JPH09112560A - Oil-impregnated sintered bearing - Google Patents
Oil-impregnated sintered bearingInfo
- Publication number
- JPH09112560A JPH09112560A JP7273173A JP27317395A JPH09112560A JP H09112560 A JPH09112560 A JP H09112560A JP 7273173 A JP7273173 A JP 7273173A JP 27317395 A JP27317395 A JP 27317395A JP H09112560 A JPH09112560 A JP H09112560A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- oil
- bearing surface
- impregnated
- sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Sliding-Contact Bearings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、不安定な振動を起
こし易いスピンドル、例えば軸姿勢が縦向きであるレー
ザビームプリンタやデジタルコピー等に用いられるスキ
ャナモータ等のスピンドルの軸受として好適な焼結含油
軸受に係り、特に軸受孔内に軸受面に隣接して油溜用の
拡径部を形成した焼結含油軸受に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered body suitable for bearings of a spindle which is liable to cause unstable vibration, for example, a spindle of a laser beam printer having a vertical axis orientation, a scanner motor used for digital copying and the like. The present invention relates to an oil-impregnated bearing, and more particularly to a sintered oil-impregnated bearing in which an enlarged diameter portion for an oil reservoir is formed in a bearing hole adjacent to a bearing surface.
【0002】[0002]
【従来の技術】レーザビームプリンタやデジタルコピー
等に用いられるスキャナモータは、最近、より高速化・
小型化される傾向にあり、例えば、レーザビームプリン
タでは回転数を毎分1万回転以上にする必要がある。一
方、低コスト化の要望も強く、例えば転がり軸受等に比
べて安価な焼結含油軸受の適用が検討されている。図1
(b)は従来の焼結含油軸受の一例であって、3…回転
軸、4’’…焼結含油軸受、5…ハウジングである。2. Description of the Related Art Recently, scanner motors used for laser beam printers, digital copying machines, etc. have been made faster and faster.
There is a tendency for downsizing, and for example, in a laser beam printer, the number of rotations needs to be 10,000 rpm or more. On the other hand, there is a strong demand for cost reduction, and application of a sintered oil-impregnated bearing, which is cheaper than, for example, a rolling bearing, is under study. FIG.
(B) is an example of a conventional sintered oil-impregnated bearing, and 3 ... rotary shaft, 4 '' ... sintered oil-impregnated bearing, 5 ... housing.
【0003】[0003]
【発明が解決しようとする課題】高速で回転する回転軸
の軸受として、図1(b)のような軸受孔が通常の円筒
形状の焼結含油軸受4’’を用いると、高速回転による
軸受面から回転軸3側への油の引き込み作用と、摩擦発
熱による油の熱膨張とによって、含浸された油が軸受隙
間内に過剰に供給され、軸受面の両側に溢れ出す。溢れ
出した油のごく一部は、軸受端に形成されたチャンファ
部7から浸透回収されるが、大部分の油は回転軸3に付
着したままチャンファ部7を通り過ぎ、遠心力によって
外側に飛散してしまう。従って、通常の焼結含油軸受
4’’を高速回転するモータに使用すると、焼結含油軸
受4’’に含浸された油が比較的短期間のうちに飛散し
て枯渇してしまい、軸受寿命が極めて短くなる。また周
囲を飛散した油で汚染することになる。If a cylindrical oil-impregnated bearing 4 '' having a normal bearing hole as shown in FIG. 1 (b) is used as a bearing of a rotating shaft rotating at a high speed, the bearing can be rotated at a high speed. The impregnated oil is excessively supplied into the bearing gap due to the oil drawing action from the surface to the rotating shaft 3 side and the thermal expansion of the oil due to frictional heat generation, and overflows to both sides of the bearing surface. A small part of the overflowed oil is permeated and collected from the chamfer portion 7 formed at the end of the bearing, but most of the oil remains passing through the chamfer portion 7 while adhering to the rotating shaft 3 and scattered outward by centrifugal force. Resulting in. Therefore, if the normal sintered oil-impregnated bearing 4 '' is used for a motor that rotates at high speed, the oil impregnated in the sintered oil-impregnated bearing 4 '' will be scattered and exhausted within a relatively short period of time, and the bearing life will be shortened. Becomes extremely short. Moreover, it will be polluted by the oil scattered around.
【0004】別の課題として、通常の焼結含油軸受は内
径形状が真円であるが、このような真円軸受を用いる
と、レーザービームプリンタでは軸姿勢が通常縦向きで
ラジアル荷重が加わらないので、一般にホワールと呼ば
れる振れ回り現象が特に発生しやすく、安定した回転精
度が得られない。図6に示すのは、図4で概略を示すレ
ーザビームプリンタモータ実機で計測した試験結果であ
り、真円の焼結含油軸受では回転周波数の1/2の周波
数にピークを持つ振れ回り現象(ホワール)が発生して
おり、軸心軌跡(リサージュ図形)が安定していないこ
とが分かる。なお図4で、1…ロータ、6…スラスト軸
受、8…非接触変位計である。Another problem is that a normal sintered oil-impregnated bearing has a perfect circular inner diameter, but if such a perfect circular bearing is used, the axial orientation of the laser beam printer is normally vertical and no radial load is applied. Therefore, whirling phenomenon generally called whirl is particularly likely to occur, and stable rotation accuracy cannot be obtained. FIG. 6 shows the test results measured by a laser beam printer motor actual machine schematically shown in FIG. 4. In a perfect circular sintered oil-impregnated bearing, a whirling phenomenon having a peak at a frequency of 1/2 of the rotation frequency ( It can be seen that there is a whirl and the axial center locus (Lissajous figure) is not stable. In FIG. 4, 1 ... Rotor, 6 ... Thrust bearing, 8 ... Non-contact displacement gauge.
【0005】この課題に対処するため、実公昭47−3
6739号、特開平5−180229号などでいわゆる
レーリーステップ軸受が提案されている。この軸受は、
軸受孔内周面に軸方向に延びる複数の溝(凹部)を円周
方向等配位置に形成したもので、回転精度を向上させる
ために必要に応じて軸受面となる凸部の開孔率を他の部
分よりも小さくすることが提案されている。[0005] In order to deal with this problem
So-called Rayleigh step bearings have been proposed in Japanese Patent No. 6739 and Japanese Patent Laid-Open No. 5-180229. This bearing is
A number of grooves (recesses) that extend in the axial direction are formed on the inner peripheral surface of the bearing hole at evenly distributed positions in the circumferential direction. If necessary, the open area ratio of the convex portion that will become the bearing surface in order to improve rotational accuracy. Has been proposed to be smaller than the other parts.
【0006】しかし、上記実機モータで試験を行ったと
ころ、凸部と凹部の開孔率をほぼ同じに仕上げたもので
は、軸振れが大きくレーザビームプリンタに要求される
仕様を満足しなかった。また、凸部の開孔率を他の部分
よりも小さく仕上げたものでは、図7に示すように軸振
れがさらに大きくなると共に、軸心軌跡(リサージュ図
形)が全く不安定なものとなり、回転精度の安定した軸
受は得られなかった。これらの原因は、凸部で油膜が形
成される前に、凹部の開孔部から油が軸受内部に浸透流
入してしまうことが主な原因であると推察される。すな
わち、レーリーステップ軸受における凹部は油溜として
の機能があり、凹部に潤沢に貯溜された油が回転軸の回
転に伴って軸受隙間の狭い凸部上に引き込まれることに
よって動圧作用が発生し、回転軸を安定に支承する仕組
みになっているが、先願で提案された前記軸受では、油
の浸透のため凹部が油溜として機能せず、そのため凸部
上において充分な油膜が形成できず、安定した回転精度
が得られないのである。本発明の目的は、軸受孔端部か
らの油の飛散を防止して軸受寿命を増大し、かつ、軸振
れのない安定した回転精度を実現することにある。However, when a test was conducted using the above-mentioned actual machine motor, when the projections and the recesses were finished to have substantially the same aperture ratio, the shaft runout was large and the specifications required for the laser beam printer were not satisfied. In addition, if the porosity of the convex part is finished smaller than that of other parts, the shaft runout becomes even larger as shown in Fig. 7, and the axis center locus (Lissajous figure) becomes completely unstable, causing rotation. A bearing with stable accuracy could not be obtained. It is presumed that these causes are mainly caused by oil permeating into the bearing through the openings of the recesses before the oil film is formed on the protrusions. In other words, the concave portion of the Rayleigh step bearing has a function as an oil reservoir, and the oil that is abundantly stored in the concave portion is drawn onto the convex portion having a narrow bearing gap as the rotating shaft rotates, so that a dynamic pressure action occurs. However, in the bearing proposed in the prior application, the concave portion does not function as an oil reservoir due to the permeation of oil, so that a sufficient oil film can be formed on the convex portion. Therefore, stable rotation accuracy cannot be obtained. An object of the present invention is to prevent the oil from scattering from the end of the bearing hole, increase the life of the bearing, and realize stable rotation accuracy without shaft runout.
【0007】[0007]
【課題を解決するための手段】前記課題を解決するため
本発明の焼結含油軸受は、焼結合金により多孔質体に形
成されると共に潤滑油が含浸された焼結含油軸受におい
て、軸受孔の内周面の一部に回転軸を支持する軸受面を
形成すると共に、該軸受面から軸受孔の一端又は両端に
至る部分を、テーパ角度が2゜〜10゜で、かつ、前記
軸受面の軸方向幅の1/3以上の幅で延在した拡径部と
した。In order to solve the above problems, a sintered oil-impregnated bearing according to the present invention is a sintered oil-impregnated bearing which is formed of a sintered alloy in a porous body and impregnated with lubricating oil. A bearing surface for supporting the rotating shaft is formed on a part of an inner peripheral surface of the bearing surface, and a portion from the bearing surface to one end or both ends of the bearing hole has a taper angle of 2 ° to 10 ° and the bearing surface. The expanded diameter portion has a width that is ⅓ or more of the width in the axial direction.
【0008】このような焼結含油軸受では、拡径部によ
って充分な量の油が保持可能なため、軸受面から滲出し
た油はこの拡径部内で一時貯留され、かつ、回転軸を介
しての油の周囲飛散は拡径部の毛細管現象による油の引
き止め作用にて防止される。油は一時貯溜されている間
に周囲との広い接触面積を介して自然冷却により減容さ
れ、その後拡径部内周面から浸透吸収されて軸受内部に
戻され、軸受面からの吸引作用により再び軸受面に循環
滲出して回転軸を潤滑する。従って、油が飛散せず潤滑
不良とならないので軸受が長寿命となり、周囲の油汚染
も生じない。In such a sintered oil-impregnated bearing, since a sufficient amount of oil can be retained by the expanded diameter portion, the oil that has exuded from the bearing surface is temporarily stored in the expanded diameter portion and is also passed through the rotary shaft. The oil is prevented from being scattered around by the oil retaining action due to the capillary phenomenon of the expanded diameter portion. While oil is temporarily stored, the volume of the oil is reduced by natural cooling through a large contact area with the surroundings, and then permeated and absorbed from the inner peripheral surface of the expanded diameter portion and returned to the inside of the bearing, and again by the suction action from the bearing surface. It circulates to the bearing surface and lubricates the rotating shaft. Therefore, the oil does not scatter and the lubrication is not defective, so that the bearing has a long life and the surrounding oil is not contaminated.
【0009】本発明はまた、ホワール対策として焼結含
油軸受の軸受面に軸方向に延在する溝(凹部)を複数設
け、軸受面の形状を周方向に凹凸を繰り返すステップ状
とすることができる。このように内周面をステップ状と
することで、動圧作用が発生する。この動圧作用によっ
て、ホワールに代表される不安定振動を抑制することが
できる。Further, according to the present invention, as a countermeasure against whirl, a plurality of grooves (recesses) extending in the axial direction are provided on the bearing surface of the sintered oil-impregnated bearing, and the bearing surface is formed into a step shape in which irregularities are repeated in the circumferential direction. it can. By thus forming the inner peripheral surface in a step shape, a dynamic pressure action occurs. By this dynamic pressure action, unstable vibration represented by whirl can be suppressed.
【0010】このステップ状の軸受面の表面開孔率は、
回転精度を向上させるため、凸部で大きく凹部で小さく
し、表面積比では、凸部表面で3〜15%、凹部表面で
0〜10%の開孔率の範囲内にすることが好ましい。す
なわち、この場合は凹部が油溜として機能し、凹部に充
分に保持された油が軸受隙間の狭い凸部と回転軸との間
に引き込まれるため、所望の動圧作用が発揮されて、軸
振れが抑えられ軸心軌跡(リサージュ図形)も安定した
ものとなる。The surface porosity of this step-shaped bearing surface is
In order to improve the rotation accuracy, it is preferable that the convex portions are large and the concave portions are small, and the surface area ratio is within the range of the open area ratio of 3 to 15% on the convex surface and 0 to 10% on the concave surface. That is, in this case, the concave portion functions as an oil reservoir, and the oil sufficiently retained in the concave portion is drawn between the convex portion having a narrow bearing gap and the rotating shaft, so that a desired dynamic pressure effect is exerted and The shake is suppressed and the axis locus (Lissajous figure) becomes stable.
【0011】[0011]
【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1(a)に本発明の焼結含油軸受
4の一実施形態を示す。この焼結含油軸受4には、軸受
孔4aの上下方向中央部に環状の軸受面9を形成し、こ
の軸受面9の上下両側に、テーパ角度θ=3゜の傾きで
漸次拡径して軸受孔4aの上下両端に至る拡径部10を
形成している。軸受面9には、少なくとも3本以上の軸
方向溝を周方向等配位置に形成している。その結果、図
2(a)(b)に示すように、軸受面9に円弧面の凹部
4bと凸部4cが円周方向に交互に並ぶ。回転軸3と凸
部4cとの間には適度な隙間C1があり、その隙間C1
と軸径Rとの比は、C1/R=2/10000〜500
/10000の範囲内にある。また回転軸3と凹部4b
との軸受隙間C2と上記C1との比は、C2/C1=
1.2〜5.0の範囲内にある。軸受面9の開孔率は、
凸部4cよりも凹部4bの方を小さくし、凸部4cでは
開孔率3〜15%、凹部4bでは開孔率0〜10%の範
囲が望ましい。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A shows an embodiment of the sintered oil-impregnated bearing 4 of the present invention. In this sintered oil-impregnated bearing 4, an annular bearing surface 9 is formed at the center of the bearing hole 4a in the vertical direction, and the diameter is gradually increased on both the upper and lower sides of the bearing surface 9 with a taper angle θ = 3 °. The enlarged diameter portion 10 is formed to reach the upper and lower ends of the bearing hole 4a. On the bearing surface 9, at least three or more axial grooves are formed at equal positions in the circumferential direction. As a result, as shown in FIGS. 2 (a) and 2 (b), concave portions 4 b and convex portions 4 c having an arc surface are alternately arranged on the bearing surface 9 in the circumferential direction. There is an appropriate gap C1 between the rotary shaft 3 and the convex portion 4c, and the gap C1
And the shaft diameter R is C1 / R = 2/1000 to 500
Within the range of / 10,000. In addition, the rotary shaft 3 and the recess 4b
The ratio between the bearing clearance C2 and C1 is C2 / C1 =
It is in the range of 1.2 to 5.0. The porosity of the bearing surface 9 is
It is desirable that the concave portion 4b be smaller than the convex portion 4c so that the convex portion 4c has an aperture ratio of 3 to 15% and the concave portion 4b has an aperture ratio of 0 to 10%.
【0012】このような構成とすると、図1(a)のよ
うに回転軸3の回転中、軸受面9の軸受隙間C2に滲出
した潤滑油が軸受隙間C2内から溢れ出しても、拡径部
10内周面から再び軸受4内部に浸透回収され、再び軸
受面9に滲出循環するようになる。拡径部10は油溜と
して比較的余裕があり、かつ、毛細管現象を生じる程度
の小さな隙間なので、軸受面9から滲出した油が油溜に
一時的に貯溜されると共に、毛細管現象により外部に飛
散するのが引き止められる。このため油の飛散が防止さ
れ、油の飛散枯渇による潤滑不良が起こらず、軸受4が
長寿命となる。また油の飛散によって周囲を汚染するこ
ともなくなる。With such a structure, as shown in FIG. 1A, even if the lubricating oil that has exuded into the bearing clearance C2 of the bearing surface 9 overflows from the bearing clearance C2 while the rotary shaft 3 is rotating, the diameter of the lubricating oil is increased. It is permeated and recovered from the inner peripheral surface of the portion 10 into the bearing 4 again, and again leaches and circulates on the bearing surface 9. Since the expanded diameter portion 10 has a relatively large margin as an oil reservoir and is a small gap that causes a capillary phenomenon, the oil that has exuded from the bearing surface 9 is temporarily stored in the oil reservoir and is also exposed to the outside due to the capillary phenomenon. The scattering is stopped. Therefore, the oil is prevented from scattering, the lubrication failure due to the oil depletion does not occur, and the bearing 4 has a long life. In addition, the surroundings will not be contaminated by the scattering of oil.
【0013】この拡径部10のテーパ角度θは2〜10
゜が望ましい。テーパ角度θが2゜以下では、拡径部1
0内周面と回転軸3との間の隙間が小さくなり、回転軸
3の回転に伴う引き込み作用が生じて油が滲出してしま
い、油を回収する機能が損われる。またテーパ角度θが
10゜以上では回転軸3周りの隙間が大きくなり過ぎて
毛細管現象が働かず、溢れ出した油が拡径部10を通り
過ぎて回転軸3に伝わって漏れ出し、遠心力によって飛
散してしまう。The taper angle θ of the expanded diameter portion 10 is 2 to 10
゜ is desirable. When the taper angle θ is 2 ° or less, the expanded diameter part 1
0 The gap between the inner peripheral surface and the rotary shaft 3 becomes small, and a pulling action occurs due to the rotation of the rotary shaft 3 to exude oil, impairing the oil recovery function. When the taper angle θ is 10 ° or more, the gap around the rotary shaft 3 becomes too large and the capillary phenomenon does not work, and the overflowed oil passes through the expanded diameter portion 10 and is transmitted to the rotary shaft 3 to leak, causing centrifugal force. It will be scattered.
【0014】拡径部10の軸方向幅Bは、少なくとも軸
受面9の軸方向幅Dの1/3以上は必要である。軸受機
能からの軸方向幅Bの上限は特になく、軸受4を収納す
る箇所の寸法が許す限り長い方が良い。拡径部10の長
さが軸受面の1/3以下であると、油を貯溜できる空間
が小さくなり過ぎ、拡径部10からさらに油が溢れ出し
てしまう場合がある。The axial width B of the expanded diameter portion 10 must be at least ⅓ of the axial width D of the bearing surface 9. There is no particular upper limit to the axial width B due to the bearing function, and it is preferable that the dimension of the portion for housing the bearing 4 be as long as possible. When the length of the expanded diameter portion 10 is ⅓ or less of the bearing surface, the space in which oil can be stored becomes too small, and oil may further overflow from the expanded diameter portion 10.
【0015】拡径部10は、必ずしも軸受4の上下両端
に形成する必要はなく、例えば回転軸3を上下一対の軸
受4で支持する構成においては、各軸受の外側すなわち
上側軸受の上端と下側軸受の下端に臨んで拡径する拡径
部10を一つずつ形成してもよい。また、このように片
側だけに拡径部10を形成する場合、軸受面9は必ずし
も軸受孔4aの上下方向中央部に形成する必要はなく、
拡径部10と反対側の端部に寄せて形成してもよい。The expanded diameter portion 10 does not necessarily have to be formed at both upper and lower ends of the bearing 4, and for example, in a structure in which the rotating shaft 3 is supported by a pair of upper and lower bearings 4, the outer side of each bearing, that is, the upper end and the lower end of the upper bearing. You may form the diameter expansion part 10 which expands diameter one by one facing the lower end of a side bearing. Further, when the expanded diameter portion 10 is formed on only one side in this way, the bearing surface 9 does not necessarily have to be formed in the vertical center portion of the bearing hole 4a.
It may be formed close to the end opposite to the expanded diameter portion 10.
【0016】本実施形態の軸受4は、前述した油の飛散
防止対策の他に、軸受面9に動圧発生用の軸方向溝を形
成しているのでホワールを抑制することができる。ま
た、これに加えて、凸部4cよりも凹部4bの表面開孔
率を小さくしているので、図3(a)のように、凹部4
bから軸受4内部に浸透して逃げ込む油が少なくなり、
凹部4bが油溜として有効に機能し、凹部4bに溜まっ
た油が軸受4の回転に伴って回転軸3と凸部4cとの間
の狭い領域に引き込まれるため、より動圧が発生しやす
く、回転軸3を安定的に支持することができる。但し、
凸部4cの開孔率が15%を上回ると、凸部4c表面か
ら軸受4内部に逃げ込んでしまう油が多くなってしまっ
て動圧発生が減じられ、回転軸3を安定的に支持するこ
とはできない。また凸部4cの開孔率が3%を下回る
と、回転停止時に回転軸3と凸部4c表面が接している
ので、起動時の油の供給が瞬時に行われず、起動トルク
が大きくなり、且つ、摩耗の原因となる。従って、凸部
4cの開孔率は3〜15%が好ましい。In the bearing 4 of this embodiment, in addition to the measures for preventing oil scattering described above, an axial groove for generating dynamic pressure is formed on the bearing surface 9, so that whirl can be suppressed. In addition to this, since the surface aperture ratio of the concave portion 4b is smaller than that of the convex portion 4c, as shown in FIG.
The amount of oil that permeates into the bearing 4 from b and escapes is reduced,
The concave portion 4b effectively functions as an oil reservoir, and the oil accumulated in the concave portion 4b is drawn into a narrow region between the rotating shaft 3 and the convex portion 4c as the bearing 4 rotates, so that dynamic pressure is more likely to occur. The rotary shaft 3 can be stably supported. However,
When the porosity of the convex portion 4c exceeds 15%, a large amount of oil escapes from the surface of the convex portion 4c into the bearing 4 to reduce the generation of dynamic pressure and stably support the rotating shaft 3. I can't. If the porosity of the convex portion 4c is less than 3%, the rotation shaft 3 and the surface of the convex portion 4c are in contact with each other when the rotation is stopped, so that the oil is not instantaneously supplied at the time of starting, and the starting torque becomes large. Moreover, it causes wear. Therefore, the porosity of the convex portion 4c is preferably 3 to 15%.
【0017】一方、凹部4bの開孔率を10%以上とす
ると、図3(b)に示すように油が凹部4bから軸受
4’内に逃げてしまうので上記したような油溜としての
機能が発揮されず好ましくない。また凹部4bの開孔率
は、最低は0でも構わない。On the other hand, when the opening ratio of the recess 4b is 10% or more, the oil escapes from the recess 4b into the bearing 4'as shown in FIG. 3 (b), so that the function as the oil reservoir described above is obtained. Is not exhibited, which is not preferable. Further, the aperture ratio of the concave portion 4b may be 0 at the minimum.
【0018】この実施形態の焼結含油軸受4を組み込ん
だレーザビームプリンタのスキャナモータ実機(図4に
示すものと同様の構成)を用いて測定した結果を図5に
示す。図6および図7に比べて、軸振れが小さくリサー
ジュ図形が安定しており{図5(b)}、周波数分析の
結果も回転数成分とその高周波成分しかなく、ホワール
の発生は見られなかった{図5(c)}。これは、回転
軸3の外周面と軸受面である凸部4cの表面との間に油
膜が形成され、動圧発生により回転軸3が安定して支持
されていることを示している。FIG. 5 shows the result of measurement using the actual scanner motor of the laser beam printer incorporating the sintered oil-impregnated bearing 4 of this embodiment (the same construction as that shown in FIG. 4). Compared to Fig. 6 and Fig. 7, the shaft runout is small and the Lissajous figure is stable {Fig. 5 (b)}, and the result of the frequency analysis also has only the rotational speed component and its high frequency component, and no whirl is seen. {Fig. 5 (c)}. This indicates that an oil film is formed between the outer peripheral surface of the rotating shaft 3 and the surface of the convex portion 4c which is the bearing surface, and the rotating shaft 3 is stably supported by the generation of dynamic pressure.
【0019】図8に示す実施形態は、凹部4bを表面開
孔率の異なる2つの領域4b1、4b2に分けたもので
ある。回転軸3の回転方向Aに対して、領域4b1は回
転側に位置し、領域4b2は反回転側に位置し、かつ、
領域4b1の表面開孔率が領域4b2の表面開孔率より
も小さくなっている。したがって、表面開孔率の大きさ
は、凸部4c〉領域4b2〉4b1の順になる。表面開
孔率は、凹部4bの領域4b1が表面積比で0〜5%、
領域4b2が表面積比で3〜10%、凸部4cが表面積
比で3〜15%の範囲内とするのが望ましい。領域4b
1および領域4b2の円周方向幅は、回転軸3の回転に
伴って流れる潤滑油Sが衝突する領域を領域4b1と
し、残りの領域を領域4b2として設定する。このよう
な領域4b1の円周方向幅は、使用条件、使用潤滑油の
特性等を考慮して設定するが、一般的には、凹部4bの
全円周方向幅に対して、領域4b1の円周方向幅を30
〜90%、領域4b2の円周方向幅を10〜70%とす
るのが望ましい。In the embodiment shown in FIG. 8, the recess 4b is divided into two regions 4b1 and 4b2 having different surface open area ratios. The region 4b1 is located on the rotation side, the region 4b2 is located on the counter rotation side with respect to the rotation direction A of the rotating shaft 3, and
The surface aperture ratio of the region 4b1 is smaller than the surface aperture ratio of the region 4b2. Therefore, the surface porosity is in the order of convex portion 4c> region 4b2> 4b1. The surface porosity is such that the area 4b1 of the recess 4b has a surface area ratio of 0 to 5%,
The area 4b2 is preferably 3 to 10% in surface area ratio, and the convex portion 4c is preferably 3 to 15% in surface area ratio. Area 4b
The circumferential widths of 1 and the region 4b2 are set such that the region where the lubricating oil S flowing with the rotation of the rotating shaft 3 collides is the region 4b1 and the remaining region is the region 4b2. The circumferential width of the region 4b1 is set in consideration of the usage conditions, the characteristics of the lubricating oil used, and the like. Generally, the circumferential width of the region 4b1 is set with respect to the entire circumferential width of the recess 4b. Circumferential width is 30
˜90%, and the width in the circumferential direction of the region 4b2 is preferably 10 to 70%.
【0020】この実施形態の焼結含油軸受4は、凹部4
b(領域4b1、領域4b2)と凸部4cの表面開孔率
が上記のように設定されているので、回転軸3の回転時
(同図に示すA方向)、軸受内部から領域4b2の開孔
を介して潤滑油Sが滲み出やすく、しかも、この滲み出
した潤滑油Sが領域4b1に溜まって油溜まりが形成さ
れる。そのため、凹部4bが油溜まりとして、より一層
有効に機能する。The sintered oil-impregnated bearing 4 of this embodiment has a concave portion 4
b (area 4b1, area 4b2) and the surface porosity of the convex portion 4c are set as described above, the area 4b2 is opened from the inside of the bearing when the rotating shaft 3 rotates (direction A shown in the figure). The lubricating oil S easily exudes through the holes, and the exuding lubricating oil S accumulates in the region 4b1 to form an oil sump. Therefore, the concave portion 4b functions as an oil reservoir more effectively.
【0021】[0021]
(1)軸受が長寿命である。 軸受面から溢れ出した油が拡径部で一時貯溜され、冷却
減容積され、拡径部内周面から浸透回収され、再び軸受
面へ循環滲出されるので、油の早期枯渇が生じず、長寿
命の軸受とすることができる。 (2)油で周囲を汚染しない。 軸受面から溢れ出した油が拡径部に一時貯溜される、回
転軸を介しての周囲飛散が拡径部の毛細管現象にて引き
止められるので、周囲に油が飛散しない。 (3)ホワールに代表される不安定振動が起こらない。 軸方向に延在する溝を軸受面に複数形成し、前記軸受面
の形状を周方向に凹凸を繰り返すステップ状としたの
で、凸部と回転軸との間で動圧を発生させることがで
き、ホワールを抑制することができる。 (4)回転精度が高い。 凹部が油溜として機能し、凹部に充分に保持された油が
軸受隙間の狭い凸部と回転軸との間に引き込まれるた
め、本来目的としていた動圧がよりよく発揮され、軸振
れが抑えられ軸心軌跡(リサージュ図形)も安定したも
のとなる。(1) The bearing has a long life. The oil that overflows from the bearing surface is temporarily stored in the expanded diameter portion, cooled and reduced in volume, permeated and collected from the inner peripheral surface of the expanded diameter portion, and circulated and leached again to the bearing surface, so that oil does not run out early and long It can be a life bearing. (2) Do not pollute the surroundings with oil. The oil overflowing from the bearing surface is temporarily stored in the expanded diameter portion, and the peripheral scattering via the rotating shaft is stopped by the capillary phenomenon of the expanded diameter portion, so the oil does not scatter around. (3) Unstable vibration represented by whirl does not occur. Since a plurality of grooves extending in the axial direction are formed on the bearing surface and the shape of the bearing surface is a step shape in which unevenness is repeated in the circumferential direction, dynamic pressure can be generated between the convex portion and the rotating shaft. , Can suppress whirl. (4) The rotation accuracy is high. The recess functions as an oil reservoir, and the oil that is sufficiently retained in the recess is drawn between the protrusion with a narrow bearing gap and the rotating shaft, so the originally intended dynamic pressure is better exerted and shaft runout is suppressed. The center axis locus (Lissajous figure) is also stable.
【0022】また、軸受面となる凸部の表面開孔率を凹
部の表面開孔率よりも小さくしたので、回転軸の回転
時、凹部の表面開孔から軸受内部に逃げ込んでしまう潤
滑油が少なくなり、凹部が油溜まりとして有効に機能す
る。そのため、凹部に保持された潤沢な潤滑油が凸部と
回転軸との間の狭い領域(軸受隙間)に引き込まれて一
層動圧が発生しやすく、これにより、回転軸を安定して
支持することができる。また、凸部表面には最小限度の
開孔が確保されているので、起動時、軸受内部の潤滑油
が瞬時にして軸受面に供給されるので、起動トルクが小
さく、摩耗も少ない。Further, since the surface aperture ratio of the convex portion which becomes the bearing surface is made smaller than the surface aperture ratio of the concave portion, the lubricating oil that escapes from the surface aperture of the concave portion into the inside of the bearing when the rotary shaft rotates. The number of recesses decreases, and the recess effectively functions as an oil reservoir. Therefore, the abundant lubricating oil retained in the concave portion is drawn into the narrow region (bearing gap) between the convex portion and the rotary shaft, and dynamic pressure is more likely to be generated, thereby stably supporting the rotary shaft. be able to. Further, since the minimum number of openings are ensured on the surface of the convex portion, the lubricating oil inside the bearing is instantaneously supplied to the bearing surface at the time of starting, so that the starting torque is small and the wear is small.
【図1】(a)は本発明の一実施形態に係る焼結含油軸
受の軸を含む縦断面図、(b)は従来の焼結含油軸受の
軸を含む縦断面図。1A is a vertical cross-sectional view including a shaft of a sintered oil-impregnated bearing according to an embodiment of the present invention, and FIG. 1B is a vertical cross-sectional view including a shaft of a conventional sintered oil-impregnated bearing.
【図2】(a)は本発明の焼結含油軸受の縦断面図、
(b)は(a)のb−b線矢視断面図。FIG. 2 (a) is a longitudinal sectional view of a sintered oil-impregnated bearing of the present invention,
(B) is the bb line sectional view taken on the line of (a).
【図3】(a)本発明の焼結含油軸受における凹部と凸
部の周辺部における潤滑油の流れを模式的に示す部分断
面図、(b)従来の焼結含油軸受における凹部と凸部の
周辺部における潤滑油の流れを模式的に示す図である。FIG. 3 (a) is a partial cross-sectional view schematically showing the flow of lubricating oil around the recesses and protrusions of the sintered oil-impregnated bearing of the present invention, and (b) the recesses and protrusions of the conventional sintered oil-impregnated bearing. FIG. 6 is a diagram schematically showing the flow of lubricating oil in the peripheral portion of FIG.
【図4】スキャナモータの一般的構成を示す縦断面図で
ある。FIG. 4 is a vertical sectional view showing a general configuration of a scanner motor.
【図5】実施形態に係わる焼結含油軸受を組み込んだス
キャナモータ実機を用いて測定した結果を示す図であ
る。FIG. 5 is a diagram showing a result of measurement using an actual scanner motor incorporating the sintered oil-impregnated bearing according to the embodiment.
【図6】従来の焼結含油軸受を組み込んだスキャナモー
タ実機を用いて測定した結果を示す図である。FIG. 6 is a diagram showing a result of measurement using a scanner motor actual machine incorporating a conventional sintered oil-impregnated bearing.
【図7】従来の焼結含油軸受を組み込んだスキャナモー
タ実機を用いて測定した結果を示す図である。FIG. 7 is a diagram showing a result of measurement using an actual scanner motor incorporating a conventional oil-impregnated sintered bearing.
【図8】他の実施形態に係わる焼結含油軸受の凹部と凸
部の周辺部を示す拡大断面図(図a)、凹部と凸部の周
辺部における潤滑油の流れを模式的に示す図(図b)で
ある。FIG. 8 is an enlarged cross-sectional view (FIG. A) showing a peripheral portion of a concave portion and a convex portion of a sintered oil-impregnated bearing according to another embodiment (diagram a), which schematically shows a flow of lubricating oil in the peripheral portion of the concave portion and the convex portion. (Fig. B).
3 回転軸 4 焼結含油軸受 4a 軸受孔 4b 凹部 4c 凸部 9 軸受面 10 拡径部 θ テーパ角度 3 Rotational shaft 4 Sintered oil-impregnated bearing 4a Bearing hole 4b Recessed portion 4c Convex portion 9 Bearing surface 10 Expanded portion θ Tapered angle
Claims (3)
共に潤滑油が含浸された焼結含油軸受において、軸受孔
の内周面の一部に回転軸を支持する軸受面を形成すると
共に、該軸受面から軸受孔の一端又は両端に至る部分
を、テーパ角度が2゜〜10゜で、かつ、前記軸受面の
軸方向幅の1/3以上の幅で延在した拡径部としたこと
を特徴とする焼結含油軸受。1. A sintered oil-impregnated bearing formed of a sintered alloy in a porous body and impregnated with lubricating oil, wherein a bearing surface for supporting a rotating shaft is formed on a part of an inner peripheral surface of the bearing hole. A diameter-increasing portion extending from the bearing surface to one end or both ends of the bearing hole with a taper angle of 2 ° to 10 ° and a width of 1/3 or more of the axial width of the bearing surface. A sintered oil-impregnated bearing characterized in that
延在する溝を複数設け、前記軸受面の形状を周方向に凹
凸を繰り返すステップ状としたことを特徴とする請求項
1記載の焼結含油軸受。2. The bearing surface of the sintered oil-impregnated bearing is provided with a plurality of grooves extending in the axial direction, and the shape of the bearing surface is a step shape in which unevenness is repeated in the circumferential direction. The sintered oil-impregnated bearing described.
を、凸部で大きく凹部で小さくし、表面積比では、凸部
表面で3〜15%、凹部表面で0〜10%の開孔率の範
囲内にしたことを特徴とする請求項2記載の焼結含油軸
受。3. The surface porosity of the step-like bearing surface is made large at the convex portion and small at the concave portion, and the surface area ratio is such that the convex surface is 3 to 15% and the concave surface is 0 to 10%. 3. The sintered oil-impregnated bearing according to claim 2, wherein the ratio is within the range.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7273173A JPH09112560A (en) | 1995-10-20 | 1995-10-20 | Oil-impregnated sintered bearing |
KR1019960028164A KR970006950A (en) | 1995-07-14 | 1996-07-12 | Sintered bearing bearing and its manufacturing method |
US08/680,052 US5704718A (en) | 1995-07-14 | 1996-07-12 | Sintered oil-impregnated bearing and method for manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7273173A JPH09112560A (en) | 1995-10-20 | 1995-10-20 | Oil-impregnated sintered bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09112560A true JPH09112560A (en) | 1997-05-02 |
Family
ID=17524125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7273173A Pending JPH09112560A (en) | 1995-07-14 | 1995-10-20 | Oil-impregnated sintered bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09112560A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002525503A (en) * | 1998-09-11 | 2002-08-13 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Sintered bearings for engines and transmissions |
US7670055B2 (en) * | 2003-06-10 | 2010-03-02 | Ntn Corporation | Sliding bearing |
-
1995
- 1995-10-20 JP JP7273173A patent/JPH09112560A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002525503A (en) * | 1998-09-11 | 2002-08-13 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Sintered bearings for engines and transmissions |
US7670055B2 (en) * | 2003-06-10 | 2010-03-02 | Ntn Corporation | Sliding bearing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5704718A (en) | Sintered oil-impregnated bearing and method for manufacturing same | |
US6023114A (en) | Spindle motor and rotating shaft supporting device for spindle motor | |
US20110081266A1 (en) | Fan, bearing and sleeve thereof | |
US5906440A (en) | Dynamic pressure type fluid bearing device | |
JPH09112560A (en) | Oil-impregnated sintered bearing | |
JP2001234926A (en) | Dynamic pressure type fluid bearing device | |
JPH08322191A (en) | Motor | |
US6911753B2 (en) | Gas dynamic bearing motor | |
JP2006024563A (en) | System and method for installing sealing device on x-ray tube | |
JP2001116046A (en) | Dynamic pressure bearing device | |
JP3908834B2 (en) | Support device for spindle motor of information equipment | |
JP3602325B2 (en) | Dynamic pressure type porous oil-impregnated bearing | |
JP2006329391A (en) | Dynamic pressure bearing arrangement | |
JP2004278793A (en) | Bearing for high speed rotating shaft | |
JP3572796B2 (en) | Hydrodynamic bearing | |
JPH11191944A (en) | Spindle motor and rotary shaft supporting device of laser beam printer | |
JP4048013B2 (en) | Hydrodynamic bearing unit | |
JPH1182478A (en) | Fluid bearing device | |
KR20010038339A (en) | Spindle motor | |
JP2004353871A (en) | Hydrodynamic type porous oil-impregnated bearing | |
JP3693749B2 (en) | Thrust dynamic pressure bearing | |
JP2001200845A (en) | Dynamic pressure bearing member | |
JPS6411844B2 (en) | ||
JP2004301232A (en) | Retainer for cylindrical roller bearing | |
JPS6311384Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20031107 |