JPH09113535A - Abnormality detecting device of acceleration sensor - Google Patents

Abnormality detecting device of acceleration sensor

Info

Publication number
JPH09113535A
JPH09113535A JP7268669A JP26866995A JPH09113535A JP H09113535 A JPH09113535 A JP H09113535A JP 7268669 A JP7268669 A JP 7268669A JP 26866995 A JP26866995 A JP 26866995A JP H09113535 A JPH09113535 A JP H09113535A
Authority
JP
Japan
Prior art keywords
acceleration
acceleration sensor
abnormality
vehicle
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7268669A
Other languages
Japanese (ja)
Other versions
JP3135490B2 (en
Inventor
Kiyoyuki Uchida
清之 内田
Yoshifumi Yagi
好文 八木
Toyoharu Katsukura
豊晴 勝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP07268669A priority Critical patent/JP3135490B2/en
Publication of JPH09113535A publication Critical patent/JPH09113535A/en
Application granted granted Critical
Publication of JP3135490B2 publication Critical patent/JP3135490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately detect abnormality of acceleration sensors by arranging two acceleration sensors, and judging it as abnormality of one acceleration sensor when one output hardly changes and the other changes. SOLUTION: This device is provided first and second acceleration sensors M1 and M2 arranged so that the acceleration detecting directions respectively become a prescribed angle left and right in the vehicle longitudinal direction and a judging means M3 to judge it as abnormality of one acceleration sensor when a condition where a change width of detecting acceleration of either one acceleration sensor is less than a prescribed value continues for a preset time or more and a change width of detecting acceleration of the other acceleration sensor exceeds a preset value. Therefore, both the first and the second acceleration sensors detect acceleration in the case of longitudinal directional motion and turning motion of a vehicle. Therefore, when one output hardly changes for a prescribed time and the other output changes in a certain degree during that time, it can be regarded gas abnormality of one acceleration sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は加速度センサの異常
検出装置に関し、車両の加速度を検出する加速度センサ
の異常を検出する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor abnormality detection device, and more particularly to an acceleration sensor abnormality detection device that detects vehicle acceleration.

【0002】[0002]

【従来の技術】従来より車両のヨーレート、前後加速
度、横加速度、及び操舵状態等を検出して車両の制動力
の左右配分や前後配分を可変制御することが行われてい
る。例えば、特開平6−24304号公報には、操舵状
態を含む車両の走行状態、車両のヨーレート、横加速度
及び前後加速度夫々を検出し、走行状態に基づく目標ヨ
ーレートと検出ヨーレートの偏差と、検出横加速度及び
前後加速度に応じた制動力の制御分担率とに基づいて目
標左右配分、目標前後配分を算出し、各輪の制動力を制
御することが記載されている。
2. Description of the Related Art Conventionally, the yaw rate, longitudinal acceleration, lateral acceleration, steering state, etc. of a vehicle have been detected to variably control the lateral and longitudinal distribution of the braking force of the vehicle. For example, in Japanese Patent Laid-Open No. 6-24304, the running state of the vehicle including the steering state, the yaw rate of the vehicle, the lateral acceleration, and the longitudinal acceleration are detected, and the deviation between the target yaw rate and the detected yaw rate based on the running state and the detected lateral It is described that the target left / right distribution and the target front / rear distribution are calculated based on the acceleration and the control share ratio of the braking force according to the longitudinal acceleration, and the braking force of each wheel is controlled.

【0003】[0003]

【発明が解決しようとする課題】従来の制動力制御装置
で加速度センサに異常が発生すると、誤った横加速度又
は前後加速度が原因となって不要な制動を引き起こす可
能性がある。また、グリップ走行時には操舵角、加速
度、ヨーレートは一定の関係を保っているが、加速度セ
ンサの異常が発生すると、この関係が成立しなくなり、
車両スピン等の不安定状態にあると誤認識するという問
題があった。
When an abnormality occurs in the acceleration sensor in the conventional braking force control device, there is a possibility that unnecessary braking is caused due to incorrect lateral acceleration or longitudinal acceleration. In addition, the steering angle, acceleration, and yaw rate maintain a constant relationship during grip travel, but if an abnormality occurs in the acceleration sensor, this relationship no longer holds.
There was a problem of erroneously recognizing that the vehicle is in an unstable state such as a vehicle spin.

【0004】本発明は上記の点に鑑みなされたもので、
車両の主要な運動に対して共に加速度を検出できるよう
第1,第2の加速度センサを配設し、一方の出力がほと
んど変化せず、他方が変化した場合に一方の加速度セン
サの異常と判定して、加速度センサの異常を正確に検出
できる加速度センサの異常検出装置を提供することを目
的とする。
[0004] The present invention has been made in view of the above points,
The first and second acceleration sensors are arranged so that both accelerations can be detected for the main movements of the vehicle, and when one output changes little and the other changes, it is determined that one acceleration sensor is abnormal. Then, it aims at providing the abnormality detection device of the acceleration sensor which can detect abnormality of an acceleration sensor correctly.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の発明
は、図1(A)に示す如く、加速度検出方向が車両前後
方向に対して左右に夫々所定角度となるよう配設した第
1及び第2の加速度センサM1,M2と、いずれか一方
の加速度センサの検出加速度の変動幅が所定値未満の状
態が設定時間以上継続し、かつ他方の加速度センサの検
出加速度の変動幅が設定値を超えたとき、上記一方の加
速度センサの異常と判定する判定手段M3とを有する。
According to a first aspect of the present invention, as shown in FIG. 1A, the acceleration detection direction is arranged at a predetermined angle to the left and right with respect to the vehicle front-rear direction. And the second acceleration sensor M1, M2 and the variation width of the acceleration detected by either one of the acceleration sensors is less than a predetermined value for a set time or more, and the variation width of the acceleration detected by the other acceleration sensor is the set value. When it exceeds, the determination means M3 that determines that the one acceleration sensor is abnormal.

【0006】このように、車両前後方向に対して左右に
所定角度で配設しているため、第1,第2の加速度セン
サは車両の前後方向運動や旋回運動の際に、共に加速度
を検出する。従って一方の出力が所定時間ほとんど変化
せず、その間他方の出力がある程度変化する場合は一方
の加速度センサの異常とみなすことができる。
As described above, since the first and second acceleration sensors are arranged at a predetermined angle to the left and right with respect to the front-rear direction of the vehicle, both the first and second acceleration sensors detect the acceleration when the vehicle moves in the front-rear direction or turns. To do. Therefore, if one output hardly changes for a predetermined time and the other output changes to some extent during that time, it can be regarded as an abnormality of one acceleration sensor.

【0007】請求項2に記載の発明は、図1(B)に示
す如く、請求項1記載の加速度センサの異常検出装置に
おいて、車両が横すべりやスピンを起こしていないグリ
ップ状態か、又は非グリップ状態かを判定するグリップ
判定手段M4と、上記非グリップ状態ではグリップ状態
に対して、前記設定値を大として設定し、かつ、前記設
定時間を短かくして設定する設定変更手段M5とを有す
る。
According to a second aspect of the present invention, as shown in FIG. 1B, in the abnormality detecting device for an acceleration sensor according to the first aspect, the vehicle is in a grip state in which no skidding or spin occurs, or a non-grip state. The grip determination means M4 for determining whether the state is the state and the setting change means M5 for setting the set value to be large and setting the set time to be short for the grip state in the non-grip state.

【0008】このように、非グリップ状態では設定時間
が短かく設定されるため、加速度センサ出力に基づく制
動力配分制御等の挙動制御を行っている場合も早期に加
速度センサの異常を検出して誤った挙動制御を防止で
き、また、設定時間を短かくする場合には設定値を大き
くして誤った異常判定を防止できる。
As described above, since the set time is set short in the non-grip state, even when the behavior control such as the braking force distribution control based on the output of the acceleration sensor is performed, the abnormality of the acceleration sensor is detected early. Erroneous behavior control can be prevented, and when the set time is shortened, the set value can be increased to prevent erroneous abnormality determination.

【0009】[0009]

【発明の実施の形態】図2は本発明装置の一実施例の概
略構成図を示す。同図中、第1,第2の加速度センサ1
0,11夫々は車両の運動により発生する加速度を検出
する。ヨーレートセンサ12は車両の回転運動のヨーレ
ートを検出する。車輪速センサ13,14,15,16
夫々は左前輪(FL)、右前輪(FR)、左後輪(R
L)、右後輪(RR)夫々の車輪速を検出する。また、
車速センサ17は車体速度を検出する。操舵角センサ1
8は前輪(FL,FR)の操舵角を検出する。ブレーキ
センサ19はブレーキペダルの踏み込み(オン)/解放
(オフ)を検出する。これらのセンサ10〜19夫々の
検出信号は電子制御回路(ECU)20に供給される。
FIG. 2 is a schematic diagram showing an embodiment of the apparatus according to the present invention. In the figure, first and second acceleration sensors 1
Each of 0 and 11 detects the acceleration generated by the movement of the vehicle. The yaw rate sensor 12 detects the yaw rate of the rotational movement of the vehicle. Wheel speed sensor 13, 14, 15, 16
Left front wheel (FL), right front wheel (FR), left rear wheel (R)
L) and the wheel speed of the right rear wheel (RR) are detected. Also,
The vehicle speed sensor 17 detects the vehicle speed. Steering angle sensor 1
Reference numeral 8 detects the steering angle of the front wheels (FL, FR). The brake sensor 19 detects the depression (on) / release (off) of the brake pedal. Detection signals from the sensors 10 to 19 are supplied to an electronic control circuit (ECU) 20.

【0010】ECU20は中央処理装置(CPU)22
と、処理プログラム等を記憶したリードオンリメモリ
(ROM)24と、作業領域として使用されるランダム
アクセスメモリ(RAM)26と、A/Dコンバータを
含む入力ポート回路28と、出力ポート回路30と、不
揮発性メモリであるEEPROM32とを有し、これら
は双方向性のバス34により互いに接続されている。入
力ポート回路28にはセンサ10〜19夫々の検出信号
が供給される。また、出力ポート回路30は駆動回路4
1〜48夫々を介して4輪夫々に対応してブレーキ配管
に設けられた増圧用液圧切換弁51〜54、減圧用液圧
切換弁55〜58夫々のソレノイドに接続されている。
上記の増圧用液圧切換弁51〜54、減圧用液圧切換弁
55〜58夫々は4輪夫々のホイールシリンダのブレー
キ液圧を増圧又は減圧する。
The ECU 20 is a central processing unit (CPU) 22.
A read only memory (ROM) 24 storing a processing program, a random access memory (RAM) 26 used as a work area, an input port circuit 28 including an A / D converter, an output port circuit 30, It has an EEPROM 32 which is a non-volatile memory, and these are connected to each other by a bidirectional bus 34. The detection signals of the sensors 10 to 19 are supplied to the input port circuit 28. The output port circuit 30 is the drive circuit 4
Via the solenoid valves 1 to 48, the solenoids of the pressure increasing hydraulic pressure switching valves 51 to 54 and the pressure reducing hydraulic pressure switching valves 55 to 58 provided in the brake pipes corresponding to the four wheels are connected.
The pressure increasing hydraulic pressure switching valves 51 to 54 and the pressure reducing hydraulic pressure switching valves 55 to 58 increase or decrease the brake hydraulic pressure of the wheel cylinders of each of the four wheels.

【0011】ECU20は例えば車体速度及び前後加速
度に応じて前輪(FL,FR)と後輪(RL,RR)と
の制動力の分担率を制御する前後配分制御を行うと共
に、ヨーレート、横加速度、各車輪の車輪速度等から車
両の旋回運動量を求め、旋回運動量に基づいて各輪の目
標車輪速度を算出し、各輪が目標車輪速度となるよう制
動力の左右配分制御を行っている。
The ECU 20 performs front-rear distribution control for controlling the sharing rate of the braking force between the front wheels (FL, FR) and the rear wheels (RL, RR) in accordance with the vehicle speed and the longitudinal acceleration, and the yaw rate, lateral acceleration, The turning momentum of the vehicle is obtained from the wheel speed of each wheel, the target wheel speed of each wheel is calculated based on the turning momentum, and the left-right distribution control of the braking force is performed so that each wheel becomes the target wheel speed.

【0012】上記の加速度センサ10,11は図3
(A)又は(B)に示す如く、車両40の前後方向を基
準として45度の角度を付けて、検出方向が互いに直交
するよう取付けられている。ここで、矢印A1 ,A2
々は加速度センサ10の検出方向を示し、矢印B1 ,B
2 夫々は加速度センサ11の検出方向を示している。加
速度センサ10,11夫々の検出加速度をα1,α2と
すると、図3(A)に示す例では、前後加速度は(α1
+α2)/√2で表わされ、横加速度は(α2−α1)
/√2で表わされる。
The acceleration sensors 10 and 11 shown in FIG.
As shown in (A) or (B), the vehicle 40 is attached so that the detection directions are orthogonal to each other at an angle of 45 degrees with respect to the front-back direction. Here, arrows A 1 and A 2 respectively indicate the detection directions of the acceleration sensor 10, and arrows B 1 and B 2
Each of the two indicates the detection direction of the acceleration sensor 11. Assuming that the accelerations detected by the acceleration sensors 10 and 11 are α1 and α2, respectively, in the example shown in FIG.
+ Α2) / √2, lateral acceleration is (α2-α1)
It is represented by / √2.

【0013】本発明の原理について説明するに、加速度
センサ10,11が車両前後方向から45度傾いている
ため、車両前後方向の運動力が加わるとき、又は車両の
旋回運動力が加わるときには両センサ出力は同様に変化
する。このため、2つの加速度センサのうち、一方のセ
ンサの出力が変化している状態で、他方のセンサの出力
がほとんど変化しない場合は、出力変化のない方のセン
サが異常である可能性が高い。但し、車両が停止してい
るときに、例えば矢印A1 (あるいはA2 )方向の振動
があると、加速度センサ10の出力は変化するが、加速
度センサ11の出力は変化しない。このため車体速度か
ら車両が停止しているかどうかを判定する。
To explain the principle of the present invention, since the acceleration sensors 10 and 11 are inclined by 45 degrees from the vehicle front-rear direction, both sensors are applied when a vehicle front-rear direction motion force or a vehicle turning motion force is applied. The output changes similarly. Therefore, when the output of one of the two acceleration sensors is changing and the output of the other sensor is hardly changing, it is highly possible that the sensor with no output change is abnormal. . However, when the vehicle is stopped, for example, if there is vibration in the direction of arrow A 1 (or A 2 ), the output of the acceleration sensor 10 changes but the output of the acceleration sensor 11 does not change. Therefore, it is determined from the vehicle speed whether the vehicle is stopped.

【0014】図4はCPU22が実行する異常検出処理
のフローチャートを示す。この処理は所定時間毎に割込
み実行される。同図中、ステップS10では各センサで
検出されたヨーレート、加速度、操舵角、車体速度等の
パラメータを読み込む。次にステップS12で加速度セ
ンサ10,11夫々の検出加速度の変動幅(前回の検出
加速度との差)及び横加速度を算出する。この後、ステ
ップS14でグリップ判定処理を行い、ステップS16
でその判定結果からグリップ状態であるか否かを判別す
る。上記のステップS14,S16がグリップ判定手段
M4に対応する。ここで、横すべり、スピン等が発生し
ていないグリップ状態ではステップS18に進み、横す
べり、スピン等が発生している非グリップ状態ではステ
ップS20に進む。
FIG. 4 shows a flowchart of the abnormality detection processing executed by the CPU 22. This process is executed by interruption every predetermined time. In the figure, in step S10, parameters such as yaw rate, acceleration, steering angle, and vehicle speed detected by each sensor are read. Next, in step S12, the fluctuation width of the acceleration detected by each of the acceleration sensors 10 and 11 (difference from the previously detected acceleration) and the lateral acceleration are calculated. After this, grip determination processing is performed in step S14, and step S16
Then, it is determined from the determination result whether or not the grip state is established. The above steps S14 and S16 correspond to the grip determination means M4. Here, in a grip state in which neither side slippage nor spin occurs, the process proceeds to step S18, and in a non-grip state in which side slips or spin occurs, the process proceeds to step S20.

【0015】ステップS18では車体速度閾値KVに所
定値KV−GRIP(例えば10km/h) をセットし、変
化しない方の異常検出しようとする加速度センサ10の
変動幅閾値ΔG1 に所定値KGをセットする。このKG
はセンサ出力信号の電気的ノイズを越える程度の値であ
り、ノイズの影響を受けないようにするため設けてい
る。また、もう一方の加速度センサ11の変動幅閾値Δ
2 に所定値KG−GRIP(KG−GRIP≫KG)
をセットし、判定時間Tに所定値KT−GRIP(例え
ば3秒相当)をセットする。
In step S18, a predetermined value KV-GRIP (for example, 10 km / h) is set to the vehicle body speed threshold value KV, and a predetermined value KG is set to the fluctuation width threshold value ΔG 1 of the acceleration sensor 10 which is to detect an abnormality that does not change. To do. This KG
Is a value that exceeds the electrical noise of the sensor output signal, and is provided so as not to be affected by noise. In addition, the fluctuation range threshold Δ of the other acceleration sensor 11
Given the G 2 value KG-GRIP (KG-GRIP»KG)
Is set, and a predetermined value KT-GRIP (e.g., corresponding to 3 seconds) is set as the determination time T.

【0016】ステップS20では車体速度閾値KVに所
定値KV−NONGRIP(例えば40km/h) をセット
し、変化しない方の異常検出しようとする加速度センサ
10の変動幅閾値ΔG1 に所定値kGをセットする。ま
た、もう一方の加速度センサ11の変動幅閾値ΔG2
所定値KG−NONGRIP(KG−GRIP<KG−
NONGRIP)をセットし、判定時間Tに所定値KT
−NONGRIP(例えば1秒相当)をセットする。
In step S20, a predetermined value KV-NONGRIP (for example, 40 km / h) is set as the vehicle body speed threshold value KV, and a predetermined value kG is set as the fluctuation width threshold value ΔG 1 of the acceleration sensor 10 which is to detect an abnormality that does not change. To do. Further, the variation width threshold ΔG 2 of the other acceleration sensor 11 is set to a predetermined value KG-NONGRIP (KG-GRIP <KG-
(NONGRIP) is set, and a predetermined value KT is set for the judgment time T.
-Set NONGRIP (e.g. 1 second equivalent).

【0017】つまり、クリップ状態では閾値ΔG2 を小
さく、かつ判定時間を長くしている。非グリップ状態で
は、横すべりで加速度センサ10の検出方向とは直角方
向に斜めにすべりながら走行することも考えられるた
め、閾値ΔG2 を大きくし、かつ判定時間Tを短かくし
て、加速度センサ10に異常が発生したときの制動力配
分制御等の挙動制御の誤作動が車両挙動に与える影響を
極力小さくしている。上記のステップS18,S20が
設定変更手段M5に対応する。
That is, in the clipped state, the threshold value ΔG 2 is made small and the determination time is made long. In the non-grip state, it is considered that the vehicle may travel while sliding sideways and obliquely to the direction perpendicular to the detection direction of the acceleration sensor 10. Therefore, the threshold ΔG 2 is increased and the determination time T is shortened to cause an abnormality in the acceleration sensor 10. The influence of malfunction of behavior control such as braking force distribution control on vehicle behavior is minimized. The above steps S18 and S20 correspond to the setting changing means M5.

【0018】ステップS18又はS20の実行後はステ
ップS22に進み、車速センサで検出した車体速度が閾
値KVを超えているか否かを判別し、超えていればステ
ップS24に進み、超えていなければステップS26に
進む。ステップS24では異常検出しようとする加速度
センサ10の変動幅が閾値ΔG1 未満か否かを判別し、
変動幅<ΔG1 の場合はステップS28に進み、変動幅
≧ΔG1 の場合はステップS26に進む。
After execution of step S18 or S20, the routine proceeds to step S22, where it is determined whether the vehicle speed detected by the vehicle speed sensor exceeds the threshold value KV. If it exceeds the threshold value, the routine proceeds to step S24. Proceed to S26. In step S24, it is determined whether or not the fluctuation range of the acceleration sensor 10 for which abnormality is to be detected is less than the threshold value ΔG 1 ,
If the fluctuation range <ΔG 1 , the process proceeds to step S28, and if the fluctuation range ≧ ΔG 1 , the process proceeds to step S26.

【0019】ステップS28では加速度センサ11の変
動幅をRAMに格納し、次にステップS30でカウンタ
Cを1だけインクリメントしてステップS32に進む。
また、ステップS26ではRAMに格納していた加速度
センサ11の変動幅を全て消去し、次にステップS34
でカウンタCを0にリセットして処理を終了する。
In step S28, the fluctuation range of the acceleration sensor 11 is stored in the RAM, then in step S30, the counter C is incremented by 1, and the process proceeds to step S32.
Further, in step S26, all the fluctuation range of the acceleration sensor 11 stored in the RAM is erased, and then step S34.
Then, the counter C is reset to 0 and the processing is ended.

【0020】ステップS32ではカウンタCの値が判定
時間T以上か否かを判定し、C≧Tの場合はステップS
36に進み、C<Tの場合は処理を終了する。ステップ
S36ではRAMに格納されている加速度センサ11の
変動幅のうち閾値ΔG2 を超えるものがあるかどうかを
判別する。閾値ΔG1 を超える変動幅が存在すればステ
ップS38に進み、加速度センサ10が固着等を生じて
異常であると判定した後、処理を終了する。一方、閾値
ΔG1 を超える変動幅が存在しなければ加速度センサ1
0に異常はないので、そのまま処理を終了する。ところ
で、上記ステップS38を実行した場合には制動力配分
制御等の挙動制御を停止させる。
In step S32, it is determined whether or not the value of the counter C is equal to or longer than the determination time T. If C ≧ T, step S32 is performed.
Proceed to 36, and if C <T, the process ends. In step S36, it is determined whether or not there is a variation width of the acceleration sensor 11 stored in the RAM that exceeds the threshold value ΔG 2 . If there is a fluctuation range that exceeds the threshold value ΔG 1 , the process proceeds to step S38, and after the acceleration sensor 10 is determined to be abnormal due to sticking or the like, the process ends. On the other hand, if there is no fluctuation width exceeding the threshold ΔG 1 , the acceleration sensor 1
Since there is no abnormality in 0, the processing is ended as it is. By the way, when the step S38 is executed, the behavior control such as the braking force distribution control is stopped.

【0021】上記のステップS22〜S38が判定手段
M3に対応する。なお、図4は加速度センサ10の異常
検出処理であるが、加速度センサ11の異常検出もこれ
と同様にして行う。この場合にはステップS24で加速
度センサ11の変動幅を閾値ΔG1 と比較し、ステップ
S26,S28で加速度センサ10の変動幅の格納,ク
リアを行い、ステップS36で加速度センサ10の変動
幅を閾値ΔG2 と比較する。
The above steps S22 to S38 correspond to the judging means M3. Although FIG. 4 shows the abnormality detection process of the acceleration sensor 10, the abnormality detection of the acceleration sensor 11 is also performed in the same manner. In this case, the fluctuation range of the acceleration sensor 11 is compared with the threshold value ΔG 1 in step S24, the fluctuation range of the acceleration sensor 10 is stored and cleared in steps S26 and S28, and the fluctuation range of the acceleration sensor 10 is thresholded in step S36. Compare with ΔG 2 .

【0022】図5はステップS14のグリップ判定処理
ルーチンの詳細なフローチャートを示す。同図中、ステ
ップS40でヨーレートγ、横加速度Gy 、操舵角θ、
車体速度V等のパラメータを読み込む。次に、ステップ
S42でヨーレートγから推定操舵角θYr を次式によ
り算出する。
FIG. 5 shows a detailed flowchart of the grip determination processing routine in step S14. In the figure, in step S40, yaw rate γ, lateral acceleration Gy, steering angle θ,
Parameters such as vehicle speed V are read. Next, in step S42, the estimated steering angle θY r is calculated from the yaw rate γ by the following equation.

【0023】θYr =( γ/V)×K11 は例えばK1 =N×L×3.6で表わされる定数で
ある。(但し、Nはギヤ比、Lはホイールベース間隔で
ある。)次に、ステップS44で横加速度Gy から推定
操舵角θGy を次式により算出する。
ΘYr = (γ / V) × K 1 K 1 is a constant represented by, for example, K 1 = N × L × 3.6. (However, N is a gear ratio and L is a wheel base interval.) Next, in step S44, an estimated steering angle θGy is calculated from the lateral acceleration Gy by the following equation.

【0024】θGy =(Gy /V2 )K22 は例えばK2 =(N×L×9.8×180/π)×
3.62 で表わされる定数である。次のステップS46
では操舵角θとθYr との偏差ΔθYr 、操舵角θとθ
Gy との偏差ΔθGy 夫々を次式により算出する。
ΘGy = (Gy / V 2 ) K 2 K 2 is, for example, K 2 = (N × L × 9.8 × 180 / π) ×
It is a constant represented by 3.6 2 . Next step S46
Then, the deviation ΔθYr between the steering angle θ and θYr, the steering angle θ and θ
The deviation ΔθGy from Gy is calculated by the following equation.

【0025】ΔθYr=|θ−θYr | ΔθGy =|θ−θGy | 次にステップS48で偏差ΔθYr が所定値Aを超える
か否かを判別し、ΔθYr >Aの場合はステップS50
で偏差ΔθGy が所定値Bを超えるか否かを判別する。
この結果、偏差ΔθYr が所定値A以下、又は偏差Δθ
Gy が所定値B以下、つまりヨーレート又は横加速度で
推定した操舵角が実際の操舵角から所定範囲内にあれば
ステップS52に進んでグリップ状態と判定し処理を終
了する。また偏差ΔθYr が所定値Aを超え、かつ偏差
ΔθGy が所定値Bを超えて、ヨーレート及び横加速度
で推定した操舵角が実際の操舵角から所定範囲内になけ
れば、横すべり,スピン等が発生しているとしてステッ
プS54に進み、非グリップ状態と判定して処理を終了
する。
ΔθYr = | θ−θYr | ΔθGy = | θ−θGy | Next, in step S48, it is determined whether the deviation ΔθYr exceeds a predetermined value A. If ΔθYr> A, step S50.
Then, it is determined whether or not the deviation ΔθGy exceeds a predetermined value B.
As a result, the deviation ΔθYr is less than the predetermined value A, or the deviation ΔθYr
If Gy is equal to or smaller than the predetermined value B, that is, if the steering angle estimated by the yaw rate or the lateral acceleration is within the predetermined range from the actual steering angle, the process proceeds to step S52, the grip state is determined, and the process ends. If the deviation ΔθYr exceeds the predetermined value A, the deviation ΔθGy exceeds the predetermined value B, and the steering angle estimated by the yaw rate and lateral acceleration is not within the predetermined range from the actual steering angle, side slip, spin, etc. occur. If so, the process proceeds to step S54, the non-grip state is determined, and the process ends.

【0026】このように、車両前後方向に対して加速度
センサ10,11を左右に所定角度で配設しているた
め、加速度センサ10,11は車両の前後方向運動や旋
回運動の際に、共に加速度を検出し、従って一方の出力
が所定時間ほとんど変化せず、その間他方の出力がある
程度変化する場合は一方の加速度センサの異常とみなす
ことができ、これによって加速度センサの異常検出が可
能となる。
As described above, since the acceleration sensors 10 and 11 are arranged at the right and left at a predetermined angle with respect to the vehicle front-rear direction, the acceleration sensors 10 and 11 are jointly operated during the vehicle front-rear movement or turning movement. If acceleration is detected and therefore one output does not change for a predetermined period of time and the output of the other changes to some extent during that time, it can be considered as an abnormality of one acceleration sensor, and this enables the abnormality detection of the acceleration sensor. .

【0027】また、非グリップ状態では設定時間が短か
く設定されるため、加速度センサ出力に基づく制動力配
分制御等の挙動制御を行っている場合も早期に加速度セ
ンサの異常を検出して誤った挙動制御を防止でき、ま
た、設定時間を短かくする場合には設定値を大きくして
誤った異常判定を防止できる。
Further, since the set time is set short in the non-grip state, even when behavior control such as braking force distribution control based on the output of the acceleration sensor is performed, an abnormality of the acceleration sensor is detected early and erroneous. The behavior control can be prevented, and when the set time is shortened, the set value can be increased to prevent erroneous abnormality determination.

【0028】ところで、グリップ状態では制動力配分制
御が行われていると考えられる。この場合、加速度セン
サ10,11が正常であるにも拘らず、一方の加速度セ
ンサの出力だけ変動し、他方の加速度センサの出力が変
動しない状況というのは、路面等の環境で配分制御が有
効に作用してないと考えることもできる。このため配分
制御が作動して効果が出始める時間から判定時間を決め
ることもできる。この場合のステップS38における異
常判定は加速度センサが疑しいという意味であり、これ
によって制動力配分制御を停止し、その後、充分な判定
時間をかけてセンサの故障を判断する。
By the way, it is considered that the braking force distribution control is performed in the grip state. In this case, although the acceleration sensors 10 and 11 are normal, only the output of one acceleration sensor fluctuates and the output of the other acceleration sensor does not fluctuate. That is, distribution control is effective in an environment such as a road surface. You can think that it doesn't work. Therefore, the determination time can be determined from the time when the distribution control is activated and the effect starts to appear. In this case, the abnormality determination in step S38 means that the acceleration sensor is suspicious, so that the braking force distribution control is stopped, and then the sensor failure is determined for a sufficient determination time.

【0029】[0029]

【発明の効果】上述の如く、請求項1に記載の発明は、
加速度検出方向が車両前後方向に対して左右に夫々所定
角度となるよう配設した第1及び第2の加速度センサ
と、いずれか一方の加速度センサの検出加速度の変動幅
が所定値未満の状態が設定時間以上継続し、かつ他方の
加速度センサの検出加速度の変動幅が設定値を超えたと
き、上記一方の加速度センサの異常と判定する判定手段
とを有する。
As described above, the invention according to claim 1 is
The first and second acceleration sensors are arranged so that the acceleration detection directions are at a predetermined angle to the left and right with respect to the vehicle front-rear direction, and the fluctuation range of the acceleration detected by one of the acceleration sensors is less than a predetermined value. And a determination unit that determines that one of the acceleration sensors is abnormal when the fluctuation range of the acceleration detected by the other acceleration sensor exceeds a set value and continues for a set time or longer.

【0030】このように、車両前後方向に対して左右に
所定角度で配設しているため、第1,第2の加速度セン
サは車両の前後方向運動や旋回運動の際に、共に加速度
を検出する。従って一方の出力が所定時間ほとんど変化
せず、その間他方の出力がある程度変化する場合は一方
の加速度センサの異常とみなすことができる。
As described above, since the first and second acceleration sensors are arranged at a predetermined angle to the left and right with respect to the front-rear direction of the vehicle, both the first and second acceleration sensors detect the acceleration when the vehicle moves in the front-rear direction or turns. To do. Therefore, if one output hardly changes for a predetermined time and the other output changes to some extent during that time, it can be regarded as an abnormality of one acceleration sensor.

【0031】また、請求項2に記載の発明は、請求項1
記載の加速度センサの異常検出装置において、車両が横
すべりやスピンを起こしていないグリップ状態か、又は
非グリップ状態かを判定するグリップ判定手段と、上記
非グリップ状態ではグリップ状態に対して、前記設定値
を大として設定し、かつ、前記設定時間を短かくして設
定する設定変更手段とを有する。
[0031] The invention described in claim 2 is the same as that in claim 1.
In the abnormality detection device of the acceleration sensor according to the description, grip determination means for determining whether the vehicle is in a grip state in which no skidding or spin occurs, or a non-grip state, and in the non-grip state, for the grip state, the set value is set. Is set to be large and the setting time is set to be short, and the setting changing means is provided.

【0032】このように、非グリップ状態では設定時間
が短かく設定されるため、加速度センサ出力に基づく制
動力配分制御等の挙動制御を行っている場合も早期に加
速度センサの異常を検出して誤った挙動制御を防止で
き、また、設定時間を短かくする場合には設定値を大き
くして誤った異常判定を防止できる。
As described above, since the set time is set short in the non-grip state, even when the behavior control such as the braking force distribution control based on the output of the acceleration sensor is performed, the abnormality of the acceleration sensor is detected early. Erroneous behavior control can be prevented, and when the set time is shortened, the set value can be increased to prevent erroneous abnormality determination.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】本発明装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the device of the present invention.

【図3】加速度センサ配置を示す図である。FIG. 3 is a diagram showing an acceleration sensor arrangement.

【図4】異常検出処理のフローチャートである。FIG. 4 is a flowchart of abnormality detection processing.

【図5】グリップ判定処理ルーチンのフローチャートで
ある。
FIG. 5 is a flowchart of a grip determination processing routine.

【符号の説明】[Explanation of symbols]

10,11,M1,M2 加速度センサ 12 ヨーレートセンサ 13〜16 車輪速センサ 17 車速センサ 18 操舵角センサ 19 ブレーキセンサ 20 ECU 22 CPU 24 ROM 26 RAM 28 入力ポート回路 30 出力ポート回路 32 EEPROM 34 バス 41〜48 駆動回路 51〜54 増圧用液圧切換弁 55〜58 減圧用液圧切換弁 10, 11, M1, M2 acceleration sensor 12 yaw rate sensor 13-16 wheel speed sensor 17 vehicle speed sensor 18 steering angle sensor 19 brake sensor 20 ECU 22 CPU 24 ROM 26 RAM 28 input port circuit 30 output port circuit 32 EEPROM 34 bus 41 to 41 48 Drive circuit 51-54 Pressure increasing hydraulic pressure switching valve 55-58 Pressure reducing hydraulic pressure switching valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 勝倉 豊晴 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toyoharu Katsukura 1-1-1, Showa-cho, Kariya city, Aichi Nihon Denso Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加速度検出方向が車両前後方向に対して
左右に夫々所定角度となるよう配設した第1及び第2の
加速度センサと、 いずれか一方の加速度センサの検出加速度の変動幅が所
定値未満の状態が設定時間以上継続し、かつ他方の加速
度センサの検出加速度の変動幅が設定値を超えたとき、
上記一方の加速度センサの異常と判定する判定手段とを
有することを特徴とする加速度センサの異常検出装置。
1. A first acceleration sensor and a second acceleration sensor arranged so that the acceleration detection direction is at a predetermined angle to the left and right with respect to the vehicle front-rear direction, and a fluctuation range of the acceleration detected by one of the acceleration sensors is predetermined. When the value less than the value continues for a set time or longer and the fluctuation range of the acceleration detected by the other acceleration sensor exceeds the set value,
An abnormality detecting device for an acceleration sensor, comprising: a determination unit that determines that one of the acceleration sensors is abnormal.
【請求項2】 請求項1記載の加速度センサの異常検出
装置において、 車両が横すべりやスピンを起こしていないグリップ状態
か、又は非グリップ状態かを判定するグリップ判定手段
と、 上記非グリップ状態ではグリップ状態に対して、前記設
定値を大として設定し、かつ、前記設定時間を短かくし
て設定する設定変更手段とを有することを特徴とする加
速度センサの異常検出装置。
2. The acceleration sensor abnormality detection device according to claim 1, further comprising: grip determining means for determining whether the vehicle is in a grip state in which no skidding or spin occurs, or in a non-grip state; and in the non-grip state, grip An abnormality detecting device for an acceleration sensor, comprising: a setting changing unit that sets the set value to be large and sets the set time to be short with respect to a state.
JP07268669A 1995-10-17 1995-10-17 Abnormality detection device for acceleration sensor Expired - Fee Related JP3135490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07268669A JP3135490B2 (en) 1995-10-17 1995-10-17 Abnormality detection device for acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07268669A JP3135490B2 (en) 1995-10-17 1995-10-17 Abnormality detection device for acceleration sensor

Publications (2)

Publication Number Publication Date
JPH09113535A true JPH09113535A (en) 1997-05-02
JP3135490B2 JP3135490B2 (en) 2001-02-13

Family

ID=17461756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07268669A Expired - Fee Related JP3135490B2 (en) 1995-10-17 1995-10-17 Abnormality detection device for acceleration sensor

Country Status (1)

Country Link
JP (1) JP3135490B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19844913A1 (en) * 1998-09-30 2000-04-20 Bosch Gmbh Robert Device and method for monitoring a lateral acceleration sensor arranged in a vehicle
JP2007521182A (en) * 2003-07-17 2007-08-02 オートリブ ディヴェロプメント アクチボラゲット Collision detection system
US7320253B2 (en) 2004-04-01 2008-01-22 Fujitsu Media Devices Limited Stress detection method for sensor device with multiple axis sensor and sensor device employing this method
JP2014112090A (en) * 2013-12-17 2014-06-19 Seiko Epson Corp Physical quantity detection device, abnormality diagnostic system for physical quantity detection device, and abnormality diagnostic method for physical quantity detection device
JP2016221997A (en) * 2015-05-27 2016-12-28 株式会社デンソー Vehicle control device
DE102004064002B4 (en) * 2004-08-04 2019-05-09 Continental Automotive Gmbh System for monitoring a sensor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19844913A1 (en) * 1998-09-30 2000-04-20 Bosch Gmbh Robert Device and method for monitoring a lateral acceleration sensor arranged in a vehicle
US6285933B1 (en) 1998-09-30 2001-09-04 Robert Bosch Gmbh Device and method for monitoring a transverse acceleration sensor located in a vehicle
DE19844913C2 (en) * 1998-09-30 2003-02-13 Bosch Gmbh Robert Device and method for monitoring a lateral acceleration sensor arranged in a vehicle
JP2007521182A (en) * 2003-07-17 2007-08-02 オートリブ ディヴェロプメント アクチボラゲット Collision detection system
KR101111663B1 (en) * 2003-07-17 2012-02-14 오토리브 디벨로프먼트 에이비 A crash detection system
US7320253B2 (en) 2004-04-01 2008-01-22 Fujitsu Media Devices Limited Stress detection method for sensor device with multiple axis sensor and sensor device employing this method
US7472611B2 (en) 2004-04-01 2009-01-06 Fujitsu Limited Stress detection method for force sensor device with multiple axis sensor and force sensor device employing this method
EP2322942A1 (en) 2004-04-01 2011-05-18 Tamagawa Seiki Co., Ltd. Stress detection method for force sensor device with multiple axis sensor and force sensor device employing this method
DE102004064002B4 (en) * 2004-08-04 2019-05-09 Continental Automotive Gmbh System for monitoring a sensor device
JP2014112090A (en) * 2013-12-17 2014-06-19 Seiko Epson Corp Physical quantity detection device, abnormality diagnostic system for physical quantity detection device, and abnormality diagnostic method for physical quantity detection device
JP2016221997A (en) * 2015-05-27 2016-12-28 株式会社デンソー Vehicle control device

Also Published As

Publication number Publication date
JP3135490B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
US6226587B1 (en) Stability control system for automotive vehicle
US7099764B2 (en) Braking control device
US6101434A (en) Behavior control device of vehicle based upon double checking of yaw rate deviation
US6315373B1 (en) Roll control device of vehicle manageable of sudden failure of rolling condition detection means
CA1314959C (en) Control system for adjustable automotive suspension unit
JP2002127886A (en) Attitude control device of vehicle
KR100511142B1 (en) Kinetic variable control method and device for representing vehicle motion
US4881785A (en) Anti-lock brake control method and system for motor vehicles
JP2004155412A (en) Brake control method and device for motorcycle
JP4648651B2 (en) Vehicle steering apparatus and vehicle steering method
KR970059020A (en) Anti-skid Control System for Automotive
JP2004075065A (en) Method for controlling anti roll and anti yaw of vehicle
KR970703877A (en) Turning behavior control apparatus for a motor vehicle
JP3135490B2 (en) Abnormality detection device for acceleration sensor
JP4389810B2 (en) Vehicle behavior control device
JP3255108B2 (en) Failure determination device for yaw rate sensor
JP2002019601A (en) Rough road judging device
JP5228815B2 (en) Brake control device
JPH0880825A (en) Vehicle brake device
US5443583A (en) Method for judging friction coefficient of road surface and method for anti-skid brake control using said method
JP4742504B2 (en) Drive control device
US20050029862A1 (en) Vehicle motion control apparatus
US5364175A (en) Anti-skid brake system for wheeled vehicle
JP4172360B2 (en) Control device for electric power steering device
JP3968198B2 (en) Vehicle behavior control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees