JP3806167B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP3806167B2
JP3806167B2 JP30200695A JP30200695A JP3806167B2 JP 3806167 B2 JP3806167 B2 JP 3806167B2 JP 30200695 A JP30200695 A JP 30200695A JP 30200695 A JP30200695 A JP 30200695A JP 3806167 B2 JP3806167 B2 JP 3806167B2
Authority
JP
Japan
Prior art keywords
catalyst
mordenite
exhaust gas
titanium
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30200695A
Other languages
Japanese (ja)
Other versions
JPH09117667A (en
Inventor
雅昭 内田
悠策 有馬
和昭 高倉
士郎 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC filed Critical Petroleum Energy Center PEC
Priority to JP30200695A priority Critical patent/JP3806167B2/en
Publication of JPH09117667A publication Critical patent/JPH09117667A/en
Application granted granted Critical
Publication of JP3806167B2 publication Critical patent/JP3806167B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンまたは希釈燃焼法によるガソリンエンジンなどの内燃機関から排出される排気ガスに含まれる窒素酸化物(以下、NOxという)を炭化水素を還元剤として触媒還元により浄化する方法に用いる排気ガス浄化用触媒に関する。
【0002】
【従来技術およびその問題点】
従来、固定発生源(例えば発電所ボイラー)から排出されるNOxの浄化はアンモニア選択還元法により実効を上げている。アンモニア選択還元法は酸素が存在する雰囲気でNOxを還元できるという特色を持つが、一方では還元剤であるアンモニアの取扱いなどの点から移動発生源(主として自動車)から排出されるNOxの浄化への利用は難しいとされている。移動発生源から排出される排ガス中のNOxは現状では、その浄化はまだ不十分であり、環境を汚染しているNOxの主発生源となっている。
【0003】
移動発生源のうちガソリンエンジンからの排気ガス浄化の場合は、排気ガスに含まれる一酸化炭素と炭化水素を炭酸ガスと水に酸化すると同時にNOxを窒素に還元する、いわゆる三元触媒が実用化されている。しかしガソリンエンジンにおいても燃費を改善し、全体として燃料の使用量を節減することにより炭酸ガスの総発生量を抑える意味から空燃比の高い希釈燃焼法に移行しつつあり、この場合には排気ガス中の酸素濃度が高くなるため、従来の三元触媒ではNOx除去効率を高めることは期待できない。同様にジーゼルエンジンからの排気ガスも酸素濃度が高く、三元触媒を用いることはできない。
【0004】
最近、酸素濃度が高い排気ガス中のNOxを炭化水素を還元剤として分解する触媒還元法が見出され、多くの方面で研究が行われている。この触媒は銅をはじめとする種々の活性金属をZSM−5型やモルデナイト型などの結晶性アルミノシリケート(ゼオライト)に担持させた構成となっている(例えば、特開平3−52644号公報)が、まだ満足する触媒は得られていない。
【0005】
炭化水素によるNOxの還元反応は、反応機構について詳しくは解明されていないが、炭化水素はNOxの還元剤であると同時に、酸素の還元剤でもありその競争反応となると考えられる。
従って一般的には、高温になると酸素と炭化水素の反応(燃焼反応)が優先し、NOxの還元反応は減少するためNOx転化率は小さくなると考えられる。
【0006】
炭化水素還元脱硝法において、NOxの転化率は担体となるゼオライトの種類および担持する活性金属種によって異なる。特に、NOxの最高転化率を示す温度は活性金属種の影響が大きい。NOxの最高転化率を示す温度とその活性金属の酸化物生成エネルギーとには相関関係があり、白金、ロジウムなどの酸化物生成エネルギーの小さな金属は低温側に、ランタン、セリウムなどの酸化物生成エネルギーの大きい金属は高温側に、それぞれのNOxの最高転化率を示す温度を持っている。
【0007】
移動発生源から排出される排気ガスにおいては、エンジン始動時の外気温度から走行時の高温まで排気ガス温度の変動巾が広いことも特徴の一つである。したがって、NOx浄化触媒としても低温から高温までの広い温度域で有効な活性を有することが必要である。しかし、一種類の活性金属を担持したゼオライト系触媒では有効なNOx転化率を発揮する温度巾はせいぜい百数十度であるため、実用温度領域をカバーする事はできない。また、酸化物生成エネルギーの大きい金属を担持した触媒と酸化物生成エネルギーの小さな金属を担持した触媒とを混合した場合や、2種の金属を同時に担持した触媒の場合、酸化物生成エネルギーの小さな金属の効果が先行してしまい、結果的には高温におけるNOxの転化率は小さくなってしまう。
【0008】
このような状況から本発明者などは、酸化物生成エネルギーの小さい金属を担持したゼオライトを中心側に、酸化物生成エネルギーの高い金属を担持したゼオライトを外側(ガス側)に配し、外側から内側に向い順次酸化物生成エネルギーが小さくなる構造を持つ層状構造触媒を提案している(特願平6−181882)。この層状構造触媒は、酸素の存在する雰囲気で炭化水素還元法により巾広い温度域で有効なNOx転化率を得ることができるが、触媒量が一定の場合、層状構造であるため各層における触媒の割合は少なくならざるを得ない。したがって各層における触媒のそれぞれがより高いNOx転化率を持つ触媒の提供が待望されている。
【0009】
一方、炭化水素の分解にゼオライトを触媒として用いた例としては、重油を分解してガソリン等を製造するプロセスにおける接触分解触媒(FCC触媒)が広く知られており、その研究も多く、重油の分解率はゼオライトの種類、結晶度、酸点の種類やその分布によって影響を受けることが知られている。そして、本発明者などの研究によると酸点の強さとその分布の影響は大きく、ガソリンの収率や性質に大きくかかわっていることがわかっている。
【0010】
【発明の目的】
本発明の目的は、ディーゼルエンジンまたは希釈燃焼法によるガソリンエンジンなどの固定発生源や移動発生源から排出される排気ガス中に含まれるNOxを炭化水素で還元して除去する際に、炭化水素と酸素との反応(燃焼反応)を遅くすることにより、これと競争反応になっている炭化水素によるNOxの還元反応に対する選択性を高くし、高いNOx転化率を示す新規触媒を提供する点にある。
【0011】
【課題を解決するための手段】
本発明者などはFCC触媒の研究の経験から、炭化水素還元脱硝の場合にも、ゼオライトの酸点の性質やその分布などの表面状態が影響しているのではないかと考えゼオライトの表面改質について種々検討した結果、大きい外部比表面積を有するチタンにより改質したモルデナイトを担体に用いた触媒は、炭化水素の燃焼を遅らせると共にNOxの還元反応の選択性を向上させることを見いだし本発明を完成させるに至ったものである。
【0012】
すなわち本発明は、(A)窒素酸化物および炭化水素を含む酸素過剰な排気ガスから窒素酸化物を炭化水素により還元除去するための排気ガス浄化用触媒において、
(B)(i)全比表面積に対する外部比表面積の占める割合が7%以上で、
ii )モルデナイト骨格構造中にチタン原子を含有するモルデナイトを担体とし、
(C)該担体に活性金属成分を担持させた
ことを特徴とする排気ガス浄化用触媒に関する。
【0013】
前記モルデナイト骨格構造中にチタン原子を含有するモルデナイトは、全比表面積に対する外部比表面積の占める割合が7%以上であることを特徴とするが、このような外部比表面積の大きい特徴は図3に示すような走査電顕写真から見てモルデナイトの針状結晶の集合体である形状に由来するものと推定される。
【0014】
前記外部比表面積の占める割合が7%未満の担体を使用した触媒では、NOx転化率の高い触媒を得ることができない。チタン含有モルデナイトの外部比表面積を大きくするとNOxの転化率が向上する理由は明らかではないが、空間速度が非常に大きい反応では外部比表面積が有効に作用すること、針状結晶(形状)であるため結晶内部へのガス拡散を容易にしてNOxと炭化水素の還元反応を促進することなどが推定される。前記外部比表面積の占める割合は、好ましくは9%以上であり、またその上限値は約20%程度である。
【0015】
なお、前記全表面積は、BET法により測定され、また、外部表面積は、J.H.De BOER et al Journal of Catalysis4,P319−323(1965)に記載されているVa−tプロット法により測定される。
【0016】
また、本発明でのチタン含有モルデナイトは、モルデナイト骨格構造中にチタン(Ti)原子を含有する。ゼオライト骨格構造中のTi原子の存在は、赤外吸収スペクトルにより確認され、970cm−1付近に吸収ピークが現われることが報告されている〔例えば、B.Kaushar.etal.Catalysis Letter,1,p81〜84(1988)〕が、本発明に用いられるチタン含有モルデナイトの赤外吸収スペクトルは図2に示すように960cm−1の所に吸収ピークが認められ、Ti原子がゼオライト骨格構造中に存在することが分かる。
本発明に用いられるチタン含有モルデナイトでは、Ti原子を酸化物として、0.01〜20重量%、好ましくは0.01〜10重量%含有することが望ましい。
【0017】
前記チタン含有モルデナイトは、図3に示すように針状結晶であり、その平均アスペクト比は3以上、好ましくは5〜100であることが望ましい。平均アスペクト比が3未満では該モルデナイトの外部比表面積の占める割合が小さくなることがあるので望ましくない。
【0018】
前記チタン含有モルデナイトは、以下の方法で製造することができる。すなわち、酸化物モル組成比で
2O/Al23 =2.0〜6.0
SiO2/Al23=10〜50
TiO2/Al23=0.01〜1.5
2O/Al23 =150〜500
(ここで、Mはアルカリ金属を表わす)
の範囲にあるシリカ源、アルミナ源、チタン源およびアルカリ源とのゲル状水性反応混合物を、好ましくは0〜60℃の温度で1〜72時間、撹拌することなく予備熟成し、次いでオートクレーブ中にて100〜200℃の温度で24〜200時間、必要に応じて撹拌しながら、水熱反応を行って結晶化させることにより、チタン含有モルデナイトを得ることができる。
【0019】
本発明のチタン含有モルデナイトに担持する活性金属成分は、通常炭化水素による還元脱硝反応に用いられる活性金属成分であれば何でもよく、例えば公知の銅、マンガン、コバルト、ニッケル、クロム、鉄、セリウム、ランタン、プラセオジウム、白金、ロジウム、パラジウム、などの金属もしくはその酸化物を挙げることができる。
【0020】
活性金属成分は公知の方法、例えば含浸法などにより該モルデナイト担体に担持させることができる。活性金属成分の担持量は通常の活性金属成分の使用範囲の量で良く、例えば酸化物として0.01〜80wt%の範囲である。
【0021】
本発明の触媒は、他の担体成分や通常使用される成形助剤などを用いて、球状、ペレット状、ハニカム状など、所望の形状にすることができる。しかし該チタン含有モルデナイトの量が少ない場合には、触媒活性が低下するので該チタン含有モルデナイトの量は成形助剤を含めた全量に対して50wt%以上、好ましくは70wt%以上であることがのぞましい。
【0022】
また、本発明の排気ガス浄化用触媒は、通常移動発生源から排出されるNOxの浄化に使用される条件下で使用可能であり、150〜800℃、好ましくは200〜600℃の排気ガス温度、空間速度5,000〜300,000hr-1での使用が好適である。
【0023】
【実施例】
以下に実施例を示し本発明をさらに具体的に説明するが、本発明はこれにより限定されるものではない。
【0024】
担体の製造例1
シリカ濃度19.5wt%の3号水硝子1668.6gに、撹拌しながら20wt%の三塩化チタン溶液347.1gを加えた。得られたゲル状水性反応混合物に、30wt%のシリカゾル1915.3g、Na2O 8.5wt%、Al23 11.0wt%を含有するアルミン酸ナトリウム溶液923.6gを加えた。約10分間均一になるまで撹拌した後、30℃で72時間静置して予備熟成を行なった。予備熟成後、ゲル状水性反応混合物をオートクレーブに移して175℃で100時間加温熟成を行った。熟成終了後、温度100℃以下に冷却した後、反応混合物を取り出し、濾過、洗浄、乾燥を行ない、次いで2回NH4イオン交換を行った後、600℃で2時間焼成してチタン含有モルデナイト−1を得た。
【0025】
このモルデナイト−1についてBET法による全比表面積、Va−tプロット法による外部表面積を求め、また走査電顕写真によりアスペクト比を求めた。その結果、全比表面積に対する外部比表面積の割合は10.5%、平均アスペクト比7.9を有する針状形状のモルデナイトであった。
このチタン含有モルデナイト−1のX線回折図を図1に、赤外吸収スペクトルを図2に、走査電顕写真を図3に示す。
【0026】
担体の製造例2
シリカ濃度24wt%の3号水硝子1916.6gに、撹拌しながら20wt%の三塩化チタン溶液771.3gを加えた。得られたゲル状水性反応混合物に、H2O 1827.1g、固形シリカ444g、Na2O 8.5wt%、Al23 11.0wt%を含有するアルミン酸ナトリウム溶液923.6gを加え、均一になるまで充分に撹拌した。ゲル状水性反応混合物を静置下、60℃で48時間予備熟成を行い、次いでこれをオートクレーブに移して175℃で120時間加温熟成を行った。熟成終了後、温度を100℃以下に冷却した後、反応混合物を取り出し、濾過、洗浄、乾燥を行いさらにアンモニウムイオン交換した後、焼成してチタン含有モルデナイト−2を得た。
【0027】
このモルデナイト−2について、BET法による全比表面積、Va−tプロット法による外部比表面積を求め、また走査電顕写真によりアスペクト比を求めた。その結果、全比表面積に対する外部比表面積の割合は9.6%、平均アスペクト比7.3を有するモルデナイトであった。
【0028】
実施例1(触媒の製造例)
硝酸セリウム〔試薬1級、関東化学(株)製〕0.883gを精秤し、純水4.4gに溶解した。この硝酸セリウム水溶液に担体の製造例1で得られたチタン含有モルデナイト−1 5.5gを加えよく混合した。この混合物を120℃で2時間乾燥し、さらに600℃で2時間焼成して触媒粉末を得た。この触媒粉末を乳鉢で軽く粉砕した後100kg/cm2の条件でプレスし、粗粉砕を行い、篩により1.0〜1.4mm径の中間粒子を採取し、Ce担持チタン含有モルデナイト触媒を得た(触媒−A)。触媒−AのCeO2含有率は7.0%である。
【0029】
実施例2(触媒の製造例)
硝酸銅〔試薬1級、関東化学(株)製〕0.851gを精秤し、純粋4.4gに溶解した。この硝酸銅水溶液に担体の製造例1で得られたチタン含有モルデナイト−1 5.5gを加え良く混合した。この混合物を120℃で2時間乾燥し、さらに600℃で2時間焼成して触媒粉末を得た。得られた粉末を乳鉢で軽く粉砕した後、100kg/cm2の条件でプレスし、粗粉砕を行い、篩により1.0〜1.4mm径の中間粒子を採取し、Cu担持チタン含有モルデナイト触媒を得た(触媒−B)。触媒−BのCuO含有率は5.6%である。
【0030】
実施例3(触媒の製造例)
担体の製造例2で得られたチタン含有モルデナイト−2を用い実施例1と同様な方法でCe担持チタン含有モルデナイト触媒を得た(触媒−C)。触媒−CのCeO2含有率は6.8%である。
【0031】
実施例4(触媒の製造例)
担体の製造例2で得られたチタン含有モルデナイト−2を用い実施例3と同様な方法でCu担持チタン含有モルデナイト触媒を得た(触媒−D)。触媒−DのCuO含有率は5.5%である。
【0032】
比較例1
担体用モルデナイトとして市販のモルデナイト〔東ソ−(株)製、HSZ−640HOA〕を用い触媒を作成した。このモルデナイトの全比表面積に対する外部比表面積の割合は5.0%であり、電顕観察の結果は粒状結晶であった。該モルデナイトを用いて、実施例1と同様な方法でCe担持モルデナイト触媒を得た(触媒−E)。触媒−EのCeO2含有率は7.1%である。
【0033】
比較例2
比較例1と同じモルデナイトを用い、実施例3と同様な方法でCuO担持モルデナイト触媒を得た(触媒−F)。触媒−FのCuO含有率は5.7%である。
【0034】
実施例5(実施例および比較例の活性評価)
触媒の活性を評価するために、還元剤である炭化水素としてヘキサン(C614)を用いてNOxの転化率を求めた。評価に使用した活性試験装置は通常の流通式ガラス反応管、自動制御式電気炉およびガス混合装置より構成されている。実施例および比較例で得られた触媒0.3gを反応管に充填し、ガス組成としてNO=400ppm,ヘキサン(C614)=400ppm,O2=5%,H2O=5%,N2=バランスの混合ガスをSV=10,000hr-1の条件で反応管に流し、所定の温度でのヘキサン転化率およびNOx(NO)転化率を求めた。
【0035】
なお、NOは化学発光式NO分析計、ヘキサンはNB−1(GLサイエンス製)充填カラムを用いたガスクロマトグラフにより分析した。
【0036】
表2に各々の触媒の最高NOx転化率をしめす温度におけるヘキサン転化率およびNO転化率を示す。表2に示すように実施例は、それぞれの比較例に対し、ヘキサン転化率はいずれも低くなり、NO転化率は高くなる。即ち全比表面積に対する外部比表面積の占める割合が(表1のO/T)が高いチタン含有モルデナイト触媒は炭化水素の分解速度が遅く、NOx還元反応の選択性が高くなり高い脱硝率を示すことが明らかである。
【0037】
【表1】

Figure 0003806167
【0038】
【表2】
Figure 0003806167
【0039】
図4に実施例1および比較例1の各温度におけるヘキサン転化率NO転化率の変化を示す。全比表面積に対する外部比表面積の割合が高い実施例1の触媒は比較例の触媒に対し低いヘキサン転化率を示している。従って、比較例の触媒においてもヘキサン転化率は温度をさげることで実施例1の触媒と同じ値にすることはできるが、温度が下がればNO転化率も低下する。このように本発明によって得られた触媒−A,B,C,Dは、いずれも比較例の触媒−E,Fに対しNO転化率が大きく向上していることがわかる。その効果は、全比表面積に対する外部比表面積の割合が高いチタン含有モルデナイトの効果と認められ、効果を発現する理由は明確ではないが、炭化水素の分解速度を遅くすることでNOxと炭化水素との還元反応の選択率を向上させたことによるものと考えられる。
【0040】
以下に本発明の実施態様項を列挙する。
1. 窒素酸化物および炭化水素を含む酸素過剰な排気ガスから窒素酸化物を炭化水素により還元除去するための排気ガス浄化用触媒において、全比表面積に対する外部比表面積の占める割合が7%以上であるチタン含有モルデナイトを担体とし、該担体に活性金属成分を担持させたことを特徴とする排気ガス浄化用触媒。
2. 窒素酸化物および炭化水素を含む酸素過剰な排気ガスから窒素酸化物を炭化水素により還元除去するための排気ガス浄化用触媒において、全比表面積に対する外部比表面積の占める割合が9〜20%であるチタン含有モルデナイトを担体とし、該担体に活性金属成分を担持させたことを特徴とする排気ガス浄化用触媒。
3. 前記チタン含有モルデナイトの平均アスペクト比が3以上の針状結晶である前項1または2記載の排気ガス浄化用触媒。
4. 前記チタン含有モルデナイトの平均アスペクト比が5以上の針状結晶である前項1または2記載の排気ガス浄化用触媒。
5. 前記チタン含有モルデナイトがTi原子を酸化物として、0.01〜20重量%含有するものである前項1,2,3または4記載の排気ガス浄化用触媒。
【0041】
【効果】
本発明の触媒により、炭化水素によるNOxの還元反応によるNOxの除去効率を著しく向上させることができた。
【図面の簡単な説明】
【図1】本発明における担体の製造例1で得られたチタン含有モルデナイト−1のX線回折図を示す。
【図2】本発明における担体の製造例1で得られたチタン含有モルデナイト−1の赤外吸収スペクトルを示す。
【図3】本発明における担体の製造例1で得られたチタン含有モルデナイト−1よりなる粒子表面の走査電子顕微鏡写真を示す。
【図4】本発明の実施例1と比較例1の触媒を用いた場合の炭化水素転化率およびNO転化率を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is used in a method for purifying nitrogen oxide (hereinafter referred to as NOx) contained in exhaust gas discharged from an internal combustion engine such as a diesel engine or a gasoline engine by a dilution combustion method by catalytic reduction using hydrocarbon as a reducing agent. The present invention relates to an exhaust gas purification catalyst.
[0002]
[Prior art and its problems]
Conventionally, purification of NOx discharged from a fixed source (for example, a power plant boiler) has been effective by the selective ammonia reduction method. The ammonia selective reduction method has the feature that NOx can be reduced in an atmosphere in which oxygen is present, but on the other hand, from the point of handling ammonia, which is a reducing agent, etc., it can be used to purify NOx discharged from mobile sources (mainly automobiles). Use is considered difficult. At present, NOx in the exhaust gas discharged from the mobile source is still insufficiently purified, and is a main source of NOx polluting the environment.
[0003]
In the case of exhaust gas purification from a gasoline engine, a so-called three-way catalyst that oxidizes carbon monoxide and hydrocarbons contained in the exhaust gas to carbon dioxide and water and simultaneously reduces NOx to nitrogen is put into practical use. Has been. However, gasoline engines are also shifting to a dilution combustion method with a high air-fuel ratio in order to reduce the total amount of carbon dioxide generated by improving fuel economy and reducing fuel consumption as a whole. Since the oxygen concentration in the inside becomes high, it is not expected that the conventional three-way catalyst can increase the NOx removal efficiency. Similarly, the exhaust gas from the diesel engine also has a high oxygen concentration and cannot use a three-way catalyst.
[0004]
Recently, a catalytic reduction method for decomposing NOx in exhaust gas having a high oxygen concentration using hydrocarbon as a reducing agent has been found, and researches are being made in many fields. This catalyst has a structure in which various active metals such as copper are supported on a crystalline aluminosilicate (zeolite) such as ZSM-5 type or mordenite type (for example, JP-A-3-52644). No satisfactory catalyst has been obtained yet.
[0005]
Although the reduction mechanism of NOx by hydrocarbons has not been elucidated in detail about the reaction mechanism, hydrocarbons are not only reducing agents for NOx, but also reducing agents for oxygen and are considered to be competitive reactions.
Therefore, generally, when the temperature becomes high, the reaction between the oxygen and the hydrocarbon (combustion reaction) is prioritized, and the reduction reaction of NOx decreases, so the NOx conversion rate is considered to be small.
[0006]
In the hydrocarbon reductive denitration method, the conversion rate of NOx varies depending on the type of zeolite used as a support and the type of active metal supported. In particular, the temperature showing the maximum NOx conversion is greatly affected by the active metal species. There is a correlation between the temperature that shows the highest conversion rate of NOx and the oxide formation energy of the active metal. Metals with small oxide formation energy such as platinum and rhodium generate oxides such as lanthanum and cerium on the low temperature side. A metal having a large energy has a temperature indicating the highest conversion rate of each NOx on the high temperature side.
[0007]
One feature of the exhaust gas discharged from the movement source is that the fluctuation range of the exhaust gas temperature is wide from the outside air temperature at the start of the engine to the high temperature at the time of traveling. Therefore, it is necessary for the NOx purification catalyst to have effective activity in a wide temperature range from low temperature to high temperature. However, a zeolite catalyst supporting one type of active metal cannot cover the practical temperature range because the temperature range that exhibits an effective NOx conversion rate is at most a few hundreds of degrees. In addition, when a catalyst supporting a metal having a large oxide generation energy and a catalyst supporting a metal having a small oxide generation energy are mixed, or in the case of a catalyst supporting two kinds of metals simultaneously, the oxide generation energy is small. The effect of metal precedes, and as a result, the conversion rate of NOx at a high temperature becomes small.
[0008]
From such a situation, the present inventors arranged a zeolite supporting a metal having a low oxide generation energy on the center side and a zeolite supporting a metal having a high oxide generation energy on the outside (gas side). A layered structure catalyst having a structure in which the energy for forming oxides gradually decreases toward the inside is proposed (Japanese Patent Application No. 6-181882). This layered structure catalyst can obtain an effective NOx conversion rate in a wide temperature range by a hydrocarbon reduction method in the presence of oxygen. However, when the catalyst amount is constant, the layered structure catalyst has a layered structure. The ratio must be reduced. Therefore, it is desired to provide a catalyst having a higher NOx conversion rate in each layer.
[0009]
On the other hand, as an example of using zeolite as a catalyst for cracking hydrocarbons, catalytic cracking catalysts (FCC catalysts) in the process of cracking heavy oil to produce gasoline and the like are widely known, and many researches have been conducted. It is known that the decomposition rate is affected by the type of zeolite, crystallinity, the type of acid sites and their distribution. According to studies by the present inventors, it is known that the strength of the acid point and the influence of the distribution are large, and are greatly related to the yield and properties of gasoline.
[0010]
OBJECT OF THE INVENTION
The object of the present invention is to reduce the NOx contained in exhaust gas exhausted from a fixed generation source or a movement generation source such as a diesel engine or a gasoline engine by a dilution combustion method by reducing with hydrocarbons and removing hydrocarbons. By slowing the reaction (combustion reaction) with oxygen, the selectivity for the reduction reaction of NOx by the hydrocarbon which is a competitive reaction with this is increased, and a novel catalyst exhibiting a high NOx conversion rate is provided. .
[0011]
[Means for Solving the Problems]
From the experience of research on FCC catalysts, the present inventors considered that the surface conditions such as the nature of the acid sites and the distribution of the zeolite were also affected in the case of hydrocarbon reductive denitration. As a result of various studies on the above, it was found that a catalyst using mordenite modified with titanium having a large external specific surface area as a support delays the combustion of hydrocarbons and improves the selectivity of the reduction reaction of NOx, thereby completing the present invention. It is what led to it.
[0012]
That is, the present invention provides (A) an exhaust gas purifying catalyst for reducing and removing nitrogen oxides with hydrocarbons from an oxygen-excess exhaust gas containing nitrogen oxides and hydrocarbons.
(B) (i) The ratio of the external specific surface area to the total specific surface area is 7% or more,
( Ii ) Using a mordenite containing a titanium atom in the mordenite skeleton structure as a carrier,
(C) The carrier was loaded with an active metal component
The present invention relates to an exhaust gas purifying catalyst .
[0013]
The mordenite containing titanium atoms in the mordenite skeleton structure is characterized in that the ratio of the external specific surface area to the total specific surface area is 7% or more. Such a large external specific surface area is shown in FIG. From the scanning electron micrograph as shown, it is presumed to be derived from a shape that is an aggregate of needle crystals of mordenite.
[0014]
A catalyst having a high NOx conversion rate cannot be obtained with a catalyst that uses a carrier whose external specific surface area accounts for less than 7%. The reason why the conversion rate of NOx is improved by increasing the external specific surface area of the titanium-containing mordenite is not clear, but the external specific surface area acts effectively in a reaction with a very large space velocity, and is a needle-like crystal (shape). Therefore, it is presumed that gas diffusion into the crystal is facilitated to promote the reduction reaction between NOx and hydrocarbons. The proportion of the external specific surface area is preferably 9% or more, and the upper limit is about 20%.
[0015]
The total surface area is measured by the BET method. H. It is measured by the Va-t plot method described in De BOER et al Journal of Catalysis 4, P319-323 (1965).
[0016]
Moreover, the titanium containing mordenite in this invention contains a titanium (Ti) atom in a mordenite frame | skeleton structure. The presence of Ti atoms in the zeolite framework structure is confirmed by an infrared absorption spectrum, and it is reported that an absorption peak appears in the vicinity of 970 cm −1 [for example, B.C. K r ausha a r. etal. Catalysis Letter s, 1, p 81~84 (1988) ] is an infrared absorption spectrum of the titanium-containing mordenite to be used in the present invention is absorption peaks were recognized at the 960 cm -1 as shown in FIG. 2, Ti atoms Is present in the zeolite framework structure.
The titanium-containing mordenite used in the present invention desirably contains 0.01 to 20% by weight, preferably 0.01 to 10% by weight, of Ti atoms as oxides.
[0017]
The titanium-containing mordenite is a needle-like crystal as shown in FIG. 3, and the average aspect ratio is 3 or more, preferably 5 to 100. If the average aspect ratio is less than 3, the proportion of the external specific surface area of the mordenite may be small, which is not desirable.
[0018]
The titanium-containing mordenite can be produced by the following method. That is, M 2 O / Al 2 O 3 = 2.0 to 6.0 in terms of oxide molar composition ratio.
SiO 2 / Al 2 O 3 = 10-50
TiO 2 / Al 2 O 3 = 0.01~1.5
H 2 O / Al 2 O 3 = 150~500
(Where M represents an alkali metal)
A gelled aqueous reaction mixture with a silica source, alumina source, titanium source and alkali source in the range of 0 to 60 ° C., preferably at a temperature of 0 to 60 ° C. for 1 to 72 hours without stirring, and then in an autoclave The titanium-containing mordenite can be obtained by performing a hydrothermal reaction and crystallizing at a temperature of 100 to 200 ° C. for 24 to 200 hours with stirring as necessary.
[0019]
The active metal component supported on the titanium-containing mordenite of the present invention may be any active metal component that is usually used in a reductive denitration reaction with hydrocarbons, such as known copper, manganese, cobalt, nickel, chromium, iron, cerium, A metal such as lanthanum, praseodymium, platinum, rhodium, palladium, or an oxide thereof can be given.
[0020]
The active metal component can be supported on the mordenite support by a known method such as an impregnation method. The amount of the active metal component supported may be a normal amount of the active metal component, for example, 0.01 to 80 wt% as an oxide.
[0021]
The catalyst of the present invention can be formed into a desired shape such as a spherical shape, a pellet shape, or a honeycomb shape by using other carrier components or a commonly used molding aid. However, when the amount of the titanium-containing mordenite is small, the catalytic activity is lowered. Therefore, the amount of the titanium-containing mordenite is preferably 50 wt% or more, preferably 70 wt% or more with respect to the total amount including the molding aid. .
[0022]
Further, the exhaust gas purifying catalyst of the present invention can be used under conditions used for purifying NOx discharged from a normal movement source, and an exhaust gas temperature of 150 to 800 ° C., preferably 200 to 600 ° C. Use at a space velocity of 5,000 to 300,000 hr −1 is preferred.
[0023]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
[0024]
Production Example 1 of Carrier
While stirring, 347.1 g of a 20 wt% titanium trichloride solution was added to 1668.6 g of No. 3 water glass having a silica concentration of 19.5 wt%. To the obtained gel-like aqueous reaction mixture, 923.6 g of a sodium aluminate solution containing 1915.3 g of 30 wt% silica sol, 8.5 wt% Na 2 O and 11.0 wt% Al 2 O 3 was added. The mixture was stirred for about 10 minutes until uniform, and then allowed to stand at 30 ° C. for 72 hours for preliminary aging. After preliminary aging, the gelled aqueous reaction mixture was transferred to an autoclave and aging was performed at 175 ° C. for 100 hours. After completion of ripening, the reaction mixture is cooled to a temperature of 100 ° C. or lower, filtered, washed and dried, then subjected to NH 4 ion exchange twice and then calcined at 600 ° C. for 2 hours to be titanium-containing mordenite. 1 was obtained.
[0025]
For this mordenite-1, the total specific surface area by BET method and the external surface area by Va-t plot method were determined, and the aspect ratio was determined by scanning electron micrograph. As a result, the ratio of the external specific surface area to the total specific surface area was 10.5%, and needle-shaped mordenite having an average aspect ratio of 7.9.
An X-ray diffraction pattern of this titanium-containing mordenite-1 is shown in FIG. 1, an infrared absorption spectrum is shown in FIG. 2, and a scanning electron micrograph is shown in FIG.
[0026]
Production example 2 of carrier
771.3 g of a 20 wt% titanium trichloride solution was added to 1916.6 g of No. 3 water glass having a silica concentration of 24 wt% while stirring. To the gelled aqueous reaction mixture obtained was added 923.6 g of sodium aluminate solution containing 1827.1 g of H 2 O, 444 g of solid silica, 8.5 wt% of Na 2 O, 11.0 wt% of Al 2 O 3 , Stir well until uniform. The gel-like aqueous reaction mixture was preliminarily aged at 60 ° C. for 48 hours while standing, then transferred to an autoclave and aged by warming at 175 ° C. for 120 hours. After completion of aging, the temperature was cooled to 100 ° C. or lower, and then the reaction mixture was taken out, filtered, washed, dried, further subjected to ammonium ion exchange, and then baked to obtain titanium-containing mordenite-2.
[0027]
For this mordenite-2, the total specific surface area by BET method and the external specific surface area by Va-t plot method were determined, and the aspect ratio was determined by scanning electron micrograph. As a result, the ratio of the external specific surface area to the total specific surface area was mordenite having 9.6% and an average aspect ratio of 7.3.
[0028]
Example 1 (Production example of catalyst)
0.883 g of cerium nitrate (reagent grade 1, manufactured by Kanto Chemical Co., Ltd.) was precisely weighed and dissolved in 4.4 g of pure water. To this cerium nitrate aqueous solution, 5.5 g of titanium-containing mordenite-1 obtained in Production Example 1 of the carrier was added and mixed well. This mixture was dried at 120 ° C. for 2 hours and further calcined at 600 ° C. for 2 hours to obtain a catalyst powder. The catalyst powder was lightly pulverized in a mortar and then pressed under conditions of 100 kg / cm 2 , coarsely pulverized, and intermediate particles having a diameter of 1.0 to 1.4 mm were collected by a sieve to obtain a Ce-supported titanium-containing mordenite catalyst. (Catalyst-A). The CeO 2 content of catalyst-A is 7.0%.
[0029]
Example 2 (Catalyst production example)
0.851 g of copper nitrate (reagent grade 1, manufactured by Kanto Chemical Co., Inc.) was precisely weighed and dissolved in pure 4.4 g. To this copper nitrate aqueous solution, 5.5 g of titanium-containing mordenite-1 obtained in Production Example 1 of the carrier was added and mixed well. This mixture was dried at 120 ° C. for 2 hours and further calcined at 600 ° C. for 2 hours to obtain a catalyst powder. The obtained powder was lightly pulverized in a mortar, then pressed under conditions of 100 kg / cm 2 , coarsely pulverized, and intermediate particles having a diameter of 1.0 to 1.4 mm were collected with a sieve, and a Cu-supported titanium-containing mordenite catalyst (Catalyst-B) was obtained. The CuO content of catalyst-B is 5.6%.
[0030]
Example 3 (Production example of catalyst)
A Ce-supported titanium-containing mordenite catalyst was obtained in the same manner as in Example 1 using the titanium-containing mordenite-2 obtained in Support Production Example 2 (Catalyst-C). The CeO 2 content of catalyst-C is 6.8%.
[0031]
Example 4 (Catalyst production example)
A Cu-supported titanium-containing mordenite catalyst was obtained in the same manner as in Example 3 using the titanium-containing mordenite-2 obtained in Support Production Example 2 (Catalyst-D). The CuO content of catalyst-D is 5.5%.
[0032]
Comparative Example 1
A catalyst was prepared using commercially available mordenite [manufactured by Tosoh Corporation, HSZ-640HOA] as mordenite for support. The ratio of the external specific surface area to the total specific surface area of this mordenite was 5.0%, and the result of electron microscopic observation was a granular crystal. Using the mordenite, a Ce-supported mordenite catalyst was obtained in the same manner as in Example 1 (Catalyst-E). The CeO 2 content of catalyst-E is 7.1%.
[0033]
Comparative Example 2
Using the same mordenite as in Comparative Example 1, a CuO-supported mordenite catalyst was obtained in the same manner as in Example 3 (Catalyst-F). The CuO content of catalyst-F is 5.7%.
[0034]
Example 5 (Evaluation of activity of Examples and Comparative Examples)
In order to evaluate the activity of the catalyst, the conversion rate of NOx was determined using hexane (C 6 H 14 ) as a hydrocarbon as a reducing agent. The activity test apparatus used for the evaluation is composed of a normal flow-through glass reaction tube, an automatically controlled electric furnace, and a gas mixing apparatus. 0.3 g of the catalyst obtained in Examples and Comparative Examples was charged into a reaction tube, and the gas composition was NO = 400 ppm, hexane (C 6 H 14 ) = 400 ppm, O 2 = 5%, H 2 O = 5%, A mixed gas of N 2 = balance was passed through the reaction tube under the condition of SV = 10,000 hr −1 , and the hexane conversion rate and NOx (NO) conversion rate at a predetermined temperature were determined.
[0035]
NO was analyzed by a chemiluminescent NO analyzer, and hexane was analyzed by a gas chromatograph using a column packed with NB-1 (manufactured by GL Science).
[0036]
Table 2 shows the hexane conversion rate and NO conversion rate at temperatures indicating the maximum NOx conversion rate of each catalyst. As shown in Table 2, in the Examples, the hexane conversion rate is low and the NO conversion rate is high with respect to the respective comparative examples. That is, a titanium-containing mordenite catalyst having a high ratio of the external specific surface area to the total specific surface area (O / T in Table 1) has a low hydrocarbon decomposition rate, a high NOx reduction reaction selectivity, and a high denitration rate. Is clear.
[0037]
[Table 1]
Figure 0003806167
[0038]
[Table 2]
Figure 0003806167
[0039]
FIG. 4 shows changes in hexane conversion NO conversion at each temperature of Example 1 and Comparative Example 1. The catalyst of Example 1 having a high ratio of the external specific surface area to the total specific surface area shows a lower hexane conversion rate than the catalyst of the comparative example. Therefore, in the catalyst of the comparative example, the hexane conversion rate can be set to the same value as that of the catalyst of Example 1 by decreasing the temperature, but the NO conversion rate also decreases as the temperature decreases. Thus, it can be seen that the catalysts-A, B, C, and D obtained by the present invention are greatly improved in NO conversion rate over the comparative catalysts-E and F. The effect is recognized as an effect of titanium-containing mordenite with a high ratio of the external specific surface area to the total specific surface area, and the reason for the effect is not clear, but NOx and hydrocarbons are reduced by slowing the decomposition rate of hydrocarbons. This is thought to be due to an improvement in the selectivity of the reduction reaction.
[0040]
The embodiments of the present invention are listed below.
1. Titanium in which the ratio of the external specific surface area to the total specific surface area is 7% or more in an exhaust gas purification catalyst for reducing and removing nitrogen oxides from hydrocarbons containing oxygen oxide and hydrocarbons containing oxygen An exhaust gas purifying catalyst characterized in that the mordenite is used as a carrier and an active metal component is supported on the carrier.
2. In an exhaust gas purification catalyst for reducing and removing nitrogen oxides from hydrocarbons containing oxygen and hydrocarbons containing nitrogen oxides, the ratio of the external specific surface area to the total specific surface area is 9 to 20%. An exhaust gas purifying catalyst characterized in that titanium-containing mordenite is used as a carrier, and an active metal component is supported on the carrier.
3. 3. The exhaust gas purifying catalyst according to item 1 or 2, wherein the titanium-containing mordenite is an acicular crystal having an average aspect ratio of 3 or more.
4). 3. The exhaust gas purifying catalyst according to item 1 or 2, wherein the titanium-containing mordenite is needle-like crystals having an average aspect ratio of 5 or more.
5). 5. The exhaust gas purifying catalyst according to the preceding item 1, 2, 3 or 4, wherein the titanium-containing mordenite contains 0.01 to 20% by weight of Ti atoms as oxides.
[0041]
【effect】
With the catalyst of the present invention, the removal efficiency of NOx by the reduction reaction of NOx with hydrocarbons could be remarkably improved.
[Brief description of the drawings]
FIG. 1 shows an X-ray diffraction pattern of titanium-containing mordenite-1 obtained in Production Example 1 of a carrier in the present invention.
FIG. 2 shows an infrared absorption spectrum of titanium-containing mordenite-1 obtained in Production Example 1 of a carrier in the present invention.
FIG. 3 shows a scanning electron micrograph of the particle surface made of titanium-containing mordenite-1 obtained in Production Example 1 of the carrier in the present invention.
FIG. 4 is a graph showing the hydrocarbon conversion rate and NO conversion rate when the catalysts of Example 1 and Comparative Example 1 of the present invention are used.

Claims (2)

(A)窒素酸化物および炭化水素を含む酸素過剰な排気ガスから窒素酸化物を炭化水素により還元除去するための排気ガス浄化用触媒において、(A) In an exhaust gas purifying catalyst for reducing and removing nitrogen oxides with hydrocarbons from an oxygen-excess exhaust gas containing nitrogen oxides and hydrocarbons,
(B)(i)全比表面積に対する外部比表面積の占める割合が7%以上で、(B) (i) The ratio of the external specific surface area to the total specific surface area is 7% or more,
( iiii )モルデナイト骨格構造中にチタン原子を含有するモルデナイトを担体とし、) Using a mordenite containing a titanium atom in the mordenite skeleton structure as a carrier,
(C)該担体に活性金属成分を担持させた(C) The active metal component was supported on the carrier
ことを特徴とする排気ガス浄化用触媒。An exhaust gas purifying catalyst characterized by that.
前記モルデナイト骨格構造中にチタン原子を含有するモルデナイトの平均アスペクト比が3以上の針状結晶である請求項1に記載の排気ガス浄化用触媒。2. The exhaust gas purifying catalyst according to claim 1, wherein the mordenite skeleton structure is a needle-like crystal having an average aspect ratio of mordenite containing titanium atoms of 3 or more.
JP30200695A 1995-10-26 1995-10-26 Exhaust gas purification catalyst Expired - Lifetime JP3806167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30200695A JP3806167B2 (en) 1995-10-26 1995-10-26 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30200695A JP3806167B2 (en) 1995-10-26 1995-10-26 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH09117667A JPH09117667A (en) 1997-05-06
JP3806167B2 true JP3806167B2 (en) 2006-08-09

Family

ID=17903757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30200695A Expired - Lifetime JP3806167B2 (en) 1995-10-26 1995-10-26 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3806167B2 (en)

Also Published As

Publication number Publication date
JPH09117667A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
KR0136893B1 (en) Selective catalytic reduction of nitrogen oxide
EP2340103B2 (en) A method of converting nitrogen oxides with transition metal-containing aluminosilicate zeolite
CA2057634A1 (en) Catalyst for purification of exhaust gases
US20150258537A1 (en) Exhaust gas purifying catalyst
JPH0938464A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
KR20170063596A (en) Thermally stable nh3-scr catalyst compositions
CN110694621A (en) Three-way catalyst and preparation method and application thereof
JP3806167B2 (en) Exhaust gas purification catalyst
JPH08173761A (en) Method for removing nitrogen oxide
JP3254092B2 (en) Exhaust gas purification catalyst
JP3199562B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JPH0859236A (en) Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
JP3395221B2 (en) Nitrogen oxide removal method
JP3219815B2 (en) Exhaust gas purification catalyst
JP3482658B2 (en) Nitrogen oxide removal method
JP3395219B2 (en) Nitrogen oxide removal method
JP2851769B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JP3346665B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JPH10180103A (en) Oxide catalyst material for removing nitrogen oxide and its preparation
JP3210748B2 (en) Phosphoric acid composition, method for producing the same, and catalyst for NOx reductive decomposition using the same
JP2922759B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JP2601018B2 (en) Exhaust gas purification catalyst
JP3309024B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JPH10180105A (en) Oxide catalyst material for removing nitrogen oxide and method for removing nitrogen oxide
KR0183620B1 (en) Nitrogen oxide reducing catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term