JPH09117667A - Catalyst for cleaning exhaust gas - Google Patents

Catalyst for cleaning exhaust gas

Info

Publication number
JPH09117667A
JPH09117667A JP7302006A JP30200695A JPH09117667A JP H09117667 A JPH09117667 A JP H09117667A JP 7302006 A JP7302006 A JP 7302006A JP 30200695 A JP30200695 A JP 30200695A JP H09117667 A JPH09117667 A JP H09117667A
Authority
JP
Japan
Prior art keywords
catalyst
mordenite
exhaust gas
surface area
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7302006A
Other languages
Japanese (ja)
Other versions
JP3806167B2 (en
Inventor
Masaaki Uchida
雅昭 内田
Yusaku Arima
悠策 有馬
Kazuaki Takakura
和昭 高倉
Shiro Nakamoto
士郎 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP30200695A priority Critical patent/JP3806167B2/en
Publication of JPH09117667A publication Critical patent/JPH09117667A/en
Application granted granted Critical
Publication of JP3806167B2 publication Critical patent/JP3806167B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PROBLEM TO BE SOLVED: To enhance selectivity to the reduction reaction of NOx by hydrocarbons and thereby obtain a high conversion rate of NOx by allowing an active metal component to be borne by a carrier of mordenite containing titanium with the specified ratio of an outer specific surface area to a total specific surface area, in a catalyst for cleaning exhaust gas. SOLUTION: This catalyst for cleaning exhaust gas is used for the action to clean NOx contained in exhaust gas discharged from an internal combustion engine such as a gasoline engine through catalytic reduction using hydrocarbons as a reducing agent. An active metal component is borne by a carrier of mordenite containing titanium with the occupancy rate of an outer specific surface area for a total specific surface area. The mordenite containing titanium has a titanium atom in the skeletal structure of mordenite, and is of the needle crystal form. In addition, the average aspect ratio of the mordenite is at least, 3 or more, preferably 5-100. The active metal component to be borne by the carrier is copper, manganese or cobalt.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ディーゼルエンジ
ンまたは希釈燃焼法によるガソリンエンジンなどの内燃
機関から排出される排気ガスに含まれる窒素酸化物(以
下、NOxという)を炭化水素を還元剤として触媒還元
により浄化する方法に用いる排気ガス浄化用触媒に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst that uses nitrogen oxides (hereinafter referred to as NOx) contained in exhaust gas discharged from an internal combustion engine such as a diesel engine or a gasoline engine by the diluted combustion method with hydrocarbon as a reducing agent. The present invention relates to an exhaust gas purifying catalyst used in a method of purifying by reduction.

【0002】[0002]

【従来技術およびその問題点】従来、固定発生源(例え
ば発電所ボイラー)から排出されるNOxの浄化はアン
モニア選択還元法により実効を上げている。アンモニア
選択還元法は酸素が存在する雰囲気でNOxを還元でき
るという特色を持つが、一方では還元剤であるアンモニ
アの取扱いなどの点から移動発生源(主として自動車)
から排出されるNOxの浄化への利用は難しいとされて
いる。移動発生源から排出される排ガス中のNOxは現
状では、その浄化はまだ不十分であり、環境を汚染して
いるNOxの主発生源となっている。
2. Description of the Related Art Conventionally, purification of NOx discharged from a fixed source (for example, a power plant boiler) has been effectively performed by an ammonia selective reduction method. The ammonia selective reduction method has a feature that NOx can be reduced in an atmosphere in which oxygen exists, but on the other hand, it is a mobile generation source (mainly automobiles) from the viewpoint of handling ammonia as a reducing agent.
It is said that it is difficult to use NOx emitted from the exhaust gas for purification. At present, NOx in the exhaust gas discharged from the mobile generation source is not sufficiently purified yet, and it is the main source of NOx polluting the environment.

【0003】移動発生源のうちガソリンエンジンからの
排気ガス浄化の場合は、排気ガスに含まれる一酸化炭素
と炭化水素を炭酸ガスと水に酸化すると同時にNOxを
窒素に還元する、いわゆる三元触媒が実用化されてい
る。しかしガソリンエンジンにおいても燃費を改善し、
全体として燃料の使用量を節減することにより炭酸ガス
の総発生量を抑える意味から空燃比の高い希釈燃焼法に
移行しつつあり、この場合には排気ガス中の酸素濃度が
高くなるため、従来の三元触媒ではNOx除去効率を高
めることは期待できない。同様にジーゼルエンジンから
の排気ガスも酸素濃度が高く、三元触媒を用いることは
できない。
In the case of purifying exhaust gas from a gasoline engine among mobile sources, a so-called three-way catalyst that oxidizes carbon monoxide and hydrocarbons contained in the exhaust gas into carbon dioxide gas and water and simultaneously reduces NOx to nitrogen. Has been put to practical use. However, even with a gasoline engine, it improves fuel economy,
In order to reduce the total amount of carbon dioxide gas generated by reducing the amount of fuel used as a whole, we are moving to a diluted combustion method with a high air-fuel ratio.In this case, the oxygen concentration in the exhaust gas becomes high, The NOx removal efficiency cannot be expected to be increased with the three-way catalyst. Similarly, the exhaust gas from diesel engines has a high oxygen concentration and cannot use a three-way catalyst.

【0004】最近、酸素濃度が高い排気ガス中のNOx
を炭化水素を還元剤として分解する触媒還元法が見出さ
れ、多くの方面で研究が行われている。この触媒は銅を
はじめとする種々の活性金属をZSM−5型やモルデナ
イト型などの結晶性アルミノシリケート(ゼオライト)
に担持させた構成となっている(例えば、特開平3−5
2644号公報)が、まだ満足する触媒は得られていな
い。
Recently, NOx in exhaust gas having a high oxygen concentration
A catalytic reduction method for decomposing hydrocarbons with hydrocarbons as a reducing agent has been found, and research has been conducted in many fields. This catalyst is a crystalline aluminosilicate (zeolite) of various active metals including ZSM-5 type and mordenite type.
It is configured to be carried by (for example, Japanese Patent Laid-Open No. 3-5
2644), but a satisfactory catalyst has not yet been obtained.

【0005】炭化水素によるNOxの還元反応は、反応
機構について詳しくは解明されていないが、炭化水素は
NOxの還元剤であると同時に、酸素の還元剤でもあり
その競争反応となると考えられる。従って一般的には、
高温になると酸素と炭化水素の反応(燃焼反応)が優先
し、NOxの還元反応は減少するためNOx転化率は小
さくなると考えられる。
Although the reaction mechanism of the NOx reduction reaction by hydrocarbons has not been elucidated in detail, it is considered that hydrocarbons are both NOx reducing agents and oxygen reducing agents, and they are a competitive reaction. So in general,
At high temperatures, the reaction between oxygen and hydrocarbons (combustion reaction) takes precedence, and the NOx reduction reaction decreases, so the NOx conversion rate is considered to decrease.

【0006】炭化水素還元脱硝法において、NOxの転
化率は担体となるゼオライトの種類および担持する活性
金属種によって異なる。特に、NOxの最高転化率を示
す温度は活性金属種の影響が大きい。NOxの最高転化
率を示す温度とその活性金属の酸化物生成エネルギーと
には相関関係があり、白金、ロジウムなどの酸化物生成
エネルギーの小さな金属は低温側に、ランタン、セリウ
ムなどの酸化物生成エネルギーの大きい金属は高温側
に、それぞれのNOxの最高転化率を示す温度を持って
いる。
In the hydrocarbon reduction denitration method, the conversion rate of NOx varies depending on the type of zeolite as a carrier and the active metal species supported. In particular, the temperature at which the highest NOx conversion rate is exhibited is greatly influenced by the active metal species. There is a correlation between the temperature at which the maximum NOx conversion is reached and the oxide formation energy of the active metal, and metals with small oxide formation energy such as platinum and rhodium form oxides such as lanthanum and cerium on the low temperature side. Metals with high energy have temperatures on the high temperature side that show the highest conversion rates of NOx.

【0007】移動発生源から排出される排気ガスにおい
ては、エンジン始動時の外気温度から走行時の高温まで
排気ガス温度の変動巾が広いことも特徴の一つである。
したがって、NOx浄化触媒としても低温から高温まで
の広い温度域で有効な活性を有することが必要である。
しかし、一種類の活性金属を担持したゼオライト系触媒
では有効なNOx転化率を発揮する温度巾はせいぜい百
数十度であるため、実用温度領域をカバーする事はでき
ない。また、酸化物生成エネルギーの大きい金属を担持
した触媒と酸化物生成エネルギーの小さな金属を担持し
た触媒とを混合した場合や、2種の金属を同時に担持し
た触媒の場合、酸化物生成エネルギーの小さな金属の効
果が先行してしまい、結果的には高温におけるNOxの
転化率は小さくなってしまう。
The exhaust gas discharged from the moving source has a wide variation range of the exhaust gas temperature from the outside air temperature at the engine start to the high temperature at the time of traveling.
Therefore, it is necessary for the NOx purification catalyst to have effective activity in a wide temperature range from low temperature to high temperature.
However, a zeolite-based catalyst supporting one kind of active metal has a temperature range that exhibits an effective NOx conversion rate of at most one hundred and several tens of degrees, so that it cannot cover the practical temperature range. In addition, when a catalyst supporting a metal having a large oxide formation energy and a catalyst supporting a metal having a small oxide formation energy are mixed or in the case of a catalyst supporting two kinds of metals at the same time, the oxide formation energy is small. The effect of metal precedes, and as a result, the conversion rate of NOx at high temperature becomes small.

【0008】このような状況から本発明者などは、酸化
物生成エネルギーの小さい金属を担持したゼオライトを
中心側に、酸化物生成エネルギーの高い金属を担持した
ゼオライトを外側(ガス側)に配し、外側から内側に向
い順次酸化物生成エネルギーが小さくなる構造を持つ層
状構造触媒を提案している(特願平6−18188
2)。この層状構造触媒は、酸素の存在する雰囲気で炭
化水素還元法により巾広い温度域で有効なNOx転化率
を得ることができるが、触媒量が一定の場合、層状構造
であるため各層における触媒の割合は少なくならざるを
得ない。したがって各層における触媒のそれぞれがより
高いNOx転化率を持つ触媒の提供が待望されている。
Under such circumstances, the present inventors have arranged a zeolite carrying a metal having a small oxide formation energy on the center side and a zeolite carrying a metal having a high oxide formation energy on the outside (gas side). , A layered structure catalyst having a structure in which the oxide formation energy decreases sequentially from the outside to the inside (Japanese Patent Application No. 6-18188).
2). This layered structure catalyst can obtain an effective NOx conversion rate in a wide temperature range by a hydrocarbon reduction method in an atmosphere in which oxygen is present. The proportion must be reduced. Therefore, it is desired to provide a catalyst in which each catalyst in each layer has a higher NOx conversion rate.

【0009】一方、炭化水素の分解にゼオライトを触媒
として用いた例としては、重油を分解してガソリン等を
製造するプロセスにおける接触分解触媒(FCC触媒)
が広く知られており、その研究も多く、重油の分解率は
ゼオライトの種類、結晶度、酸点の種類やその分布によ
って影響を受けることが知られている。そして、本発明
者などの研究によると酸点の強さとその分布の影響は大
きく、ガソリンの収率や性質に大きくかかわっているこ
とがわかっている。
On the other hand, as an example of using zeolite as a catalyst for decomposing hydrocarbons, a catalytic cracking catalyst (FCC catalyst) in the process of decomposing heavy oil to produce gasoline or the like.
Is widely known, and there are many studies on it, and it is known that the decomposition rate of heavy oil is affected by the type of zeolite, the degree of crystallinity, the type of acid sites and their distribution. According to the research conducted by the present inventors, it has been found that the influence of the strength and distribution of the acid point is large, and that it is greatly related to the yield and properties of gasoline.

【0010】[0010]

【発明の目的】本発明の目的は、ディーゼルエンジンま
たは希釈燃焼法によるガソリンエンジンなどの固定発生
源や移動発生源から排出される排気ガス中に含まれるN
Oxを炭化水素で還元して除去する際に、炭化水素と酸
素との反応(燃焼反応)を遅くすることにより、これと
競争反応になっている炭化水素によるNOxの還元反応
に対する選択性を高くし、高いNOx転化率を示す新規
触媒を提供する点にある。
OBJECT OF THE INVENTION The object of the present invention is to include N contained in exhaust gas discharged from a fixed source or a mobile source such as a diesel engine or a gasoline engine by the diluted combustion method.
By slowing the reaction (combustion reaction) between hydrocarbon and oxygen when reducing and removing Ox with hydrocarbon, the selectivity for NOx reduction reaction by the hydrocarbon which is a competitive reaction with this is increased. However, a new catalyst showing a high NOx conversion rate is provided.

【0011】[0011]

【課題を解決するための手段】本発明者などはFCC触
媒の研究の経験から、炭化水素還元脱硝の場合にも、ゼ
オライトの酸点の性質やその分布などの表面状態が影響
しているのではないかと考えゼオライトの表面改質につ
いて種々検討した結果、大きい外部比表面積を有するチ
タンにより改質したモルデナイトを担体に用いた触媒
は、炭化水素の燃焼を遅らせると共にNOxの還元反応
の選択性を向上させることを見いだし本発明を完成させ
るに至ったものである。
Means for Solving the Problems From the experience of the researches of FCC catalysts, the present inventors have found that even in the case of hydrocarbon reduction denitration, the surface condition such as the nature and distribution of acid sites of zeolite influences. As a result of various investigations on the surface modification of zeolite, it was found that a catalyst using mordenite modified with titanium having a large external specific surface area as a carrier delays the combustion of hydrocarbons and enhances the selectivity of NOx reduction reaction. The present invention has been found to be improved, and the present invention has been completed.

【0012】すなわち本発明は、窒素酸化物および炭化
水素を含む酸素過剰な排気ガスから窒素酸化物を炭化水
素により還元除去するための排気ガス浄化用触媒におい
て、全比表面積に対する外部比表面積の占める割合が7
%以上であるチタン含有モルデナイトを担体とし、該担
体に活性金属成分を担持させたことを特徴とする排気ガ
ス浄化用触媒に関する。
That is, the present invention relates to an exhaust gas purifying catalyst for reducing and removing nitrogen oxides from hydrocarbon-rich exhaust gas containing nitrogen oxides and hydrocarbons by using hydrocarbons. Ratio is 7
% Of titanium-containing mordenite as a carrier, and an active metal component supported on the carrier, to an exhaust gas purifying catalyst.

【0013】前記チタン含有モルデナイトは、全比表面
積に対する外部比表面積の占める割合が7%以上である
ことを特徴とするが、このような外部比表面積の大きい
特徴は図3に示すような走査電顕写真から見てモルデナ
イトの針状結晶の集合体である形状に由来するものと推
定される。
The titanium-containing mordenite is characterized in that the ratio of the external specific surface area to the total specific surface area is 7% or more. Such a large external specific surface area is characterized by a scanning electric field as shown in FIG. It is presumed that it is derived from the shape of an aggregate of needle-like crystals of mordenite as seen from the micrograph.

【0014】前記外部比表面積の占める割合が7%未満
の担体を使用した触媒では、NOx転化率の高い触媒を
得ることができない。チタン含有モルデナイトの外部比
表面積を大きくするとNOxの転化率が向上する理由は
明らかではないが、空間速度が非常に大きい反応では外
部比表面積が有効に作用すること、針状結晶(形状)で
あるため結晶内部へのガス拡散を容易にしてNOxと炭
化水素の還元反応を促進することなどが推定される。前
記外部比表面積の占める割合は、好ましくは9%以上で
あり、またその上限値は約20%程度である。
A catalyst having a high NOx conversion cannot be obtained with a catalyst using a carrier whose external specific surface area occupies less than 7%. Although the reason why the conversion rate of NOx is improved by increasing the external specific surface area of titanium-containing mordenite is not clear, it is needle-shaped crystals (shape) that the external specific surface area works effectively in a reaction with a very high space velocity. Therefore, it is presumed that the gas diffusion into the crystal is facilitated and the reduction reaction of NOx and hydrocarbon is promoted. The proportion of the external specific surface area is preferably 9% or more, and the upper limit thereof is about 20%.

【0015】なお、前記全表面積は、BET法により測
定され、また、外部表面積は、J.H.De BOER
et al Journal of Catalys
is4,P319−323(1965)に記載されてい
るVa−tプロット法により測定される。
The total surface area is measured by the BET method, and the external surface area is measured according to J. H. De BOER
et al Journal of Catalys
It is measured by the Va-t plotting method described in is4, P319-323 (1965).

【0016】また、本発明でのチタン含有モルデナイト
は、モルデナイト骨格構造中にチタン(Ti)原子を含
有する。ゼオライト骨格構造中のTi原子の存在は、赤
外吸収スペクトルにより確認され、970cm-1付近に
吸収ピークが現われることが報告されている〔例えば、
B.Kausharr.etal.Catalysis
Letter,1,p−81(1988)〕が、本発
明に用いられるチタン含有モルデナイトの赤外吸収スペ
クトルは図2に示すように960cm-1の所に吸収ピー
クが認められ、Ti原子がゼオライト骨格構造中に存在
することが分かる。本発明に用いられるチタン含有モル
デナイトでは、Ti原子を酸化物として、0.01〜2
0重量%、好ましくは0.01〜10重量%含有するこ
とが望ましい。
Further, the titanium-containing mordenite in the present invention contains titanium (Ti) atoms in the mordenite skeleton structure. The presence of Ti atoms in the zeolite skeleton structure was confirmed by infrared absorption spectrum, and it has been reported that an absorption peak appears near 970 cm -1 [eg,
B. Kausharr. et al. Catalysis
[Letter, 1, p-81 (1988)], the infrared absorption spectrum of the titanium-containing mordenite used in the present invention shows an absorption peak at 960 cm −1 as shown in FIG. It can be seen that it exists in the structure. In the titanium-containing mordenite used in the present invention, the Ti atom is used as an oxide in an amount of 0.01 to 2
It is desirable to contain 0% by weight, preferably 0.01 to 10% by weight.

【0017】前記チタン含有モルデナイトは、図3に示
すように針状結晶であり、その平均アスペクト比は3以
上、好ましくは5〜100であることが望ましい。平均
アスペクト比が3未満では該モルデナイトの外部比表面
積の占める割合が小さくなることがあるので望ましくな
い。
The titanium-containing mordenite is acicular crystals as shown in FIG. 3, and its average aspect ratio is 3 or more, preferably 5 to 100. If the average aspect ratio is less than 3, the proportion of the external specific surface area of the mordenite may be small, which is not desirable.

【0018】前記チタン含有モルデナイトは、以下の方
法で製造することができる。すなわち、酸化物モル組成
比で M2O/Al23 =2.0〜6.0 SiO2/Al23=10〜50 TiO2/Al23=0.01〜1.5 H2O/Al23 =150〜500 (ここで、Mはアルカリ金属を表わす)の範囲にあるシ
リカ源、アルミナ源、チタン源およびアルカリ源とのゲ
ル状水性反応混合物を、好ましくは0〜60℃の温度で
1〜72時間、撹拌することなく予備熟成し、次いでオ
ートクレーブ中にて100〜200℃の温度で24〜2
00時間、必要に応じて撹拌しながら、水熱反応を行っ
て結晶化させることにより、チタン含有モルデナイトを
得ることができる。
The titanium-containing mordenite can be produced by the following method. That is, M 2 O / Al 2 O 3 = 2.0 to 6.0 SiO 2 / Al 2 O 3 = 10 to 50 TiO 2 / Al 2 O 3 = 0.01 to 1.5 in terms of oxide molar composition ratio. A gel-like aqueous reaction mixture with a silica source, an alumina source, a titanium source and an alkali source in the range of H 2 O / Al 2 O 3 = 150 to 500 (where M represents an alkali metal), preferably 0. Pre-aged at a temperature of ~ 60 ° C for 1-72 hours without stirring, then in an autoclave at a temperature of 100-200 ° C for 24-2
The titanium-containing mordenite can be obtained by performing a hydrothermal reaction for crystallization for 00 hours with stirring as necessary.

【0019】本発明のチタン含有モルデナイトに担持す
る活性金属成分は、通常炭化水素による還元脱硝反応に
用いられる活性金属成分であれば何でもよく、例えば公
知の銅、マンガン、コバルト、ニッケル、クロム、鉄、
セリウム、ランタン、プラセオジウム、白金、ロジウ
ム、パラジウム、などの金属もしくはその酸化物を挙げ
ることができる。
The active metal component supported on the titanium-containing mordenite of the present invention may be any active metal component usually used in the reductive denitration reaction by hydrocarbon, for example, known copper, manganese, cobalt, nickel, chromium, iron. ,
Examples thereof include metals such as cerium, lanthanum, praseodymium, platinum, rhodium and palladium, and oxides thereof.

【0020】活性金属成分は公知の方法、例えば含浸法
などにより該モルデナイト担体に担持させることができ
る。活性金属成分の担持量は通常の活性金属成分の使用
範囲の量で良く、例えば酸化物として0.01〜80w
t%の範囲である。
The active metal component can be supported on the mordenite carrier by a known method such as an impregnation method. The supported amount of the active metal component may be an amount within the range of use of the usual active metal component, for example, 0.01 to 80 w as an oxide.
t%.

【0021】本発明の触媒は、他の担体成分や通常使用
される成形助剤などを用いて、球状、ペレット状、ハニ
カム状など、所望の形状にすることができる。しかし該
チタン含有モルデナイトの量が少ない場合には、触媒活
性が低下するので該チタン含有モルデナイトの量は成形
助剤を含めた全量に対して50wt%以上、好ましくは
70wt%以上であることがのぞましい。
The catalyst of the present invention can be formed into a desired shape such as a spherical shape, a pellet shape, or a honeycomb shape by using other carrier components or a commonly used molding aid. However, when the amount of the titanium-containing mordenite is small, the catalytic activity decreases, so the amount of the titanium-containing mordenite is desired to be 50 wt% or more, preferably 70 wt% or more with respect to the total amount including the molding aid. .

【0022】また、本発明の排気ガス浄化用触媒は、通
常移動発生源から排出されるNOxの浄化に使用される
条件下で使用可能であり、150〜800℃、好ましく
は200〜600℃の排気ガス温度、空間速度5,00
0〜300,000hr-1での使用が好適である。
Further, the exhaust gas purifying catalyst of the present invention can be used under the condition that is usually used for purifying NOx discharged from a mobile generation source, and is 150 to 800 ° C., preferably 200 to 600 ° C. Exhaust gas temperature, space velocity 5,000
The use of 0 to 300,000 hr -1 is preferable.

【0023】[0023]

【実施例】以下に実施例を示し本発明をさらに具体的に
説明するが、本発明はこれにより限定されるものではな
い。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0024】担体の製造例1 シリカ濃度19.5wt%の3号水硝子1668.6g
に、撹拌しながら20wt%の三塩化チタン溶液34
7.1gを加えた。得られたゲル状水性反応混合物に、
30wt%のシリカゾル1915.3g、Na2
8.5wt%、Al23 11.0wt%を含有するア
ルミン酸ナトリウム溶液923.6gを加えた。約10
分間均一になるまで撹拌した後、30℃で72時間静置
して予備熟成を行なった。予備熟成後、ゲル状水性反応
混合物をオートクレーブに移して175℃で100時間
加温熟成を行った。熟成終了後、温度100℃以下に冷
却した後、反応混合物を取り出し、濾過、洗浄、乾燥を
行ない、次いで2回NH4イオン交換を行った後、60
0℃で2時間焼成してチタン含有モルデナイト−1を得
た。
Production Example 1 of Carrier 1 No. 3 water glass 1668.6 g having a silica concentration of 19.5 wt%.
While stirring, 20 wt% titanium trichloride solution 34
7.1 g was added. The resulting gel-like aqueous reaction mixture,
1915.3 g of 30 wt% silica sol, Na 2 O
923.6 g of a sodium aluminate solution containing 8.5 wt% and Al 2 O 3 11.0 wt% was added. About 10
After stirring for 1 minute until uniform, the mixture was allowed to stand at 30 ° C. for 72 hours for preliminary aging. After the pre-aging, the gel-like aqueous reaction mixture was transferred to an autoclave and aged by heating at 175 ° C. for 100 hours. After completion of aging, the reaction mixture was taken out, filtered, washed and dried after cooling to a temperature of 100 ° C. or lower, then subjected to NH 4 ion exchange twice, and then 60
The titanium-containing mordenite-1 was obtained by firing at 0 ° C for 2 hours.

【0025】このモルデナイト−1についてBET法に
よる全比表面積、Va−tプロット法による外部表面積
を求め、また走査電顕写真によりアスペクト比を求め
た。その結果、全比表面積に対する外部比表面積の割合
は10.5%、平均アスペクト比7.9を有する針状形
状のモルデナイトであった。このチタン含有モルデナイ
ト−1のX線回折図を図1に、赤外吸収スペクトルを図
2に、走査電顕写真を図3に示す。
For this mordenite-1, the total specific surface area by the BET method and the external surface area by the Va-t plot method were determined, and the aspect ratio was determined by scanning electron micrograph. As a result, the ratio of the external specific surface area to the total specific surface area was 10.5%, and the needle-like mordenite had an average aspect ratio of 7.9. An X-ray diffraction pattern of the titanium-containing mordenite-1 is shown in FIG. 1, an infrared absorption spectrum is shown in FIG. 2, and a scanning electron micrograph is shown in FIG.

【0026】担体の製造例2 シリカ濃度24wt%の3号水硝子1916.6gに、
撹拌しながら20wt%の三塩化チタン溶液771.3
gを加えた。得られたゲル状水性反応混合物に、H2
1827.1g、固形シリカ444g、Na2
8.5wt%、Al23 11.0wt%を含有するア
ルミン酸ナトリウム溶液923.6gを加え、均一にな
るまで充分に撹拌した。ゲル状水性反応混合物を静置
下、60℃で48時間予備熟成を行い、次いでこれをオ
ートクレーブに移して175℃で120時間加温熟成を
行った。熟成終了後、温度を100℃以下に冷却した
後、反応混合物を取り出し、濾過、洗浄、乾燥を行いさ
らにアンモニウムイオン交換した後、焼成してチタン含
有モルデナイト−2を得た。
Production Example 2 of Carrier In 1916.6 g of No. 3 water glass having a silica concentration of 24 wt%,
20 wt% titanium trichloride solution 771.3 with stirring
g was added. H 2 O was added to the obtained gel-like aqueous reaction mixture.
1827.1 g, solid silica 444 g, Na 2 O
923.6 g of a sodium aluminate solution containing 8.5 wt% and Al 2 O 3 11.0 wt% was added, and the mixture was sufficiently stirred until it became uniform. The gel-like aqueous reaction mixture was left to stand, pre-aged at 60 ° C. for 48 hours, transferred to an autoclave, and then heat-aged at 175 ° C. for 120 hours. After completion of the aging, the temperature was cooled to 100 ° C. or lower, the reaction mixture was taken out, filtered, washed, dried, further subjected to ammonium ion exchange, and then calcined to obtain titanium-containing mordenite-2.

【0027】このモルデナイト−2について、BET法
による全比表面積、Va−tプロット法による外部比表
面積を求め、また走査電顕写真によりアスペクト比を求
めた。その結果、全比表面積に対する外部比表面積の割
合は9.6%、平均アスペクト比7.3を有するモルデ
ナイトであった。
For this mordenite-2, the total specific surface area by the BET method and the external specific surface area by the Va-t plot method were determined, and the aspect ratio was determined by scanning electron micrograph. As a result, the ratio of the external specific surface area to the total specific surface area was 9.6%, and the mordenite had an average aspect ratio of 7.3.

【0028】実施例1(触媒の製造例) 硝酸セリウム〔試薬1級、関東化学(株)製〕0.88
3gを精秤し、純水4.4gに溶解した。この硝酸セリ
ウム水溶液に担体の製造例1で得られたチタン含有モル
デナイト−1 5.5gを加えよく混合した。この混合
物を120℃で2時間乾燥し、さらに600℃で2時間
焼成して触媒粉末を得た。この触媒粉末を乳鉢で軽く粉
砕した後100kg/cm2の条件でプレスし、粗粉砕
を行い、篩により1.0〜1.4mm径の中間粒子を採
取し、Ce担持チタン含有モルデナイト触媒を得た(触
媒−A)。触媒−AのCeO2含有率は7.0%であ
る。
Example 1 (Catalyst production example) Cerium nitrate [Reagent grade 1, Kanto Chemical Co., Ltd.] 0.88
3 g was precisely weighed and dissolved in 4.4 g of pure water. To this cerium nitrate aqueous solution, 5.5 g of titanium-containing mordenite-1 obtained in Production Example 1 of carrier was added and mixed well. This mixture was dried at 120 ° C. for 2 hours and then calcined at 600 ° C. for 2 hours to obtain a catalyst powder. This catalyst powder was lightly crushed in a mortar and then pressed under the condition of 100 kg / cm 2 , coarsely crushed, and intermediate particles having a diameter of 1.0 to 1.4 mm were collected by a sieve to obtain a Ce-supporting titanium-containing mordenite catalyst. (Catalyst-A). The CeO 2 content of catalyst-A is 7.0%.

【0029】実施例2(触媒の製造例) 硝酸銅〔試薬1級、関東化学(株)製〕0.851gを
精秤し、純粋4.4gに溶解した。この硝酸銅水溶液に
担体の製造例1で得られたチタン含有モルデナイト−1
5.5gを加え良く混合した。この混合物を120℃
で2時間乾燥し、さらに600℃で2時間焼成して触媒
粉末を得た。得られた粉末を乳鉢で軽く粉砕した後、1
00kg/cm2の条件でプレスし、粗粉砕を行い、篩
により1.0〜1.4mm径の中間粒子を採取し、Cu
担持チタン含有モルデナイト触媒を得た(触媒−B)。
触媒−BのCuO含有率は5.6%である。
Example 2 (Catalyst production example) 0.851 g of copper nitrate [reagent grade 1, manufactured by Kanto Kagaku Co., Ltd.] was precisely weighed and dissolved in 4.4 g of pure water. The titanium-containing mordenite-1 obtained in Production Example 1 of the carrier was added to this copper nitrate aqueous solution.
5.5 g was added and mixed well. This mixture at 120 ° C
And dried at 600 ° C. for 2 hours to obtain a catalyst powder. Lightly crush the resulting powder in a mortar and then 1
It is pressed under the condition of 00 kg / cm 2 , coarsely crushed, and the intermediate particles having a diameter of 1.0 to 1.4 mm are collected by a sieve, and Cu
A supported titanium-containing mordenite catalyst was obtained (Catalyst-B).
The CuO content of catalyst-B is 5.6%.

【0030】実施例3(触媒の製造例) 担体の製造例2で得られたチタン含有モルデナイト−2
を用い実施例1と同様な方法でCe担持チタン含有モル
デナイト触媒を得た(触媒−C)。触媒−CのCeO2
含有率は6.8%である。
Example 3 (Catalyst Production Example) Titanium-containing mordenite-2 obtained in Support Production Example 2
Was used to obtain a Ce-supported titanium-containing mordenite catalyst in the same manner as in Example 1 (Catalyst-C). Catalyst-C CeO 2
The content rate is 6.8%.

【0031】実施例4(触媒の製造例) 担体の製造例2で得られたチタン含有モルデナイト−2
を用い実施例3と同様な方法でCu担持チタン含有モル
デナイト触媒を得た(触媒−D)。触媒−DのCuO含
有率は5.5%である。
Example 4 (Production example of catalyst) Titanium-containing mordenite-2 obtained in Production example 2 of carrier
Was used to obtain a Cu-supported titanium-containing mordenite catalyst in the same manner as in Example 3 (Catalyst-D). The CuO content of catalyst-D is 5.5%.

【0032】比較例1 担体用モルデナイトとして市販のモルデナイト〔東ソ−
(株)製、HSZ−640HOA〕を用い触媒を作成し
た。このモルデナイトの全比表面積に対する外部比表面
積の割合は5.0%であり、電顕観察の結果は粒状結晶
であった。該モルデナイトを用いて、実施例1と同様な
方法でCe担持モルデナイト触媒を得た(触媒−E)。
触媒−EのCeO2含有率は7.1%である。
Comparative Example 1 Mordenite commercially available as mordenite for carrier [Tosoh
A catalyst was prepared using HSZ-640HOA manufactured by K.K. The ratio of the external specific surface area to the total specific surface area of this mordenite was 5.0%, and the result of electron microscope observation was granular crystals. Using this mordenite, a Ce-supporting mordenite catalyst was obtained in the same manner as in Example 1 (Catalyst-E).
The CeO 2 content of catalyst-E is 7.1%.

【0033】比較例2 比較例1と同じモルデナイトを用い、実施例3と同様な
方法でCuO担持モルデナイト触媒を得た(触媒−
F)。触媒−FのCuO含有率は5.7%である。
Comparative Example 2 Using the same mordenite as in Comparative Example 1, a CuO-supporting mordenite catalyst was obtained in the same manner as in Example 3 (Catalyst-
F). The CuO content of catalyst-F is 5.7%.

【0034】実施例5(実施例および比較例の活性評
価) 触媒の活性を評価するために、還元剤である炭化水素と
してヘキサン(C614)を用いてNOxの転化率を求
めた。評価に使用した活性試験装置は通常の流通式ガラ
ス反応管、自動制御式電気炉およびガス混合装置より構
成されている。実施例および比較例で得られた触媒0.
3gを反応管に充填し、ガス組成としてNO=400p
pm,ヘキサン(C614)=400ppm,O2=5
%,H2O=5%,N2=バランスの混合ガスをSV=1
0,000hr-1の条件で反応管に流し、所定の温度で
のヘキサン転化率およびNOx(NO)転化率を求め
た。
Example 5 (Evaluation of Activity of Examples and Comparative Examples) In order to evaluate the activity of the catalyst, hexane (C 6 H 14 ) was used as a hydrocarbon as a reducing agent to determine the conversion rate of NOx. The activity test device used for evaluation is composed of a normal flow type glass reaction tube, an automatic control type electric furnace and a gas mixing device. The catalysts obtained in Examples and Comparative Examples
The reaction tube was filled with 3 g, and the gas composition was NO = 400 p
pm, hexane (C 6 H 14 ) = 400 ppm, O 2 = 5
%, H 2 O = 5%, N 2 = balanced mixed gas SV = 1
It was passed through a reaction tube under the condition of 10,000 hr -1 , and the hexane conversion rate and the NOx (NO) conversion rate at a predetermined temperature were obtained.

【0035】なお、NOは化学発光式NO分析計、ヘキ
サンはNB−1(GLサイエンス製)充填カラムを用い
たガスクロマトグラフにより分析した。
NO was analyzed by a chemiluminescence type NO analyzer and hexane was analyzed by a gas chromatograph using a NB-1 (GL Science) packed column.

【0036】表2に各々の触媒の最高NOx転化率をし
めす温度におけるヘキサン転化率およびNO転化率を示
す。表2に示すように実施例は、それぞれの比較例に対
し、ヘキサン転化率はいずれも低くなり、NO転化率は
高くなる。即ち全比表面積に対する外部比表面積の占め
る割合が(表1のO/T)が高いチタン含有モルデナイ
ト触媒は炭化水素の分解速度が遅く、NOx還元反応の
選択性が高くなり高い脱硝率を示すことが明らかであ
る。
Table 2 shows the hexane conversion rate and the NO conversion rate at the temperature showing the maximum NOx conversion rate of each catalyst. As shown in Table 2, in each of the examples, the hexane conversion rate is lower and the NO conversion rate is higher than those of the comparative examples. That is, a titanium-containing mordenite catalyst in which the ratio of the external specific surface area to the total specific surface area (O / T in Table 1) is high, the decomposition rate of hydrocarbons is low, the selectivity of NOx reduction reaction is high, and high denitration rate is shown. Is clear.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】図4に実施例1および比較例1の各温度に
おけるヘキサン転化率NO転化率の変化を示す。全比表
面積に対する外部比表面積の割合が高い実施例1の触媒
は比較例の触媒に対し低いヘキサン転化率を示してい
る。従って、比較例の触媒においてもヘキサン転化率は
温度をさげることで実施例1の触媒と同じ値にすること
はできるが、温度が下がればNO転化率も低下する。こ
のように本発明によって得られた触媒−A,B,C,D
は、いずれも比較例の触媒−E,Fに対しNO転化率が
大きく向上していることがわかる。その効果は、全比表
面積に対する外部比表面積の割合が高いチタン含有モル
デナイトの効果と認められ、効果を発現する理由は明確
ではないが、炭化水素の分解速度を遅くすることでNO
xと炭化水素との還元反応の選択率を向上させたことに
よるものと考えられる。
FIG. 4 shows changes in the hexane conversion rate and the NO conversion rate at each temperature in Example 1 and Comparative Example 1. The catalyst of Example 1 having a high ratio of the external specific surface area to the total specific surface area shows a lower hexane conversion rate than the catalyst of Comparative Example. Therefore, even in the catalyst of the comparative example, the hexane conversion rate can be set to the same value as that of the catalyst of Example 1 by lowering the temperature, but the NO conversion rate decreases as the temperature decreases. The catalysts A, B, C, D thus obtained according to the present invention
It can be seen that in both cases, the NO conversion rate is greatly improved over the catalysts E and F of the comparative examples. The effect is recognized as the effect of titanium-containing mordenite, which has a high ratio of the external specific surface area to the total specific surface area, and the reason why the effect is exhibited is not clear, but slowing the decomposition rate of hydrocarbons causes NO.
This is probably because the selectivity of the reduction reaction between x and hydrocarbons was improved.

【0040】以下に本発明の実施態様項を列挙する。 1. 窒素酸化物および炭化水素を含む酸素過剰な排気
ガスから窒素酸化物を炭化水素により還元除去するため
の排気ガス浄化用触媒において、全比表面積に対する外
部比表面積の占める割合が7%以上であるチタン含有モ
ルデナイトを担体とし、該担体に活性金属成分を担持さ
せたことを特徴とする排気ガス浄化用触媒。 2. 窒素酸化物および炭化水素を含む酸素過剰な排気
ガスから窒素酸化物を炭化水素により還元除去するため
の排気ガス浄化用触媒において、全比表面積に対する外
部比表面積の占める割合が9〜20%であるチタン含有
モルデナイトを担体とし、該担体に活性金属成分を担持
させたことを特徴とする排気ガス浄化用触媒。 3. 前記チタン含有モルデナイトの平均アスペクト比
が3以上の針状結晶である前項1または2記載の排気ガ
ス浄化用触媒。 4. 前記チタン含有モルデナイトの平均アスペクト比
が5以上の針状結晶である前項1または2記載の排気ガ
ス浄化用触媒。 5. 前記チタン含有モルデナイトがTi原子を酸化物
として、0.01〜20重量%含有するものである前項
1,2,3または4記載の排気ガス浄化用触媒。
The embodiments of the present invention will be listed below. 1. An exhaust gas purifying catalyst for reducing and removing nitrogen oxides from hydrocarbon-containing exhaust gas containing excess nitrogen oxides and hydrocarbons, wherein titanium has a ratio of the external specific surface area to the total specific surface area of 7% or more. An exhaust gas purifying catalyst, characterized in that a mordenite content is used as a carrier, and the carrier carries an active metal component. 2. In an exhaust gas purifying catalyst for reducing and removing nitrogen oxides from hydrocarbon-rich oxygen-containing exhaust gas containing nitrogen oxides and hydrocarbons, the ratio of the external specific surface area to the total specific surface area is 9 to 20%. An exhaust gas purifying catalyst, characterized in that titanium-containing mordenite is used as a carrier, and the carrier carries an active metal component. 3. 3. The exhaust gas purifying catalyst as described in 1 or 2 above, wherein the titanium-containing mordenite is acicular crystals having an average aspect ratio of 3 or more. 4. 3. The exhaust gas purifying catalyst as described in 1 or 2 above, wherein the titanium-containing mordenite is acicular crystals having an average aspect ratio of 5 or more. 5. The exhaust gas purifying catalyst according to the above 1, 2, 3 or 4, wherein the titanium-containing mordenite contains 0.01 to 20% by weight of Ti atoms as an oxide.

【0041】[0041]

【効果】本発明の触媒により、炭化水素によるNOxの
還元反応によるNOxの除去効率を著しく向上させるこ
とができた。
[Effects] With the catalyst of the present invention, the NOx removal efficiency by the NOx reduction reaction by hydrocarbons could be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における担体の製造例1で得られたチタ
ン含有モルデナイト−1のX線回折図を示す。
FIG. 1 shows an X-ray diffraction diagram of titanium-containing mordenite-1 obtained in Production Example 1 of a carrier according to the present invention.

【図2】本発明における担体の製造例1で得られたチタ
ン含有モルデナイト−1の赤外吸収スペクトルを示す。
FIG. 2 shows an infrared absorption spectrum of titanium-containing mordenite-1 obtained in Production Example 1 of the carrier of the present invention.

【図3】本発明における担体の製造例1で得られたチタ
ン含有モルデナイト−1よりなる粒子表面の走査電子顕
微鏡写真を示す。
FIG. 3 shows a scanning electron micrograph of the surface of particles of titanium-containing mordenite-1 obtained in Production Example 1 of the carrier of the present invention.

【図4】本発明の実施例1と比較例1の触媒を用いた場
合の炭化水素転化率およびNO転化率を示すグラフであ
る。
FIG. 4 is a graph showing a hydrocarbon conversion rate and a NO conversion rate when the catalysts of Example 1 of the present invention and Comparative Example 1 were used.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 102H 102A 104A (72)発明者 中本 士郎 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location B01D 53/36 102H 102A 104A (72) Inventor Shiro Nakamoto 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu, Fukuoka Prefecture Catalyst formation Industry Wakamatsu Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物および炭化水素を含む酸素過
剰な排気ガスから窒素酸化物を炭化水素により還元除去
するための排気ガス浄化用触媒において、全比表面積に
対する外部比表面積の占める割合が7%以上であるチタ
ン含有モルデナイトを担体とし、該担体に活性金属成分
を担持させたことを特徴とする排気ガス浄化用触媒。
1. In an exhaust gas purifying catalyst for reducing and removing nitrogen oxides from hydrocarbon-containing excess oxygen containing nitrogen oxides and hydrocarbons by hydrocarbons, the ratio of the external specific surface area to the total specific surface area is 7%. % Of titanium-containing mordenite as a carrier, and an active metal component is supported on the carrier, an exhaust gas purifying catalyst.
【請求項2】 前記チタン含有モルデナイトの平均アス
ペクト比が3以上の針状結晶である請求項1に記載の排
気ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the titanium-containing mordenite is acicular crystals having an average aspect ratio of 3 or more.
【請求項3】 前記チタン含有モルデナイトは、モルデ
ナイト骨格構造中にチタン原子を有するものである請求
項1または2記載の排気ガス浄化用触媒。
3. The exhaust gas purifying catalyst according to claim 1, wherein the titanium-containing mordenite has a titanium atom in a mordenite skeleton structure.
JP30200695A 1995-10-26 1995-10-26 Exhaust gas purification catalyst Expired - Lifetime JP3806167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30200695A JP3806167B2 (en) 1995-10-26 1995-10-26 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30200695A JP3806167B2 (en) 1995-10-26 1995-10-26 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH09117667A true JPH09117667A (en) 1997-05-06
JP3806167B2 JP3806167B2 (en) 2006-08-09

Family

ID=17903757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30200695A Expired - Lifetime JP3806167B2 (en) 1995-10-26 1995-10-26 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3806167B2 (en)

Also Published As

Publication number Publication date
JP3806167B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
CA2057634A1 (en) Catalyst for purification of exhaust gases
JP4901129B2 (en) Nitrogen oxide catalytic reduction catalyst
JP2005081218A (en) Catalyst and method for catalytic cracking of nitrogen oxide
JPH0938464A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JPH11216358A (en) Hydrocarbon adsorbent and catalyst for cleaning waste gas
JP3254742B2 (en) Catalyst for decomposition of nitrous oxide
KR20170063596A (en) Thermally stable nh3-scr catalyst compositions
JPH08173761A (en) Method for removing nitrogen oxide
JPH07232035A (en) Method and apparatus for purifying nitrogen oxide
JP3806167B2 (en) Exhaust gas purification catalyst
JP3199562B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JP3254092B2 (en) Exhaust gas purification catalyst
JPH0859236A (en) Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
JP3395221B2 (en) Nitrogen oxide removal method
JP3395219B2 (en) Nitrogen oxide removal method
JP3482658B2 (en) Nitrogen oxide removal method
JPH04193347A (en) Catalyst for purification of exhaust gas
JP2601018B2 (en) Exhaust gas purification catalyst
JP3363160B2 (en) Nitrogen oxide removal catalyst
JP3346653B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JPH10180105A (en) Oxide catalyst material for removing nitrogen oxide and method for removing nitrogen oxide
JP3686753B2 (en) Oxide catalyst material for decomposing nitrogen oxide and method for decomposing and removing nitrogen oxide
JPH0751542A (en) Purification of exhaust gas
JP3309024B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JPH05269386A (en) Catalyst for reduction removing nitrogen oxide and method for reduction removing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term