes was displayed.
  • the parallax required from the two images L is reduced and set to an appropriate arbitrary ratio, so that the left and right This makes it possible to reduce the displacement of the visible image of the subject and to provide a more easily viewable three-dimensional display.
  • parallax interpolation technology can be used to increase the number of viewpoints. That is, in a mobile communication terminal, usually, only two viewpoint images can be generated from two cameras, but based on these two images, for example, the parallax becomes 1/2, respectively. By generating an interpolated image as described above, an image of four viewpoints can be generated. Also, in a mobile communication terminal, by interpolating so that the parallax is reduced to a predetermined amount, a multi-viewpoint image can be generated, and the obtained images can be obtained by using a lenticular lens or the like. By appropriately performing stereoscopic display, it is possible to reduce a so-called flicking phenomenon in which an image changes rapidly due to a difference in viewpoint position, and it is possible to perform higher quality stereoscopic display.
  • any method other than the correlation detection can be applied.
  • a so-called difference value between the brightness values of the two images is used.
  • the method of Sum of Difference can be used, and the so-called residual sum of squares (SSD) method can also be used.
  • the above-described correlation detection method gives the most accurate result in order to normalize these two images. It goes without saying that it can be obtained.
  • the mobile communication terminal that performs the process of interpolating parallax based on two images obtained by capturing images by the cameras provided on each of the left and right sides of the image display unit may be the transmitting side.
  • the receiving side may be used.
  • the mobile communication terminal described as this embodiment has Interpolation of parallax based on two images obtained by cameras provided on the left and right sides of the display unit optimizes the stereoscopic display to match the line of sight with the other party, Furthermore, since the image can be made natural and easy to see, it does not cause a situation where the parallax becomes too large to be able to fuse the image as a double image, and the fusion becomes so large as to cause fatigue of the user. It is possible to provide extremely excellent convenience without causing a situation in which the formed image is difficult to see.
  • the technique of interpolating parallax based on two images obtained by imaging with cameras provided on each of the left and right sides of the image display unit is not limited to mobile communication terminals.
  • the present invention can be applied to any information processing device that performs display. Industrial applicability
  • the present invention it is possible to have a conversation with a mobile communication terminal while matching the line of sight with a communication partner, and a realistic conversation can be achieved.
  • the higher light use efficiency enables lower power consumption, and high contrast images can be viewed even in bright outdoor environments.
  • the structure in which imaging devices are arranged on both sides of the display screen enables miniaturization, which is extremely useful for a portable information processing device.
  • the present invention by generating a new image in which parallax is interpolated based on two images obtained by imaging by the imaging means, it is possible to optimize a stereoscopic display for matching a line of sight with a communication partner.
  • the image can be made more natural and easy to see, it does not lead to a situation where the parallax becomes too large to be able to fuse as a double image, and the fusion becomes so large as to cause fatigue of the user. It is possible to provide extremely excellent convenience without causing a situation in which the formed image is difficult to see.

Abstract

An information processing apparatus has an image display part for displaying a desired image in accordance with an image signal; and imaging parts provided on right and left sides of the image display part. An image obtained from the right side and an image obtained from the left side are combined and displayed, as a desired image, on an image display part of the other end’s terminal or the like. This realizes displays in which speakers can have eye contacts with each other. In this way, there can be provided information processing apparatus, such as a mobile communication terminal, that allows dialogues with speaker’s natural eye contacts realized.

Description

明 細 書 情報処理装置、 情報処理システム、 及び対話者表示方法 技術分野  Description Information processing apparatus, information processing system, and interlocutor display method
本発明は通話相手の画像表示が可能な携帯通信端末等の情報処理装置. 情報処理システム、及び携帯通信端末等を用いた対話者表示方法に関し、 特に、 通話相手を画像表示する際に該通話相手の視線を端末使用者に合 わせて表示させる情報処理装置、 情報処理システム、 及び携帯通信端末 等を用いた対話者表示方法に関する。 背景技術  The present invention relates to an information processing apparatus such as a mobile communication terminal capable of displaying an image of a communication partner. The present invention relates to an information processing apparatus, an information processing system, and a method for displaying an interlocutor using a mobile communication terminal or the like for displaying the other party's line of sight according to the terminal user. Background art
近年、 携帯電話機等の携帯通信端末が著しく普及しているが、 これら 携帯通信端末には、 音声による通話機能に加えて、 電子メールの送受信 や、 インタ一ネッ トへのアクセス、 さらには、 通話相手のカメラで撮像 された静止画や動画の受信といった様々な機能が搭載されるようになつ てきている。 また、 近年では、 携帯電話機に限らず、 遠隔地間を映像 - 音声通信網で接続するテレビ会議システムやテレビ電話といった双方向 映像通信システムも普及してきている。  In recent years, mobile communication terminals such as mobile phones have become extremely popular. In addition to voice communication functions, these mobile communication terminals are capable of sending and receiving e-mail, accessing the Internet, Various functions, such as receiving still images and moving images captured by the other party's camera, have become available. In recent years, not only mobile phones, but also two-way video communication systems such as video conference systems and video phones that connect remote locations with a video-voice communication network have become widespread.
また、 携帯電話機や双方向映像通信システムとしては、 使用者の顔等 を撮像するカメラの近傍に配置される画像表示装置に通話相手の映像が 映し出されるように構成されるものがある。 このような携帯電話機や双 方向映像通信システムの使用者は、 通常、 画像表示装置に映し出される 通話相手の顔といった映像を見ながら対話を進めることになる。  Some mobile phones and two-way video communication systems are configured so that an image of a communication partner is displayed on an image display device arranged near a camera that images a user's face and the like. A user of such a mobile phone or a two-way video communication system usually proceeds with a conversation while watching an image such as a face of a call partner displayed on an image display device.
ところで、 携帯電話機等の比較的に小さな機器に対してカメラ等の撮' 像デバイスを搭載した場合には、 例えば画像表示部のサイズが 5 0 mm 四方程度の小さなものであっても、 その画像表示部の左右領域や上下領 域に撮像デバイスが配設されている場合には、 その撮像された顔画像の 視線は、 相手を表示している画像表示部を見ている限り、 撮像デバイス を向く ことにならない。 その結果、 このような機器においては、 画像表 示部には視線の合わない顔画像が表示されることになる。 したがって、 このような機器においては、 視線の合わない画像をもって通話相手と通 話することになることから、 不自然な感が否めず、 対話の印象として臨 場感を失うという問題があった。 By the way, when an imaging device such as a camera is mounted on a relatively small device such as a mobile phone, for example, the size of the image display unit is 50 mm. Even if it is as small as four sides, if the imaging device is arranged in the left and right areas or the upper and lower areas of the image display unit, the line of sight of the captured face image indicates the other party As long as you look at the image display, you will not face the imaging device. As a result, in such a device, a face image that does not match the line of sight is displayed on the image display unit. Therefore, in such a device, since the user talks with the other party with an image that does not match the line of sight, there is a problem that an unnatural feeling cannot be denied and the sense of reality is lost as the impression of the dialogue.
具体的には、 このような不具合は、 図 2 7 A、 図 2 7 B、 図 2 8 A及 び図 2 8 Bを用いて説明することができる。これら図 2 7 A、図 2 7 B、 図 2 8 A及び図 2 8 Bは、 端末の画像表示部上でそれぞれ視線方向が一 致しない例を示した図である。 これらの例は、 カメラの位置を画像表示 部の中心から 6 5 m mの位置に配置し、 距離約 2 5 c mのところに使用 者の顔を位置させて画像表示部の中央を見据えた場合の画像を示したも のである。  Specifically, such a defect can be described with reference to FIGS. 27A, 27B, 28A, and 28B. FIG. 27A, FIG. 27B, FIG. 28A, and FIG. 28B are diagrams showing examples in which the viewing directions do not match on the image display unit of the terminal. In these examples, the camera is located 65 mm from the center of the image display, the user's face is positioned at a distance of about 25 cm, and the user looks at the center of the image display. The image is shown.
図 2 7 A及び図 2 7 Bは、 5 0 m m四方程度の画像表示部の左側領域 又は右側領域の一方にカメラを配置して撮像した場合に、 画像表示部に 表示される画像の様子を模式的に示す図である。 図 2 7 Aは、 カメラを 画像表示部に向かって左側に配置した場合のカメラ画像であり、 図 2 7 Bは、 カメラを画像表示部に向かって右側に配置した場合のカメラ画像 である。 このように、 カメラ画像は、 いずれも視線が画像表示部から使 用者の方には向かないことになり、 不自然な対話画面となる。  Figure 27A and Figure 27B show the appearance of the image displayed on the image display unit when the camera is placed in one of the left and right areas of the image display unit, which is about 50 mm square. It is a figure which shows typically. FIG. 27A is a camera image when the camera is arranged on the left side toward the image display unit, and FIG. 27B is a camera image when the camera is arranged on the right side toward the image display unit. In this way, all camera images have an unnatural dialogue screen because their eyes are not directed toward the user from the image display unit.
同様に、 図 2 8 A及び図 2 8 Bは、 5 0 m m四方程度の画像表示部の 上側領域又は下側領域の一方にカメラを配置して撮像した場合に、 画像 表示部に表示される画像の様子を模式的に示す図である。 図 2 8 Aは、 カメラを画像表示部の上側に配置した場合のカメラ画像であり、 図 2 8 Bは、 カメラを表示画面の下側に配置した場合のカメラ画像である。 こ の場合にも、 カメラ画像は、 いずれも視線が画像表示部から使用者の方 には向かないことになり、 不自然な対話画面となる。 Similarly, FIGS. 28A and 28B are displayed on the image display section when the camera is arranged in one of the upper area and the lower area of the image display section of about 50 mm square and picked up. It is a figure which shows the mode of an image typically. Figure 28A shows a camera image when the camera is placed above the image display section. B is a camera image when the camera is arranged below the display screen. In this case as well, the camera image does not look directly at the user from the image display unit, resulting in an unnatural dialog screen.
このような不自然さを払拭するために、 従来から各種の視線合わせの 技術が考案されている。  In order to eliminate such unnaturalness, various gaze matching technologies have been devised.
そのような技術としては、 画像表示部の表面に略平板状の微小ハーフ ミラーを配設し、 画像表示部で表示された画像を、 この微小ハーフミラ 一を透過して表示させるとともに、 使用者の映像を、 微小ハーフミラー の表面で反射する反射光を撮像用のカメラで受けることによって撮像す るものがある。 このような技術においては、 使用者の画像表示部を見る 視線と反射前の微小ハ一フミラーの入射光の光軸とがー致することから. 視線を合わせた表示を行うことが可能となる。  As such a technology, a micromirror of a substantially flat plate shape is arranged on the surface of the image display unit, and an image displayed on the image display unit is displayed through the micromirror and displayed by the user. In some cases, an image is captured by receiving reflected light reflected on the surface of a minute half mirror with an imaging camera. In such a technique, since the line of sight of the user who looks at the image display unit and the optical axis of the incident light of the minute half mirror before reflection are matched, it is possible to perform a display that matches the line of sight. .
また、 他の技術としては、 例えば、 光を透過できる構造の画像表示部 を設け、 使用者に対して画像表示部の裏側にカメラを配置するものがあ る。 この技術においては、 画像表示部が時分割で表示状態と透過状態と を繰り返すことになり、 画像表示部が透過状態の際に、 使用者の撮像が 行われることになる。 そして、 この技術においては、 透過状態とは異な る期間にて、 所要の映像信号が画像表示部に送られ、 通話相手の画像が 表示される。 このような技術においても、 画像表示部による光の射出方 向と画像表示部の裏側に配置されたカメラへの透過入射光の光軸とがー 致することから、 視線を合わせた表示を行うことが可能となる。  Further, as another technique, for example, there is a technique in which an image display unit having a structure capable of transmitting light is provided, and a camera is arranged behind the image display unit for a user. In this technique, the image display unit repeats the display state and the transmission state in a time-division manner, and when the image display unit is in the transmission state, an image of the user is taken. In this technique, a required video signal is sent to the image display unit during a period different from the transmission state, and an image of the other party is displayed. Even in such a technique, since the light emission direction of the image display unit and the optical axis of the incident light transmitted to the camera arranged on the back side of the image display unit match, the display is performed with the eyes aligned. It becomes possible.
さらに、 他の技術としては、 特開平 4 ^ 1 6 7 6 9 0号公報に記載さ れるような表示 ·撮像装置が知られている。 この表示 ·撮像装置は、 画 像表示部の全面に亘つて微小な孔を設け、 その各微小孔に対して光ファ ィバーの端部を臨ませ、 この光ファイバ一の他端部をカメラに接続する ように構成されたものである。 この表示 ·撮像装置においても、 各微小 孔に対して臨む光ファイバ一の端部と画像表示部との関係が、 位置的に ずれてはいないことから、視線を合わせた表示を行うことが可能となる。 以上のような従来技術は、 画像表示部と撮像デバイスの光軸とを合わ せることによって実現されるものであるが、 さらに、 視線を合わせる技 術としては、 例えば、 "山口岡 IJ、 他、 " T V会議における目線あわせ技法 の提案"、 第 6回画像センシングシンポジウム講演論文集、 p 2 6 7— p 2 7 2 、 2 0 0 0 "に記載された技術のように、 眼自体をコンピュ一タグ ラフィクスを駆使して合成するものも知られている Further, as another technique, a display / imaging device as described in Japanese Patent Application Laid-Open No. 4-166790 is known. In this display / imaging device, minute holes are provided over the entire surface of the image display unit, the end of the optical fiber faces each of the minute holes, and the other end of the optical fiber is connected to the camera. It is configured to connect. In this display and imaging device, Since the relationship between the end of the optical fiber 1 facing the hole and the image display unit does not deviate in position, it is possible to perform display in line of sight. The conventional techniques described above are realized by aligning the optical axis of the image display unit with the optical axis of the imaging device. Further, as the technique of adjusting the line of sight, for example, "Yamaguchioka IJ, et al. Like the technology described in "Proposal of Eye-gaze Adjustment Technique in Video Conference", Proceedings of the 6th Image Sensing Symposium, p.267-p.272, 2000 Also known are those that make full use of tag raftics
さらにまた、 最近では、 視線合わせを立体視によって実現しようとす る試みも行われている(例えば、特開平 1 0— 7 5 4 3 2号公報参照。)。 この特開平 1 0— 7 5 4 3 2号公報には、 卓上に置かれた筐体に、 力 メラからなる撮像部と画像表示部とを設けたものであり、 画像表示部を ィメ一ジスプリッ夕一方式のメガネなし 3次元液晶表示素子を用いて構 成するとともに、 この画像表示部の左右位置にそれぞれ力メラを配置し た立体テレビ電話器が開示されている。 そして、 この特開平 1 0— 7 5 4 3 2号公報には、 画像表示部の左右位置に設けられた 2つのカメラに よって撮像された画像を選択的に合成して融像することにより、 擬似的 に立体視可能な正面顔の画像を得ることができ、 視線を合わせた会話を 行うことが可能となる旨が記載されている。  Furthermore, recently, an attempt has been made to realize eye-gaze matching by stereoscopic vision (for example, see Japanese Patent Application Laid-Open No. H10-75432). Japanese Patent Application Laid-Open No. H10-747532 discloses a housing placed on a table provided with an imaging unit composed of a camera and an image display unit. A three-dimensional video phone is disclosed, which is configured using a three-dimensional liquid crystal display element without glasses of the split-type system, and in which force lenses are arranged at right and left positions of the image display unit. Japanese Patent Application Laid-Open No. Hei 10-747532 discloses that by selectively combining and fusing images captured by two cameras provided at left and right positions of an image display unit, It states that a pseudo-stereoscopic frontal face image can be obtained, and that conversation with eyes can be performed.
ところで、 上述した画像表示部と撮像デバイスの光軸とを合わせるこ とによって実現される各種技術においては、 画像表示部自体に対して何 らかの位置関係をもつて撮像デバイスが配置される。  By the way, in the above-described various technologies realized by aligning the image display unit with the optical axis of the imaging device, the imaging device is arranged with some positional relationship with respect to the image display unit itself.
しかしながら、 上述した微小ハーフミラ一を用いる技術においては、 微小ハーフミラーの表面で反射する反射光の反射方向に撮像デバイスを 配置する必要があり、 · また、 上述した画像表示部を透過させて撮像を行 う技術においては、 画像表示部の裏側にカメラを配置する必要がある。 したがって、 これらの技術を実現するためには、 装置全体として大きな サイズでカメラ等を保持する必要があり、 このような技術を例えば携帯 電話機で実現するには無理があった。 However, in the above-described technology using the minute half mirror, it is necessary to dispose the imaging device in the direction of reflection of the light reflected on the surface of the minute half mirror. In this technology, it is necessary to arrange a camera behind the image display unit. Therefore, in order to realize these technologies, it is necessary to hold a camera or the like in a large size as a whole device, and it was impossible to realize such technologies with, for example, a mobile phone.
また、 上述した特開平 4一 1 6 7 6 9 0号公報に記載されるような画 像表示部上の微小孔に光ファイバ一を取り付ける装置においては、 画像 表示部に微小孔を設け、 光ファイバ一の端部をそれぞれ合わせて組み立 てるのが容易ではなく、 製品の価格が大幅に上昇してしまうという問題 があった。  In an apparatus for attaching an optical fiber to a micro hole on an image display unit as described in the above-mentioned Japanese Patent Application Laid-Open No. 4-166690, a micro hole is provided in the image display unit, It was not easy to assemble the ends of the fibers together, and there was a problem that the price of the product would rise significantly.
さらに、 上述した" T V会議における目線あわせ技法の提案"に記載さ れた技術のように、 通話相手の眼をコンピュータグラフィクスを駆使し て合成する技術においては、 上述した撮像デバイスの搭載位置による問 題は発生しないが、 現状のコンピュータグラフィクスの技術水準では未 だ実映像とは隔たりがあり、 通話相手の視線の不自然さを拭い去るまで には至っていない。  Furthermore, in the technology described in "Proposal of Eye Adjustment Technique in Video Conference" described above, in which the eyes of the other party are synthesized by making full use of computer graphics, the above-mentioned question depends on the mounting position of the imaging device. Although there is no problem, the current state of the art of computer graphics is still far from the actual video, and has not yet wiped out the unnaturalness of the line of sight of the other party.
さらにまた、 上述した特開平 1 0— 7 5 4 3 2号公報に記載された立 体テレビ電話器においては、 画像表示部の大きさが、 例えば 1 4インチ 程度であった場合には、 その左右方向の距離が 3 0 c m程度となること から、 2つのカメラを画像表示部と干渉しない位置に設けた場合には、 撮像された 2つの画像のずれが大きくなる。 したがって、 このテレビ電 話器においては、 この 2つの画像を用いてそのまま立体表示を行う場合 には、 視差が大きくなりすぎることから、 2重像のまま融像が不可能と なり、たとえ融像できたとしても使用者の眼に負担を強いる表示となり、 疲労の原因となるといつた問題があった。  Furthermore, in the stereoscopic videophone described in the above-mentioned Japanese Patent Application Laid-Open No. 10-75432, when the size of the image display section is, for example, about 14 inches, Since the distance in the left-right direction is about 30 cm, when the two cameras are provided at positions that do not interfere with the image display unit, the displacement between the two captured images becomes large. Therefore, in this television phone, if stereoscopic display is performed using these two images as they are, the parallax will be too large, and it will not be possible to fuse as a double image. Even if it could be done, the display would put a burden on the eyes of the user, and there was a problem that it would cause fatigue.
本発明は、 このような実情に鑑みてなされたものであり、 携帯通信端 末といった携帯型の情報処理装置において、 相手との自然な視線を合わ せた対話を実現する情報処理装置、 情報処理システム、 及び対話者表示 方法を提供することを目的とする。 また、 本発明は、 撮像された 2つの 画像の視差が大きすぎることによる不具合を回避して、 相手との自然な 視線を合わせた対話を実現する情報処理装置、 情報処理システム、 及び 対話者表示方法を提供することを目的とする。 発明の開示 The present invention has been made in view of such circumstances, and in a portable information processing apparatus such as a mobile communication terminal, an information processing apparatus that realizes a natural eye-gaze conversation with a partner is provided. System and interlocutor display The aim is to provide a method. The present invention also provides an information processing apparatus, an information processing system, and an interlocutor display for realizing a conversation in which a natural gaze is matched with a partner while avoiding a problem caused by a parallax between two captured images being too large. The aim is to provide a method. Disclosure of the invention
上述した目的を達成する本発明にかかる情報処理装置は、 映像をとも なう対話を行う携帯型の情報処理装置であって、 画像信号に応じて所要 の画像を表示する画像表示手段と、 上記画像表示手段の左右両側のそれ ぞれに設けられる撮像手段とを備えることを特徴としている。  An information processing apparatus according to the present invention that achieves the above object is a portable information processing apparatus that performs a dialogue with a video, and an image display unit that displays a required image according to an image signal; An image display means is provided on each of the left and right sides of the image display means.
このような本発明にかかる情報処理装置においては、 撮像手段を画像 表示手段の左右両側にそれぞれ設けることで、 右側の撮像手段には使用 者の右前方から見た様子が画像として取り込まれ、 左側の撮像手段には 使用者の左前方から見た様子が画像として取り込まれる。 これらの左側 から撮像した画像と右側から撮像した画像を相手側の端末等の画像表示 手段において、 所要の画像表示として両画像を合わせて表示する。 する と、 画像表示手段を見る者にとっては同時に両画像を見ることになり、 左右の視線方向の食い違いが是正された形で把握されることになる。 こ のため特に撮像手段の光軸と画像表示部の光軸を合わせることなく、 視 線を合わせた表示が実現される。  In such an information processing apparatus according to the present invention, by providing the imaging means on each of the left and right sides of the image display means, the right imaging means captures the image viewed from the right front of the user as an image. The image pickup means captures a state viewed from the front left of the user as an image. The image taken from the left side and the image taken from the right side are displayed together as required image display on an image display means such as a terminal on the other side. Then, the viewer of the image display means sees both images at the same time, and the discrepancy between the left and right gaze directions is grasped in a corrected form. Therefore, a display can be realized in which the eyes are aligned without particularly aligning the optical axis of the imaging means with the optical axis of the image display unit.
また、 上述した目的を達成する本発明にかかる情報処理装置は、 映像 をともなう対話を行う携帯型の情報処理装置であって、 携帯可能な筐体 と、 上記筐体の表面に搭載され、 画像信号に応じて所要の画像を表示す る画像表示手段と、 上記筐体の表面上であって上記画像表示手段の左右 両側のそれぞれに設けられる撮像手段とを備えることを特徴としている t このような本発明にかかる情報処理装置においては、 先の情報処理装 置を携帯可能な筐体に搭載した構造を有しており、 左右両側にそれぞれ 搭載される撮像手段は上記筐体の表面上に形成されることから、 全体と して薄型の構造をとることが可能であり、 小型軽量な筐体を以つて情報 処理装置を構成できる。 Further, an information processing apparatus according to the present invention that achieves the above object is a portable information processing apparatus that performs a dialogue with a video, comprising: a portable housing; an image display unit that displays a desired image in response to the signal, the t casing a surface of which is characterized by comprising an imaging means provided on each of the right and left sides of the image display unit such In the information processing apparatus according to the present invention, It has a structure in which the device is mounted in a portable housing, and the imaging means mounted on each of the left and right sides is formed on the surface of the housing, so it must have a thin structure as a whole. The information processing device can be configured with a small and lightweight housing.
さらに、 上述した目的を達成する本発明にかかる情報処理装置は、 映 像をともなう対話を行う携帯型の情報処理装置であって、 左眼用信号に 基づく表示を行う複数の画素と右眼用信号に基づく表示を行う複数の画 素とを混在させてなる画像表示手段と、 上記画像表示手段の左右両側の それぞれに設けられる撮像手段とを備えることを特徴としている。  Further, an information processing apparatus according to the present invention that achieves the above object is a portable information processing apparatus that performs a dialogue with a video, and includes a plurality of pixels that perform display based on a left-eye signal and a right-eye image. It is characterized by comprising image display means in which a plurality of pixels for performing display based on signals are mixed, and image pickup means provided on each of the left and right sides of the image display means.
このような本発明にかかる情報処理装置によれば、 画像表示手段の左 右両側にそれぞれ撮像手段を設けることで、 特に画像表示手段の位置に 合わせず、 例えば重ねるような位置関係とすることなく撮像手段が搭載 されることになり、 全体として小型且つ薄型の構造が実現される。 画像 表示手段では、 左眼用信号に基づく表示を行う複数の画素と右眼用信号 に基づく表示を行う複数の画素とを混在してなることから、 偏光メガネ 等の特殊な装置を必要とせずに通話相手と視線を合わせて対話を進める ことが可能となる。  According to such an information processing apparatus according to the present invention, by providing the image pickup means on each of the left and right sides of the image display means, it is possible not to adjust the position of the image display means in particular, for example, to avoid a positional relationship of overlapping. Since the imaging means is mounted, a small and thin structure as a whole is realized. Since the image display means includes a plurality of pixels for performing display based on the signal for the left eye and a plurality of pixels for performing display based on the signal for the right eye, no special device such as polarized glasses is required. It is possible to proceed with the conversation while keeping the gaze with the other party.
特に、 以上のような本発明にかかる 3形態の情報処理装置は、 それぞ れ、 上記撮像手段によって撮像されて得られた 2つの画像に基づいて、 視差を内挿した新たな画像を生成する画像処理手段を備え、 上記画像表 示手段の表示面には、 上記画像処理手段によって生成された新たな 2つ の画像が表示されることが望ましい。 '  In particular, the information processing apparatuses of the three forms according to the present invention as described above each generate a new image in which parallax is interpolated, based on the two images captured by the imaging unit. It is preferable that an image processing unit is provided, and two new images generated by the image processing unit are displayed on the display surface of the image display unit. '
これにより、 本発明にかかる情報処理装置においては、 撮像手段によ つて撮像されて得られた 2つの画像の視差が大きくなりすぎて表示の際 の不具合が生じるのを回避することができることから、 通話相手と視線 を合わせるための立体表示を最適化することができ、 さらに見やすく自 然な画像とすることができる。 With this, in the information processing apparatus according to the present invention, it is possible to avoid a problem in displaying images due to an excessively large parallax between two images captured by the imaging unit. You can optimize the stereoscopic display to match the line of sight with the other party, It can be a natural image.
さらにまた、 上述した目的を達成する本発明にかかる情報処理システ ムは、 通話相手の顔部分を含む画像を表示可能とする画像表示手段を設 けるとともに、 上記画像表示手段の左右両側にそれぞれ撮像手段を設け て構成され、 映像をともなう対話を行う携帯型の情報処理端末を複数備 え、上記情報処理端末間で相互に通信可能とすることを特徴としている。 このような本発明にかかる情報処理システムにおいては、 撮像手段を 左右両側にそれぞれ設けることで、 お側の撮像手段には使用者の右前方 から見た様子が、 左側の撮像手段には使用者の左前方から見た様子が、 それぞれ画像として取り込まれる。 これらの左側から撮像した画像と右 側から撮像した画像を相手側の情報処理端末の画像表示手段で合わせて 表示する。 すると、 画像表示手段を見る者にとっては同時に両画像を見 ることになり、 視線方向が一致する形の映像が得られることになる。 特に、 この本発明にかかる情報処理システムにおいて、 上記情報処理 端末は、 それぞれ、 上記撮像手段によって撮像されて得られた 2つの画 像に基づいて、 視差を内挿した新たな画像を生成する画像処理手段を有 し、 通話相手の上記情報処理端末の上記画像表示手段の表示面には、 上 記画像処理手段によって生成された新たな 2つの画像が表示されること が望ましい。  Still further, the information processing system according to the present invention for achieving the above-mentioned object has an image display means capable of displaying an image including a face portion of a call partner, and has image pickup means on both left and right sides of the image display means. A plurality of portable information processing terminals that are configured to include means for performing a dialogue with a video are provided, and the information processing terminals can communicate with each other. In such an information processing system according to the present invention, the imaging means is provided on each of the right and left sides, so that the imaging means on the side has a view from the right front of the user, and the imaging means on the left has the user The images viewed from the left front of are captured as images. The image taken from the left side and the image taken from the right side are displayed together by the image display means of the information processing terminal on the other side. Then, the viewer of the image display means sees both images at the same time, and an image in which the line of sight matches can be obtained. In particular, in the information processing system according to the present invention, each of the information processing terminals is configured to generate a new image in which parallax is interpolated based on two images obtained by the imaging unit. It is preferable that the information processing terminal has a processing means, and two new images generated by the image processing means are displayed on a display surface of the image display means of the information processing terminal of the other party.
これにより、 本発明にかかる情報処理システムにおいては、 撮像手段 によって撮像されて得られた 2つの画像の視差が大きくなりすぎて表示 の際の不具合が生じるのを回避することができることから、 通話相手と 視線を合わせるための立体表示を最適化することができ、 さらに見やす く自然な画像とすることができる。  With this, in the information processing system according to the present invention, it is possible to avoid a problem in displaying images due to an excessively large parallax between two images captured by the imaging unit, and therefore, the communication partner It is possible to optimize the stereoscopic display for matching the eyes with the eyes, and to make the images easy to see and natural.
また、 上述した目的を達成する本発明にかかる対話者表示方法は、 携 帯型の端末の画像表示手段の左右両側にそれぞれ設けられた一対の撮像 手段によって使用者の映像を取り込む映像取り込み工程と、 通話相手の 端末の画像表示手段に上記使用者の視線を該通話相手の視点で一致させ て表示させる表示工程とを備えることを特徴としている。 In addition, the method for displaying an interlocutor according to the present invention that achieves the above-described object includes a pair of imaging devices provided on both left and right sides of an image display unit of a portable terminal. A video capturing step of capturing the video of the user by the means, and a display step of causing the image display means of the terminal of the other party to display the user's line of sight from the viewpoint of the other party.
このような本発明にかかる対話者表示方法においては、 一対の撮像手 段で使用者の映像が取り込まれ、—該使用者の左側画像にかかる信号と右 側画像にかかる信号が得られることになる。 これらの信号を通話相手の 端末の画像表示手段に送り、 例えば左側画像にかかる画素と右側画像に かかる画素を混在させながら表示させることで、 上記使用者の視線を該 通話相手の視点で一致させて表示させることが可能となる。  In such a method for displaying an interlocutor according to the present invention, a video of a user is captured by a pair of imaging means, and a signal relating to a left image and a signal relating to a right image of the user are obtained. Become. These signals are sent to the image display means of the terminal of the communication partner, and the pixels of the left image and the pixels of the right image are mixed and displayed, for example, so that the user's line of sight coincides with the viewpoint of the communication partner. Can be displayed.
特に、 この本発明にかかる対話者表示方法は、 上記映像取り込み工程 にて取り込まれた 2つの画像に基づいて、 視差を内挿した新たな画像を 生成する画像処理工程を備え、 通話相手の端末の画像表示手段の表示面 には、 上記画像処理工程にて生成された新たな 2つの画像が表示される ことが望ましい。  In particular, the interlocutor display method according to the present invention includes an image processing step of generating a new image in which parallax is interpolated based on the two images captured in the video capturing step. It is desirable that two new images generated in the image processing step be displayed on the display surface of the image display means.
これにより、 本発明にかかる対話者表示方法においては、 撮像手段に よって撮像されて得られた 2つの画像の視差が大きくなりすぎて表示の 際の不具合が生じるのを回避することができることから、 通話相手と視 線を合わせるための立体表示を最適化することができ、 さらに見やすく 自然な画像とすることが可能となる。  Accordingly, in the interlocutor display method according to the present invention, it is possible to avoid a problem in display due to an excessively large parallax between the two images captured by the imaging unit. It is possible to optimize the stereoscopic display to match the line of sight with the other party, and to make it easier to view and natural images.
さらに、 上述した目的を達成する本発明にかかる情報処理装置は、 映 像をともなう対話を行う情報処理装置であって、 画像信号に応じて所要 の画像を表示する画像表示手段と、 上記画像表示手段の左右両側のそれ ぞれに設けられる撮像手段と、 上記撮像手段によって撮像されて得られ た 2つの画像に基づいて、 視差を内挿した新たな画像を生成する画像処 理手段とを備え、 上記画像表示手段の表示面には、 上記画像処理手段に よって生成された新たな 2つの画像が表示されることを特徴としている c このような本発明にかかる情報処理装置においては、 撮像手段を画像 表示手段の左右両側にそれぞれ設け、 これら撮像手段によって撮像され て得られた 2つの画像に基づいて、視差を内挿した新たな画像を生成し、 これら 2つの画像を画像表示手段に表示す.ることにより、 特に撮像手段 の光軸と画像表示部の光軸を合わせることなく、 視線を合わせた表示が 実現されるとともに、 撮像手段によって撮像されて得られた 2つの画像 の視差が大きくなりすぎて表示の際の不具合が生じるのを回避すること ができることから、 通話相手と視線を合わせるための立体表示を最適化 することができ、 さらに見やすく自然な画像とすることができる。 Further, an information processing apparatus according to the present invention that achieves the above-described object is an information processing apparatus that performs a dialogue with a video, and includes an image display unit that displays a required image in accordance with an image signal; Imaging means provided on each of the right and left sides of the means, and image processing means for generating a new image with parallax interpolated based on the two images obtained by the imaging means. The display screen of the image display means displays two new images generated by the image processing means c. In such an information processing apparatus according to the present invention, imaging means are provided on both left and right sides of the image display means, and a new parallax-interpolated image is obtained based on the two images obtained by the imaging means. By generating an image and displaying these two images on the image display means, it is possible to realize a display that matches the line of sight without aligning the optical axis of the imaging means and the optical axis of the image display unit. Optimizing the stereoscopic display to match the line of sight with the other party, because it is possible to avoid the problem of display due to too large a parallax between the two images obtained by the imaging means. And a natural image that is easier to see.
さらにまた、上述した目的を達成する本発明にかかる情報処理装置は、 映像をともなう対話を行う情報処理装置であって、 筐体と、 上記筐体の 表面に搭載され、 画像信号に応じて所要の画像を表示する画像表示手段 と、 上記筐体の表面上であって上記画像表示手段の左右両側のそれぞれ に設けられる撮像手段と、 上記撮像手段によって撮像されて得られた 2 つの画像に基づいて、 視差を内挿した新たな画像を生成する画像処理手 段とを備え、 上記画像表示手段の表示面には、 上記画像処理手段によつ て生成された新たな 2つの画像が表示されることを特徴としている。  Furthermore, an information processing apparatus according to the present invention that achieves the above-mentioned object is an information processing apparatus that performs a dialogue with a video, wherein the information processing apparatus is mounted on a surface of the housing, and required according to an image signal. Image display means for displaying the image of the image display means, imaging means provided on the left and right sides of the image display means on the surface of the housing, and two images obtained by the imaging means. Image processing means for generating a new image in which parallax is interpolated, and two new images generated by the image processing means are displayed on the display surface of the image display means. It is characterized by that.
このような本発明にかかる情報処理装置においては、 先の情報処理装 置を携帯可能な筐体に搭載した構造を有しており、 左右両側にそれぞれ 搭載される撮像手段は上記筐体の表面上に形成されることから、 全体と して薄型の構造をとることが可能であり、 小型軽量な筐体を以つて情報 処理装置を構成できる。  Such an information processing apparatus according to the present invention has a structure in which the above information processing apparatus is mounted on a portable housing, and the imaging means mounted on each of the left and right sides is a surface of the housing. Since it is formed above, it is possible to take a thin structure as a whole, and the information processing device can be configured with a small and lightweight housing.
また、 上述した目的を達成する本発明にかかる情報処理装置は、 映像 をともなう対話を行う情報処理装置であって、 左眼用信号に基づく表示 を行う複数の画素と右眼用信号に基づく表示を行う複数の画素とを混在 させてなる画像表示手段と、 上記画像表示手段の左右両側のそれぞれに 設けられる撮像手段と、 上記撮像手段によって撮像されて得られた 2つ の画像に基づいて、 視差を内挿した新たな画像を生成する画像処理手段 とを備え、 上記画像表示手段の表示面には、 上記画像処理手段によって 生成された新たな 2つの画像が表示されることを特徴としている。 An information processing apparatus according to the present invention that achieves the above object is an information processing apparatus that performs a dialogue with a video, and includes a plurality of pixels that perform display based on a left-eye signal and a display based on a right-eye signal. Image display means in which a plurality of pixels for performing Image capturing means provided, and image processing means for generating a new image with parallax interpolated based on the two images captured by the image capturing means, and provided on a display surface of the image display means. Is characterized in that two new images generated by the image processing means are displayed.
このような本発明にかかる情報処理装置によれば、 特に画像表示手段 の位置に合わせず、 例えば重ねるような位置関係とすることなく撮像手 段が搭載されることになり、 全体として小型且つ薄型の構造が実現され る。 また、 画像表示手段では、 左眼用信号に基づく表示を行う複数の画 素と右眼用信号に基づく表示を行う複数の画素とを混在してなり、 撮像 手段によって撮像されて得られた 2つの画像に基づいて視差を内挿して 新たに生成された画像が表示されることから、 偏光メガネ等の特殊な装 置を必要とせずに、 通話相手と視線を合わせるための立体表示を最適化 することができ、 さらに見やすく自然な画像のもとに、 通話相手と視線 を合わせて対話を進めることが可能となる。  According to such an information processing apparatus according to the present invention, the imaging means is mounted without adjusting the position of the image display means, for example, without a positional relationship such that they are superimposed on each other. This structure is realized. Further, the image display means includes a plurality of pixels performing display based on the signal for the left eye and a plurality of pixels performing display based on the signal for the right eye, and is obtained by being imaged by the imaging means. The newly generated image is displayed by interpolating the parallax based on the two images, so the stereoscopic display to match the line of sight with the other party is optimized without the need for special equipment such as polarized glasses. This makes it possible to proceed with the conversation while keeping the gaze with the other party under a more natural image that is easier to see.
さらに、上述した目的を達成する本発明にかかる情報処理システムは、 通話相手の顔部分を含む画像を表示可能とする画像表示手段を設けると ともに、 上記画像表示手段の左右両側にそれぞれ撮像手段を設けて構成 され、 映像をともなう対話を行う情報処理端末を複数備え、 上記情報処 理端末は、 それぞれ、 上記撮像手段によって撮像されて得られた 2つの 画像に基づいて、 視差を内挿した新たな画像を生成する画像処理手段を 有し、 上記情報処理端末間で相互に通信する際に、 上記画像処理手段に よって生成された新たな 2つの画像を、 通話相手の上記情報処理端末の 上記画像表示手段の表示面に表示することを特徴としている。  Further, the information processing system according to the present invention that achieves the above-mentioned object includes, in addition to providing image display means capable of displaying an image including a face part of a call partner, image pickup means on each of the left and right sides of the image display means. A plurality of information processing terminals for performing a dialogue with video, each of the information processing terminals having a new parallax-interpolated based on two images captured by the imaging means. Image processing means for generating a unique image, and when communicating between the information processing terminals, the two new images generated by the image processing means are transmitted to the information processing terminal of the other party. The image is displayed on the display surface of the image display means.
このような本発明にかかる情報処理システムにおいては、 撮像手段を 左右両側にそれぞれ設けることで、 右側の撮像手段には使用者の右前方 から見た様子が、 左側の撮像手段には使用者の左前方から見た様子が、 それぞれ画像として取り込まれる。 これらの左側から撮像した画像と右 側から撮像した画像を相手側の情報処理端末の画像表示手段で合わせて 表示する。 このとき、 画像表示手段には、 撮像手段によって撮像されて 得られた 2つの画像に基づいて視差を内挿して新たに生成された画像が 表示されることから、 通話相手と視線を合わせるための立体表示を最適 化することができ、 極めて見やすく自然な視線方向が一致する形の映像 が得られることになる。 In such an information processing system according to the present invention, the image pickup means is provided on each of the left and right sides, so that the right image pickup means looks from the right front of the user, and the left image pickup means shows the user's view. The state seen from the front left is Each is captured as an image. The image taken from the left side and the image taken from the right side are displayed together by the image display means of the information processing terminal on the other side. At this time, the image display means displays a newly generated image by interpolating the parallax based on the two images obtained by the image pickup means, so that it is possible to match the gaze with the other party. The 3D display can be optimized, and an image that is extremely easy to see and has a natural gaze direction can be obtained.
さらにまた、 上述した目的を達成する本発明にかかる対話者表示方法 は、 端末の画像表示手段の左右両側にそれぞれ設けられた一対の撮像手 段によって使用者の映像を取り込む映像取り込み工程と、 上記映像取り 込み工程にて取り込まれた 2つの画像に基づいて、 視差を内挿した新た な画像を生成する画像処理工程と、 通話相手の端末の画像表示手段に、 上記画像処理工程にて生成された新たな 2つの画像を表示させることで 上記使用者の視線を該通話相手の視点で一致させて表示させる表示工程 とを備えることを特徴としている。  Still further, the method for displaying an interlocutor according to the present invention, which achieves the above-mentioned object, comprises: An image processing step of generating a new image with parallax interpolated based on the two images captured in the video capturing step, and an image display means of the other party's terminal displaying the image in the image processing step. And displaying the two new images so that the user's line of sight coincides with the viewpoint of the other party.
このような本発明にかかる対話者表示方法においては、 一対の撮像手 段で使用者の映像が取り込まれ、 取り込まれた 2つの画像に基づいて視 差を内挿した新たな画像が生成され、 該使用者の左側画像にかかる信号 と右側画像にかかる信号が得られることになる。 これらの信号を例えば 左側画像にかかる画素とお側画像にかかる画素を混在させながら通話相 手の端末の画像表示手段に表示させることで、 通話相手と視線を合わせ るための立体表示を最適化することができ、 上記使用者の視線を該通話 相手の視点で一致させて表示させることが可能となる。 図面の簡単な説明  In such an interlocutor display method according to the present invention, a user's video is captured by a pair of imaging means, and a new image in which parallax is interpolated based on the captured two images is generated. The signal concerning the left image and the signal concerning the right image of the user are obtained. By displaying these signals on the image display means of the other party's terminal while mixing the pixels for the left image and the pixels for the side image, for example, the three-dimensional display to match the line of sight with the other party is optimized. This makes it possible to match the line of sight of the user with the viewpoint of the other party and display the same. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の情報処理装置の一例の模式図である。 図 2 A乃至図 2 Cは、 本発明の情報処理装置の一例の原理を説明する 模式図である。 FIG. 1 is a schematic diagram of an example of the information processing device of the present invention. 2A to 2C are schematic diagrams illustrating the principle of an example of the information processing device of the present invention.
図 3は、 本発明の情報処理装置の一例の概略的な回路構成を示すプロ ック図である。  FIG. 3 is a block diagram showing a schematic circuit configuration of an example of the information processing apparatus of the present invention.
図 4は、 本発明の情報処理装置を用いたシステムの利用状態を示す図 である。  FIG. 4 is a diagram showing a use state of a system using the information processing device of the present invention.
図 5は、 本発明の情報処理装置の画像表示部における光線の射出角度 についての説明図 (X方向) である。  FIG. 5 is an explanatory diagram (X direction) of an emission angle of a light beam in the image display unit of the information processing device of the present invention.
図 6は、 本発明の情報処理装置の画像表示部における光線の射出角度 についての説明図 (y方向) である。  FIG. 6 is an explanatory diagram (y-direction) of an emission angle of a light ray in the image display unit of the information processing device of the present invention.
図 7は、 本発明の情報処理装置の一例の画像表示部におけるカメラの 取り付け位置を示す図である。  FIG. 7 is a diagram illustrating a mounting position of a camera on an image display unit of an example of the information processing apparatus of the present invention.
図 8は、 本発明の情報処理装置の一例の画像表示部の画素の構成を示 す模式図である。  FIG. 8 is a schematic diagram illustrating a configuration of a pixel of an image display unit of an example of the information processing device of the present invention.
図 9 A乃至図 9 Eは、 本発明の情報処理装置の一例の画像表示部の左 眼用画素 (L ) と右眼用画素 (R ) の配列パターン例を示す図である。 図 1 0は、 本発明の情報処理装置の一例の画像表示部の画素付近の構 成を示す模式図である。 .  9A to 9E are diagrams illustrating an example of an array pattern of left-eye pixels (L) and right-eye pixels (R) of an image display unit of an example of the information processing apparatus according to the present invention. FIG. 10 is a schematic diagram showing a configuration near a pixel of an image display unit of an example of the information processing apparatus of the present invention. .
図 1 1は、本発明の情報処理装置の一例の画像表示部の断面図であり、 発光素子とマイク口レンズの軸のずれがない場合の断面図である。  FIG. 11 is a cross-sectional view of an image display unit of an example of the information processing apparatus according to the present invention, and is a cross-sectional view in a case where the axes of the light emitting element and the microphone aperture lens are not shifted.
図 1 2は、本発明の情報処理装置の一例の画像表示部の断面図であり、 発光素子とマイク口レンズの軸のずれがある場合の断面図である。  FIG. 12 is a cross-sectional view of an image display unit of an example of the information processing apparatus of the present invention, and is a cross-sectional view in a case where the axes of the light emitting element and the microphone aperture lens are misaligned.
図 1 3 A及び図 1 3 Bは、 本発明の情報処理装置の一例の発光素子と マイクロレンズによる光線の広がりを示した図であり、 図 1 3 Aは、 発 光素子とマイクロレンズの軸が合致している場合の光線の広がり、 図 1 3 Bは、 発光素子とマイク口レンズの軸がずれている場合の光線の広が りをそれぞれシミュレ一シヨンした図である。 FIGS. 13A and 13B are diagrams showing the spread of light rays by the light emitting element and the microlens as an example of the information processing apparatus of the present invention. FIG. 13A shows the axis of the light emitting element and the microlens. Figure 13B shows the spread of the light beam when the axis of the light emitting element and the microphone aperture lens are misaligned. It is the figure which simulated each of these.
図 1 4 A乃至図 1 4 Cは、 本発明の情報処理装置の一例のマイクロレ ンズと発光素子の大きさと位置関係についての光学計算結果を示すダラ フであり、 図 1 4 Aは、 発光素子の直径と光線の広がり角度を光学計算 した結果を示したグラフであり、 図 1 4 Bは、 レンズと光軸方向位置と 光線の広がりを計算した結果を示すグラフであり、 図 1 4 Cは、 発光素 子の面内方向位置と光線の射出角度を計算した結果を示すグラフである, 図 1 5 A及び図 1 5 Bは、 本発明の情報処理装置の一例に用いられる マイクロレンズの例を示す図であり、 図 1 5 Aは、 正面図であり、 図 1 5 Bは、 断面図である。  FIGS. 14A to 14C are graphs showing optical calculation results on the size and the positional relationship between the microlens and the light-emitting element as an example of the information processing apparatus according to the present invention. FIG. Fig. 14B is a graph showing the result of optical calculation of the element diameter and the spread angle of the light beam. Fig. 14B is a graph showing the result of calculating the position of the lens and the optical axis direction and the spread of the light beam. FIGS. 15A and 15B are graphs showing calculation results of an in-plane direction position of a light emitting element and an emission angle of a light ray. FIGS. 15A and 15B show microlenses used as an example of the information processing apparatus of the present invention. FIG. 15A is a diagram showing an example, FIG. 15A is a front view, and FIG. 15B is a cross-sectional view.
図 1 6は、 本発明の情報処理装置の一例の機能としての画像処理の概 念を説明する概念図であり、 画像からテンプレートに最も近いものを見 つけ出す画像処理の様子を説明する図である。  FIG. 16 is a conceptual diagram for explaining the concept of image processing as a function of an example of the information processing apparatus of the present invention, and is a diagram for explaining a state of image processing for finding an image closest to a template from an image. is there.
図 1 7は、 視差についてのパラメータを表示する図である。  FIG. 17 is a diagram showing parameters for parallax.
図 1 8 A及び図 1 8 Bは、 本発明の情報処理装置の他の一例の画像表 示部を示す図であり、 図 1 8 Aは、 発光素子とコーン型マイクロレンズ の付近の断面図であり、 図 1 8 Bは、 コーン型マイクロレンズの斜視図 である。  FIGS. 18A and 18B are diagrams showing an image display section of another example of the information processing apparatus of the present invention, and FIG. 18A is a cross-sectional view showing the vicinity of a light emitting element and a cone type micro lens. FIG. 18B is a perspective view of the cone-type microlens.
図 1 9は、 マイクロレンズ等を用いた場合の発光と射出角度の関係を 説明するためのパラメ一夕を図示する模式図である。  FIG. 19 is a schematic view illustrating parameters for explaining a relationship between light emission and an emission angle when a microlens or the like is used.
図 2 0は、 マイクロレンズ等を用いた場合の全球面積に対する部分面 積比と射出角度 Φの関係を説明する模式図である。  FIG. 20 is a schematic diagram illustrating the relationship between the partial area ratio to the global area and the exit angle Φ when a micro lens or the like is used.
図 2 1は、 本発明の情報処理装置のさらに他の一例の画像表示部を示 す断面図である。  FIG. 21 is a cross-sectional view showing an image display unit of still another example of the information processing device of the present invention.
図 2 2 A及び図 2 2 Bは、 視線方向と視線一致させた画像の印象を調 ベた実験についての様子を示した模式図であり、 図 2 2 Aは、 立体画像 を得た場合の図であり、 図 2 2 Bは、 モノラル画像を得た場合の図であ る。 FIGS. 22A and 22B are schematic diagrams showing an experiment in which the impression of an image whose gaze direction and the gaze direction were matched was examined. FIG. 22B is a diagram when a monaural image is obtained.
図 2 3 A及び図 2 3 Bは、 図 2 2 A及び図 2 2 Bの実験の結果を示す グラフであり、 図 2 3 Aは、 立体画像を得た場合の図であり、 図 2 3 B は、 モノラル画像を得た場合の図である。  FIGS. 23A and 23B are graphs showing the results of the experiments of FIGS. 22A and 22B, and FIG. 23A is a diagram when a stereoscopic image is obtained. B is a diagram when a monaural image is obtained.
図 2 4は、 本発明の情報処理装置において視差を内挿する概念を説明 する概念図であり、 画像表示部の左右両側に設けられた 2つのカメラに よって撮像された 2つの画像に基づいて、 2つのカメラよりも狭い間隔 で設けられた仮想的な 2つのカメラによつて恰も撮像されて得られたよ うな視差の小さい新たな画像を生成する様子を説明する図である。  FIG. 24 is a conceptual diagram illustrating the concept of interpolating parallax in the information processing apparatus of the present invention, and is based on two images captured by two cameras provided on the left and right sides of the image display unit. FIG. 8 is a diagram for explaining how to generate a new image with small parallax as if it were obtained by being virtually imaged by two virtual cameras provided at a smaller interval than the two cameras.
図 2 5は、 本発明の情報処理装置の一例の機能としての画像処理の概 念を説明する概念図であり、 画像表示部の左右両側に設けられた 2つの カメラによって撮像された 2つの画像の対応点を求める画像処理の様子 を説明する図である。  FIG. 25 is a conceptual diagram illustrating the concept of image processing as a function of an example of the information processing apparatus according to the present invention, in which two images captured by two cameras provided on the left and right sides of the image display unit are shown. FIG. 7 is a diagram for explaining a state of image processing for obtaining corresponding points of the image processing.
図 2 6は、 視差を示すずれ量の 1 / 2の画素数だけ画像を移動させて 生成した画像の一例を模式的に示す図であり、 2つの画像を撮像した 2 つのカメラの中央から撮像した画像と同等の画像が生成される様子を説 明する図である。  Figure 26 is a diagram schematically showing an example of an image generated by moving the image by half the number of pixels of the amount of displacement indicating parallax, taken from the center of the two cameras that took the two images FIG. 8 is a diagram for explaining how an image equivalent to the generated image is generated.
図 2 7 A及び図 2 7 Bは、 所定角程度の画面の左右の一方にカメラを 配して撮像した場合の表示画面を模式的に示す図であり、 図 2 7 Aは、 左側の場合の図であり、 図 2 7 Bは、 右側の場合の図である。  FIGS. 27A and 27B are diagrams schematically showing a display screen when a camera is arranged on one of the left and right sides of a screen having a predetermined angle, and FIG. 27A is a case on the left side. FIG. 27B is a diagram of the case on the right side.
図 2 8 A及び図 2 8 Bは、 所定角程度の画面の上下の一方にカメラを 配して撮像した場合の表示画面を模式的に示す図であり、 図 2 8 Aは、 上側の場合の図であり、 図 2 8 Bは、 下側の場合の図である。 発明を実施するための最良の形態 以下、 本発明を適用した具体的な実施の形態について図面を参照しな がら詳細に説明する。 FIGS. 28A and 28B are diagrams schematically showing a display screen when a camera is arranged on one of the upper and lower sides of a screen having a predetermined angle, and FIG. 28A shows an upper side of the screen. FIG. 28B is a diagram of the lower case. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.
この実施の形態は、 通話相手の顔画像を表示できる携帯通信端末に関 するものである。 図 1に示すように、 情報処理装置である携帯通信端末 1 0は、 使用者が片手で保持可能な大きさの筐体 1 2を有しており、 筐 体 1 2の長手方向を垂直方向としながら対話が可能なように構成されて いる。 この筐体 1 2の表面側には、 そのサイズが 1 0 mm四方乃至 1 0 0 mm四方程度の画像表示部 1 1がその表示面を外部に露呈するように 設けられている。 この画像表示部 1 1の左右両側には、 撮像部としての 左カメラ 1 3 Lと、 右カメラ 1 3 Rとが配設されている。 画像表示部 1 1の下側には、 自分の顔等の写りをモニターするためのマイナーモニタ 一 1 4が設けられており、 さらに、 そのマイナーモニター 1 4の側部に は、 自分の顔が撮像領域から大きく外れた際に点滅等によってその旨を 報知するインジケータ一 1 7が設けられている。 また、 マイナーモニタ 一 1 4の下部には、 ポタン 1 5とキ一入力部 1 6 とが形成されている。 携帯通信端末 1 0においては、 これらポタン 1 5及びキー入力部 1 6の 操作により、 電話番号のダイヤルや電子メールの文字入力、 当該携帯通 信端末 1 0の機能制御等を行うことが可能となる。  This embodiment relates to a mobile communication terminal capable of displaying a face image of a call partner. As shown in FIG. 1, the mobile communication terminal 10 as an information processing apparatus has a housing 12 having a size that can be held by a user with one hand, and the longitudinal direction of the housing 12 is a vertical direction. It is configured to enable dialogue with An image display section 11 having a size of about 10 mm square to about 100 mm square is provided on the front side of the housing 12 so that its display surface is exposed to the outside. On the left and right sides of the image display section 11, a left camera 13L as an imaging section and a right camera 13R are provided. On the lower side of the image display section 11, a minor monitor 14 for monitoring the image of the face of the user is provided, and on the side of the minor monitor 14, the face of the user is displayed. An indicator 17 is provided for notifying by flashing or the like when a large departure from the imaging region has occurred. In addition, a button 15 and a key input unit 16 are formed below the minor monitor 14. In the portable communication terminal 10, the operation of the button 15 and the key input section 16 enables the dialing of a telephone number, the input of characters of an e-mail, the function control of the portable communication terminal 10, and the like. Become.
撮像部としての左カメラ 1 3 L及び右カメラ 1 3 Rは、 それぞれ、 画 像表示部 1 1の左右両側に配設されている。 左カメラ 1 3 Lは、 当該携 帯通信端末 1 0を使用する使用者のやや左前方から撮像するように設け られており、 右カメラ 1 3 Rは、 該使用者のやや右前方から撮像するよ うに設けられている。左カメラ 1 3 L及び右カメラ 1 3 Rは、それぞれ、 例えば M〇 S (Metal-Oxide Semiconductor)型撮像素子や C CD (Charge Coupled Devices)型撮像素子とレンズ等を組み合わせた光学系からなる, 具体的には、 携帯通信端末 1 0においては、 左カメラ 1 3 L及び右カメ ラ 1 3 Rとして、 例えば小型軽量の固体撮像素子が使用される。 The left camera 13L and the right camera 13R as imaging units are disposed on the left and right sides of the image display unit 11, respectively. The left camera 13L is provided so as to take an image from a slightly left front of the user using the mobile communication terminal 10, and the right camera 13R is provided to take an image from a slightly right front of the user. It is provided as follows. The left camera 13 L and the right camera 13 R are each composed of, for example, an optical system in which an M〇S (Metal-Oxide Semiconductor) image sensor or a CCD (Charge Coupled Devices) image sensor and a lens are combined, Specifically, in the mobile communication terminal 10, the left camera 13 L and the right camera For example, a small and lightweight solid-state imaging device is used as the 13R.
画像表示部 1 1は、 左眼用信号に基づく表示を行う複数の画素と右眼 用信号に基づく表示を行う複数の画素とを混在させて構成されている。 特に、 画像表示部 1 1は、 使用者の両眼それぞれに対して独立して光を 射出する射出手段を有する。 ここでは、 この射出手段として、 左眼用信 号又は右眼用信号に基づき所要の光を発生させる発光部と、 この発光部 からの光を所定の角度方向に射出するように制御する射出角度制御部と を設けるものとする。 発光部は、 配列される複数の発光ダイオードから なり、 射出角度制御部は、 複数の微小レンズをマトリクス状に配列した マイクロレンズアレイから構成されている。 なお、 ここでの射出手段の 構造は、 一例に過ぎず、 例えば発光部の構造を液晶表示デバイス、 有機 The image display unit 11 is configured by mixing a plurality of pixels performing display based on the left-eye signal and a plurality of pixels performing display based on the right-eye signal. In particular, the image display section 11 has emission means for independently emitting light to both eyes of the user. Here, a light emitting unit that generates required light based on a left-eye signal or a right-eye signal as an emission unit, and an emission angle that controls light from this light-emitting unit to emit in a predetermined angle direction And a control unit. The light emitting section is composed of a plurality of light emitting diodes arranged, and the emission angle control section is composed of a micro lens array in which a plurality of micro lenses are arranged in a matrix. Note that the structure of the emitting means here is merely an example.
E L (Electronic Luminescent) デバイス、 プラズマ表示デバイス等を 用いた構造とすることも可能であり、 透過型や反射型等の構造を有して いてもよい。 また、 射出角度制御部についても、 後述するような種々の 構造とすることができる。 なお、 左眼用信号に基づく表示を行う複数の 画素と右眼用信号に基づく表示を行う複数の画素とを混在する方法につ いては、 後述するものとする。 It is also possible to use a structure using an EL (Electronic Luminescent) device, a plasma display device, or the like, and may have a structure such as a transmission type or a reflection type. Further, the injection angle control unit can also have various structures as described later. A method of mixing a plurality of pixels performing display based on the left-eye signal and a plurality of pixels performing display based on the right-eye signal will be described later.
まず、 両眼それぞれの信号を 1つの表示部に送って視線を合わせる技 術について説明する。 一般に、 視線の不一致の検知眼と許容眼について は、テレビ電話等の分野で研究されているものがあり、例えば、"佐藤ら、 N o . 1 9 9 8、 "映像電話における撮像管の位置に関する検討"、 昭和 42年電気四学会連合大会、 p 2 3 1 6"や、 "南、 " 4.. 2 テレビ電話 機"、 電子通信学会誌 1 1 /' 7 3 V o l . 5 6、 N o . 1 1、 p i 48 5 - 1 4 9 0 "等が知られている。 これらの文献には、 テレビ電話 における視線の一致についての考察や実験結果が示されており、 「人の 感性として視線の違和感を検知できる検知目良は、 中心から 2 ° 〜 3 ° 程 度の極めて狭い範囲であり、 水平方向と垂直方向ではあまり差が生じな い」 旨が示されている。 そして、 これらの文献には、 「テレビ電話とし ての許容範囲の限界としての許容眼は、水平方向では約 4 . 5 ° であり、 垂直方向では真上方向が 1 2 ° 、 真下方向が 8 ° とばらつきがあり、 特 に水平方向で許容される範囲が狭く、 左右の視線に人が敏感である」 旨 が示されている。 First, a technique for sending the signals of both eyes to one display unit to adjust the gaze will be described. In general, there have been studies in the field of videophones and the like on the eyes detected and the eyes allowed in which the eyes are inconsistent. For example, see "Sato et al., No. 1998," And "South," 4.2 Video Telephone ", Journal of the Institute of Electronics and Communication Engineers, 1 1 / '73 Vol. 56, No. 11 and pi 485-149 0 "are known. These documents show considerations and experimental results on gaze coincidence in videophones, and state that "the detection criteria that can detect the discomfort of the gaze as human sensibility are about 2 to 3 degrees from the center. It is an extremely narrow range, and there is little difference between the horizontal and vertical directions. " And these documents state that the permissible eye as the limit of the permissible range for a videophone is about 4.5 ° in the horizontal direction, 12 ° in the vertical direction, and 8 ° in the vertical direction. °, and the range allowed in the horizontal direction is particularly narrow, and people are sensitive to the left and right eyes. ”
本発明の実施の形態として示す携帯通信端末 1 0は、 この比較的に感 知されやすい左右の視線のずれを補って臨場感のある交信を実現できる 装置である。 図 2 A乃至図 2 Cは、 その概念を簡単に示すイラストレー シヨンである。 図 2 Aは、 左カメラ 1 3 Lからの画像であり、 左カメラ 1 3 Lは中心よりも左側に位置していることから、 使用者の視線は右よ りに現れる。 また、 図 2 Bは、 右カメラ 1 3 からの画像であり、 右力 メラ 1 3 Rは中心よりも右側に位置していることから、 使用者の視線は 左よりに現れる。 そして、 図 2 Cは、 左眼用信号に基づく表示を行う複 数の画素と右眼用信号に基づく表示を行う複数の画素とを混在させ且つ 使用者の両眼それぞれに対して独立して光を射出する機構を有する画像 表示部 1 1を用いて画像を表示した場合の表示画面を示している。 すな わち、 携帯通信端末 1 0においては、 左眼用信号が専用に送られる画像 表示部 1 1の各画素から使用者の左眼に向けた光の射出を行い、 その射 出した光は使用者の左眼に到達する。 同様に、 携帯通信端末 1 0におい ては、 右眼用信号が専用に送られる画像表示部 1 1の各画素から使用者 の右眼に向けた光の射出を行い、 その射出した光は使用者の右眼に到達 する。 その結果、 使用者は両眼の間で異なる画像を見ることになるが、 使用者の大脳ではそれを合成して見る機能が働き、 その結果として、 図 2 Cに示すように、 視線を合わせた画面が表示されているように見るこ とができ、 視線を合わせた自然な通話が実現されることになる。 なお、 画像は、 静止画であってもよく、 動画であってもよい。 また、 携帯通信 端末 1 0においては、 送受信の帯域に余裕があれば、 リアルタイムの動 画の送受信も可能であるが、 圧縮したり間引いたりした画像デ一夕を送 受信するように構成してもよい。 The mobile communication terminal 10 shown as an embodiment of the present invention is a device that can compensate for this relatively easily perceived shift in the line of sight between left and right to realize realistic communication. 2A to 2C are illustrations that briefly illustrate the concept. FIG. 2A is an image from the left camera 13L. Since the left camera 13L is located on the left side of the center, the user's line of sight appears from the right. FIG. 2B is an image from the right camera 13. Since the right camera 13 R is located on the right side of the center, the user's line of sight appears from the left. Then, FIG. 2C shows a case where a plurality of pixels performing display based on the signal for the left eye and a plurality of pixels performing display based on the signal for the right eye are mixed and independently for both eyes of the user. 3 shows a display screen when an image is displayed using the image display unit 11 having a mechanism for emitting light. That is, the mobile communication terminal 10 emits light toward the left eye of the user from each pixel of the image display unit 11 to which the signal for the left eye is sent exclusively, and emits the emitted light. Reaches the left eye of the user. Similarly, the mobile communication terminal 10 emits light toward the right eye of the user from each pixel of the image display unit 11 to which the signal for the right eye is sent exclusively, and the emitted light is used. Reaches his right eye. As a result, the user sees a different image between the two eyes, but the user's cerebrum has the function of synthesizing and seeing it, and as a result, as shown in Fig. This makes it possible to see the screen as if it were displayed, and a natural telephone call with the gaze of the eyes was realized. In addition, The image may be a still image or a moving image. Also, the mobile communication terminal 10 can transmit and receive real-time video if there is enough transmission and reception bandwidth, but it is configured to transmit and receive compressed or thinned-out image data. Is also good.
図 3は、 携帯通信端末 1 0の回路構成例を示すブロック図である。 制 御回路 2 1は、 C P U (Central Processing Unit) 、 ビデオメモリ、 所 要の画像情報処理回路を含んでおり、 後述するような手ぶれ防止のため の信号処理も制御回路 2 1で行われる。 制御回路 2 1によって処理され るデータは、 送受信部 2 8によって送信することができ、 送受信部 2 8 によって受信したデ一夕は、 制御回路 2 1に送られる。 キー入力部 2 7 は、 例えばテンキーや機能設定ポタンが配置され、 さらには、 ジョグダ ィャル、入力パッ ド、その他の拡張機能デバィス等が配置されてもよい。 制御回路 2 1には、 左カメラ 24 Lからの信号と右カメラ 24 Rから の信号とが独立して供給される。 通常の使用状態では、 左カメラ 2 4 L からの信号には使用者のやや左前方から撮像した映像データが含まれ、 右カメラ 2 4 Rからの信号には使用者のやや右前方から撮像した映像デ 一夕が含まれる。 携帯通信端末 1 0においては、 左カメラ 24 Lと右力 メラ 24 Rとからの信号は、 それぞれ、 制御回路 2 1を介して送受信部 2 8に送られ、 この送受信部 2 8から送信されて他の携帯通信端末に受 信される。 携帯通信端末 1 0においては、 このようなデ一夕の送受信に よって通話が可能となり、 特に本実施の形態では、 画像表示部 1 1にお いて視線を合わせた画像が表示されているように見ることができること から、 視線を合わせた自然な通話が実現されることになる。  FIG. 3 is a block diagram showing a circuit configuration example of the mobile communication terminal 10. The control circuit 21 includes a CPU (Central Processing Unit), a video memory, and a required image information processing circuit, and the control circuit 21 also performs signal processing for preventing camera shake as described later. The data processed by the control circuit 21 can be transmitted by the transmission / reception unit 28, and the data received by the transmission / reception unit 28 is transmitted to the control circuit 21. In the key input section 27, for example, a numeric keypad and a function setting button are arranged, and further, a jog dial, an input pad, other extended function devices, and the like may be arranged. A signal from the left camera 24L and a signal from the right camera 24R are independently supplied to the control circuit 21. In normal use, the signal from the left camera 24 L includes video data captured from the user's slightly forward left, and the signal from the right camera 24 R captures an image from the user's slightly forward right. Includes video and overnight. In the mobile communication terminal 10, signals from the left camera 24 L and the right camera 24 R are transmitted to the transmission / reception unit 28 via the control circuit 21, and transmitted from the transmission / reception unit 28. Received by other mobile communication terminals. In the mobile communication terminal 10, it is possible to perform a call by transmitting and receiving such data overnight. In particular, in the present embodiment, as shown in FIG. Being able to see it means that a natural call can be made with the eyes aligned.
左カメラ 24 Lと右カメラ 24 Rとからの信号は、 それぞれ、 他の携 帯通信端末に送られるとともに、 制御回路 2 1を経由して小さいモニタ 一画面で映し出すことができる。 すなわち、 左カメラ 24 Lと右カメラ 2 4 Rとからの信号は、 それぞれ、 制御回路 2 1及びドライバ 2 6を介 してマイナーモニタ一 2 5に送られる。 これにより、 携帯通信端末 1 0 においては、 例えば図 1に示したマイナ一モニター 1 4のような比較的 小さな画面で通話しながら自分の顔を見ることも可能となる。 もしマイ ナ一モニタ一 1 4のような比較的小さな画面で自分の顔を確認しないで 通話をする塲合には、 携帯通信端末 1 0の角度によっては、 左カメラ 2 4 Lと右カメラ 2 4 Rとの中心では自分の顔を捉えることが出来ない場 合もあり、 顔がカメラの撮像範囲から外れることもある。 そこで、 携帯 通信端末 1 0においては、 マイナーモニター 2 5からの画像を確認しな がら通話を行うことにより、 通信相手と自然な視線の一致する対話を進 めることができることになる。 マイナ一モニター 2 5は、 目視による確 認を促すデバイスであるが、 携帯通信端末 1 0においては、 左カメラ 2 4 Lと右カメラ 2 4 Rとからの信号が、 それぞれ、 制御回路 2 1によつ て手ぶれ防止処理等の定常的な画像処理がなされていることもあり、 適 正な自分の顔が表示できない場合には、 インジケーター 2 9を点滅させ るようにしてもよく、 マイナーモニタ一 2 5かメインモニター 2 2の画 面にその旨を表示させるように制御してもよい。 The signals from the left camera 24L and the right camera 24R are sent to other portable communication terminals, respectively, and can be projected on a small monitor screen via the control circuit 21. That is, the left camera 24 L and the right camera The signals from 24 R are sent to the minor monitor 25 via the control circuit 21 and the driver 26, respectively. This allows the portable communication terminal 10 to see its own face while talking on a relatively small screen such as the minor monitor 14 shown in FIG. If you want to talk on a relatively small screen such as a main monitor 14 without checking your face, depending on the angle of the mobile communication terminal 10, the left camera 24 L and the right camera 2 At the center of the 4R, it may not be possible to capture your own face, and the face may be out of the camera's imaging range. Therefore, in the mobile communication terminal 10, by making a call while checking the image from the minor monitor 25, it is possible to proceed with a conversation in which the communication partner and the natural gaze coincide with each other. The minor monitor 25 is a device that prompts visual confirmation, but in the mobile communication terminal 10, signals from the left camera 24 L and the right camera 24 R are sent to the control circuit 21, respectively. As a result, steady image processing such as camera shake prevention processing may be performed, and if an appropriate face cannot be displayed, the indicator 29 may be made to blink, and the minor monitor Control may be performed so as to display this on the screen of the main monitor 22 or the main monitor 22.
通話相手からの信号は、 送受信部 2 8から制御回路 2 1に送られ、 左 眼用の信号 L Eと右眼用の信号 R Eとに分けられて制御回路 2 1より出 力される。 左眼用の信号 L Eは、 左眼用の画素を駆動するための左眼用 ドライバ 2 3 Lに送られ、 右眼用の信号 R Eは、 右眼用の画素を駆動す るための右眼用ドライバ 2 3 Rに送られる。 相手の顔を写し出すメイン モニター 2 2は、 左眼用ドライバ 2 3 Lと右眼用ドライバ 2 3 Rとから の信号によって駆動される。 上述したように、 メインモニター 2 2上で は、 例えば偶数ラインが右眼用で奇数ラインが左眼用といったように、 左眼用の画素と右眼用の画素とが混在しており、 そのため独立した画素 毎の表示となるが、 当該メインモニター 2 2を見る側では、 当該使用者 の大脳でそれを合成して見る機能が働き、 その結果として、 図 2 Cに示 したように、 視線を合わせた画面が表示されているように見ることがで き、 視線を合わせた自然な通話が実現されることになる。 The signal from the other party is sent from the transmission / reception unit 28 to the control circuit 21, divided into a left-eye signal LE and a right-eye signal RE, and output from the control circuit 21. The left-eye signal LE is sent to the left-eye driver 23 L for driving the left-eye pixel, and the right-eye signal RE is sent to the right-eye driver 23L for driving the right-eye pixel. Sent to driver 23 R. The main monitor 22 that displays the other person's face is driven by signals from the left-eye driver 23 L and the right-eye driver 23 R. As described above, on the main monitor 22, pixels for the left eye and pixels for the right eye are mixed, for example, even lines are for the right eye and odd lines are for the left eye. Independent pixels On the side of the main monitor 22, the function of synthesizing and viewing it on the cerebrum of the user works, and as a result, as shown in FIG. The screen can be viewed as if it were being displayed, and a natural call that matched the eyes was realized.
なお、 図 3に示すブロック図は、 携帯通信端末 1 0の一例を示したに 過ぎず、 他の回路構成も可能である。 例えば、 携帯通信端末 1 0におい ては、 ポタン操作等によって左眼用の信号 L Eと右眼用の信号 R Eとの うち一方だけを両方のドライバ 2 3 L、 2 3 Rに送るようにしてもよく、 また、 ポタン操作等に応じてメインモニタ一 2 2の信号とマイナ一モニ ター 2 5との信号を切り替えるように制御してもよく、 メインモニタ一 2 2に自分の顔を視線が合うように表示することも可能である。 また、 携帯通信端末 1 0においては、 画像だけではなく、 同時に音声のステレ ォ化を図るようにしてもよい。 さらに、 携帯通信端末 1 0においては、 左眼用の信号再生と右眼用の信号再生とを必要なときだけ行い、 通常の 場合は、 左右を区別しない信号で画面を表示させるようにしてもよい。 図 4は、 上述した携帯通信端末 1 0と同様の構成からなる 2台の携帯 通信端末 3 5 , 3 8を用いて通話を行っている様子を模式的に示した図 である。 図 4において、 使用者 3 3と通話相手 3 4とが交信中であるも のとすると、 使用者 3 3が所持している携帯通信端末 3 5には、 画像表 示部 3 6と一対のカメラ 3 7 L, 3 7 Rとが搭載される。 画像表示部 3 6には、 通話相手 3 4の顔が映し出されており、 その顔画像は、 先に図 2 A乃至図 2 Cを用いて説明した原理によって視線が合った自然な形の 映像とされる。 一方、 通話相手 3 4が所持している携帯通信端末 3 8に は、 画像表示部 3 9と一対のカメラ 4 0 L , 4 0 Rとが搭載される。 画 像表示部 3 8には、 使用者 3 3の顔が映し出されており、 同様に、 その 顔画像は、 先に図 2 A乃至図 2 Cを用いて説明した原理によって視線が 合った自然な形の映像とされる。 Note that the block diagram shown in FIG. 3 merely shows an example of the mobile communication terminal 10, and other circuit configurations are possible. For example, in the mobile communication terminal 10, only one of the signal LE for the left eye and the signal RE for the right eye may be sent to both drivers 23 L and 23 R by a button operation or the like. Also, it may be controlled so that the signal of the main monitor 122 and the signal of the minor monitor 25 are switched in accordance with a button operation, etc. It is also possible to display as follows. In the mobile communication terminal 10, not only the image but also the sound may be stereo simultaneously. Further, in the mobile communication terminal 10, signal reproduction for the left eye and signal reproduction for the right eye are performed only when necessary, and in a normal case, the screen is displayed with a signal that does not distinguish between left and right. Good. FIG. 4 is a diagram schematically showing a state in which a call is made using two mobile communication terminals 35 and 38 having the same configuration as the above-described mobile communication terminal 10. In FIG. 4, assuming that the user 33 and the other party 34 are communicating, the mobile communication terminal 35 carried by the user 33 has an image display section 36 and a pair of Cameras 37 L and 37 R are mounted. The image display section 36 shows the face of the other party 34, and the face image is a natural-shaped image whose eyes are aligned according to the principle described above with reference to FIGS. 2A to 2C. It is said. On the other hand, the portable communication terminal 38 held by the other party 34 has an image display unit 39 and a pair of cameras 40L and 40R. The image display section 38 shows the face of the user 33, and similarly, the face image has a line of sight according to the principle described above with reference to FIGS. 2A to 2C. It is considered to be a natural shaped image that fits.
つぎに、 本実施の形態として示す携帯通信端末における画像表示部の 発光部からの光を所定の角度方向に射出するように制御する構造につい て、 図 5及び図 6を参照しながら説明する。  Next, a structure for controlling light emitted from the light emitting unit of the image display unit in the portable communication terminal according to the present embodiment to emit light in a predetermined angle direction will be described with reference to FIGS.
図 5は、 本実施の形態として示す携帯通信端末の画像表示部を上側か ら見た場合の図である。  FIG. 5 is a diagram when the image display unit of the mobile communication terminal shown as the present embodiment is viewed from above.
図 5において、 領域 b lは、 画像表示部の表示面左端の画素から放射 又は反射される光が、十分見える程度にまで強くなる範囲を示す。また、 領域 b 2は、 同様に、 画像表示部の表示面右端の画素から放射又は反射 される光の範囲である。 こ φ両者の間は、 画像表示部の表示面から L だけ離隔した距離で概ね重なるように連続的に角度 Q が変化する。距離 は、 標準的に表示面を見る距離として想定する寸法である。 ここで は、 この距離 Lェを、 人の明視距離といわれる 2 5 0 m mとする。 また、 距離 L 2は、 さらに腕を伸ばして見ることを考慮した想定寸法である。 ここでは、 この距離 L 2を、 4 0 0 mmとする。 さらに、 黒点 b 3 , b 4は、 それぞれ、 携帯通信端末の表示面を見る人の距離 Lェにおける左 眼 E L 1と右眼 E R 1との位置を示している。 さらにまた、 黒点 b 3 ', b 4 'は、 それぞれ、 距離 L 2における両眼の位置を示している。 In FIG. 5, a region bl indicates a range in which light emitted or reflected from the pixel on the left end of the display surface of the image display unit is strong enough to be seen. Similarly, the region b2 is a range of light emitted or reflected from the rightmost pixel on the display surface of the image display unit. The angle Q continuously changes between the two so that they substantially overlap each other at a distance L apart from the display surface of the image display unit. The distance is a dimension normally assumed as the distance to look at the display surface. Here, this distance L is set to 250 mm, which is called the clear vision distance of a person. The distance L 2 is the assumed dimensions further consideration to see stretched out arm. Here, this distance L 2 is assumed to be 400 mm. Further, black dots b 3 and b 4 indicate the positions of the left eye E L1 and the right eye E R 1 at the distance L of the viewer of the display surface of the mobile communication terminal, respectively. Furthermore, black points b 3 ′ and b 4 ′ indicate the positions of both eyes at a distance L 2 , respectively.
この図 5から明らかなように、 領域 b l, b 2で示した領域の光は、 右眼に入射せずに左眼にのみ見えることになる。 同様に、 光の角度を左 右反転すれば、 右眼だけに見える画素を設定できることになる。 したが つて、 これらを表示画素全体についてライン毎ゃ画素毎に左右眼用の画 像を表示することで、 立体視が可能となる。  As is clear from FIG. 5, the light in the regions indicated by the regions bl and b2 does not enter the right eye but can be seen only by the left eye. Similarly, if the light angle is reversed left and right, pixels that can be seen only by the right eye can be set. Therefore, by displaying these images for the left and right eyes for each line and for each pixel with respect to the entire display pixels, stereoscopic vision becomes possible.
距離 Dは、 画像表示部の表示面の水平方向の大きさである。 通常、 携 帯型の機器における画像表示部は、 手に持てるという要請から、 その幅 が 2 0 mmから 8 0 mm程度であるのが一般的である。 ここでは、 距離 Dを、 4 0 mmとして例を示す。 9. 5 7 ± 5 ° ) , 02 (= 0. 4 3 ± 5 ° ) は、 それぞれ、 そのときの設計参考値であり、 L丄 = 2 5 0 mmの位置で、 両眼の中心において両眼用の光が極力混ざらず、 また、 隙間がないようにした上で、 十分に眼に光が届くように光の広が りを 1 0 ° として設計した値である。 この設計値は、 上述した 4 0 0 m mの距離 L 2でも、 十分に眼に光が届く値である。 この設定で理論上表 示面の一部が見えなくなる距離は、幾何学的に最短で 2 0 2 mmであり、 最長で 6 5 7 mmである。 この光線の広がり角度は, 両眼への光の分離 ができれば.1 0 ° 以上大きくても構わない。 しかしながら、 この広がり が大きいと光線の射出角度をより大きく取らなければならず、 光学設計 を困難とする。 また、 本発明の対象が使用者を個人とすることを想定す る機器であることから、 必要以上に光を広げないことはプライバシ一保 護の面、 さらには、 消費エネルギ一低減の面で利点がある。 The distance D is the horizontal size of the display surface of the image display unit. Usually, the width of the image display section of a portable device is about 20 mm to 80 mm due to a requirement that the image display section can be held in a hand. Here is the distance An example is shown where D is 40 mm. 9.5 7 ± 5 °) and 0 2 (= 0.43 ± 5 °) are the design reference values at that time, respectively, at the position of L 丄 = 250 mm, at the center of both eyes The values are designed so that the light spread is 10 ° so that the light for both eyes is not mixed as much as possible and there is no gap, so that the light reaches the eyes sufficiently. The design value even distance L 2 4 0 0 mm as described above, it is sufficiently value light reaches the eye. In this setting, the distance at which a part of the display surface becomes theoretically invisible in this setting is geometrically the shortest at 202 mm and the longest at 657 mm. The divergence angle of this ray may be larger than 0.10 ° if the light can be separated into both eyes. However, if this spread is large, it is necessary to increase the exit angle of light rays, which makes optical design difficult. Also, since the object of the present invention is a device that assumes that the user is an individual, it is not necessary to spread the light more than necessary in terms of privacy protection and energy consumption reduction. There are advantages.
同様に、 上下方向についても、 図 6に示すように、 光線が眼の位置に 届くように制御を行う。 この上下方向については、 角度 Φ が射出方向に ついての角度パラメータとして使用されるが、 両眼については位置的な 差がないものとされ、 黒点 b 3 , b 4は、 それぞれ、 同じ位置  Similarly, in the vertical direction, control is performed so that the light beam reaches the position of the eye as shown in FIG. In this vertical direction, the angle Φ is used as the angle parameter for the exit direction, but it is assumed that there is no positional difference for both eyes, and the black points b 3 and b 4 are at the same position
とされ、 黒点 b 3 ', b 4'は、 それぞれ、 同じ位置 (L 2) とされる。 このような設計方法により、 視線を一致させる表示が可能な画像表示 部を構成することが可能とされるが、 これは、 次の各数式によってさら に一般化することができる。 まず、 両眼間隔の半分の距離 ER 1と画像表 示部の表示面の中心から端部までの距離 D xm a xとの比較が行われる。 すなわち、 次式 ( 1 ) に示すような比較が行われる。 if 匪 < E if Dxmax > ER1 The black spots b 3 ′ and b 4 ′ are at the same position (L 2 ). With such a design method, it is possible to configure an image display unit capable of displaying images with matching eyes, but this can be further generalized by the following equations. First, comparison between the distance D x max from the center of the display surface of the half of the distance E R 1 and image display radical 113 of binocular interval until the end is performed. That is, the comparison as shown in the following equation (1) is performed. if marauder < E if Dx max > E R1
すなわち、 上式 ( 1 ) 上側の条件に当てはまる場合には、 画像表示部 の表示面の中心から端部までの距離 D xm a xが両眼距離の半分の距離 E R 1よりも短い場合であり、画像表示部の表示面のサイズが小さい場合で ある。 この場合、 次式 (2 ) に示すように、 光線の射出角度が設定され る。 = - n一1 ( ) That is, when the above condition (1) is met, the distance D x max from the center to the edge of the display surface of the image display unit is shorter than the distance E R 1 which is half the binocular distance. In this case, the size of the display surface of the image display unit is small. In this case, the exit angle of the light beam is set as shown in the following equation (2). =-n- 1 ()
Θ 0 —10 Aminは、 中心 (yz面) 対称 ηίά = (- tan -1 (Dy/L, ) - tan 'J {DX/L2 ))/2Θ 0 —10 A min is the center (yz plane) symmetry η ίά = ( -tan - 1 (Dy / L,)-tan ' J (DX / L 2 )) / 2
Figure imgf000026_0001
Figure imgf000026_0001
Φτηιά ' Φτηιά '
(2)  (2)
なお、 上式 (2 ) において、 距離 1^は、 標準的に表示面を見る距離 として想定する寸法であって、 例えば人の明視距離である。 また、 距離 L 2は、 さらに腕を伸ばして見ることを考慮した想定寸法である。 さら に、 距離 D xは、 X方向 (水平方向) の距離であり、 距離 D yは、 y方 向 (垂直方向) の距離である。 換言すれば、 射出の角度方向を求める画 素の位置が (D x D y ) に存在するものとして計算できる。 一方、 上式 ( 1 ) 下側の条件に当てはまる場合には、 画像表示部の表 示面の中心から端部までの距離 D xm a xが両眼距離の半分の距離 ER 1 よりも長い場合であり、 画像表示部の表示面のサイズが大きい場合であ る。 この場合、 次式 ( 3) に示すように、 光線の射出角度が設定される。 In the above equation (2), the distance 1 ^ is a dimension normally assumed as a distance for viewing the display surface, and is, for example, a clear visual distance of a person. The distance L 2 is the assumed dimensions further consideration to see stretched out arm. Furthermore, the distance Dx is the distance in the X direction (horizontal direction), and the distance Dy is the distance in the y direction (vertical direction). In other words, the calculation can be performed assuming that the position of the pixel for which the angular direction of the ejection is found exists in (D x D y). On the other hand, if the above condition (1) applies to the lower condition, the distance D x max from the center to the end of the display surface of the image display unit is longer than the half distance E R 1 of the binocular distance In this case, the size of the display surface of the image display unit is large. In this case, the exit angle of the light beam is set as shown in the following equation (3).
Figure imgf000027_0001
Figure imgf000027_0001
¾maxAminは、 中心 ( 面) 対称¾ max A min is center (plane) symmetric
ηίΛ
Figure imgf000027_0002
))/2
η ίΛ
Figure imgf000027_0002
)) / 2
Φ = + 5  Φ = +5
Ψτπ3Χ rni'd - Ψτπ3Χ rni'd-
(3) なお、 上式 ( 3) において、 各パラメータの設定は、 上式 (2 ) の各 パラメータのものと同じである。 (3) In the above equation (3), the setting of each parameter is the same as that of each parameter in the above equation (2).
上式 ( 1 ) 乃至上式 ( 3 ) のそれぞれを用いることにより、 画像表示 部上の任意の位置 (D x, D y ) における光線の射出の角度方向を求め ることができる。 仮に、 画素と右眼若しくは左眼の対応関係がランダム である場合には、 それぞれの画素について上式 ( 1 ) 乃至上式 ( 3 ) の それぞれを用いて計算し、射出方向を定めることが可能である。例えば、 右眼用と左眼用との画素がライン毎になる場合では、 そのライン上にい くつかの点を抽出し、 その抽出点については、 上式 ( 1 ) 乃至上式 ( 3) のそれぞれを用いて計算を行うとともに、抽出点の間の各点については、 その射出角度についてのデータを線形補間などの手法で設定していくこ とも可能である。 つぎに、 図 7を参照しながら本実施の形態として示す携帯通信端末に おけるカメラの位置について説明する。 By using each of the above equations (1) to (3), it is possible to obtain the angle direction of the light beam emission at an arbitrary position (Dx, Dy) on the image display unit. If the correspondence between the pixel and the right or left eye is random, the emission direction can be determined by calculating each of the pixels using the above equations (1) to (3). It is. For example, when the pixels for the right eye and the left eye are on a line-by-line basis, several points are extracted on the line, and the extracted points are expressed by the above equations (1) to (3). It is also possible to calculate using each of these, and for each point between the extraction points, set the data on the exit angle by a method such as linear interpolation. Next, the position of the camera in the mobile communication terminal shown as the present embodiment will be described with reference to FIG.
画像表示部 3 1は、 マトリクス状に画素を配する構造を有し、 その外 形は略矩形状とされる。 カメラは、 少なくとも左右 1つずつ設けられる が、 さらに多くのカメラを配してもよく、 例えば異なる種類のカメラを 設けるようにしてもよい。左右のカメラの一方は、通常のカメラであり、 他方は、 目線を合成するための比較的に簡略化されたカメラを組み合わ せることも可能である。  The image display section 31 has a structure in which pixels are arranged in a matrix, and its outer shape is substantially rectangular. Although at least one camera is provided on each of the right and left sides, more cameras may be provided, for example, different types of cameras may be provided. One of the left and right cameras is a normal camera, and the other can be combined with a relatively simplified camera for synthesizing the eyes.
各カメラの位置は、 略矩形状の画像表示部 3 1の左右側端部の水平方 向の傍ら及び左右側端部の上下端部から所定の範囲内の位置を含み、 例 えば図 7において、 領域 3 2 L, 3 2 Rで示す領域にカメラを配置する ことができる。 図 7に示す領域 3 2 L, 3 2 Rは、 画像表示部 3 1の左 右側端部の水平方向の傍らで幅 H 2の帯状の領域を含み、 その上端と下 端で略矩形状の画像表示部 3 1の角部から例えば半径 rの範囲内とされ る。 高さ方向では、 距離 11ェだけ略矩形状の画像表示部 3 1の上側には み出すような領域も含む。 このように垂直方向については、 比較的に力 メラ位置に自由度があるが、 これは上述した許容眼が垂直方向には厳し くないためであり、 携帯通信端末のように表示部以外のスペースが小さ い場合では、 必ずしも画像表示部 3 1の真横の位置でなくともよく、 下 側についても同様である。 The position of each camera includes a position within a predetermined range from the left and right ends of the substantially rectangular image display unit 31 in the horizontal direction and from the upper and lower ends of the left and right ends, for example, in FIG. The camera can be placed in the areas indicated by the areas 32L and 32R. Region 3 2 L, 3 2 R shown in FIG. 7 is a side horizontal left right end of the image display unit 3 1 includes a strip-shaped region having a width H 2, the upper and under end of the substantially rectangular shape The distance from the corner of the image display unit 31 is, for example, within a radius r. In the height direction, it also includes an area that extends above the substantially rectangular image display unit 31 by a distance of 11 inches. As described above, in the vertical direction, there is a relatively high degree of freedom in the position of the camera, but this is because the above-mentioned permissible eyes are not strict in the vertical direction. When is small, the position does not necessarily have to be right next to the image display unit 31, and the same applies to the lower side.
幅 H 2については、 特に限定されるものではないが、 例えば先の半径 rを 2 0 m m程度とした場合では、 同様に幅 H 2を 2 0 m m程度とする ことができる。 以上のようなカメラ位置については、 図示しない光学系 をそれぞれ具備することから画像表示部 3 1に対して固定であることが 望ましいが、 カメラ自体を画像表示部 3 1の側部から出没自在な構成と してもよく、 また、 一対のカメラの両方若しくは一方を撮像時に取り付 ける構造であってもよい。 カメラ先端部には、 ガラス若しくはプラスチ ックのレンズが取り付けられるが、 傷等の発生を防止するために不使用 時にカバーで覆うような構成をとることも可能である。 The width H 2, is not particularly limited, for example, when the previous radius r about 2 0 mm likewise the width H 2 may be about 2 0 mm. It is preferable that the camera position as described above is fixed to the image display unit 31 because each of the optical systems (not shown) is provided. However, the camera itself can be freely moved in and out of the side of the image display unit 31. In addition, both or one of the pair of cameras may be attached at the time of imaging. It may be a structure that can be used. A glass or plastic lens is attached to the front end of the camera, but it can be covered with a cover when not in use to prevent scratches.
続いて、 画像表示部の構造例について図 8乃至図 1 2を参照しながら 説明する。  Next, an example of the structure of the image display unit will be described with reference to FIGS.
図 8は、 表示画素を拡大した図であり、 略正方形のブロックで示す領 域 5 1が 1つの画素に対応する。 各画素の領域 5 1には、 それぞれ、 4 つの発光素子 5 2 R , 5 2 G , 5 2 B , 5 2 Gがサイコロの 4の各点の 位置を占めるよう.に配設されている。発光素子 5 2 R, 5 2 G , 5 2 B , 5 2 Gは、 例えば発光ダイオード等の半導体発光素子からなる。 発光素 子 5 2 Rは、 赤色に発光する素子であり、 発光素子 5 2 Gは、 緑色に発 光する素子であり、 発光素子 5 2 Bは、 青色に発光する素子である。 緑 色に発光する発光素子 5 2 Gは、 他の発光色の素子に比べて、 人の眼で は解像しやすいという性質があることから、 当該緑色の発光素子 5 2 G を密に配列させることにより、 均一な印象を与えることが可能となる。 なお、画像表示部を構成する素子としては、これらの発光素子に代えて、 カラ一液晶のような色フィルターをともなう透過型表示素子であっても よく、 或いは何かの反射型表示素子であってもよい。  FIG. 8 is an enlarged view of a display pixel, and a region 51 indicated by a substantially square block corresponds to one pixel. Four light-emitting elements 52 R, 52 G, 52 B, and 52 G are arranged in the area 51 of each pixel so as to occupy the positions of the four points of the dice. The light emitting elements 52 R, 52 G, 52 B, 52 G are composed of semiconductor light emitting elements such as light emitting diodes. The light-emitting element 52R is an element that emits red light, the light-emitting element 52G is an element that emits green light, and the light-emitting element 52B is an element that emits blue light. The light-emitting elements 52G that emit green light are more easily resolved by human eyes than elements that emit other light-emitting colors, so the green light-emitting elements 52G are densely arranged. By doing so, it is possible to give a uniform impression. In addition, instead of these light emitting elements, a transmissive display element having a color filter such as a color liquid crystal may be used as an element constituting the image display unit, or some kind of reflective display element. You may.
このような画素の領域 5 1を用いて左右の眼にそれぞれ光線を射出し て所要の立体視が可能な画像表示部を構成するためには、 ライン毎や画 素毎に映像を振り分けるように設定すればよい。  In order to configure an image display unit capable of performing required stereoscopic viewing by emitting light beams to the left and right eyes using the pixel region 51 as described above, images must be distributed for each line and each pixel. Just set it.
図 9 A乃至図 9 Eは、 立体視を実現するための左右の映像の振り分け パターンの例を示す図である。 各図において、 " L "は、 左眼用のデータ によって光を発生させる画素であり、 左眼に向けて光線を射出するもの である。 一方、 " R "は、 右眼用のデータによって光を発生させる画素で あり、右眼に向けて光線を射出するものである。なお、各図においては、 横 4 X縦 4の画素分だけ抽出させて示している。 図 9 Aには、 水平ライ ン毎に交互に" L "で示す左眼用の画素と" R "で示す右眼用の画素とが並 ぶパターンを示している。 図 9 Bは、 垂直ライン毎に交互に" L "で示す 左眼用の画素と" R "で示す右眼用の画素とが並ぶパターンを示している, 図 9 Cは、 市松模様状に左眼用の画素とお眼用の画素とが交互に現れる パターンを示しており、 1水平ラインで 1画素ずつ左眼用の画素と右眼 用の画素とが交互に現れ、 現水平ラインと次の水平ラインでは同様のパ ターンが水平方向に 1画素ずつずれて現れるパターンを示している。 図 9 Dは、 図 9 Cと同様に、 市松模様状のパターンを形成するが、 横 2 X 縦 2の画素サイズ毎に市松模様状のパターンを形成する場合を示してい る。 また、 図 9 Eは、 1水平ラインで 2画素ずつ左眼用の画素と右眼用 の画素とが交互に現れ、 現水平ラインと次の水平ラインでは同様のパタ ーンが水平方向に 1画素ずつずれて現れるパターンを示している。なお、 図 9 A乃至図 9 Eに示したパターンは例示であって、 その他のパターン で形成することも可能である。 また、 全面を同一のパターンで形成する ことも可能であるが、 例えば画像表示部の中心側と周辺近くとで異なる パターンとしてもよく、 顔画像の位置となりそうな部分に重点的に左右 の映像の振り分けパ夕一ンを配するようにしてもよい。 また、 規則正し いパターンに左眼用の画素と右眼用の画素とを振り分けるのではなく、 配線が複雑化するものの不規則なパターンで左眼用の画素と右眼用の画 素とを振り分けてもよい。 9A to 9E are diagrams showing examples of left and right video distribution patterns for realizing stereoscopic vision. In each figure, "L" is a pixel that generates light according to data for the left eye, and emits a light beam toward the left eye. On the other hand, “R” is a pixel that generates light based on data for the right eye, and emits a light beam toward the right eye. In each figure, Only 4 pixels in width and 4 pixels in height are extracted and shown. FIG. 9A shows a pattern in which pixels for the left eye indicated by "L" and pixels for the right eye indicated by "R" are alternately arranged for each horizontal line. FIG. 9B shows a pattern in which pixels for the left eye indicated by "L" and pixels for the right eye indicated by "R" are alternately arranged for each vertical line. FIG. 9C shows a checkered pattern. This figure shows a pattern in which pixels for the left eye and pixels for the eye appear alternately.One pixel for the left eye and one pixel for the right eye appear alternately on a horizontal line, one pixel at a time. The horizontal line indicates a pattern in which a similar pattern appears shifted by one pixel in the horizontal direction. FIG. 9D shows a case where a checkered pattern is formed for each pixel size of 2 × 2 pixels, similar to FIG. 9C. In addition, in FIG. 9E, two pixels for the left eye and pixels for the right eye appear alternately every two pixels in one horizontal line, and a similar pattern appears horizontally in the current horizontal line and the next horizontal line. This figure shows a pattern that appears to be shifted by each pixel. It should be noted that the patterns shown in FIGS. 9A to 9E are examples, and other patterns can be formed. The entire surface can be formed with the same pattern.However, for example, different patterns may be used on the center side of the image display area and near the periphery. May be arranged. Also, instead of assigning the left-eye pixels and right-eye pixels to a regular pattern, the wiring for the left-eye pixels and the right-eye pixels is assigned in an irregular pattern although the wiring is complicated. You may.
つぎに、 画像表示部の構造の一例として、 発光素子上に微小なレンズ であるマイクロレンズをそれぞれ配置した例について説明する。  Next, as an example of the structure of the image display unit, an example in which microlenses, which are minute lenses, are arranged on a light emitting element will be described.
図 1 0は、 発光ダイオードや半導体レーザー等の半導体発光素子から 構成される発光素子 6 3 G , 6 3 B , 6 3 Rが、 1つの画素 6 1あたり 4つ配されている様子を示す図である。 発光素子 6 3 Rは、 赤色に発光 する素子であり、 発光素子 6 3 Gは、 緑色に発光する素子であり、 発光 素子 6 3 Bは、 青色に発光する素子である。 上述したように、 緑色に発 光する発光素子 6 3 Gは、 他の発光色の素子に比べて、 人の眼では解像 しゃすいという性質があることから、 当該緑色の発光素子 5 2 Gを密に 配列させることにより、 均一な印象を与えることが可能となる。 FIG. 10 is a diagram showing a state in which four light emitting elements 63G, 63B, 63R composed of semiconductor light emitting elements such as light emitting diodes and semiconductor lasers are arranged for one pixel 61. It is. Light emitting element 63 R emits red light The light emitting element 63 G is an element that emits green light, and the light emitting element 63 B is an element that emits blue light. As described above, the green light-emitting element 63 G emits green light more easily than the other light-emitting elements. By arranging them densely, it is possible to give a uniform impression.
このような発光素子 6 3 G, 6 3 B , 6 3 Rの光線射出側である画像 表示部の表面側には、 それぞれ、 球状の透明体からなる微小なマイクロ レンズ 6 2が配される。 マイクロレンズ 6 2は、 発光素子 6 3 G , 6 3 B , 6 3 Rからの光を左眼或いは右眼の所定の.角度方向に射出するよう に制御する射出角度制御部であり、 P M M A (ポリメタクリル酸メチル) 等の透明合成樹脂やガラス等によって形成される。 なお、 マイクロレン ズの形状は、 球状に限らず、 円錐状、 角錐状、 又は矩形状であってもよ い。 また、 画像表示部においては、 保持プレートにマトリクス状に各マ イク口レンズを一体化したものを貼り合わせるようにして組み立てるこ ともでき、 1つ 1つのマイクロレンズをそれぞれ位置決めして組み立て るように構成してもよい。 各マイクロレンズ 6 2は、 光の射出角度を制 御する機能を有することから、 そのために使用者の両眼のどちらかに指 向する発光素子毎の開口部を遮蔽板等に設ける構成とすることもでき、 或いは、 マイクロレンズ 6 2の位置を発光素子 6 3 G, 6 3 B , 6 3 R からの光の光軸からずらせる方法も可能である。  On the surface side of the image display section, which is the light emission side of such light emitting elements 63G, 63B, 63R, minute microlenses 62 made of a spherical transparent body are arranged. The microlens 62 is an emission angle control unit that controls the light from the light emitting elements 63G, 63B, and 63R so as to emit the light in a predetermined angle direction to the left eye or the right eye. It is formed of a transparent synthetic resin such as polymethyl methacrylate) or glass. The shape of the microlens is not limited to a sphere, but may be a cone, a pyramid, or a rectangle. Also, in the image display section, it is also possible to assemble the unit by integrating the micro aperture lenses in a matrix on the holding plate and assemble them by positioning each micro lens individually. You may comprise. Since each microlens 62 has a function of controlling the light emission angle, an opening for each light-emitting element pointing to one of both eyes of the user is provided on a shielding plate or the like for that purpose. Alternatively, a method of shifting the position of the microlens 62 from the optical axis of light from the light emitting elements 63G, 63B, 63R is also possible.
図 1 1及び図 1 2は、 マイクロレンズ 6 2の位置によつて光線の射出 方向を制御する例を説明するための模式的な各断面図であり、図 1 1は、 発光素子 6 3 Gとマイクロレンズ 6 2との各軸の位置が一致する例を示 し、 図 1 2は、 発光素子 6 3 Gとマイクロレンズ 6 2との各軸がずれて いる場合の例を示している。 図 1 1において、 発光素子 6 3 0の大きさ ^。!^は、 3 0 i m程度で あり、 緑色の発光を行う発光素子 6 3 Gを代表させて示している。 図中 z軸方向が画像表示部の表示面の法線方向であり、 ここでは、 z軸方向 が光の射出方向とされる。 発光素子 6 3 Gは、 例えば G a N系の発光ダ ィオードであり、 青色発光の発光ダイオードも G a N系半導体等によつ て構成することができる。 また、 赤色発光を行う発光素子 6 3 Rについ ては、 G a A s系化合物半導体等によって構成してもよい。 各発光素子 6 3 Gは、 支持基板 6 5上に接着されており、 3 0 0 i mから 6 0 0 m程度のピッチでマトリクス状に配列されている。 FIGS. 11 and 12 are schematic cross-sectional views for explaining an example in which the emission direction of the light beam is controlled by the position of the microlens 62. FIG. FIG. 12 shows an example in which the axes of the microlens 62 and the microlens 62 coincide with each other. FIG. 12 shows an example in which the axes of the light emitting element 63G and the microlens 62 are misaligned. In FIG. 11, the size of the light emitting element 630 is indicated by ^. ! ^ Is about 30 im, which is representative of a light emitting element 63 G that emits green light. In the figure, the z-axis direction is the normal direction of the display surface of the image display unit, and here, the z-axis direction is the light emission direction. The light-emitting element 63G is, for example, a GaN-based light-emitting diode, and a blue light-emitting diode can also be constituted by a GaN-based semiconductor or the like. Further, the light-emitting element 63R that emits red light may be composed of a GaAs-based compound semiconductor or the like. Each light emitting element 63G is adhered on a support substrate 65, and is arranged in a matrix at a pitch of about 300m to 300m.
支持基板 6 5上には、 マイクロレンズ 6 2の保持部材として機能し、 且つ発光素子からの光を適切な角度に制限するための遮蔽板としても機 能する成型保持部材 6 6が配される。 成型保持部材 6 6は、 それぞれの 発光素子の位置に対応して開口しており、 その開口部から略円錐台形状 の広がりをもって径が大きくされ、 発光素子とは反対側の端部にはマイ クロレンズ 6 2が嵌合するように構成されている。 成型保持部材 6 6と マイクロレンズ 6 2、 及び成型保持部材 6 6と支持基板 6 5は、 互いに 接着されて固定されている。 各マイクロレンズ 6 2は、 レンズの最大径 部分で保持する保持部 6 4によって互いに連結されて保持されており、 各マイクロレンズ 6 2の径 L E N Sは、 ここでは約 3 0 0 mに設定さ れている。 このような構成から成型保持部材 6 6の開口部に取り付けら れるマイクロレンズ 6 2の底部では、 発光素子 6 3 Gとの間に距離 dだ け空隙が生じており、 光はその空隙部を通過してマイクロレンズ 6 2に 導入される。 On the support substrate 65, a molded holding member 66, which functions as a holding member for the microlenses 62 and also functions as a shielding plate for restricting light from the light emitting element to an appropriate angle, is provided. . The molded holding member 66 has an opening corresponding to the position of each light emitting element. From the opening, the diameter is enlarged with a substantially frustoconical shape, and a micro end is provided at the end opposite to the light emitting element. The black lens 62 is configured to be fitted. The molded holding member 66 and the microlens 62, and the molded holding member 66 and the support substrate 65 are adhered and fixed to each other. The microlenses 62 are connected and held by a holding portion 64 that holds the lens at the maximum diameter portion. The diameter LENS of each microlens 62 is set to about 300 m here. ing. With such a configuration, a gap is formed at the bottom of the microlens 62 attached to the opening of the molded holding member 66 by a distance d between the microlens 62 and the light emitting element 63G, and light passes through the gap. It passes through and is introduced into the micro lens 62.
図 1 2は、 上述したように、 発光素子 6 3 Gとマイクロレンズ 6 2と の各軸がずれている場合の例を示している。 図 1 2において、 発光素子 6 3 Gは、 マイクロレンズ 6 2の中心を通り z軸に並行な線に対して距 離△ yだけずれた位置に配置されている。 このような距離 Δ yだけずれ た位置に発光素子 6 3 Gを配置した場合には、 発光素子 6 3 Gから射出 した光がマイクロレンズ 6 2の軸のずれから曲げられることになり、 こ のような位置関係の設定から右眼及び左眼に向かう方向での光の射出が 可能となる。 発光素子 6 3 Gとマイクロレンズ 6 2との軸をずらす方法 としては、 発光素子 6 3の位置を支持基板 6 5上でずらせる方法、 マイ クロレンズ 6 2の位置をずらせる方法、 マイクロレンズ 6 2を個々のレ ンズ毎に成型保持部材 6 6の開口部分に取り付ける構造において該成型 保持部材 6 6の開口部の位置をずらすことでマイクロレンズ 6 2の位置 をずらす方法等が挙げられる。 図 1 2の例においては、 マイクロレンズ 6 2の位置をずらせる方法を採用しており、 成型保持部材 6 6の開口部 の中心とマイクロレンズ 6 2との軸が合わないように固着されている。 なお、 図 1 2では、 y方向のずれだけを示しているが、 y方向のみなら ず、 右眼や左眼に向かう方向での光の射出を可能とするために、 z方向 や X方向のずれを含んでいてもよい。 FIG. 12 shows an example in which the axes of the light emitting element 63G and the microlens 62 are shifted as described above. In FIG. 12, the light emitting element 63 G is positioned at a distance from a line passing through the center of the microlens 62 and parallel to the z-axis. It is arranged at a position shifted by the distance y. If the light-emitting element 63G is arranged at such a position shifted by the distance Δy, light emitted from the light-emitting element 63G is bent from the misalignment of the axis of the microlens 62. From the setting of such a positional relationship, light can be emitted in the direction toward the right eye and the left eye. The method of shifting the axis of the light emitting element 6 3 G and the micro lens 6 2 includes a method of shifting the position of the light emitting element 6 3 on the support substrate 65, a method of shifting the position of the micro lens 62, and a method of shifting the micro lens 6. In a structure in which the lens 2 is attached to the opening of the molding and holding member 66 for each lens, a method of shifting the position of the microlens 62 by shifting the position of the opening of the molding and holding member 66 may be used. In the example of FIG. 12, the method of shifting the position of the microlens 62 is adopted, and the center of the opening of the molded holding member 66 is fixed so that the axis of the microlens 62 does not match. I have. In FIG. 12, only the displacement in the y direction is shown, but not only in the y direction but also in the z direction and the X direction in order to enable light to be emitted in the direction toward the right and left eyes. The deviation may be included.
図 1 3 Aは、 発光素子 6 3 Gとマイクロレンズ 6 2との軸が合致して いる場合における光線の広がりをシミュレーションしたものであり、 図 1 3 Bは、 発光素子 6 3 Gとマイクロレンズ 6 2との軸がずれている場 合における光線の広がりをシミュレーションしたものである。すなわち、 図 1 3 Aは、 図 1 1の構造の発光素子とマイクロレンズとの関係のもの を示すものであり、 図 1 3 Bは、 図 1 2の構造の発光素子とマイクロレ ンズとの関係のものを示すものである。 発光素子 6 3 Gとマイクロレン ズ 6 2との軸が合致している場合には、 図 1 3 Aに示すように、 画像表 示部の表示面の法線方向である z軸を中心とした光線の広がりとなるが, 発光素子 6 3 Gとマイクロレンズ 6 2との軸がずれている場合には、 図 1 3 Bに示すように、 光の射出方向に角度が与えられ、 図中やや斜め上 方に光線が放射されていくことになる。 この計算例においては、 マイク 口レンズの材料を P MM Aとし、 その大きさを直径 3 0 0 mとし、 発 光素子の大きさを直径 3 0 mとし、 発光素子とマイクロレンズとの距 離を 5 0 mとしており、 図 1 3 Aは、 △ y = 0とした場合を示してお り、 図 1 3 Bは、 Δ γ — 1 5 mとした場合を示している。 マイクロ レンズの材料を PMMAとした場合においては、 波長に応じてその屈折 率に変化がある。 その関係を次表に示す。 計算は、 この次表に示すデー タを用いて行っている。 Fig. 13A simulates the spread of light rays when the axes of the light-emitting element 63G and the microlens 62 are coincident. Fig. 13B shows the light-emitting element 63G and the microlens. This is a simulation of the spread of light rays when the axis is shifted from 62. That is, FIG. 13A shows the relationship between the light emitting element having the structure of FIG. 11 and the microlens, and FIG. 13B shows the relationship between the light emitting element having the structure of FIG. 12 and the microlens. It shows the relationship. When the axes of the light-emitting element 63G and the microlens 62 match, as shown in Fig.13A, the center is about the z-axis, which is the normal direction of the display surface of the image display section. When the axes of the light emitting element 6 3 G and the microlens 62 are misaligned, an angle is given to the light emitting direction as shown in FIG. Slightly diagonally above The light rays will be emitted toward the other side. In this calculation example, the material of the microphone aperture lens is PMMA, the size is 300 m in diameter, the size of the light emitting element is 30 m in diameter, and the distance between the light emitting element and the microlens is Is set to 50 m, FIG. 13A shows the case where Δy = 0, and FIG. 13B shows the case where Δγ−15 m. When the material of the microlens is PMMA, the refractive index changes according to the wavelength. The following table shows the relationship. The calculation is performed using the data shown in the following table.
PMMAの屈折率 PMMA refractive index
Figure imgf000034_0001
Figure imgf000034_0001
さらに、 このマイクロレンズと発光素子とについての大きさ及び位置 関係については、 図 1 4 A乃至図 1 4 Cに示すような光学計算を行って いる。 Further, for the size and positional relationship between the microlens and the light emitting element, optical calculations as shown in FIGS. 14A to 14C are performed.
まず、 図 1 4 Aに示すグラフは、 発光素子の直径と光線の広がり角度 とを光学計算した結果を示したものである。 条件は、 図 1 3 Aに示した 場合と同様であり、 マイクロレンズの材料を PMMAとし、 その大きさ を直径 3 0 0 mとし、 発光素子とマイク口レンズとの距離を 5 0 ^ m とし、 発光素子の大きさを変化させている。 この結果より、 この条件に おいて、 光線の広がり角度を先に述べた 1 0 ° を目標とするならば、 発 光素子の大きさは、 直径 3 0 m程度がよいということがわかる。 この ようなマイク口レンズの大きさと発光素子の大きさとの比較は、 相対的 なものであることから、 例えばマイクロレンズと発光素子との大きさの 比率を 3 0 : 1乃至 5 : 1に設定することが好ましい。 First, the graph shown in FIG. 14A shows the result of optical calculation of the diameter of the light emitting element and the spread angle of the light beam. The conditions were the same as in the case shown in Fig. 13A, the material of the microlens was PMMA, the size was 300 m in diameter, and the distance between the light emitting element and the microphone aperture lens was 50 ^ m. The size of the light emitting element is changed. Based on this result, Here, if the divergence angle of the light beam is set to the aforementioned 10 °, the size of the light emitting element is preferably about 30 m in diameter. Since the comparison between the size of the microphone aperture lens and the size of the light emitting element is relative, for example, the size ratio between the micro lens and the light emitting element is set to 30: 1 to 5: 1. Is preferred.
また、 図 1 4 Bに示すグラフは, 発光素子とマイクロレンズとの距離 が光線の広がり角度に与える影響を計算した結果を示したものである。 条件は、 図 1 4 Aの場合と同様であり、 マイクロレンズの材料を PMM Aとし、 その大きさを直径 3 0 0 とし、 発光素子の大きさを直径 3 O mとし、 発光素子とマイクロレンズとの距離 dを可変としている。 この結果より、 光線の広がり角度を 1 0 ° とするには、 発光素子とマイ ク口レンズとの距離を 5 0 im程度とするのが好適であることがわかる, さらに、 図 1 4 Cに示すグラフは、 発光素子とマイクロレンズとの横 方向のずれを示す距離 A y (= Δ χ) と光の射出角度とを計算した結果 を示したものである。 上限、 下限の角度は、 図 5に示した光の広がり領 域の 0の範囲を意味する。 また、 ·中心は、 それらの角度の中央をプロッ 卜したものである。図 5の説明からは、左右眼に画像を振り分けるには, 表示面の位置に応じて 0. 4 3 ° から一 9. 5 7 ° まで変化させる必要 がある。 図 1 4 Cに示すグラフより、 この条件を満足するには、 距離 Δ yを、 およそ 0から 3 5 mまで線形的に変化させればよいことがわか る。 このような線形的な計算処理は、 次式 (4) で近似的に与えること ができる。  The graph shown in Fig. 14B shows the result of calculating the effect of the distance between the light emitting element and the microlens on the spread angle of the light beam. The conditions are the same as in the case of Fig. 14A. The material of the microlens is PMM A, the size is 300 mm, the size of the light emitting element is 3 Om, and the light emitting element and the micro lens are And the distance d is variable. From these results, it can be seen that it is preferable to set the distance between the light emitting element and the micro-aperture lens to about 50 im in order to set the spread angle of the light beam to 10 °. The graph shows the calculation result of the distance A y (= Δχ) indicating the lateral shift between the light emitting element and the microlens and the light emission angle. The upper and lower angles mean the range of 0 in the light spread area shown in FIG. The center is a plot of the center of those angles. From the explanation of Fig. 5, it is necessary to change from 0.43 ° to 19.57 ° depending on the position of the display surface in order to distribute images to the left and right eyes. From the graph shown in Fig. 14C, it can be seen that in order to satisfy this condition, the distance Δy should be changed linearly from approximately 0 to 35 m. Such a linear calculation can be approximately given by the following equation (4).
Θ = V^±5 Θ = V ^ ± 5
3.5 '  3.5 '
Θ :射出角度  Θ: Injection angle
Vy :発光素子のレンズに対する横方向相対位置  Vy: relative position of the light emitting element in the horizontal direction with respect to the lens
. . . (4) 以上の光学計算より、 マイクロレンズを用いて左右眼にそれぞれ専用 の画像を表示することが可能となることが確認される。 ここでは、 左右 方向の光学設計について例を挙げたが、 上下方向についても同様の設計 が可能である。 また、 ここでは、 発光ダイオードのような自発光デバイ スを想定した素子の大きさを議論したが、 例えば、 液晶、 有機 E L表示 装置、 プラズマディスプレイ等を用いる場合、 単に開口部の大きさを制 限するだけでは、 光量の低下が懸念される場合には、 画素の光を一旦レ ンズ等で集光し、 目標の発光サイズにした上で、 上述した方法を適用す ることも可能である。 なお、 マイクロレンズを用いることの利点として は、 上述したように、 光の利用効率が高く、 低消費電力化が可能となる ことの他に、 斜めから入射する外光が眼の方向に反射しにくいので、 コ ン卜ラストが高く、 映像の品黉がよいことや、 レンズ効果で画素の見か けの大きさが増すことで、 見かけ上の画素間隔が狭まり、 視覚的に画素 が離镦的に見えることを防ぐことができ、 比較的少ない画素数で連続的 な画像を得ることができること等が挙げられる。 . . . (Four) From the above optical calculations, it is confirmed that dedicated images can be displayed on the left and right eyes using the microlenses. Here, an example of the optical design in the left-right direction has been described, but the same design is also possible in the vertical direction. In addition, here, the size of the element assuming a self-luminous device such as a light emitting diode was discussed. For example, when a liquid crystal, an organic EL display device, a plasma display, or the like is used, the size of the opening is simply controlled. If there is a concern that the amount of light will decrease by simply limiting the light, it is also possible to collect the light from the pixel once with a lens or the like, set the target light emission size, and then apply the above method . The advantages of using a microlens include, as described above, high light use efficiency and low power consumption, as well as reflection of external light obliquely entering the eye. High contrast, high image quality, and the lens effect increases the apparent size of the pixels, which reduces the apparent pixel spacing and visually separates the pixels. For example, it is possible to prevent the image from being seen visually, and to obtain a continuous image with a relatively small number of pixels.
つぎに、 図 1 5 A及び図 1 5 Bを参照して、 マイクロレンズの一例に ついて説明する。  Next, an example of a microlens will be described with reference to FIGS. 15A and 15B.
図 1 5 Aは、 マイクロレンズの正面図であり、 図 1 5 Bは、 マイクロ レンズの断面図である。 この図 1 5 A及び図 1 5 Bに示すマイクロレン ズは、 略透明球体からなる個々のマイクロレンズを略平板状の保持部材 に最大径部分で保持させた構造を有しており、 略最密状態で配列されて いる。 各マイクロレンズの径は、 例えば略 3 0 0 m程度である。 この ような個々のマイク口レンズを略平板状の保持部材に保持させた状態で 発光素子のアレイに貼り合わせることにより、 画像表示部を形成するこ とも可能であり、 個々のマイクロレンズの位置決めが不要となることか ら、 携帯通信端末の製造コストを低減させることも可能となる。 つぎに、 本実施の形態に適用される画像処理の一例として、 眼の位置 を安定に保つ方法について述べる。 FIG. 15A is a front view of the microlens, and FIG. 15B is a cross-sectional view of the microlens. The microlenses shown in FIGS. 15A and 15B have a structure in which the individual microlenses formed of substantially transparent spheres are held by a substantially flat holding member at the maximum diameter portion. They are arranged densely. The diameter of each micro lens is, for example, about 300 m. It is also possible to form an image display section by bonding such individual microphone aperture lenses to an array of light emitting elements while holding them on a substantially flat holding member, and it is possible to position individual micro lenses. Since it becomes unnecessary, the manufacturing cost of the mobile communication terminal can be reduced. Next, as an example of the image processing applied to the present embodiment, a method of keeping the position of the eye stable will be described.
先に図 1を用いて示したように、 顔を撮像するカメラ 1 3 L , 1 3 R は、 それぞれ、 画像表示部 1 1の両側に設置され、 マイナーモニター 1 4には、 確認用に自分の顔が表示されることから、 ある程度はカメラの 撮像範囲に顔が収まるように調整可能である。 しかしながら、 表示され る対話者の顔の画像位置とカメラとの位置関係は、 手持ちの場合には、 通常、 変動が大きい。 視線の方向のずれは、 表示面に対話者の顔が概ね 含まれている限り、 極端に大きくなることはないが、 さらに視線の一致 を図り、 また、 画面のぶれを軽減するために眼の位置を安定化させる機 能を設けることが好ましい。  As shown in FIG. 1 earlier, the cameras 13 L and 13 R that capture the face are respectively installed on both sides of the image display section 11, and the minor monitor 14 has its own for confirmation. Since the face is displayed, it can be adjusted to some extent so that the face is within the imaging range of the camera. However, the positional relationship between the displayed image of the face of the interlocutor and the camera usually fluctuates greatly when it is hand-held. The shift in the direction of the line of sight does not become extremely large as long as the face of the interlocutor is almost included on the display surface.However, in order to further match the line of sight and reduce the blur of the screen, It is preferable to provide a function for stabilizing the position.
この眼の位置安定化の方法は、 カメラ 1 3 L, 1 3 Rで撮像する領域 にマージンを用意し、 顔よりひとまわり大きい領域を撮像することであ る。 そして、 表示側では、 対話者の眼の位置がカメラ 1 3 L , 1 3 Rを 結ぶ線上で且つそれらの中心が近づくように画像処理によって調整して 表示するものである。 ここで、 顔の画像から眼の位置を検出する方法と しては、 広く知られた画像認識の方法を利用することができる。 一例と して、 相関検出による方法を示す。 図 1 6は、 画像からテンプレートに 最も近いものを見つけ出す処理を説明する概念図である。 この相関検出 は、 次式 ( 5 ) で示される相関値の計算式を利用する。 相関係数 共分散 分散 分散
Figure imgf000038_0001
The method of stabilizing the eye position is to provide a margin in the area imaged by the cameras 13L and 13R, and to image an area one size larger than the face. Then, on the display side, the position of the eye of the interlocutor is adjusted by image processing so as to be on a line connecting the cameras 13 L and 13 R and their centers approaching each other, and then displayed. Here, as a method of detecting the position of the eyes from the face image, a widely known image recognition method can be used. As an example, a method based on correlation detection will be described. FIG. 16 is a conceptual diagram illustrating the process of finding the closest to the template from the image. This correlation detection uses a calculation formula of a correlation value represented by the following equation (5). Correlation coefficient covariance variance
Figure imgf000038_0001
(5) この上式 ( 5 ) 中、 相関係数 c ; jが最大となる座標値 ( i , j ) が、 マツチング位置を与えることになる。 また、 上式 ( 5 ) において、 gは、 テンプレートの画像であり、 この場合、 標準的な眼や、 鼻、 眉毛、 口等 の画像は、 メモリに予め登録される。 また、 f は、 対象となる表示用の 画像である。  (5) In the above equation (5), the coordinate value (i, j) at which the correlation coefficient c; j becomes maximum gives the matching position. In the above equation (5), g is a template image. In this case, images of a standard eye, nose, eyebrows, mouth, etc. are registered in the memory in advance. F is the target display image.
また、 一般に知られたォートフォ一カスやオート トラッキングの方法 も導入可能である。 まず、 カメラ 1 3 L, 1 3 Rは、 標準的な距離 (例 えば L 1 = 2 5 0 mm) に、 向きやフォーカスが合うように設置されて いる。 したがって、 左右のカメラで撮像された映像の差から、 顔への距 離が求まる。 これは、 通常知られた視差に関する幾何学的な計算による ものである。図 1 7は、視差に関するパラメータを図示したものであり、 計算は、 次式 ( 6 ) を用いて行われる。 絶対視差 =輻輳角: yf ,yf In addition, generally known auto focus and auto tracking methods can be introduced. First, the cameras 13L and 13R are installed at a standard distance (for example, L1 = 250mm) so that the orientation and focus are in focus. Therefore, the distance to the face is determined from the difference between the images captured by the left and right cameras. This is due to the generally known geometric calculation of disparity. FIG. 17 illustrates parameters related to parallax, and the calculation is performed using the following equation (6). Absolute parallax = convergence angle: y f , y f
視差
Figure imgf000038_0002
-5DF) ただし、 DF,DP »E
parallax
Figure imgf000038_0002
-5D F ) where D F , D P »E
(6) カメラ 1 3 L, 1 3 Rと計算式を利用して計算された距離より、 標準 的な顔の見かけの大きさが想定され、 その大きさに見合うようテンプレ —トの大きさを調整する。 この大きさ変更は、 簡単なマトリクス計算で 行うことができる。 このようなマトリクス計算は、 例えば次式 ( 7 ) で 表される。 正規化マトリクス 拡大縮小マトリクス (6) From the distance calculated using the camera 13 L and 13 R and the calculation formula, the standard The size of the template is adjusted to match the apparent size of the typical face. This size change can be done with a simple matrix calculation. Such a matrix calculation is represented, for example, by the following equation (7). Normalization matrix Scaling matrix
•1 / 0 0 0· a 0 0 0'  1/0 0 0a 0 0 0 '
0 0 0  0 0 0
MTRX • 0 b 0 0  MTRX • 0 b 0 0
0 0 1 0 0 0 1 0  0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 移動マトリクス Ζ軸回転マトリクス  0 0 0 1 0 0 0 1 Movement matrix Ζ Axis rotation matrix
Figure imgf000039_0001
Figure imgf000039_0001
X軸回転マトリクス y軸回転マトリクス  X axis rotation matrix y axis rotation matrix
Figure imgf000039_0002
Figure imgf000039_0002
視点座標変換マトリクス 透視変換マトリクス 正規化逆マトリクス  Viewpoint coordinate transformation matrix Perspective transformation matrix Normalized inverse matrix
Figure imgf000039_0003
Figure imgf000039_0003
( 7 ) なお、 このような計算によらず、 メモリに多段階の大きさの違いを予 め登録しておき、 ルックァップテーブルとして利用することも可能であ る。  (7) Instead of such a calculation, it is also possible to register in advance a multi-level difference in size in the memory and use it as a look-up table.
このような手法によって適切な大きさの顔の部位のテンプレートが用 意した上で、 そのテンプレートを用いて入力画面を検索し、 最も相関値 の大きい位置を見出すことで顔の眼の位置を把握する。 そして眼の位置 が左右画像で極力重なり、 且つ、 その中央が表示画面のカメラ中央に該 当する位置に近づくように画面を平行移動又は回転、 或いは拡大縮小を 行って表示する。 このときも画像を変換するための上式 ( 7 ) に示した ようなマトリクスを用いることで適切な表示を行うことが可能となる。 つぎに、 図 1 8 A及び図 1 8 Bを参照しながら画像表示部の他の構造 例について説明する。 By using such a method, a template of a face part of appropriate size can be used. Then, the input screen is searched using the template, and the position of the face eye is grasped by finding the position having the largest correlation value. Then, the screen is translated or rotated, or enlarged or reduced so that the position of the eye overlaps as much as possible in the left and right images and the center thereof approaches the position corresponding to the center of the camera on the display screen. Also at this time, it is possible to perform appropriate display by using a matrix as shown in the above equation (7) for converting the image. Next, another example of the structure of the image display unit will be described with reference to FIGS. 18A and 18B.
図 1 8 A及び図 1 8 Bは、 コーン型のレンズを使用した画像表示部の 例であって、 図 1 8 Aは、 画像表示部の断面図であり、 図 1 8 Bは、 レ ンズの斜視図である。 画像表示部においては、 支持基板 7 7上に発光ダ ィォード等の発光素子 7 4 , 7 5が配される。 発光素子 7 4は、 射出さ せる光線の方向を略 z方向とするように成型保持部材 Ί 3によって形成 された空隙部 7 6の略中央部分に形成され、 発光素子 7 5は、 射出させ る光線の方向を y方向にシフ卜させるために成型保持部材 7 3によって 形成され、 空隙部 7 6の略中央部分から一 y方向にシフトして形成され る。 成型保持部材 7 3は、 所要の合成樹脂を成型した部材であり、 コ一 ン型のマイクロレンズ 7 1 , 7 2の保持部材として機能し、 且つ発光素 子からの光を適切な角度に制限するための遮蔽板としても機能する。  FIG. 18A and FIG. 18B are examples of an image display unit using a cone type lens. FIG. 18A is a cross-sectional view of the image display unit, and FIG. 18B is a lens. It is a perspective view of. In the image display unit, light-emitting elements 74 and 75 such as light-emitting diodes are arranged on a support substrate 77. The light emitting element 74 is formed at a substantially central portion of a gap 76 formed by the molding and holding member 3 so that the direction of the emitted light beam is substantially the z direction, and the light emitting element 75 emits light. It is formed by the molding and holding member 73 to shift the direction of the light beam in the y direction, and is formed by shifting in the y direction from a substantially central portion of the gap 76. The molded holding member 73 is a member formed by molding a required synthetic resin, functions as a holding member for the cone-shaped micro lenses 71 and 72, and restricts light from the light emitting element to an appropriate angle. It also functions as a shield plate for
この図 1 8 A及び図 1 8 Bに示す画像表示部においては、 マイクロレ ンズ 7 1 , 7 2がコ一ン形状とされ、 底面側の径の大きな端部が発光素 子 7 4, 7 5に空隙部 7 6を介して対向するように構成されるとともに、 細くされた径の小さな端面 7 8 , 7 9が表示面側になるように配置され る。 特に、 マイクロレンズ 7 1 , 7 2は、 その軸方向が光の射出方向と 一致することから、 光線を射出すべき方向に当該マイクロレンズ 7 1 , 7 2を傾ければ、 所望の光の射出角度の調整が可能であり、 発光素子 7 4, 7 5からの光を集めて端面 7 8 , 7 9から射出できることになる。 このような構造の画像表示部を用いることで、 マイクロレンズ 7 1,In the image display section shown in FIGS. 18A and 18B, the micro lenses 71 and 72 have cone shapes, and the large-diameter end on the bottom side has light emitting elements 74 and 7. It is configured so as to face the space 5 via a gap 76, and is arranged such that the narrowed end faces 78, 799 having a small diameter are on the display surface side. In particular, since the axial direction of the microlenses 7 1 and 7 2 coincides with the light emission direction, if the micro lenses 7 1 and 7 2 are inclined in the direction in which light rays should be emitted, the desired light emission The angle can be adjusted. The light from 4, 7 5 can be collected and emitted from the end faces 7 8, 7 9. By using an image display unit with such a structure, micro lenses 71
7 2及び成型保持部材 7 3等は、 プラスチック成型技術によって生産す ることができる。 したがって、 このような画像表示部においては、 製品 の低コストでの量産も実現されることになる。 72 and the molded holding member 73 can be produced by plastic molding technology. Therefore, in such an image display unit, mass production of products at low cost is realized.
つぎに、 図 1 9及び図 2 0を参照して、 発光光線の角度を 1 0 ° 以内 に絞って射出することの有用性について説明を加える。  Next, with reference to FIG. 19 and FIG. 20, the usefulness of emitting the emitted light with the angle of the emitted light focused within 10 ° will be described.
図 1 9は、 原点からの角度 Φに対する球面積 Sを示しており、 そのパ ラメ一夕を図示するものである。 rは、 仮想球の半径であり、 hは、 角 度 Φの光線が仮想球と交わる部分の径を与える。 また、 Sは、 角度 に よる円錐で切り取られる球面積であり、 s r a t i。は、 全球面積に対する 球面積 Sの比である。 図 2 0は、 図 1 9中左側に示した各式から計算さ れる角度 φと球面積比 S r a t;。の関係を示した図である。 特に、 角度 <ί> 力 1 0 ° ( 0. 1 7 4 5 r a d) の場合には、 球面積比 S r a t;。は、 0. 0 0 1 9 0 2 6 5と極めて小さな値でよい。 換言すれば、 半球を均一に 発光させる場合に比べて、 発光光線の角度を 1 0 ° 以内に絞って射出す ることにより、 1 Z 2 6 3の光量で済むことになり、 このことから、 光 量を多くしなくとも発光光線の角度を制御することにより、 良好な映像 が得られることが示唆される。 また、 このことは、 同じ電力で発光デバ イスを駆動する場合に、 コントラストを大きくできることを意味するこ とになり、 本実施の形態として示す携帯通信端末を用いることにより、 明瞭な目線の合った対話画面が表示されることになる。 Figure 19 shows the sphere area S with respect to the angle Φ from the origin, and illustrates the parameters over time. r is the radius of the virtual sphere, and h gives the diameter of the portion where the ray of angle Φ intersects the virtual sphere. Also, S is the sphere area cut off by a cone according to the angle s rati . Is the ratio of the spherical area S to the global area. FIG. 20 shows the angle φ calculated from the equations shown on the left side of FIG. 19 and the sphere area ratio S rat ; FIG. In particular, when the angle <角度> force is 10 ° (0.174 rad), the sphere area ratio is S rat ;. May be an extremely small value of 0.001 920 265. In other words, compared to the case where the hemisphere emits light evenly, the angle of the emitted light beam is narrowed down to within 10 ° and emitted, so that the amount of light of 1 Z 2 63 is sufficient. It is suggested that a good image can be obtained by controlling the angle of the emitted light beam without increasing the amount of light. In addition, this means that the contrast can be increased when driving the light emitting device with the same power. By using the mobile communication terminal described in this embodiment mode, a clear line of sight can be obtained. An interactive screen will be displayed.
図 2 1は、 画像表示部のさらに他の構造例を示す断面図である。 図 2 1において、 基板 8 2には、 発光ダイォ一ド等の発光素子 8 3 , 8 4が 装着されており、 これら発光素子 8 3, 8 4は、 マトリクス状に配列さ れている。 基板 8 2の表面側には、 微小回折板 8 5 L, 8 5 Rが形成さ れた透明基板 8 1が貼り合わせられている。 微小回折板 8 5 L , 8 5 R は、 それぞれ、 発光素子 8 3, 8 4から射出される光線を回折現象によ つて曲げる機能を有しており、 回折現象によって曲げられた光線がそれ ぞれ使用者に送られる。 具体的には、 微小回折板 8 5 Lは、 使用者の左 眼に見えるように光線の射出角度を制御し、 微小回折板 8 5 Rは、 使用 者の右眼に見えるように光線の射出角度を制御する。 このような制御に より、 当該使用者の大脳でそれを合成して見る機能が働き、 その結果と して、 図 2 Cに示したように、 視線を合わせた画面が表示されて見るこ とができ、 視線を合わせた自然な通話が実現されることになる。 FIG. 21 is a cross-sectional view illustrating still another example of the structure of the image display unit. In FIG. 21, light emitting elements 83 and 84 such as light emitting diodes are mounted on a substrate 82, and these light emitting elements 83 and 84 are arranged in a matrix. Micro-diffraction plates 85 L and 85 R are formed on the front side of the substrate 82. Transparent substrate 81 is attached. The micro-diffraction plates 85 L and 85 R have the function of bending the light beams emitted from the light emitting elements 83 and 84 by the diffraction phenomenon, respectively. And sent to the user. Specifically, the micro-diffraction plate 85L controls the exit angle of the light beam so that it can be seen by the left eye of the user, and the micro-diffraction plate 85R can emit the light beam so that it can be seen by the right eye of the user. Control the angle. By such control, the function of synthesizing and viewing it in the cerebrum of the user works, and as a result, as shown in Fig. 2C, the screen that matches the eyes is displayed. This will enable a natural call that matches the gaze.
なお、 上述した説明では、 画像表示部における左眼用信号に基づく表 示を行う複数の画素と右眼用信号に基づく表示を行う複数の画素とを混 在させる方法について、 空間的に混在させる例を挙げて説明したが、 こ れに限定されず、 左眼用信号に基づく表示と右眼用信号に基づく表示と を時分割に切り替えて行うことにより、 左眼用信号に基づく表示を行う 複数の画素と右眼用信号に基づく表示を行う複数の画素とを混在させて もよい。  In the above description, a method of mixing a plurality of pixels performing display based on the left-eye signal and a plurality of pixels performing display based on the right-eye signal in the image display unit is spatially mixed. Although described using an example, the present invention is not limited to this. Display based on the left-eye signal is performed by switching between display based on the left-eye signal and display based on the right-eye signal in a time-division manner. A plurality of pixels and a plurality of pixels performing display based on the right-eye signal may be mixed.
つぎに、図 2 2 A、図 2 2 B、図 2 3 A及び図 2 3 Bを参照しながら、 視線方向と視線一致させた画像の印象を調べた結果について簡単に説明 する。  Next, referring to FIGS. 22A, 22B, 23A, and 23B, a brief description will be given of the result of examining the impression of an image in which the gaze direction matches the gaze direction.
図 2 2 A及び図 2 2 Bは、 視線方向と視線一致の印象を調べる実験の 様子を示した図であり、 図 2 2 Aは、 左右のカメラから画像を取り込む 場合の図であり、 図 2 2 Bは、 仮想画面の中央にカメラがあるものとし た場合の図である。図 2 2 Aの場合、カメラは、仮想画面の両側にあり、 本実施の形態として示す携帯通信端末の構造を有する。 なお、 一対の力 メラの間の距離は、 両眼距離と共通な 6 5 m mとしている。 これらの仮 想画面上で、 垂直方向で 7点、 水平方向で 7点の注視点を設定し、 その ときの印象について調べた結果を図 2 3 A及び図 2 3 Bに示す。 なお、 注視点の間隔は、 1 2 . 5 m mであり、 この距離は、 角度で 2 . 5 6 ° に相当するものである。 また、 被験者は、'仮想画面から 2 8 0 m mの位 置で注視点を見るものとした。 Fig. 22A and Fig. 22B are diagrams showing the state of an experiment for examining the impression of gaze direction and gaze coincidence, and Fig. 22A is a diagram when images are captured from the left and right cameras. 22B is a diagram when a camera is assumed to be at the center of the virtual screen. In the case of FIG. 22A, the cameras are on both sides of the virtual screen and have the structure of the mobile communication terminal described as the present embodiment. The distance between the pair of force lenses is 65 mm, which is the same as the distance between both eyes. On these virtual screens, 7 points of interest are set in the vertical direction and 7 points in the horizontal direction. The results of examining the impression at that time are shown in FIGS. 23A and 23B. Note that the distance between the gazing points is 12.5 mm, and this distance is equivalent to an angle of 2.56 °. The subject looked at the point of gaze at a position 280 mm from the virtual screen.
図 2 3 Aに示すように、 左右のカメラから画像を取り込む場合と、 図 2 3 Bに示すように、 仮想画面の中央にカメラがある場合とでは、 さほ ど差が生じたわけではなく、 左右のカメラから画像を取り込むことで、 中央にカメラを配するのと同等の視線一致効果が得られていることがわ かる。 さらに、 左右のカメラから画像を取り込む場合では、 仮想画面の 中央にカメラがある場合よりも、 縦方向に注視点を変えた場合であって も視線が合っているような印象を与える傾向が強くなり、 本実施の形態 として示す携帯通信端末を用いることにより、 対話を進めるにあたり、 '視線一致による好適な臨場感が得られることになる。  There is not much difference between the case where images are captured from the left and right cameras as shown in Fig. 23A and the case where the camera is at the center of the virtual screen as shown in Fig. 23B. It can be seen that by capturing images from the left and right cameras, the eye-gaze matching effect equivalent to arranging the cameras in the center is obtained. Furthermore, when capturing images from the left and right cameras, there is a strong tendency to give the impression that the eyes are aligned even when the gazing point is changed in the vertical direction, compared to when the camera is at the center of the virtual screen. In other words, by using the mobile communication terminal described in the present embodiment, it is possible to obtain a suitable sense of reality due to eye-gaze matching when proceeding with a dialogue.
以上説明したように、 本実施の形態として示す携帯通信端末は、 画像 表示部の左右両側のそれぞれにカメラを設けることにより、 通話相手と 視線を合わせながら対話することが可能となり、 臨場感のある対話を行 うことが可能となる。 また、 携帯通信端末においては、 光の利用効率が 高まることで、 低消費電力化が可能となり、 屋外の明るい環境でも高い コントラストの映像を見ることができる。 さらに、 携帯通信端末におい ては、 表示画面の左右両側に撮像デバイスを配する構造を呈することか ら、 小型化を図ることができ、 携帯型の機器として極めて有用である。 つぎに、 上述した携帯通信端末をさらに改良したものについて説明す る。  As described above, the mobile communication terminal described as the present embodiment has a camera on each of the left and right sides of the image display unit, so that it is possible to interact with the other party while keeping their eyes on the same, thereby providing a sense of presence. It is possible to have a dialogue. In mobile communication terminals, higher light use efficiency enables lower power consumption, and high contrast images can be viewed even in bright outdoor environments. Furthermore, a mobile communication terminal has a structure in which imaging devices are arranged on both left and right sides of a display screen, so that it can be downsized and is extremely useful as a portable device. Next, a further improved version of the above-described portable communication terminal will be described.
ここで説明する携帯通信端末は、 画像表示部の左右両側のそれぞれに カメラを設け、 このカメラによって撮像して得られた 2つの画像に基づ いて、 通話相手と視線を合わせるための立体表示を行うものであるが、 このカメラによって撮像して得られた 2つの画像に基づいて、 視差を内 挿することにより、 通話相手と視線を合わせるための立体表示を最適化 し、 さらに見やすい画像とすることができるものである。 In the mobile communication terminal described here, cameras are provided on each of the left and right sides of the image display unit, and three-dimensional display for matching the line of sight with the other party is performed based on the two images captured by the cameras. To do, By interpolating the parallax based on the two images captured by this camera, it is possible to optimize the stereoscopic display for matching the line of sight with the other party to make the image easier to see. .
すなわち、 画像表示部の左右両側に設けられた 2つのカメラによって 撮像された画像のずれが大きい場合には、 視差が大きくなりすぎること から、 2重像のまま融像ができなかったり、 たとえ融像できたとしても 見づらいものであることから使用者の疲労の原因となったりすることが 考えられる。 これに対して、, ここで説明する携帯通信端末は、 図 2 4に 示すように、 画像表示部の左右両側に設けられた 2つのカメラ R R, R L によって撮像された 2つの画像 A R, A Lに基づいて、 2つのカメラ R R , R Lよりも狭い間隔で設けられた仮想的な 2つのカメラ V R, V Lによつ て恰も撮像されて得られたような視差の小さい新たな画像 B R , B Lを生 成することで視差を適切な大きさに設定可能とすることにより、 極めて 見やすく自然な画像の表示を実現するものである。 That is, if the difference between the images captured by the two cameras provided on the left and right sides of the image display unit is large, the parallax becomes too large, so that the fusion cannot be performed as a double image, or Even if the image is formed, it is difficult to see it, which may cause fatigue of the user. Mobile communication terminal described ,, here contrast, as shown in FIG. 2 4, two provided on the left and right sides of the image display unit of the camera R R, 2 two images captured by R L A R , A L , the parallax is small as if the image was obtained by two virtual cameras V R , VL provided at a smaller interval than the two cameras R R , RL By generating new images B R and B L , the parallax can be set to an appropriate size, thereby realizing an extremely easy-to-see natural image display.
一般に、 視差は、 上式 (6 ) に示したように、 相対視差として輻輳角 の差で定義されるが、 ここでは、 簡単のため、 画像表示部の左右両側に 設けられた 2つのカメラによつて撮像された 2つの画像の対応点のずれ 量の画素数として扱うものとする。 携帯通信端末においては、 2つの画 像の対応点を求めるために、. 相関検出による画像認識の方法を利用する ことができる。 すなわち、 携帯通信端末においては、 図 2 5に示すよう に、 画像表示部の左側に設けられたカメラによって撮像された画像 の 中から、 背景に対する顔の輪郭や目 · 鼻の位置といった所定の領域の画 素群を抽出してこれをテンプレート画像 gとし、 このテンプレート画像 gに対応する対象画像 ίを、 画像表示部のお側に設けられたカメラによ つて撮像された画像 Rの中から探索し、両者のずれ量の画素数を求める。 例えば、 携帯通信端末においては、 先に図 3に示した画像処理手段とし ての制御回路 2 1により、 画像 Lの中から、 中心の座標値を ( i , j ) とする横 2 u X縦 2 vの領域を抽出してテンプレート画像 gとすると、 画像 Rの中から、 p , qを可変として中心の座標値が ( i + P, j + q) である横 2 u X縦 2 vの領域を探索し、 その相関係数 p qが最大と なる領域を見つけ出すことにより、 テンプレート画像 gに対応する対象 画像 ίを求める。 このとき、 携帯通信端末においては、 撮像対象が主と して顔画像であることから、 テンプレ一ト画像 gに対応する対象画像 f の探索範囲を、 当該テンプレート画像 gの画像 Lにおける位置に応じて 予め限定することができ、 効率よく処理を行うことができる。 なお、 こ の相関検出は、 次式 (8) で示される相関値の計算式を利用する。 Generally, the disparity is defined as the relative disparity as the difference in the angle of convergence as shown in the above equation (6), but here, for simplicity, the two cameras provided on the left and right sides of the image display unit are used. Therefore, the difference between the corresponding points of the two images captured is treated as the number of pixels. In a mobile communication terminal, an image recognition method based on correlation detection can be used to find a corresponding point between two images. That is, in a mobile communication terminal, as shown in FIG. 25, a predetermined area such as a contour of a face with respect to a background and positions of eyes and nose from an image taken by a camera provided on the left side of an image display unit. Is extracted as a template image g, and a target image に corresponding to the template image g is searched for in the image R captured by the camera provided on the side of the image display unit. Then, the number of pixels having a shift amount between the two is obtained. For example, in a mobile communication terminal, the image processing means shown in FIG. The control circuit 21 extracts an area of 2 u × 2 v with the center coordinate value (i, j) from the image L as a template image g. , P and q are variable, and a search is made for a 2uX by 2v region where the center coordinate value is (i + P, j + q), and by finding a region where the correlation coefficient pq is maximum. Find the target image ί corresponding to the template image g. At this time, in the mobile communication terminal, since the imaging target is mainly a face image, the search range of the target image f corresponding to the template image g is determined according to the position of the template image g in the image L. Can be limited in advance, and processing can be performed efficiently. Note that this correlation detection uses the equation for calculating the correlation value expressed by the following equation (8).
COV,リ-, '(,g,f) COV, Re-, '(, g, f)
相関係数  Correlation coefficient
共分散 ∞ ,,)= - gCovariance ∞ ,,) =-g
Figure imgf000045_0001
if—一 /') 分散 var ) - (sm,n -g')2 分散 vari+w+9(/)= (fm+P,n+q-rr
Figure imgf000045_0001
if—one / ') variance var )-(s m , n -g') 2 variance va ri + w + 9 (/) = (f m + P , n + q -rr
(8) 上式 (8 ) において、 g'は、 テンプレートの画像'の平均値を示し、 f 'は、 対象画像 f の平均値を示している。 この上式 (8 ) に示す相関係 数じ ; 〗 p qが最大となる (p, q) が、 テンプレート画像 gに対する対 象画像 f のずれ量の画素数を示し、 視差に対応することになる。 したが つて、 携帯通信端末においては、 このずれ量を調整することにより、 画 像 R, Lのいずれか一方から任意の視差の画像を生成することができる ことになる。 例えば、 携帯通信端末においては、 視差を示すずれ量の 1 / 2の画素数 (p / 2, Q / 2 ) だけ画像 Lを移動させた画像を生成す ると、 図 2 6に示すように、 画像 R , Lを撮像した 2つのカメラの中央 から撮像した画像、 すなわち、 被写体を正面から見たような画像と同等 の画像を生成することができる。 (8) In the above equation (8), g ′ indicates the average value of the template image ′ and f ′ indicates the average value of the target image f. (P, q) where がpq is the maximum indicates the number of pixels of the displacement amount of the target image f with respect to the template image g, and corresponds to the parallax. . Therefore, in the mobile communication terminal, an image of an arbitrary parallax can be generated from one of the images R and L by adjusting the amount of the shift. For example, in the case of a mobile communication terminal, the displacement amount indicating parallax is 1 When an image is generated by moving the image L by the number of pixels of (p / 2, Q / 2) / 2, the image is captured from the center of the two cameras that captured the images R and L, as shown in Fig. 26. Image, that is, an image equivalent to an image of a subject viewed from the front can be generated.
なお、 携帯通信端末においては、 画素を移動した元の位置に描画すベ き画素が存在しない場合には、 当該画素の左右若しくは左右上下等の画 素から補間して求めた画素で埋めることにより、 欠損を回避することが できる。 また、 携帯通信端末においては、 画像 R, L間の視差が大きい 場合には、 一方の画像にのみ現れて他方の画像には現れないといういわ ゆるォクルージョンと称される隠れた部分が存在すると、 適切な対応点 が見つからない場合がある。 しかしながら、 このォクル一ジョンは、 人 が自然界を見ている状況でも生じており、 この程度と同等であれば殆ど 違和感を感じさせることはない。  In the case of a mobile communication terminal, if there is no pixel to be drawn at the original position where the pixel is moved, the pixel is filled with a pixel obtained by interpolating from the pixel such as the left and right or the left and right and up and down of the pixel. Deficiency can be avoided. Also, in a mobile communication terminal, when there is a large parallax between the images R and L, if there is a hidden portion called so-called occlusion that appears only in one image and does not appear in the other image, In some cases, an appropriate point of correspondence cannot be found. However, this occlusion occurs even in situations where people are looking at the natural world, and if it is equal to this degree, it will hardly cause any discomfort.
携帯通信端末においては、 このようなテンプレート画像 gに対応する 対象画像 ίのずれ量の画素数を求める処理を、 望ましくは画像全体の範 囲について行い、 求めたずれ量の画素数に基づく所定画素数だけ 2つの 画像 R, Lを移動させた新たな 2つの画像を生成する。 これにより、 携 帯通信端末においては、 画像 R , Lよりも狭い間隔で設けられた仮想的 な 2つのカメラによって恰も撮像されて得られたような視差の小さい新 たな 2つの画像を生成することができる。 そして、 携帯通信端末におい ては、 これら新たに生成された 2つの画像を画像表示部に表示すること により、 使用者は、 このようなカメラ間の距離を小さく抑えて視差が小 さくされた 2つの画像を見ることになり、 極めて見やすい良質な視線を 合わせた立体画像が表示されているように感じることができる。  In the mobile communication terminal, the process of calculating the number of pixels of the shift amount of the target image 対 応 corresponding to the template image g is preferably performed on the entire image range, and the predetermined pixel based on the number of pixels of the obtained shift amount is determined. Two new images are generated by moving two images R and L by the number. As a result, the mobile communication terminal generates two new images with small parallax as if they were obtained by two virtual cameras provided at a smaller interval than the images R and L. be able to. In the mobile communication terminal, by displaying these two newly generated images on the image display unit, the user can reduce the distance between cameras and reduce the parallax. You can see two images, and you can feel as if a stereoscopic image with very easy-to-view high-quality eyes was displayed.
特に、 携帯通信端末においては、 2つの画像 Lから求められる視 差を適切な任意の比率に減少させて設定することにより、 使用者の左右 の目に見える画像のずれを減少させ、 より見やすい立体表示を行うこと が可能となる。 In particular, in a mobile communication terminal, the parallax required from the two images L is reduced and set to an appropriate arbitrary ratio, so that the left and right This makes it possible to reduce the displacement of the visible image of the subject and to provide a more easily viewable three-dimensional display.
また、 視差内挿の技術は、 視点数の拡大に用いることができる。 すな わち、 携帯通信端末においては、 通常、 2つのカメラからは 2視点の画 像しか生成することができないが、 これら 2つの画像に基づいて、 それ ぞれ例えば視差が 1 / 2になるように内挿した画像を生成することによ り、 4視点の画像を生成することができる。 また、 携帯通信端末におい ては、 視差が所定量にまで減少するように内挿することにより、 さらに 多視点の画像を生成することができ、 得られた複数の画像をレンチキュ ラーレンズ等を用いて適切に立体表示を行うことにより、 視点位置の違 いによって急激に画像が変化するいわゆるフリッビング現象を低減させ ることができ、 より良質な立体表示を行うことが可能となる。  Also, parallax interpolation technology can be used to increase the number of viewpoints. That is, in a mobile communication terminal, usually, only two viewpoint images can be generated from two cameras, but based on these two images, for example, the parallax becomes 1/2, respectively. By generating an interpolated image as described above, an image of four viewpoints can be generated. Also, in a mobile communication terminal, by interpolating so that the parallax is reduced to a predetermined amount, a multi-viewpoint image can be generated, and the obtained images can be obtained by using a lenticular lens or the like. By appropriately performing stereoscopic display, it is possible to reduce a so-called flicking phenomenon in which an image changes rapidly due to a difference in viewpoint position, and it is possible to perform higher quality stereoscopic display.
なお、 テンプレート画像 gに対応する対象画像 f を探索して 2つの画 像の対応点を求める手法としては、 相関検出以外のものでも適用するこ とができる。 例えば、 2つのカメラの絞り等の影響がなく、 各カメラに よって撮像された 2つの画像の輝度値が殆ど変化しないような条件下で は、 2つの画像の輝度値の差分値を利用するいわゆるサム · ォブ · ディ ファレンス (Sum o f D i f f e r enc e) の手法を用いることができ、 また、 い わゆる残差 2乗和 (S S D ) の手法を用いることもできる。 ただし、 各 カメラによつて撮像された 2つの画像の輝度値が異なるような条件下で は、 これら 2つの画像の正規化を図る意味で、 上述した相関検出による 手法が最も精度が高い結果を得ることができるのはいうまでもない。  As a method of searching for the target image f corresponding to the template image g and obtaining the corresponding points of the two images, any method other than the correlation detection can be applied. For example, under the condition that the aperture values of two cameras are not affected and the brightness values of the two images captured by each camera hardly change, a so-called difference value between the brightness values of the two images is used. The method of Sum of Difference can be used, and the so-called residual sum of squares (SSD) method can also be used. However, under the condition that the brightness values of the two images captured by each camera are different, the above-described correlation detection method gives the most accurate result in order to normalize these two images. It goes without saying that it can be obtained.
また、 画像表示部の左右両側のそれぞれに設けられたカメラによって 撮像して得られた 2つの画像に基づいて、 視差を内挿する処理を行う携 帯通信端末は、 送信側であってもよく、 受信側であってもよい。  Further, the mobile communication terminal that performs the process of interpolating parallax based on two images obtained by capturing images by the cameras provided on each of the left and right sides of the image display unit may be the transmitting side. The receiving side may be used.
以上説明したように、 本実施の形態として示す携帯通信端末は、 画像 表示部の左右両側のそれぞれに設けられたカメラによって撮像して得ら れた 2つの画像に基づいて、 視差を内挿することにより、 通話相手と視 線を合わせるための立体表示を最適化し、 さらに見やすく自然な画像と することができることから、 視差が大きくなりすぎて 2重像のまま融像 ができないという事態を招来することがなく、 また、 使用者の疲労の原 因となる程、 融像できた画像が見づらいという事態も招来することがな く、 極めて優れた利便を提供することができる。 As described above, the mobile communication terminal described as this embodiment has Interpolation of parallax based on two images obtained by cameras provided on the left and right sides of the display unit optimizes the stereoscopic display to match the line of sight with the other party, Furthermore, since the image can be made natural and easy to see, it does not cause a situation where the parallax becomes too large to be able to fuse the image as a double image, and the fusion becomes so large as to cause fatigue of the user. It is possible to provide extremely excellent convenience without causing a situation in which the formed image is difficult to see.
なお、 このような画像表示部の左右両側のそれぞれに設けられたカメ ラによって撮像して得られた 2つの画像に基づいて、 視差を内挿する技 術は、 携帯通信端末に限らず、 画像表示を行う任意の情報処理装置に対 して適用することができるものである。 産業上の利用可能性  The technique of interpolating parallax based on two images obtained by imaging with cameras provided on each of the left and right sides of the image display unit is not limited to mobile communication terminals. The present invention can be applied to any information processing device that performs display. Industrial applicability
以上詳細に説明したように、 本発明によれば、 携帯通信端末で通話相 手と視線を合わせながら対話することが可能となり、 臨場感のある対話 が可能となる。 また、 光の利用効率が高まることで、 低消費電力化が可 能となり、 屋外の明るい環境でも高いコントラス卜の映像を見ることが できる。 また、 表示画面の両側に撮像デバイスを配する構造から小型化 が可能とされ、 携帯可能な情報処理装置に極めて有用である。  As described in detail above, according to the present invention, it is possible to have a conversation with a mobile communication terminal while matching the line of sight with a communication partner, and a realistic conversation can be achieved. In addition, the higher light use efficiency enables lower power consumption, and high contrast images can be viewed even in bright outdoor environments. In addition, the structure in which imaging devices are arranged on both sides of the display screen enables miniaturization, which is extremely useful for a portable information processing device.
また、 本発明によれば、 撮像手段によって撮像されて得られた 2つの 画像に基づいて視差を内挿した新たな画像を生成することにより、 通話 相手と視線を合わせるための立体表示を最適化し、 さらに見やすく自然 な画像とすることができることから、 視差が大きくなりすぎて 2重像の まま融像ができないという事態を招来することがなく、 また、 使用者の 疲労の原因となる程、 融像できた画像が見づらいという事態も招来する ことがなく、 極めて優れた利便を提供することができる。  Further, according to the present invention, by generating a new image in which parallax is interpolated based on two images obtained by imaging by the imaging means, it is possible to optimize a stereoscopic display for matching a line of sight with a communication partner. In addition, since the image can be made more natural and easy to see, it does not lead to a situation where the parallax becomes too large to be able to fuse as a double image, and the fusion becomes so large as to cause fatigue of the user. It is possible to provide extremely excellent convenience without causing a situation in which the formed image is difficult to see.

Claims

請求の範囲 The scope of the claims
1 . 映像をともなう対話を行う携帯型の情報処理装置であって、 画像信号に応じて所要の画像を表示する画像表示手段と、  1. A portable information processing apparatus for performing a dialogue with a video, comprising: an image display means for displaying a required image according to an image signal;
上記画像表示手段の左右両側のそれぞれに設けられる撮像手段とを備 えること  Imaging means provided on each of the left and right sides of the image display means.
を特徴とする情報処理装置。  An information processing apparatus characterized by the above-mentioned.
2 . 上記撮像手段によって撮像されて得られた 2つの画像に基づいて、 視差を内挿した新たな画像を生成する画像処理手段を備え、 2. An image processing unit that generates a new image in which parallax is interpolated, based on the two images obtained by the imaging unit,
上記画像表示手段の表示面には、 上記画像処理手段によって生成され た新たな 2つの画像が表示されること  Two new images generated by the image processing means are displayed on the display surface of the image display means.
を特徴とする請求項 1記載の情報処理装置。  2. The information processing apparatus according to claim 1, wherein:
3 . 上記画像処理手段は、上記撮像手段によって撮像されて得られた 2 つの画像から求められる視差を任意の比率に減少させて設定すること を特徴とする請求項 2記載の情報処理装置。 3. The information processing apparatus according to claim 2, wherein the image processing unit sets the parallax obtained from the two images captured by the imaging unit by reducing the parallax to an arbitrary ratio.
4 . 上記画像処理手段は、上記撮像手段によって撮像されて得られた 2 つの画像の対応点を求め、 求めた対応点のずれ量の画素数に基づいて、 所定画素数だけ上記撮像手段によって撮像されて得られた 2つの画像を 移動させ、 新たな 2つの画像を生成すること 4. The image processing means obtains a corresponding point between the two images obtained by the image capturing means, and captures a predetermined number of pixels by the image capturing means based on the determined number of pixels of the corresponding point shift amount. Moving the two images that were obtained and generating two new images.
を特徴とする請求項 2記載の情報処理装置。  3. The information processing apparatus according to claim 2, wherein:
5 . 上記画像処理手段は、上記撮像手段によって撮像されて得られた 2 つの画像の相関検出を行うことによって上記対応点を求めること 5. The image processing means obtains the corresponding point by performing a correlation detection between two images obtained by the imaging means.
を特徴とする請求項 4記載の情報処理装置。 5. The information processing apparatus according to claim 4, wherein:
6 . 上記撮像手段が設けられる位置は、略矩形状の上記画像表示手段の 左右側端部の水平方向の傍ら及び左右側端部の上下端部から所定の範囲 内の位置を含むこと 6. The position where the image pickup means is provided includes a position within a predetermined range from a horizontal side of a left and right end of the substantially rectangular image display means and from upper and lower ends of left and right side ends.
を特徴とする請求項 1記載の情報処理装置。  2. The information processing apparatus according to claim 1, wherein:
7 . 上記撮像手段は、 固体撮像素子によって構成されること 7. The imaging means is constituted by a solid-state imaging device.
を特徴とする請求項 1記載の情報処理装置。  2. The information processing apparatus according to claim 1, wherein:
8 . 映像をともなう対話を行う携帯型の情報処理装置であって、 携帯可能な筐体と、 8. A portable information processing device for performing a dialogue with a video, comprising a portable housing,
上記筐体の表面に搭載され、 画像信号に応じて所要の画像を表示する 画像表示手段と、  Image display means mounted on the surface of the housing and displaying a required image according to an image signal;
上記筐体の表面上であって上記画像表示手段の左右両側のそれぞれに 設けられる撮像手段とを備えること  Imaging means provided on the surface of the housing and on each of the left and right sides of the image display means.
を特徴とする情報処理装置。  An information processing apparatus characterized by the above-mentioned.
9 . 上記撮像手段によって撮像されて得られた 2つの画像に基づいて、 視差を内挿した新たな画像を生成する画像処理手段を備え、 9. An image processing unit that generates a new image in which parallax is interpolated based on the two images obtained by the imaging unit,
上記画像表示手段の表示面には、 上記画像処理手段によって生成され た新たな 2つの画像が表示されること  Two new images generated by the image processing means are displayed on the display surface of the image display means.
を特徴とする請求項 8記載の情報処理装置。  9. The information processing device according to claim 8, wherein:
1 0 . 上記画像処理手段は、上記撮像手段によって撮像されて得られた 2つの画像から求められる視差を任意の比率に減少させて設定すること を特徴とする請求項 9記載の情報処理装置。 10. The information processing apparatus according to claim 9, wherein the image processing unit sets the parallax obtained from the two images captured by the imaging unit by reducing the parallax to an arbitrary ratio.
1 1 . 上記画像処理手段は、上記撮像手段によって撮像されて得られた 2つの画像の対応点を求め、求めた対応点のずれ量の画素数に基づいて、 所定画素数だけ上記撮像手段によって撮像されて得られた 2つの画像を 移動させ、 新たな 2つの画像を生成すること 1 1. The image processing means obtains a corresponding point between the two images obtained by the imaging means and obtains a predetermined number of pixels by the imaging means based on the determined number of pixels of the shift amount of the corresponding point. Moving two images acquired and generating two new images
を特徴とする請求項 9記載の情報処理装置。  10. The information processing device according to claim 9, wherein:
1 2 . 上記画像処理手段は、上記撮像手段によって撮像されて得られた 2つの画像の相関検出を行うことによって上記対応点を求めること を特徴とする請求項 1 1記載の情報処理装置。 12. The information processing apparatus according to claim 11, wherein the image processing unit obtains the corresponding point by performing a correlation detection between two images captured by the imaging unit.
1 3 . 上記筐体は、 使用者が片手で保持できる大きさに形成され、 上記画像表示手段は、 その表示面の水平方向の幅が約 1 0 m mから約13. The housing is formed in a size that can be held by a user with one hand, and the image display means has a horizontal width of about 10 mm from about 10 mm on the display surface.
1 0 0 m mの範囲とされ、 100 m
上記左右両側の撮像手段の間の距離は、 上記表示面の水平方向の幅よ りも大きく設定されること  The distance between the imaging means on the left and right sides is set to be larger than the horizontal width of the display surface.
を特徴とする請求項 8記載の情報処理装置。  9. The information processing device according to claim 8, wherein:
1 . 上記撮像手段が設けられる位置は、略矩形状の上記画像表示手段 の左右側端部の水平方向の傍ら及び左右側端部の上下端部から所定の範 囲内の位置を含むこと 1. The position where the imaging means is provided includes a position within a predetermined range from the upper and lower ends of the right and left ends of the substantially rectangular image display means beside the left and right ends.
を特徴とする請求項 1 3記載の情報処理装置。  14. The information processing apparatus according to claim 13, wherein:
1 5 . 上記上下端部から所定の範囲内の位置は、半径約 2 0 m m以内の 位置であること 15. The position within the specified range from the upper and lower ends should be within a radius of about 20 mm.
を特徴とする請求項 1 4記載の情報処理装置。 15. The information processing apparatus according to claim 14, wherein:
1 6 . 映像をともなう対話を行う携帯型の情報処理装置であって、 左眼用信号に基づく表示を行う複数の画素と右眼用信号に基づく表示 を行う複数の画素とを混在させてなる画像表示手段と、 16 6. A portable information processing device that performs a dialogue with a video, in which a plurality of pixels performing display based on a left-eye signal and a plurality of pixels performing display based on a right-eye signal are mixed. Image display means,
上記画像表示手段の左右両側のそれぞれに設けられる撮像手段とを備 えること  Imaging means provided on each of the left and right sides of the image display means.
を特徴とする情報処理装置。  An information processing apparatus characterized by the above-mentioned.
1 7 . 上記撮像手段によって撮像されて得られた 2つの画像に基づい て、 視差を内挿した新たな画像を生成する画像処理手段を備え、 17. An image processing means for generating a new image with parallax interpolated based on the two images obtained by the imaging means,
上記画像表示手段の表示面には、 上記画像処理手段によって生成され た新たな 2つの画像が表示されること  Two new images generated by the image processing means are displayed on the display surface of the image display means.
を特徴とする請求項 1 6記載の情報処理装置。 1 8 . 上記画像処理手段は、上記撮像手段によって撮像されて得られた 2つの画像から求められる視差を任意の比率に減少させて設定すること を特徴とする請求項 1 7記載の情報処理装置。  17. The information processing device according to claim 16, wherein: 18. The information processing apparatus according to claim 17, wherein the image processing unit sets the parallax obtained from the two images captured by the imaging unit by reducing the parallax to an arbitrary ratio. .
1 9 . 上記画像処理手段は、上記撮像手段によって撮像されて得られた 2つの画像の対応点を求め、求めた対応点のずれ量の画素数に基づいて、 所定画素数だけ上記撮像手段によって撮像されて得られた 2つの画像を 移動させ、 新たな 2つの画像を生成すること 1 9. The image processing means obtains a corresponding point of the two images obtained by the imaging means and obtains a predetermined number of pixels by the imaging means based on the determined number of pixels of the shift amount of the corresponding point. Moving two images acquired and generating two new images
を特徴とする請求項 1 7記載の情報処理装置。 2 0 . 上記画像処理手段は、上記撮像手段によって撮像されて得られた 2つの画像の相関檢出を行うことによって上記対応点を求めること を特徴とする請求項 1 9記載の情報処理装置。 18. The information processing apparatus according to claim 17, wherein: 20. The image processing means obtains the corresponding points by performing a correlation check between two images obtained by the imaging means. The information processing device according to claim 19, characterized by:
2 1 . 上記画像表示手段は、使用者の両眼それぞれに対して独立して光 を射出する射出手段を有すること 2 1. The image display means has an emission means for emitting light independently to both eyes of the user.
を特徴とする請求項 1 6記載の情報処理装置。  17. The information processing device according to claim 16, wherein:
2 2 . 上記射出手段は、 2 2. The above injection means
左眼用信号又は右眼用信号に基づいて所要の光を発生させる発光手段 と、  Light emitting means for generating required light based on the left-eye signal or the right-eye signal,
上記発光手段からの光を所定の角度方向に射出するように制御する射 出角度制御手段とからなること  Emission angle control means for controlling the light from the light emitting means to be emitted in a predetermined angle direction.
を特徴とする請求項 2 1記載の情報処理装置。  21. The information processing apparatus according to claim 21, wherein:
2 3 . 上記発光手段は、 配列される複数の発光素子からなり、 2 3. The light emitting means is composed of a plurality of light emitting elements arranged,
上記射出角度制御手段は、 使用者の両眼のどちらかに指向する上記発 光素子毎の開口部からなること  The emission angle control means comprises an opening for each of the light emitting elements directed to one of the eyes of the user.
を特徴とする請求項 2 2記載の情報処理装置。  The information processing apparatus according to claim 22, characterized in that:
2 4 . 上記発光手段は、 配列される複数の発光素子からなり、 2 4. The light emitting means is composed of a plurality of light emitting elements arranged,
上記射出角度制御手段は、 複数の微小レンズをマトリクス状に配列し たマイクロレンズァレイからなり、  The emission angle control means comprises a microlens array in which a plurality of microlenses are arranged in a matrix.
上記発光素子は、 上記マイクロレンズアレイの面内方向で対応する微 小レンズとの位置を相対的に使用者の両眼それぞれに対して独立して光 を射出するようにずらして配置されてなること  The light emitting elements are arranged such that the positions of the light emitting elements and the corresponding microlenses in the in-plane direction of the microlens array are relatively shifted so as to independently emit light to both eyes of the user. thing
を特徴とする請求項 2 2記載の情報処理装置。 The information processing apparatus according to claim 22, characterized in that:
2 5 . 上記微小レンズと上記発光素子の大きさの比率は、 3 0 : 1乃至 5 : 1の範囲であること 25. The ratio between the size of the microlens and the size of the light emitting element is in the range of 30: 1 to 5: 1.
を特徴とする請求項 2 4記載の情報処理装置。 2 6 . 上記微小レンズは、 球状、 円錐状、 角錐状、 又は矩形状であるこ と  25. The information processing apparatus according to claim 24, wherein: 26. The microlenses should be spherical, conical, pyramidal, or rectangular.
を特徴とする請求項 2 4記載の情報処理装置。  25. The information processing apparatus according to claim 24, wherein:
2 7 . 上記発光手段は、 配列される複数の発光素子からなり、 27. The light emitting means is composed of a plurality of light emitting elements arranged,
上記射出角度制御手段は、 それぞれ使用者の両眼のどちらかに指向す る回折光を射出する微小回折板をマトリクス状に配列してなること を特徴とする請求項 2 2記載の情報処理装置。  23. The information processing apparatus according to claim 22, wherein the emission angle control means is configured by arranging, in a matrix, micro-diffraction plates that emit diffracted light directed to one of the eyes of the user. .
2 8 . 上記射出角度制御手段は、上記画像表示手段の水平方向で一方の 目と同じ側の端部と反対側の端部との間の各発光手段の射出角度が線形 補間されるよう fc設けられていること 28. The emission angle control means is configured to linearly interpolate the emission angle of each light emitting means between the end on the same side as one eye and the end on the opposite side in the horizontal direction of the image display means. What is provided
を特徴とする請求項 2 2記載の情報処理装置。  The information processing apparatus according to claim 22, characterized in that:
2 9 . 上記画像表示手段における左眼用信号に基づく表示を行う複数 の画素と右眼用信号に基づく表示を行う複数の画素との混在は、 時分割 によって左眼用信号に基づく表示と右眼用信号に基づく表示とを切り替 えて行われること 29. In the image display means, a plurality of pixels for performing display based on the signal for the left eye and a plurality of pixels for performing display based on the signal for the right eye are mixed with the display based on the signal for the left eye and the right based on time division. Switching between display based on ophthalmic signals
を特徴とする請求項 1 6記載の情報処理装置。 3 0 . 通話相手の顔部分を含む画像を表示可能とする画像表示手段を 設けるとともに、 上記画像表示手段の左右両側にそれぞれ撮像手段を設 けて構成され、 映像をともなう対話を行う携帯型の情報処理端末を複数 備え、 17. The information processing device according to claim 16, wherein: 30. An image display means for displaying an image including the face of the other party is provided, and image pickup means are provided on both left and right sides of the image display means. And a plurality of portable information processing terminals that carry out dialogue with video,
上記情報処理端末間で相互に通信可能とすること  The information processing terminals must be able to communicate with each other
を特徴とする情報処理シ  Information processing system characterized by
3 1 . 上記画像表示手段の表示面には、通話相手の顔がその視線を使用 者に一致させて表示されること 3 1. On the display surface of the above-mentioned image display means, the face of the other party must be displayed with their eyes aligned with the user.
を特徴とする請求項 3 0記載の情報処理  The information processing according to claim 30, characterized in that:
3 2 . 上記情報処理端末は、それぞれ、 上記表示面上の視線の位置を表 示面上で略固定とさせる画像処理手段を有すること 3 2. Each of the information processing terminals has image processing means for making the position of the line of sight on the display surface substantially fixed on the display surface.
を特徴とする請求項 3 0記載の情報処理  The information processing according to claim 30, characterized in that:
3 3 . 上記情報処理端末は、 それぞれ、 上記撮像手段によって撮像され て得られた 2つの画像に基づいて、 視差を内挿した新たな画像を生成す る画像処理手段を有し、 33. Each of the information processing terminals has image processing means for generating a new image in which parallax is interpolated, based on two images obtained by the imaging means.
通話相手の上記情報処理端末の上記画像表示手段の表示面には、 上記 画像処理手段によって生成された新たな 2つの画像が表示されること を特徴とする請求項 3 1記載の情報処理  31. The information processing method according to claim 31, wherein two new images generated by the image processing means are displayed on a display surface of the image display means of the information processing terminal of the other party.
3 4 . 携帯型の端末の画像表示手段の左右両側にそれぞれ設けられた 一対の撮像手段によって使用者の映像を取り込む映像取り込み工程と、 通話相手の端末の画像表示手段に上記使用者の視線を該通話相手の視 点で一致させて表示させる表示工程とを備えること 3 4. An image capturing step of capturing a user's image by a pair of imaging means provided on each of the left and right sides of the image display means of the portable terminal, and the user's line of sight is displayed on the image display means of the other party's terminal. A display step of displaying the caller's eyes in a manner that they are matched with each other.
を特徴とする対話者表示方法。 A method for displaying an interlocutor.
3 5 . 上記映像取り込み工程にて取り込まれた 2つの画像に基づいて、 視差を内挿した新たな画像を生成する画像処理工程を備え、 3 5. An image processing step of generating a new image with parallax interpolated based on the two images captured in the video capturing step,
通話相手の端末の画像表示手段の表示面には、 上記画像処理工程にて 生成された新たな 2つの画像が表示されること  Two new images generated in the above image processing process are displayed on the display surface of the image display means of the terminal of the other party
を特徴とする請求項 3 4記載の対話者表示方法。  35. The method for displaying a dialogue person according to claim 34, characterized by the following.
3 6 . 上記画像表示手段は、左眼用信号に基づく表示を行う複数の画素 と右眼用信号に基づく表示を行う複数の画素とを混在させてなるもので あること 36. The image display means is a mixture of a plurality of pixels performing display based on the left-eye signal and a plurality of pixels performing display based on the right-eye signal.
を特徴とする請求項 3 4記載の対話者表示方法。  35. The method for displaying a dialogue person according to claim 34, characterized by the following.
3 7 . 上記画像表示手段は、使用者の両眼それぞれに対して独立して光 を射出する射出手段を有すること 37. The image display means should have emission means for emitting light independently to both eyes of the user.
を特徴とする請求項 3 4記載の対話者表示方法。  35. The method for displaying a dialogue person according to claim 34, characterized by the following.
3 8 . 上記射出手段は、 3 8. The injection means
左眼用信号又は右眼用信号に基づき所要の光を発生させる発光手段と. 上記発光手段からの光を所定の角度方向に射出するように制御する射 出角度制御手段とからなること  A light emitting means for generating required light based on a signal for the left eye or a signal for the right eye; and an emission angle control means for controlling light from the light emitting means to emit in a predetermined angle direction.
を特徴とする請求項 3 7記載の対話者表示方法。  38. The method for displaying a dialogue person according to claim 37, wherein:
3 9 . 上記端末は、 3 9. The above terminals are
携帯可能な筐体と、  A portable housing,
上記筐体の表面に搭載され、 画像信号に応じて所要の画像を表示する 画像表示手段と、  Image display means mounted on the surface of the housing and displaying a required image according to an image signal;
上記筐体の表面上であって上記画像表示手段の左右両側のそれぞれに 設けられる撮像手段とを有すること On the left and right sides of the image display means on the surface of the housing Having imaging means provided
を特徴とする請求項 3 4記載の対話者表示方法。  35. The method for displaying a dialogue person according to claim 34, characterized by the following.
4 0 . 映像をともなう対話を行う情報処理装置であって、 40. An information processing device for performing a dialogue with a video,
画像信号に応じて所要の画像を表示する画像表示手段と、  Image display means for displaying a required image according to the image signal;
上記画像表示手段の左右両側のそれぞれに設けられる撮像手段と、 上記撮像手段によって撮像されて得られた 2つの画像に基づいて、 視 差を内挿した新たな画像を生成する画像処理手段とを備え、  Imaging means provided on each of the left and right sides of the image display means, and image processing means for generating a new image in which parallax is interpolated based on two images obtained by the imaging means. Prepared,
上記画像表示手段の表示面には、 上記画像処理手段によって生成され た新たな 2つの画像が表示されること  Two new images generated by the image processing means are displayed on the display surface of the image display means.
を特徴とする情報処理装置。  An information processing apparatus characterized by the above-mentioned.
4 1 . 映像をともなう対話を行う情報処理装置であって、 4 1. An information processing device that performs a dialogue with a video,
筐体と、  A housing,
上記筐体の表面に搭載され、 画像信号に応じて所要の画像を表示する 画像表示手段と、  Image display means mounted on the surface of the housing and displaying a required image according to an image signal;
上記筐体の表面上であって上記画像表示手段の左右両側のそれぞれに 設けられる撮像手段と、  Imaging means provided on the surface of the housing and on each of the left and right sides of the image display means;
上記撮像手段によって撮像されて得られた 2つの画像に基づいて、 視 差を内挿した新たな画像を生成する画像処理手段とを備え、  Image processing means for generating a new image in which parallax is interpolated, based on two images obtained by the imaging means,
上記画像表示手段の表示面には、 上記画像処理手段によって生成され た新たな 2つの画像が表示されること  Two new images generated by the image processing means are displayed on the display surface of the image display means.
を特徴とする情報処理装置。 4 2 . 映像をともなう対話を行う情報処理装置であって、  An information processing apparatus characterized by the above-mentioned. 4 2. An information processing device that performs a dialogue with a video,
左眼用信号に基づく表示を行う複数の画素と右眼用信号に基づく表示 を行う複数の画素とを混在させてなる画像表示手段と、 Multiple pixels for display based on left-eye signal and display based on right-eye signal Image display means comprising a mixture of a plurality of pixels performing
上記画像表示手段の左右両側のそれぞれに設けられる撮像手段と、 上記撮像手段によって撮像されて得られた 2つの画像に基づいて、 視 差を内挿した新たな画像を生成する画像処理手段とを備え、  Imaging means provided on each of the left and right sides of the image display means, and image processing means for generating a new image in which parallax is interpolated based on two images obtained by the imaging means. Prepared,
上記画像表示手段の表示面には、 上記画像処理手段によって生成され た新たな 2つの画像が表示されること  Two new images generated by the image processing means are displayed on the display surface of the image display means.
を特徴とする情報処理装置。  An information processing apparatus characterized by the above-mentioned.
4 3 . 通話相手の顔部分を含む画像を表示可能とする画像表示手段を 設けるとともに、 上記画像表示手段の左お両側にそれぞれ撮像手段を設 けて構成され、 映像をともなう対話を行う情報処理端末を複数備え、 上記情報処理端末は、 それぞれ、 上記撮像手段によって撮像されて得 られた 2つの画像に基づいて、 視差を内挿した新たな画像を生成する画 像処理手段を有し、 4 3. An image display means for displaying an image including the face of the other party is provided, and an image pickup means is provided on each of the left and right sides of the image display means, and information processing for performing a dialogue with a video is provided. A plurality of terminals, each of the information processing terminals includes an image processing unit that generates a new image in which parallax is interpolated based on two images captured by the imaging unit,
上記情報処理端末間で相互に通信する際に、 上記画像処理手段によつ て生成された新たな 2つの画像を、 通話相手の上記情報処理端末の上記 画像表示手段の表示面に表示すること  When communicating between the information processing terminals, two new images generated by the image processing means are displayed on a display surface of the image display means of the information processing terminal of the other party.
を特徴とする情報処理  Information processing characterized by
4 4 . 端末の画像表示手段の左右両側にそれぞれ設けられた一対の撮 像手段によって使用者の映像を取り込む映像取り込み工程と、 4 4. A video capturing step of capturing a user's video by a pair of capturing means provided on each of the left and right sides of the image display means of the terminal
上記映像取り込み工程にて取り込まれた 2つの画像に基づいて、 視差 を内挿した新たな画像を生成する画像処理工程と、  An image processing step of generating a new image in which parallax is interpolated based on the two images captured in the video capturing step;
通話相手の端末の画像表示手段に、 上記画像処理工程にて生成された 新たな 2つの画像を表示させることで上記使用者の視線を該通話相手の 視点で一致させて表示させる表示工程とを備えること を特徴とする対話者表示方法 < A display step of displaying the two new images generated in the image processing step on the image display means of the terminal of the other party so that the user's line of sight coincides with the viewpoint of the other party and displayed. To prepare Interviewer display method characterized by <
PCT/JP2003/006155 2002-05-21 2003-05-16 Information processing apparatus, information processing system, and dialogist displaying method WO2003098942A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/515,288 US7528879B2 (en) 2002-05-21 2003-05-16 Information processing apparatus, information processing system, and conversation partner display method while presenting a picture
EP03725814A EP1507419A4 (en) 2002-05-21 2003-05-16 Information processing apparatus, information processing system, and dialogist displaying method
KR1020047018744A KR100976002B1 (en) 2002-05-21 2003-05-16 Information processing apparatus, information processing system, and dialogist displaying method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-146181 2002-05-21
JP2002146181 2002-05-21
JP2002358567A JP2004048644A (en) 2002-05-21 2002-12-10 Information processor, information processing system and interlocutor display method
JP2002-358567 2002-12-10

Publications (1)

Publication Number Publication Date
WO2003098942A1 true WO2003098942A1 (en) 2003-11-27

Family

ID=29552322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006155 WO2003098942A1 (en) 2002-05-21 2003-05-16 Information processing apparatus, information processing system, and dialogist displaying method

Country Status (7)

Country Link
US (1) US7528879B2 (en)
EP (1) EP1507419A4 (en)
JP (1) JP2004048644A (en)
KR (1) KR100976002B1 (en)
CN (1) CN1672431A (en)
TW (1) TWI223561B (en)
WO (1) WO2003098942A1 (en)

Families Citing this family (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050207486A1 (en) * 2004-03-18 2005-09-22 Sony Corporation Three dimensional acquisition and visualization system for personal electronic devices
EP1613082A1 (en) * 2004-06-30 2006-01-04 Sony Ericsson Mobile Communications AB Face image correction
US20110028212A1 (en) 2004-07-01 2011-02-03 David Krien Computerized Imaging of Sporting Trophies and Method of Providing a Replica
JP4699995B2 (en) * 2004-12-16 2011-06-15 パナソニック株式会社 Compound eye imaging apparatus and imaging method
US7929801B2 (en) 2005-08-15 2011-04-19 Sony Corporation Depth information for auto focus using two pictures and two-dimensional Gaussian scale space theory
US8571346B2 (en) * 2005-10-26 2013-10-29 Nvidia Corporation Methods and devices for defective pixel detection
US8588542B1 (en) 2005-12-13 2013-11-19 Nvidia Corporation Configurable and compact pixel processing apparatus
JP4199238B2 (en) 2006-01-11 2008-12-17 パナソニック株式会社 Shooting system
EP1980935A1 (en) * 2006-02-03 2008-10-15 Matsushita Electric Industrial Co., Ltd. Information processing device
US8737832B1 (en) 2006-02-10 2014-05-27 Nvidia Corporation Flicker band automated detection system and method
US7616254B2 (en) 2006-03-16 2009-11-10 Sony Corporation Simple method for calculating camera defocus from an image scene
KR100962874B1 (en) * 2006-04-26 2010-06-10 차오 후 A portable personal integrative stereoscopic video multimedia device
JP2007304525A (en) * 2006-05-15 2007-11-22 Ricoh Co Ltd Image input device, electronic equipment, and image input method
US7711201B2 (en) 2006-06-22 2010-05-04 Sony Corporation Method of and apparatus for generating a depth map utilized in autofocusing
US7860382B2 (en) * 2006-10-02 2010-12-28 Sony Ericsson Mobile Communications Ab Selecting autofocus area in an image
EP2084578A1 (en) * 2006-10-26 2009-08-05 SeeReal Technologies S.A. Mobile telephony system comprising holographic display
US8077964B2 (en) 2007-03-19 2011-12-13 Sony Corporation Two dimensional/three dimensional digital information acquisition and display device
US20100103244A1 (en) * 2007-03-30 2010-04-29 Nxp, B.V. device for and method of processing image data representative of an object
DE102007016403A1 (en) * 2007-04-03 2008-10-09 Micronas Gmbh Method and device for recording, transmitting and / or reproducing image data, in particular videoconferencing image data
KR101405933B1 (en) * 2007-07-12 2014-06-12 엘지전자 주식회사 Portable terminal and method for displaying position information in the portable terminal
US8724895B2 (en) 2007-07-23 2014-05-13 Nvidia Corporation Techniques for reducing color artifacts in digital images
US8827161B2 (en) * 2007-08-14 2014-09-09 Opticon, Inc. Optimized illumination for an omniscanner
JP4973393B2 (en) * 2007-08-30 2012-07-11 セイコーエプソン株式会社 Image processing apparatus, image processing method, image processing program, and image processing system
JP4905326B2 (en) * 2007-11-12 2012-03-28 ソニー株式会社 Imaging device
JP4958233B2 (en) * 2007-11-13 2012-06-20 学校法人東京電機大学 Multi-view image creation system and multi-view image creation method
JP4625067B2 (en) * 2007-11-20 2011-02-02 富士フイルム株式会社 Imaging apparatus and method, and program
US8698908B2 (en) 2008-02-11 2014-04-15 Nvidia Corporation Efficient method for reducing noise and blur in a composite still image from a rolling shutter camera
JP4608563B2 (en) * 2008-03-26 2011-01-12 富士フイルム株式会社 Stereoscopic image display apparatus and method, and program
JP5322264B2 (en) * 2008-04-01 2013-10-23 Necカシオモバイルコミュニケーションズ株式会社 Image display apparatus and program
US9379156B2 (en) 2008-04-10 2016-06-28 Nvidia Corporation Per-channel image intensity correction
US8280194B2 (en) 2008-04-29 2012-10-02 Sony Corporation Reduced hardware implementation for a two-picture depth map algorithm
US10896327B1 (en) * 2013-03-15 2021-01-19 Spatial Cam Llc Device with a camera for locating hidden object
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
EP3876510A1 (en) 2008-05-20 2021-09-08 FotoNation Limited Capturing and processing of images using monolithic camera array with heterogeneous imagers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US8194995B2 (en) 2008-09-30 2012-06-05 Sony Corporation Fast camera auto-focus
US8553093B2 (en) 2008-09-30 2013-10-08 Sony Corporation Method and apparatus for super-resolution imaging using digital imaging devices
JP5144456B2 (en) * 2008-10-09 2013-02-13 富士フイルム株式会社 Image processing apparatus and method, image reproducing apparatus and method, and program
US8675091B2 (en) * 2008-12-15 2014-03-18 Nvidia Corporation Image data processing with multiple cameras
US8749662B2 (en) 2009-04-16 2014-06-10 Nvidia Corporation System and method for lens shading image correction
TWI413979B (en) * 2009-07-02 2013-11-01 Inventec Appliances Corp Method for adjusting displayed frame, electronic device, and computer program product thereof
US8698918B2 (en) 2009-10-27 2014-04-15 Nvidia Corporation Automatic white balancing for photography
WO2011053315A1 (en) * 2009-10-30 2011-05-05 Hewlett-Packard Development Company, L.P. Video display systems
US8514491B2 (en) 2009-11-20 2013-08-20 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
EP2508002A1 (en) * 2009-12-04 2012-10-10 Nokia Corp. A processor, apparatus and associated methods
KR101268520B1 (en) * 2009-12-14 2013-06-04 한국전자통신연구원 The apparatus and method for recognizing image
SG185500A1 (en) 2010-05-12 2012-12-28 Pelican Imaging Corp Architectures for imager arrays and array cameras
EP2395768B1 (en) * 2010-06-11 2015-02-25 Nintendo Co., Ltd. Image display program, image display system, and image display method
US20120007819A1 (en) * 2010-07-08 2012-01-12 Gregory Robert Hewes Automatic Convergence Based on Touchscreen Input for Stereoscopic Imaging
JP5545993B2 (en) * 2010-07-22 2014-07-09 Necパーソナルコンピュータ株式会社 Information processing apparatus, frame data conversion method, and program
TW201205344A (en) * 2010-07-30 2012-02-01 Hon Hai Prec Ind Co Ltd Adjusting system and method for screen, advertisement board including the same
JP2012053165A (en) * 2010-08-31 2012-03-15 Sony Corp Information processing device, program, and information processing method
WO2012053940A2 (en) * 2010-10-20 2012-04-26 Rawllin International Inc Meeting camera
CN102457736A (en) * 2010-10-25 2012-05-16 宏碁股份有限公司 Method for providing instant three-dimensional video and instant three-dimensional video system
CN101986346B (en) * 2010-11-01 2012-08-08 华为终端有限公司 Face image processing method and device
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
KR20120078649A (en) * 2010-12-31 2012-07-10 한국전자통신연구원 Camera-equipped portable video conferencing device and control method thereof
US8823769B2 (en) 2011-01-05 2014-09-02 Ricoh Company, Ltd. Three-dimensional video conferencing system with eye contact
GB201101083D0 (en) * 2011-01-21 2011-03-09 Rawlin Internat Inc Mobile device camera lighting
EP2708019B1 (en) 2011-05-11 2019-10-16 FotoNation Limited Systems and methods for transmitting and receiving array camera image data
US20130265459A1 (en) 2011-06-28 2013-10-10 Pelican Imaging Corporation Optical arrangements for use with an array camera
JP2014521117A (en) 2011-06-28 2014-08-25 ペリカン イメージング コーポレイション Optical array for use with array cameras
US20130070060A1 (en) 2011-09-19 2013-03-21 Pelican Imaging Corporation Systems and methods for determining depth from multiple views of a scene that include aliasing using hypothesized fusion
US8542933B2 (en) 2011-09-28 2013-09-24 Pelican Imaging Corporation Systems and methods for decoding light field image files
WO2013126578A1 (en) 2012-02-21 2013-08-29 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
EP2640060A1 (en) * 2012-03-16 2013-09-18 BlackBerry Limited Methods and devices for producing an enhanced image
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US20140002674A1 (en) 2012-06-30 2014-01-02 Pelican Imaging Corporation Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors
US9798698B2 (en) 2012-08-13 2017-10-24 Nvidia Corporation System and method for multi-color dilu preconditioner
EP2888720B1 (en) 2012-08-21 2021-03-17 FotoNation Limited System and method for depth estimation from images captured using array cameras
US20140055632A1 (en) 2012-08-23 2014-02-27 Pelican Imaging Corporation Feature based high resolution motion estimation from low resolution images captured using an array source
US9508318B2 (en) 2012-09-13 2016-11-29 Nvidia Corporation Dynamic color profile management for electronic devices
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
EP2901671A4 (en) 2012-09-28 2016-08-24 Pelican Imaging Corp Generating images from light fields utilizing virtual viewpoints
US9307213B2 (en) 2012-11-05 2016-04-05 Nvidia Corporation Robust selection and weighting for gray patch automatic white balancing
WO2014078443A1 (en) 2012-11-13 2014-05-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
CN103841311A (en) * 2012-11-20 2014-06-04 广州三星通信技术研究有限公司 Method for generating 3D image and portable terminals
WO2014130849A1 (en) 2013-02-21 2014-08-28 Pelican Imaging Corporation Generating compressed light field representation data
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
WO2014138697A1 (en) 2013-03-08 2014-09-12 Pelican Imaging Corporation Systems and methods for high dynamic range imaging using array cameras
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
WO2014165244A1 (en) 2013-03-13 2014-10-09 Pelican Imaging Corporation Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
WO2014159779A1 (en) 2013-03-14 2014-10-02 Pelican Imaging Corporation Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
WO2014153098A1 (en) 2013-03-14 2014-09-25 Pelican Imaging Corporation Photmetric normalization in array cameras
WO2014150856A1 (en) 2013-03-15 2014-09-25 Pelican Imaging Corporation Array camera implementing quantum dot color filters
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
JP2013210641A (en) * 2013-04-19 2013-10-10 Nec Casio Mobile Communications Ltd Image display apparatus and program
WO2014204950A1 (en) * 2013-06-17 2014-12-24 Reald Inc. Controlling light sources of a directional backlight
US9756222B2 (en) 2013-06-26 2017-09-05 Nvidia Corporation Method and system for performing white balancing operations on captured images
US9826208B2 (en) 2013-06-26 2017-11-21 Nvidia Corporation Method and system for generating weights for use in white balancing an image
US9099575B2 (en) * 2013-07-16 2015-08-04 Cree, Inc. Solid state lighting devices and fabrication methods including deposited light-affecting elements
WO2015048694A2 (en) 2013-09-27 2015-04-02 Pelican Imaging Corporation Systems and methods for depth-assisted perspective distortion correction
US9426343B2 (en) 2013-11-07 2016-08-23 Pelican Imaging Corporation Array cameras incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
EP3075140B1 (en) 2013-11-26 2018-06-13 FotoNation Cayman Limited Array camera configurations incorporating multiple constituent array cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
EP3201877B1 (en) 2014-09-29 2018-12-19 Fotonation Cayman Limited Systems and methods for dynamic calibration of array cameras
US11019323B2 (en) * 2015-02-06 2021-05-25 Tara Chand Singhal Apparatus and method for 3D like camera system in a handheld mobile wireless device
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
KR101782582B1 (en) * 2015-12-04 2017-09-28 카페24 주식회사 Method, Apparatus and System for Transmitting Video Based on Eye Tracking
CN106331673A (en) * 2016-08-22 2017-01-11 上嘉(天津)文化传播有限公司 VR video data control method based on distributed control system
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US10721419B2 (en) * 2017-11-30 2020-07-21 International Business Machines Corporation Ortho-selfie distortion correction using multiple image sensors to synthesize a virtual image
WO2021055585A1 (en) 2019-09-17 2021-03-25 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
KR20230116068A (en) 2019-11-30 2023-08-03 보스턴 폴라리메트릭스, 인크. System and method for segmenting transparent objects using polarization signals
US11195303B2 (en) 2020-01-29 2021-12-07 Boston Polarimetrics, Inc. Systems and methods for characterizing object pose detection and measurement systems
CN115428028A (en) 2020-01-30 2022-12-02 因思创新有限责任公司 System and method for synthesizing data for training statistical models in different imaging modalities including polarized images
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
CN114021100B (en) * 2022-01-10 2022-03-15 广东省出版集团数字出版有限公司 Safety management system for digital teaching material storage
CN114911445A (en) * 2022-05-16 2022-08-16 歌尔股份有限公司 Display control method of virtual reality device, and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09121370A (en) * 1995-08-24 1997-05-06 Matsushita Electric Ind Co Ltd Stereoscopic television device
JPH1075432A (en) * 1996-08-29 1998-03-17 Sanyo Electric Co Ltd Stereoscopic video telephone set
JPH10108152A (en) * 1996-09-27 1998-04-24 Sanyo Electric Co Ltd Portable information terminal
JPH10221644A (en) * 1997-02-05 1998-08-21 Canon Inc Stereoscopic picture display device
JPH1175173A (en) * 1995-02-16 1999-03-16 Sumitomo Electric Ind Ltd Bidirectional interactive system having mechanism to secure coincidence of lines of sight between dialogists via transmission means

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359362A (en) 1993-03-30 1994-10-25 Nec Usa, Inc. Videoconference system using a virtual camera image
JPH0750855A (en) * 1993-08-06 1995-02-21 Sharp Corp Picture trasmitter
US6259470B1 (en) * 1997-12-18 2001-07-10 Intel Corporation Image capture system having virtual camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175173A (en) * 1995-02-16 1999-03-16 Sumitomo Electric Ind Ltd Bidirectional interactive system having mechanism to secure coincidence of lines of sight between dialogists via transmission means
JPH09121370A (en) * 1995-08-24 1997-05-06 Matsushita Electric Ind Co Ltd Stereoscopic television device
JPH1075432A (en) * 1996-08-29 1998-03-17 Sanyo Electric Co Ltd Stereoscopic video telephone set
JPH10108152A (en) * 1996-09-27 1998-04-24 Sanyo Electric Co Ltd Portable information terminal
JPH10221644A (en) * 1997-02-05 1998-08-21 Canon Inc Stereoscopic picture display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1507419A4 *

Also Published As

Publication number Publication date
JP2004048644A (en) 2004-02-12
US7528879B2 (en) 2009-05-05
KR20040106575A (en) 2004-12-17
CN1672431A (en) 2005-09-21
KR100976002B1 (en) 2010-08-17
US20050175257A1 (en) 2005-08-11
TW200307460A (en) 2003-12-01
TWI223561B (en) 2004-11-01
EP1507419A1 (en) 2005-02-16
EP1507419A4 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
WO2003098942A1 (en) Information processing apparatus, information processing system, and dialogist displaying method
US10750210B2 (en) Three-dimensional telepresence system
US7224382B2 (en) Immersive imaging system
US20070182812A1 (en) Panoramic image-based virtual reality/telepresence audio-visual system and method
WO2011108139A1 (en) Teleconference system
TWI692976B (en) Video communication device and method for connecting video communivation to other device
TW201943259A (en) Window system based on video communication
US10645340B2 (en) Video communication device and method for video communication
TWI710247B (en) Video communication device and method for connecting video communication to other device
JP6157077B2 (en) Display device with camera
JP2008228170A (en) Image display device and television telephone device
JPH1075432A (en) Stereoscopic video telephone set
JP5963637B2 (en) Display device with imaging device
Tsuchiya et al. An optical design for avatar-user co-axial viewpoint telepresence
JP2002027419A (en) Image terminal device and communication system using the same
JP2001147401A (en) Stereoscopic image pickup device
TWI700933B (en) Video communication device and method for connecting video communivation to other device
JP3139100B2 (en) Multipoint image communication terminal device and multipoint interactive system
JPH06225298A (en) Terminal device for visual communication
JP2010283550A (en) Communication system, and communication device
US20240004215A1 (en) Full lightfield with monocular and stereoscopic depth control via monocular-to-binocular hybridization
JPH06253303A (en) Photographic display device
KR20090008750A (en) 3 dimension image-based terminal and stereo scope applied to the same
US20210051310A1 (en) The 3d wieving and recording method for smartphones
JPH0530503A (en) Image display/pickup device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047018744

Country of ref document: KR

Ref document number: 10515288

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003725814

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047018744

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038174871

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003725814

Country of ref document: EP