JPH0880825A - Vehicle brake device - Google Patents

Vehicle brake device

Info

Publication number
JPH0880825A
JPH0880825A JP21764694A JP21764694A JPH0880825A JP H0880825 A JPH0880825 A JP H0880825A JP 21764694 A JP21764694 A JP 21764694A JP 21764694 A JP21764694 A JP 21764694A JP H0880825 A JPH0880825 A JP H0880825A
Authority
JP
Japan
Prior art keywords
vehicle
acceleration
lateral acceleration
turning
braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21764694A
Other languages
Japanese (ja)
Inventor
Yoshitomo Watabe
良知 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21764694A priority Critical patent/JPH0880825A/en
Publication of JPH0880825A publication Critical patent/JPH0880825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)

Abstract

PURPOSE: To shorten a braking distance which skidding is being prevented, by realizing the coexistence of turning and deceleration in regard to a vehicle controller. CONSTITUTION: A turning limit deciding means M1 decides from the turning behavior of a vehicle whether or not the vrhicle is at a turning limit. A deceleration acceleration detecting means M3 detects the longitudinal deceleration acceleration of the vehicle. A lateral acceleration detecting means M4 detects the lateral acceleration of the vehicle. An increase/decrease controlling means M5 conducts the increase/decrease control of braking force so that longitudinal deceleration acceleration may become equal to the absolute value of lateral acceleration at the time of automatic control decided as a turning limit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は車両制動装置に関し、車
両の制動を行う車両制動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle braking system, and more particularly to a vehicle braking system for braking a vehicle.

【0002】[0002]

【従来の技術】従来より、車両の旋回走行時の挙動を自
動ブレーキにより制御する装置がある。例えば特開平3
−45453号公報に記載の装置は、検出車速がタイヤ
グリップ限界車速となった状態で、検出ヨーレートが目
標ヨーレートに近付く態様で車速が限界車速に低下する
よう、自動的に旋回方向内側車輪及び外側車輪を個別に
制動する技術を開示している。
2. Description of the Related Art Conventionally, there is a device for controlling the behavior of a vehicle during turning by automatic braking. For example, JP-A-3
The device disclosed in Japanese Patent Publication No. 45453 automatically turns inside wheels and outside wheels in the turning direction so that the vehicle speed decreases to the limit vehicle speed in a state where the detected yaw rate approaches the target yaw rate when the detected vehicle speed reaches the tire grip limit vehicle speed. A technique for individually braking wheels is disclosed.

【0003】[0003]

【発明が解決しようとする課題】従来装置では、自動的
に制動を行うときには検出ヨーレートが目標ヨーレート
に近付くように制動力を制御しているが、タイヤ・路面
間で発生可能な力の大きさを考慮していない。このた
め、路面摩擦係数(路面μ)が低い低μ路等のタイヤ発
生力が小さい状況では横滑りが大きくなったり、制動距
離が大きくなったりするという問題があった。
In the conventional device, the braking force is controlled so that the detected yaw rate approaches the target yaw rate when automatically braking, but the magnitude of the force that can be generated between the tire and the road surface is large. Do not consider. For this reason, there is a problem that the skid becomes large and the braking distance becomes large in a situation where the tire-generating force is small such as a low μ road having a low road friction coefficient (road μ).

【0004】本発明は上記の点に鑑みなされたもので、
車両の旋回限界となったときタイヤの横方向力と前後方
向力とがバランスするように制動力を付与して旋回と減
速との両立を図ることにより、横滑りを防止しつつ制動
距離を短縮化できる車両制動装置を提供することを目的
とする。
The present invention has been made in view of the above points,
When the vehicle reaches the turning limit, the braking force is applied so that the lateral force of the tire and the longitudinal force are balanced so that both turning and deceleration can be achieved at the same time to prevent skidding and reduce the braking distance. An object of the present invention is to provide a vehicle braking device that can be used.

【0005】[0005]

【課題を解決するための手段】本発明は、図1の原理図
に示す如く、車両の旋回挙動から車両が旋回限界か否か
を判定する旋回限界判定手段M1を有し、上記旋回限界
判定手段で旋回限界と判定されたとき自動的に制動を行
う車両制動装置において、車両の前後方向減速加速度を
検出する減速加速度検出手段M3と、車両の横方向加速
度を検出する横方向加速度検出手段M4と、上記旋回限
界と判定された自動制動時に上記前後方向減速加速度が
上記横方向加速度の絶対値と等しくなるよう制動力の増
減制御を行う増減制御手段M5とを有する。
As shown in the principle diagram of FIG. 1, the present invention has a turning limit judging means M1 for judging whether or not the vehicle is at the turning limit based on the turning behavior of the vehicle. In a vehicle braking device that automatically brakes when it is determined to be a turning limit by means, a deceleration acceleration detection means M3 that detects a longitudinal deceleration acceleration of the vehicle and a lateral acceleration detection means M4 that detects a lateral acceleration of the vehicle. And an increase / decrease control means M5 for increasing / decreasing the braking force so that the longitudinal deceleration is equal to the absolute value of the lateral acceleration during automatic braking determined to be the turning limit.

【0006】[0006]

【作用】本発明においては、旋回限界となったとき車両
の前後方向減速度が横方向加速度の絶対値と等しくなる
ように制動力の増減制御が行われるため、タイヤの横方
向力と前後方向力とが均一となるように制動力が与えら
れ、旋回と減速とが両立して横滑りを防止しつつ制動距
離を短縮化することができる。
According to the present invention, since the braking force is controlled to increase or decrease so that the longitudinal deceleration of the vehicle becomes equal to the absolute value of the lateral acceleration when the turning limit is reached, the lateral force of the tire and the longitudinal direction of the tire are controlled. The braking force is applied so that the force is uniform, and both turning and deceleration are achieved, and the braking distance can be shortened while preventing skidding.

【0007】[0007]

【実施例】図2は、本発明装置の一実施例の構成図を示
す。同図中、マスタシリンダ10は2つの独立した加圧
室を持っており、ブレーキペダル11の踏力に比例した
ブレーキ液圧を発生させる。マスタシリンダ10の一方
の加圧室に発生したブレーキ液圧は配管12を通して3
ポート2位置切換弁SAFL,SAFR夫々に導かれ、
他方の加圧室に発生したブレーキ液圧は配管13を通し
てフロント系高圧導入用3ポート2位置切換弁SACC
F及びリア系高圧導入用の3ポート2位置切換弁SAC
CR及びプロポーショニングバルブ14の一端夫々に導
かれる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 2 is a block diagram of an embodiment of the device of the present invention. In the figure, the master cylinder 10 has two independent pressurizing chambers, and generates a brake fluid pressure proportional to the depression force of the brake pedal 11. The brake fluid pressure generated in one pressurizing chamber of the master cylinder 10 passes through the pipe 12 to
Guided to the port 2 position switching valves SAFL and SAFR,
The brake fluid pressure generated in the other pressurizing chamber is passed through the pipe 13 to the front system high pressure introducing 3-port 2-position switching valve SACC.
3-port 2-position switching valve SAC for F and rear system high pressure introduction
The CR and the proportioning valve 14 are guided to one end of each.

【0008】高圧導入用のポンプ16は一端をリザーバ
17に接続され、他端をマスタシリンダ10に接続され
ると共に液圧アキュムレータ18に接続されており、リ
ザーバ17から液圧アキュムレータ18に高圧のブレー
キ液が供給されて蓄えられる。
The pump 16 for introducing high pressure has one end connected to the reservoir 17 and the other end connected to the master cylinder 10 and the hydraulic accumulator 18. The high pressure brake is applied from the reservoir 17 to the hydraulic accumulator 18. Liquid is supplied and stored.

【0009】上記の液圧アキュムレータ18は高圧配管
19を通して2位置切換弁SACCF,SACCR夫々
に接続されている。
The hydraulic accumulator 18 is connected to each of the two-position switching valves SACCF and SACCR through a high pressure pipe 19.

【0010】2位置切換弁SAFLは左前輪のホイール
シリンダ21及び2ポート2位置切換弁SFLH,SF
LR夫々に接続され、2位置切換弁SAFRは右前輪の
ホイールシリンダ22及び2ポート2位置切換弁SFR
H,SFRR夫々に接続されている。また、2位置切換
弁SFLH,SFRH夫々は2位置切換弁SACCFに
接続され、2位置切換弁SFLR,SFRR夫々は配管
25を通してリザーバ17に接続されている。
The 2-position switching valve SAFL is a wheel cylinder 21 for the left front wheel and 2-port 2-position switching valves SFLH, SF.
The 2-position switching valve SAFR is connected to each of the LRs, and the 2-position switching valve SAFR is a wheel cylinder 22 for the right front wheel and a 2-port 2-position switching valve SFR.
It is connected to each of H and SFRR. Further, the two-position switching valves SFLH and SFRH are connected to the two-position switching valve SACCF, and the two-position switching valves SFLR and SFRR are connected to the reservoir 17 through the pipe 25.

【0011】一方、プロポーショニングバルブ14の他
端及び2位置切換弁SACCRは3ポート2位置切換弁
SARRに接続されている。2位置切換弁SARRは2
ポート2位置切換弁SRLH,SRRHに接続され、こ
の2位置切換弁SRLHは左後輪のホイールシリンダ2
3及び2ポート2位置切換弁SRLRに接続され、2位
置切換弁SRRHは右後輪のホイールシリンダ24及び
2ポート2位置切換弁SRRRに接続されている。2位
置切換弁SRRH,SRRR夫々は配管25を通してリ
ザーハ17に接続されている。
On the other hand, the other end of the proportioning valve 14 and the 2-position switching valve SACCR are connected to the 3-port 2-position switching valve SARR. 2 position switching valve SARR is 2
The port 2 position switching valves SRLH and SRRH are connected to each other, and the two position switching valve SRLH is a wheel cylinder 2 for the left rear wheel.
The 3-position and 2-port 2-position switching valve SRLR is connected, and the 2-position switching valve SRRH is connected to the wheel cylinder 24 of the right rear wheel and the 2-port 2-position switching valve SRRR. Each of the two-position switching valves SRRH and SRRR is connected to the reserve 17 through a pipe 25.

【0012】電子制御装置(ECU)30にはステアリ
ングホイールの操舵角δを検出した操舵角信号、車両の
車速Vを検出した車速信号、車両の横方向加速度GYを
検出した横方向加速度信号、車両の前後方向加速度GX
を検出した前後方向加速度信号夫々が供給されている。
ECU30は上記信号に基き駆動信号を生成して電磁弁
である2位置切換弁SAFL,SFLH,SFLR,S
AFR,SFRH,SFRR,SACCF,SACC
R,SARR,SRLH,SRLR,SRRH,SRR
R夫々に供給し、各2位置切換弁の位置切換えを行な
う。
The electronic control unit (ECU) 30 has a steering angle signal for detecting the steering angle δ of the steering wheel, a vehicle speed signal for detecting the vehicle speed V of the vehicle, a lateral acceleration signal for detecting the lateral acceleration GY of the vehicle, and a vehicle. Longitudinal acceleration GX
The front-rear direction acceleration signals that have detected are respectively supplied.
The ECU 30 generates a drive signal on the basis of the above signal to generate two-position switching valves SAFL, SFLH, SFLR, S which are electromagnetic valves.
AFR, SFRH, SFRR, SACCF, SACC
R, SARR, SRLH, SRLR, SRRH, SRR
It is supplied to each R to switch the position of each 2-position switching valve.

【0013】なお、図2においては2位置切換弁SAF
L,SFLH,SFLR,SAFR,SFRH,SFR
R,SACCF,SACCR,SARR,SRLH,S
RLR,SRRH,SRRR夫々はオフ位置を示してい
る。
In FIG. 2, the two-position switching valve SAF is shown.
L, SFLH, SFLR, SAFR, SFRH, SFR
R, SACCF, SACCR, SARR, SRLH, S
Each of RLR, SRRH, and SRRR indicates the off position.

【0014】図3はECU30が実行する制動制御処理
のフローチャートを示す。この処理は例えば5msec
等の所定時間毎に割込まれる時間割込みルーチンであ
る。
FIG. 3 shows a flowchart of the braking control process executed by the ECU 30. This processing is, for example, 5 msec
Etc. is a time interrupt routine interrupted every predetermined time such as.

【0015】同図中、減速加速度検出手段M3及び横方
向加速度検出手段M4に対応するステップS10では操
舵角δ、車速V、横方向加速度GY及び前後方向加速度
GX夫々を読み込み入力する。次にステップS20で
(1)式を用いて目標横方向加速度GY* を算出する。
In the figure, in step S10 corresponding to the deceleration acceleration detecting means M3 and the lateral acceleration detecting means M4, the steering angle δ, the vehicle speed V, the lateral acceleration GY and the longitudinal acceleration GX are read and inputted. Next, in step S20, the target lateral acceleration GY * is calculated using the equation (1).

【0016】[0016]

【数1】 [Equation 1]

【0017】但し、Aはスタビリティファクタ(定
数)、Lはホイールベース(定数)、gは重力加速度
(定数)である。
However, A is a stability factor (constant), L is a wheel base (constant), and g is a gravitational acceleration (constant).

【0018】この目標横方向加速度GY* は操舵角δ及
び車速Vに基いて予想される横方向加速度である。
The target lateral acceleration GY * is the lateral acceleration expected based on the steering angle δ and the vehicle speed V.

【0019】この後、旋回限界判定手段M1に対応する
ステップS30で目標横方向加速度GY* の絶対値|G
* |と検出された横方向加速度GYの絶対値|GY|
とを比較する。なお、絶対値を用いて比較しているのは
横方向加速度GY及び目標横方向加速度GY* は例えば
右方向を正で、左方向を負としているからである。ま
た、同様に、前後方向加速度GXは増速方向が正で、減
速方向が負である。
Thereafter, in step S30 corresponding to the turning limit determination means M1, the absolute value | G of the target lateral acceleration GY *
Absolute value | GY | of lateral acceleration GY detected as Y * |
Compare with. The absolute values are compared because the lateral acceleration GY and the target lateral acceleration GY * are positive in the right direction and negative in the left direction, for example. Similarly, the longitudinal acceleration GX is positive in the acceleration direction and negative in the deceleration direction.

【0020】ここで、|GY* |≦|GY|の場合は検
出された実際の横方向加速度が目標横方向加速度以上
で、車両の旋回限界に至ってないのでステップS40に
進む。ステップS40では2位置切換弁SAFL,SF
LH,SFLR,SAFR,SFRH,SFRR,SA
CCF,SACCR,SARR,SRLH,SRLR,
SRRH,SRRR全てをオフ位置つまり図2の状態と
する。これにより、ホイールシリンダ21〜24の全て
にマスタシリンダ10のブレーキ液圧を印加して通常ブ
レーキ制御を行わせる。ステップS40の実行後、この
処理を修了する。
Here, if | GY * | ≦ | GY |, the detected actual lateral acceleration is equal to or greater than the target lateral acceleration, and the vehicle has not reached the turning limit, so the routine proceeds to step S40. In step S40, the two-position switching valves SAFL, SF
LH, SFLR, SAFR, SFRH, SFRR, SA
CCF, SACCR, SARR, SRLH, SRLR,
All of SRRH and SRRR are set to the off position, that is, the state of FIG. As a result, the brake fluid pressure of the master cylinder 10 is applied to all of the wheel cylinders 21 to 24 and the normal brake control is performed. After the execution of step S40, this process ends.

【0021】一方、|GY* |>|GY|の場合は目標
横方向加速度GY* が実際の横方向加速度GYを越えて
おり、実際の横方向加速度GYがタイヤスリップのため
に得られておらず、車両の旋回限界であるとしてステッ
プS50に進む。ステップS50では2位置切換弁SA
CCF,SAFL,SAFR,SACCR,SARR夫
々をオン位置として、ホイールシリンダ21〜24夫々
にマスタシリンダ10のブレーキ液圧より高圧のアキュ
ムレータ18のブレーキ液圧(パワー圧)が供給される
ように切換える。
On the other hand, in the case of | GY * |> | GY |, the target lateral acceleration GY * exceeds the actual lateral acceleration GY, and the actual lateral acceleration GY has not been obtained due to tire slip. Instead, it is determined that the vehicle is at the turning limit, and the process proceeds to step S50. In step S50, the two-position switching valve SA
CCF, SAFL, SAFR, SACCR, and SARR are set to ON positions, and the brake hydraulic pressure (power pressure) of the accumulator 18 higher than the brake hydraulic pressure of the master cylinder 10 is supplied to each of the wheel cylinders 21 to 24.

【0022】次にステップS60では実際の横方向加速
度GYの絶対値と前後方向加速度GXとの和が0を越え
ているか否かを判別する。|GY|+GX>0の場合
は、車両全体のタイヤが発生する左方向又は右方向の横
方向加速度GYが減速加速度(負の前後方向加速度−G
X)より大きい、つまり減速加速度(−GX)が不充分
である場合は、ステップS70に進む。ステップS70
では2位置切換弁SFLH,SFRH,SRLH,SR
RH夫々をオフ位置として開状態とし、かつ、2位置切
換弁SFLR,SFRR,SRLR,SRRR夫々をオ
フ位置として閉状態とするこにより、ホイールシリンダ
21〜24夫々に供給されるブレーキ液圧の増圧制御を
行い、この後、処理を終了する。
Next, in step S60, it is determined whether or not the sum of the actual absolute value of the lateral acceleration GY and the longitudinal acceleration GX exceeds 0. When | GY | + GX> 0, the leftward or rightward lateral acceleration GY generated by the tires of the entire vehicle is deceleration (negative longitudinal acceleration −G
X), that is, when the deceleration (-GX) is insufficient, the process proceeds to step S70. Step S70
2 position switching valves SFLH, SFRH, SRLH, SR
The brake fluid pressure supplied to each of the wheel cylinders 21 to 24 is increased by opening each of the RHs in the off position and opening the two-position switching valves SFLR, SFRR, SRLR, and SRRR in the off position. The pressure is controlled, and then the process is terminated.

【0023】ステップS60で|GY|+GX≦0で、
車両全体のタイヤが発生する左方向又は右方向の横方向
加速度GYが減速加速度より小さい、つまり横方向加速
度GYが不充分である場合はステップS80に進む。ス
テップS80では2位置切換弁SFLH,SFRH,S
RLH,SRRH夫々をオン位置として閉状態とし、か
つ、2位置切換弁SFLR,SFRR,SRLR,SR
RR夫々をオン位置として開状態とするこにより、ホイ
ールシリンダ21〜24夫々に供給されるブレーキ液圧
の減圧制御を行い、この後、処理を終了する。上記のス
テップS60,S70,S80が増減制御手段M5に対
応する。
In step S60, | GY | + GX≤0,
When the leftward or rightward lateral acceleration GY generated by the tires of the entire vehicle is smaller than the deceleration acceleration, that is, the lateral acceleration GY is insufficient, the process proceeds to step S80. In step S80, the two-position switching valves SFLH, SFRH, S
Each of the RLH and SRRH is in the ON position to be in the closed state, and the two-position switching valves SFLR, SFRR, SRLR, SR
By opening each of the RRs in the ON position to open the brake cylinders, the brake hydraulic pressure supplied to each of the wheel cylinders 21 to 24 is controlled to be reduced, and thereafter, the processing ends. The above steps S60, S70 and S80 correspond to the increase / decrease control means M5.

【0024】ここで、図4の実線に示す如く横方向加速
度の絶対値|GY|が増大して、時刻t0 にて|GY*
|>|GY|となると自動ブレーキ動作の制御が開始
し、|GY|>−GXの期間T1では増圧制御が行わ
れ、破線に示す如く減速加速度−GXが増大する。この
後|GY|≦−GXとなる期間T2では減圧制御が行わ
れ、同様にして期間T3,T5で増圧制御、期間T4で
減圧制御が交互に行われ|GY|と−GXが等しくなる
ように制御される。この後、時刻t1 で|GY* |≦|
GY|となると自動ブレーキ動作の制御が終了する。
Here, the absolute value of the lateral acceleration | GY | increases as shown by the solid line in FIG. 4, and | GY * at time t 0 .
When |> | GY |, the control of the automatic braking operation starts, and the pressure increase control is performed during the period T1 of | GY |> -GX, and the deceleration-GX increases as indicated by the broken line. Thereafter, the pressure reduction control is performed in the period T2 where | GY | ≦ −GX, and similarly, the pressure increase control is performed alternately in the periods T3 and T5, and the pressure reduction control is performed alternately in the period T4 so that | GY | and −GX become equal. Controlled as. After that, at time t 1 , | GY * | ≦ |
When it becomes GY |, the control of the automatic braking operation ends.

【0025】本発明では、車両の旋回限界となった場合
は、減速加速度(負の前後方向加速度−GX)と横方向
加速度の絶対値|GY|とが等しくなるように制動力を
制御して、車両全体のタイヤ摩擦円を図5に示す如く横
方向力(コーナリングフォース)と前後方向力(制動
力)とに均等に分配している。
In the present invention, when the turning limit of the vehicle is reached, the braking force is controlled so that the deceleration (negative longitudinal acceleration-GX) and the lateral acceleration absolute value | GY | become equal. As shown in FIG. 5, the tire friction circle of the entire vehicle is evenly divided into a lateral force (cornering force) and a longitudinal force (braking force).

【0026】横方向の滑りという観点からみると、旋回
限界となって横方向のすべりが発生すると、制動力を増
大して減速加速度−GXを与えるために、制動開始直後
は横方向力(コーナリングフォース)が小さくなって、
更に横滑りは大きくなる。しかし、車速が低下すること
により絶対的な横滑り量は減少する。即ち、車体の慣性
エネルギーを横滑りに加えて前後方向の減速で吸収して
いる。これによって旋回限界となったときの自動ブレー
キ動作時の旋回と制動とを両立させ、横滑りを防止しつ
つ制動距離を短縮することができる。
From the viewpoint of lateral slippage, when lateral slip occurs at the turning limit, the braking force is increased to give a deceleration acceleration -GX. Force) is getting smaller,
Moreover, skidding becomes greater. However, the absolute amount of skidding decreases as the vehicle speed decreases. That is, the inertial energy of the vehicle body is absorbed by the forward and backward deceleration in addition to the skid. This makes it possible to achieve both turning and braking during automatic braking operation when the turning limit is reached, and to prevent skidding while reducing the braking distance.

【0027】また、この制動力制御は横方向加速度GY
と、前後方向加速度GXとを比較するだけで実行でき、
制御の構成を簡素化できる。
Further, this braking force control is performed by the lateral acceleration GY.
Can be executed simply by comparing the longitudinal acceleration GX with
The configuration of control can be simplified.

【0028】[0028]

【発明の効果】上述の如く、本発明によれば、旋回限界
となったとき車両の前後方向減速度が横方向加速度の絶
対値と等しくなるように制動力の増減制御が行われるた
め、タイヤの横方向力と前後方向力とが均一となるよう
に制動力が与えられ、旋回と減速とが両立して横滑りを
防止しつつ制動距離を短縮化することができ、更に減速
加速度及び横方向加速度の2つの加速度検出によって自
動制動の制御を行うことができ構成が簡素化され、実用
上極めて有用である。
As described above, according to the present invention, when the turning limit is reached, the braking force is increased or decreased so that the longitudinal deceleration of the vehicle becomes equal to the absolute value of the lateral acceleration. The braking force is applied so that the lateral force and the front-rear direction force of the vehicle are even, and both turning and deceleration can be achieved to prevent skidding and the braking distance can be shortened. Automatic braking control can be performed by detecting two accelerations, which is extremely useful in practice.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】本発明装置の構成図である。FIG. 2 is a configuration diagram of the device of the present invention.

【図3】制動制御処理のフローチャートである。FIG. 3 is a flowchart of a braking control process.

【図4】本発明の制動制御を説明するための図である。FIG. 4 is a diagram for explaining braking control of the present invention.

【図5】本発明の制動制御の摩擦円を示す図である。FIG. 5 is a diagram showing a friction circle for braking control according to the present invention.

【符号の説明】[Explanation of symbols]

10 マスタシリンダ 11 ブレーキペダル 12,13,19,25 配管 14 プロポーショニングバルブ 16 ポンプ 17 リザーバ 18 アキュムレータ 21〜24 ホイールシリンダ 30 ECU SAFL,SAFR,SACCF,SACCR,SAR
R 3ポート2位置切換弁 SFLH,SFLR,SFRH,SFRR,SRLH,
SRLR,SRRH,SRRR 2ポート2位置切換弁 M1 旋回限界判定手段 M3 減速加速度検出手段 M4 横方向加速度検出手段 M5 増減制御手段
10 Master Cylinder 11 Brake Pedal 12, 13, 19, 25 Piping 14 Proportioning Valve 16 Pump 17 Reservoir 18 Accumulator 21-24 Wheel Cylinder 30 ECU SAFL, SAFR, SACCF, SACCR, SAR
R 3 port 2 position switching valve SFLH, SFLR, SFRH, SFRR, SRLH,
SRLR, SRRH, SRRR 2 port 2 position switching valve M1 turning limit determination means M3 deceleration acceleration detection means M4 lateral acceleration detection means M5 increase / decrease control means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 車両の旋回挙動から車両が旋回限界か否
かを判定する旋回限界判定手段を有し、 上記旋回限界判定手段で旋回限界と判定されたとき自動
的に制動を行う車両制動装置において、 車両の前後方向減速加速度を検出する減速加速度検出手
段と、 車両の横方向加速度を検出する横方向加速度検出手段
と、 上記旋回限界と判定された自動制動時に上記前後方向減
速加速度が上記横方向加速度の絶対値と等しくなるよう
制動力の増減制御を行う増減制御手段とを有することを
特徴とする車両制動装置。
1. A vehicle braking device having turning limit determination means for determining whether or not a vehicle is at a turning limit based on the turning behavior of the vehicle, and automatically braking when the turning limit determination means determines a turning limit. In the above, the deceleration acceleration detecting means for detecting the longitudinal deceleration of the vehicle, the lateral acceleration detecting means for detecting the lateral acceleration of the vehicle, and the longitudinal deceleration acceleration during the automatic braking determined as the turning limit are An increasing / decreasing control means for increasing / decreasing a braking force so as to be equal to an absolute value of a directional acceleration.
JP21764694A 1994-09-12 1994-09-12 Vehicle brake device Pending JPH0880825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21764694A JPH0880825A (en) 1994-09-12 1994-09-12 Vehicle brake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21764694A JPH0880825A (en) 1994-09-12 1994-09-12 Vehicle brake device

Publications (1)

Publication Number Publication Date
JPH0880825A true JPH0880825A (en) 1996-03-26

Family

ID=16707525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21764694A Pending JPH0880825A (en) 1994-09-12 1994-09-12 Vehicle brake device

Country Status (1)

Country Link
JP (1) JPH0880825A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6263261B1 (en) 1999-12-21 2001-07-17 Ford Global Technologies, Inc. Roll over stability control for an automotive vehicle
US6324446B1 (en) 1999-12-21 2001-11-27 Ford Global Technologies, Inc. Roll over stability control for an automotive vehicle
US6332104B1 (en) 1999-12-21 2001-12-18 Ford Global Technologies, Inc. Roll over detection for an automotive vehicle
US6397127B1 (en) 2000-09-25 2002-05-28 Ford Global Technologies, Inc. Steering actuated wheel lift identification for an automotive vehicle
US6654674B2 (en) 2001-11-21 2003-11-25 Ford Global Technologies, Llc Enhanced system for yaw stability control system to include roll stability control function
US6799092B2 (en) 2001-02-21 2004-09-28 Ford Global Technologies, Llc Rollover stability control for an automotive vehicle using rear wheel steering and brake control
JP2007030585A (en) * 2005-07-25 2007-02-08 Toyota Motor Corp Vehicle behavior control device
JP2010228754A (en) * 2010-07-08 2010-10-14 Toyota Motor Corp Vehicle behavior control device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6263261B1 (en) 1999-12-21 2001-07-17 Ford Global Technologies, Inc. Roll over stability control for an automotive vehicle
US6324446B1 (en) 1999-12-21 2001-11-27 Ford Global Technologies, Inc. Roll over stability control for an automotive vehicle
US6332104B1 (en) 1999-12-21 2001-12-18 Ford Global Technologies, Inc. Roll over detection for an automotive vehicle
US6338012B2 (en) 1999-12-21 2002-01-08 Ford Global Technologies, Inc. Roll over stability control for an automotive vehicle
US6496758B2 (en) 1999-12-21 2002-12-17 Ford Global Technologies, Inc. Rollover stability control for an automotive vehicle using front wheel actuators
US6529803B2 (en) 1999-12-21 2003-03-04 Ford Global Technologies, Inc. Roll over stability control for an automotive vehicle having rear wheel steering
US6397127B1 (en) 2000-09-25 2002-05-28 Ford Global Technologies, Inc. Steering actuated wheel lift identification for an automotive vehicle
US6799092B2 (en) 2001-02-21 2004-09-28 Ford Global Technologies, Llc Rollover stability control for an automotive vehicle using rear wheel steering and brake control
US6654674B2 (en) 2001-11-21 2003-11-25 Ford Global Technologies, Llc Enhanced system for yaw stability control system to include roll stability control function
JP2007030585A (en) * 2005-07-25 2007-02-08 Toyota Motor Corp Vehicle behavior control device
JP4675176B2 (en) * 2005-07-25 2011-04-20 トヨタ自動車株式会社 Vehicle behavior control device
JP2010228754A (en) * 2010-07-08 2010-10-14 Toyota Motor Corp Vehicle behavior control device

Similar Documents

Publication Publication Date Title
US4881785A (en) Anti-lock brake control method and system for motor vehicles
US5829847A (en) Vehicle motion control system
JP2902409B2 (en) Anti-skid control device
JPH10129441A (en) Vehicle motion control device
JP2820741B2 (en) Anti-lock control device
JPH0880825A (en) Vehicle brake device
JP4576643B2 (en) Braking force distribution control device
JP2500857B2 (en) Anti-skidding control device
US6246946B1 (en) Automotive brake control system with skid control unit
JP4742716B2 (en) Anti-skid control device
JPH08216861A (en) Stable control system of vehicle
US5443583A (en) Method for judging friction coefficient of road surface and method for anti-skid brake control using said method
JP3589678B2 (en) Anti-skid control device
JPH06144178A (en) Braking force distribution control device
JP3517954B2 (en) Vehicle anti-skid control device
JP3214163B2 (en) Anti-skid control device
JP4849139B2 (en) Braking force distribution control device
JP3146718B2 (en) Braking force control device
JPH0585338A (en) Anti-skid control device
JP3295974B2 (en) Anti-skid control device
JP3414216B2 (en) Anti-skid control device
US6438483B1 (en) System and method for vehicle stability enhancement control during ABS operation
JPH06144176A (en) Braking force distribution control device
JP2002067910A (en) Braking control device for vehicle
KR20000033738A (en) Brake method of active electronic control of vehicle