JPH09111321A - Method for controlling distribution of charging material from furnace top of blast furnace - Google Patents

Method for controlling distribution of charging material from furnace top of blast furnace

Info

Publication number
JPH09111321A
JPH09111321A JP29373195A JP29373195A JPH09111321A JP H09111321 A JPH09111321 A JP H09111321A JP 29373195 A JP29373195 A JP 29373195A JP 29373195 A JP29373195 A JP 29373195A JP H09111321 A JPH09111321 A JP H09111321A
Authority
JP
Japan
Prior art keywords
furnace
coke
bellless
layer thickness
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29373195A
Other languages
Japanese (ja)
Inventor
Hiroshi Ookusu
洋 大楠
Akinobu Ando
明信 安東
Seiji Hanaoka
征二 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP29373195A priority Critical patent/JPH09111321A/en
Publication of JPH09111321A publication Critical patent/JPH09111321A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To operate a blast furnace in high pig iron producing ratio by utilizing a correlation between a bellless mode condition and a charged material layer thickness distribution in a furnace to make a necessary furnace gas flowing distribution at a high accuracy. SOLUTION: A relative layer thickness ratio of ore/coke is actually measured at the arbitrary position along the radial direction in the furnace. The correleration between the obtd. relative layer thickness ratio and a bellless strength ratio is mapped from the past actual furnace data. The optimum bellless pattern is selected by using this correlation relational graph and the value of an average dropping positional index of ores is charged. Flat-state of a coke terrace is confirmed by using a predicting model of the charging material distribution and the concrete charging pattern is selected. Charging condition of the bellless charging mode is decided according to the selected pattern. Whether the decided condition is suitable or not, is judged by the correlation relational graph, and when the difference exists, the value of the average dropping positional index of the coke is changed in the increasing direction. Further, as necessary, the average dropping position of the ore is finely adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉱石及びコークスを交
互に装入するベルレス式高炉操業において、炉頂装入物
の装入パターンを迅速且つ的確に選定する分布制御方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distribution control method for quickly and accurately selecting a charging pattern for a top charge in a bellless blast furnace operation in which ores and coke are charged alternately.

【0002】[0002]

【従来の技術】ベルレス式高炉では、高炉に設置された
各種センサーからの情報に基づいてガス流分布や炉体熱
負荷を操業者が定性的に評価し、分配シュートの傾動パ
ターンを変更することによって、炉内のガス流分布を制
御している。しかし、センサー情報から得られたガス流
分布と分配シュートによる制御量との定量的な関係が十
分的確に把握されていないため、やむなく分配シュート
の傾動パターンを変更し、その後のガス流分布の変動動
向に応じて更に変更操作を加える試行錯誤的な方法によ
って、装入物層の厚みを制御している。そのため、実際
のガス流分布を炉況にとって望ましい分布に一致させる
ことが容易でなく、目標とするガス流分布を得るために
長期にわたる分布調整が必要であった。そこで、特開平
2−182815号公報では、知識工学システムによっ
て炉内半径方向のガス流分布状況を判定し、そのときの
オンラインデータに基づいて装入物分布予測モデル計算
を複数条件下で実施し、計算結果から最適なシュート傾
動パターンを選定する方法が紹介されている。具体的に
は、炉内半径方向のガス流分布状況を判定する際、炉の
半径方向を中心部,中間部及び周辺部の3領域に区分
し、ガス流割合を表す三角ダイアグラムを用いて現状の
ガス流分布状況と装入物分布予測モデル計算による目標
値との偏差を求め、以後の最適なシュート傾動パターン
の条件設定に利用している。
2. Description of the Related Art In a bellless blast furnace, an operator qualitatively evaluates the gas flow distribution and furnace heat load based on information from various sensors installed in the blast furnace and changes the tilt pattern of the distribution chute. Controls the gas flow distribution in the furnace. However, since the quantitative relationship between the gas flow distribution obtained from the sensor information and the control amount by the distribution chute has not been adequately grasped, the tilt pattern of the distribution chute must be changed and the subsequent fluctuations in the gas flow distribution. The thickness of the charge layer is controlled by a trial-and-error method in which a changing operation is further added according to the trend. Therefore, it is not easy to match the actual gas flow distribution with the desired distribution for the reactor conditions, and it is necessary to adjust the distribution over a long period of time to obtain the target gas flow distribution. Therefore, in Japanese Unexamined Patent Publication No. 2-182815, a knowledge engineering system is used to determine the gas flow distribution state in the radial direction of the furnace, and a charge distribution prediction model calculation is performed under a plurality of conditions based on online data at that time. , The method of selecting the optimal shoot tilt pattern from the calculation results is introduced. Specifically, when determining the distribution of gas flow in the radial direction in the furnace, the radial direction of the furnace is divided into three regions, the central part, the intermediate part, and the peripheral part, and the present status is calculated using a triangular diagram showing the gas flow ratio. The deviation between the gas flow distribution state and the target value calculated by the charge distribution prediction model calculation is calculated and used to set the optimum conditions for the subsequent shoot tilt pattern.

【0003】[0003]

【発明が解決しようとする課題】前掲した方法による制
御量の的中率は、装入物分布予測数式モデルの精度に大
きく依存し、ガス流分布状況を三角ダイアグラムで簡易
的に表現した点でも必ずしも十分な精度が得られない。
また、長期にわたる装入物分布アクションの方向付けも
明確化できない。更に、火入れ立上げ初期の送風率とO
/C比率の上昇時や高O/C条件となる高PC吹込み操
業への移行時等では、中心ガス流を強化して炉内通気抵
抗を低減させる必要がある。この場合、コークス層に比
較して安息角が小さい鉱石層をより多くコークステラス
上に積み付けるため、積み付け状態が不安定化し、コー
クス層の崩壊や炉中心方向への多量の鉱石の流れ込みが
生じ易くなる。その結果、装入チャージごとの堆積プロ
フィールの再現性が低下する傾向を示す。したがって、
装入物分布予測数式モデルを使用して必要なガス流分布
を得るためには、実炉内で発生するコークス崩れ等の不
安定化現象を考慮する必要がある。しかし、不安定化現
象を取り込んだ実用的な装入制御は提案されておらず、
炉況に応じて必要とされるガス流分布を容易且つ迅速に
得ることが困難である。本発明は、このような問題を解
消すべく案出されたものであり、ベルレスモード条件と
炉内装入物層厚分布との関係を一元化した相関関係を利
用することにより、必要とする炉内ガス流分布を高精度
に作り、高出銑比で高炉操業することを目的とする。
The hit rate of the controlled variable by the above-mentioned method greatly depends on the accuracy of the mathematical model for predicting the distribution of the charged material, and the gas flow distribution is simply represented by a triangular diagram. Not always accurate enough.
In addition, it is not possible to clarify the direction of long-term charge distribution actions. In addition, the air flow rate and O
It is necessary to strengthen the central gas flow to reduce the ventilation resistance in the furnace when the / C ratio rises or when the operation shifts to high PC blowing operation, which is a high O / C condition. In this case, since more ore layers having a smaller angle of repose than the coke layers are stacked on the coke terrace, the stacking state becomes unstable, and the collapse of the coke layer and the inflow of a large amount of ore toward the center of the furnace occur. It tends to occur. As a result, the reproducibility of the deposition profile for each charging charge tends to decrease. Therefore,
In order to obtain the required gas flow distribution using the charge distribution prediction mathematical model, it is necessary to consider destabilization phenomena such as coke collapse that occurs in the actual furnace. However, no practical charging control incorporating the destabilization phenomenon has been proposed,
It is difficult to easily and quickly obtain the gas flow distribution required according to the furnace conditions. The present invention has been devised to solve such a problem, and by utilizing the correlation that unifies the relationship between the bellless mode condition and the furnace interior inlet layer thickness distribution, the required furnace The purpose is to make the gas flow distribution with high accuracy and operate the blast furnace with a high tap ratio.

【0004】[0004]

【課題を解決するための手段】本発明の装入物分布制御
方法は、その目的を達成するため、高炉炉頂部に設けた
プロフィール計で炉内半径方向に沿った複数箇所で鉱石
/コークスの実測層厚比を求め、装入原料全体の鉱石/
コークスの平均層厚比に対する前記実測層厚比の比率を
前記複数箇所における相対層厚比として算出すると共
に、コークス平均落下位置と鉱石平均落下位置との比で
表されるベルレス強度比と前記相対層厚比との相関関係
を装入条件が異なる複数の過去の実炉データから予め求
めておき、ベルレス装入パターンの変更に際し、変更計
画時のベルレス強度比から予想される複数箇所での相対
層厚比と実際の複数箇所での相対層厚比に差異を生じた
場合には更にコークス平均落下位置を微調整することを
特徴とする。すなわち、図1のフローに従って装入物分
布が制御される。先ず、炉内半径方向に沿った任意の位
置における鉱石/コークスの相対層厚比を実測に基づい
て求め、求められた相対層厚比とベルレス強度比との相
関関係を過去の実炉データからマップ化する。この相関
関係図を用いて最適ベルレス装入パターンを探索し、鉱
石の平均落下位置指数の数値を変更する。そして、装入
物分布予測モデルを用いてコークステラスのフラット状
態を確認し、具体的な装入パターンを選択し、選択され
たパターンに従ってベルレス装入モードの変更条件を決
定する。決定された条件の適否を、相関関係図の線上に
プロフィール計の実測値があるか否かによって判定し、
差異がある場合、すなわちコークス層崩れを生じている
場合にはコークスの平均落下位置指数の数値を増やす方
向で変更し、必要に応じて更に鉱石の平均落下位置を微
調整する。
In order to achieve the object, the charge distribution control method of the present invention uses a profile meter provided at the top of the blast furnace to detect ores / coke at a plurality of locations along the radial direction of the furnace. The measured layer thickness ratio is calculated and the ore of the entire charging raw material /
The relative layer thickness ratio of the measured layer thickness ratio to the average layer thickness ratio of coke is calculated as the relative layer thickness ratio at the plurality of locations, and the bellless strength ratio and the relative ratio represented by the ratio between the coke average drop position and the ore average drop position. The correlation with the bed thickness ratio is obtained in advance from multiple past actual furnace data with different charging conditions, and when changing the bellless charging pattern, the relative at multiple locations expected from the bellless strength ratio at the time of change planning When the layer thickness ratio differs from the actual relative layer thickness ratio at a plurality of locations, the coke average drop position is further finely adjusted. That is, the charge distribution is controlled according to the flow of FIG. First, the relative layer thickness ratio of ore / coke at any position along the radial direction in the furnace was found based on actual measurement, and the correlation between the obtained relative layer thickness ratio and the bellless strength ratio was calculated from past actual furnace data. Map it. The optimum bellless charging pattern is searched using this correlation diagram, and the value of the average drop position index of the ore is changed. Then, the flat state of the coke terrace is confirmed using the charge distribution prediction model, a specific charging pattern is selected, and the change condition of the bellless charging mode is determined according to the selected pattern. The suitability of the determined conditions is determined by whether or not there is a measured value of the profile meter on the line of the correlation diagram,
When there is a difference, that is, when the coke layer collapse has occurred, the value of the average drop position index of coke is changed to increase, and the average drop position of the ore is finely adjusted if necessary.

【0005】分配シュートの傾動角及び旋回数を組み合
わせて設定される複数パターンは、コークス又は鉱石の
平均落下位置を表現できる形式で指数化している。そし
て、装入条件が異なる複数の過去の実炉データに基づ
き、炉内半径方向の複数箇所における相対的な鉱石層/
コークス層の厚み比との相関関係としてベルレスモード
条件と炉内装入物層厚分布との関係を一元化して標準化
する。ベルレス装入パターンは、次のようなアクション
によって変更される。たとえば、火入れ立上げ初期や高
PC吹込み操業への移行時等における装入原料全体の鉱
石/コークス比の上昇に対処する場合、中心ガス流の低
下を抑制し、或いは強化することにより炉内通気抵抗を
低減させる必要がある。この場合、ベルレスモード条件
と炉内装入物層厚分布との関係を一元化した相関関係か
ら装入変更パターンを計画し、予想される複数箇所にお
ける相対層厚比と実際の複数箇所における相対層厚比に
差異が生じたとき、コークス平均落下位置を微調整す
る。その結果、装入物層厚分布を試行錯誤的に制御する
必要がなくなり、炉況にとって好ましいガス流分布が迅
速且つ的確に選定される。
A plurality of patterns set by combining the tilt angle of the distribution chute and the number of turns are indexed in a format capable of expressing the average falling position of coke or ore. Then, based on a plurality of past actual furnace data with different charging conditions, the relative ore layer /
As a correlation with the thickness ratio of the coke layer, the relationship between the bellless mode condition and the furnace interior charge layer thickness distribution is unified and standardized. The bellless charging pattern is changed by the following actions. For example, when coping with an increase in the ore / coke ratio of the entire charging raw material at the initial stage of start-up of fire, transition to a high PC blowing operation, etc., it is possible to suppress or strengthen the decrease of the central gas flow in the furnace. It is necessary to reduce the ventilation resistance. In this case, the charging change pattern is planned based on the correlation that unifies the relationship between the bellless mode condition and the furnace interior charge layer thickness distribution, and the relative layer thickness ratio at the expected multiple locations and the relative layer thickness at the actual multiple locations are planned. When there is a difference in the ratio, the coke average drop position is finely adjusted. As a result, it is not necessary to control the charge layer thickness distribution by trial and error, and the gas flow distribution preferable for the furnace condition can be quickly and accurately selected.

【0006】ベルレス式高炉における装入物層厚分布の
制御にはコークスベース量の変更,ストックラインの変
更等,いくつかの手段が採用されるが、最も定量的で自
由度の大きな手段は、分配シュートの傾動角及び旋回数
の組合せにより設定されるベルレスモードの変更であ
る。そこで、分配シュートの傾動角及び旋回数の組合せ
により装入物層厚分布を制御する場合について説明す
る。装入パターンは、C02ダンプ1チャージ装入の形
態で1ダンプ当りのシュート旋回数を12旋回としてコ
ークス及び鉱石を順次炉内に分配する場合、たとえばC
23 113 134 ,O733 113 133 といっ
た数値の組合せによって表現されている。ここで、C7
23 113 134 とは、CがCokeの頭文字を示
し、そのコークスの一ダンプ装入を7ノッチ2旋回,9
ノッチ3旋回,11ノッチ3旋回,13ノッチ4旋回の
合計12旋回でコークス装入することを示す。なお、ノ
ッチとは、分配シュートに付けた傾動角を表す数値であ
り、数値が大きくなるほど装入物が炉内中心側に、数値
が小さくなるほど炉壁側に投入されることを示す。
Several methods such as changing the amount of coke base and changing the stock line are adopted for controlling the charge layer thickness distribution in the bellless blast furnace, but the most quantitative and highly flexible means are as follows: This is a change of the bellless mode set by a combination of the tilt angle of the distribution chute and the number of turns. Therefore, a case where the charge layer thickness distribution is controlled by the combination of the tilt angle of the distribution chute and the number of turns will be described. The charging pattern is, for example, when the coke and the ore are sequentially distributed into the furnace in the form of C02 dump 1 charge charging and the number of chute turns per dump is 12.
It is expressed by a combination of numerical values such as 7 2 9 3 11 3 13 4 and O 7 3 9 3 11 3 13 3 . Where C7
2 9 3 11 3 13 4 means C is an acronym for Coke, and one notch dump of the coke is rotated by 7 notches and 2 turns, 9
It shows that the coke is charged in a total of 12 turns of 3 notches, 11 notches and 13 notches. The notch is a numerical value representing the tilt angle attached to the distribution chute. The larger the numerical value, the more the charging material is charged to the center side of the furnace, and the smaller the numerical value, the more to the furnace wall side.

【0007】この表現方法により複数パターンの順位付
け等の評価を行う場合、一見して見分けるには不便であ
る。そこで、ベルレスモード条件を指数として、次式の
表現式によって与える。この指数は、ベルレス装入装置
や炉口寸法が異なる2基以上の高炉データを比較する上
でも便利である。また、装入条件が異なる複数例の過去
のデータを収集する際にも、他高炉のデータを取り込む
ことができる。 コークス又は鉱石の平均落下位置指数=Σ[(t/r)
×n]/N ベルレス強度比=(コークスの平均落下位置指数)/
(鉱石の平均落下位置指数) ただし、t:各ノッチにおける原料の落下軌跡のSL=
0mとの交点と炉壁からの距離 n:各ノッチでの設定旋回数 N:トータル設定旋回数 r:炉口半径
When evaluating a plurality of patterns by this expression method, it is inconvenient to distinguish them at first glance. Therefore, the bellless mode condition is used as an index and given by the following expression. This index is also useful for comparing data from two or more blast furnaces with different bellless charging devices and different furnace mouth sizes. Also, when collecting past data of a plurality of cases with different charging conditions, data of other blast furnaces can be taken in. Average drop position index of coke or ore = Σ [(t / r)
Xn] / N bellless strength ratio = (average drop position index of coke) /
(Average drop position index of ore) where t: SL of raw material falling trajectory at each notch
The intersection with 0m and the distance from the furnace wall n: The number of swiveling in each notch N: The total number of swiveling r: The radius of the furnace opening

【0008】一方、炉内半径方向に沿った複数点におけ
る装入物層厚分布は、接触式(機械式)或いはマイクロ
波,レーザ等を使用した非接触式の炉頂プロフィール計
によって、炉内に原料を装入した結果として形成される
コークス層と鉱石層との層厚比を測定することによって
定量化される。また、過去の実炉データを整理する際、
次式で表される相対層厚比としてデータ収集することに
より、装入原料全体の鉱石/コークス比が異なるデータ
も同一基準で評価できる。 任意の箇所における相対層厚比= (プロフィール計で
測定した任意の箇所の鉱石層厚)×(1ダンプの全装入
コークス当りの平均層厚)×(プロフィール計で測定し
た任意の箇所のコークス層厚)-1×(1ダンプの全装入
鉱石当りの平均層厚)-1 このようにして求められたデータに基づき、実際の炉況
に応じたアクションをとり、必要なガス流分布を得る。
たとえば、高O/C条件となる高PC吹込み操業に移行
するときには、コークスに比較して安息角が小さい鉱石
の装入量増加に伴って炉中心方向への鉱石の流れ込み量
が増加し、周辺ガス流が強くなる傾向を示す。また、火
入れ立ち上げ初期の送風率及びO/C比率が上昇したと
きには、炉内の通気性を確保するため中心ガス流を十分
に育成することが立ち上げの安定化に必要である。そこ
で、前掲した指標に基づき装入物分布を制御し、炉内中
心のガス流を強化する。
On the other hand, the charge layer thickness distribution at a plurality of points along the radial direction in the furnace can be measured by a contact type (mechanical) or non-contact type furnace top profile meter using a microwave, a laser or the like. It is quantified by measuring the layer thickness ratio between the coke layer and the ore layer formed as a result of charging the raw material into. Also, when arranging past actual reactor data,
By collecting data as the relative layer thickness ratio represented by the following formula, data having different ore / coke ratios of the entire charging raw material can be evaluated by the same standard. Relative bed thickness ratio at any location = (Ore bed thickness at any location measured by profile meter) x (Average bed thickness per 1 dump of all charging coke) x (Coke at any location measured by profile meter) Layer thickness) -1 x (Average layer thickness per 1 dump of all charged ore) -1 Based on the data obtained in this way, take action according to the actual furnace conditions and determine the required gas flow distribution. obtain.
For example, when shifting to a high PC blowing operation which is a high O / C condition, the amount of ore flowing into the furnace center increases as the amount of ore having a smaller repose angle than coke increases. The surrounding gas flow tends to be strong. Further, when the blast rate and the O / C ratio at the initial stage of the ignition start up, it is necessary to sufficiently grow the central gas flow in order to ensure the air permeability in the furnace in order to stabilize the start up. Therefore, the charge distribution is controlled based on the above-mentioned index to strengthen the gas flow in the center of the furnace.

【0009】[0009]

【実施例】火入れ立ち上げ初期における装入パターンの
変更アクションに本発明を適用した実施例を説明する。
火入れ立ち上げ初期では中心ガス流を強化するため、図
2に示すように所定長さのフラットなコークステラスL
を形成した装入物分布が必要であり、鉱石の外振りが指
向される。そこで、図3に示すように、炉内半径方向を
中心部,中央部及び周辺部の3領域に区分して表した三
角ダイアグラム上に、装入物分布予測モデルから得られ
るガス流分布割合の計算値をプロットし、予測値の動き
を指標にして期間1〜10における装入パターンの変更
アクションを行った。なお、図3には、本発明を適用し
た図4中記載の期間11以降におけるガス流分布の計算
値も参考として併記した。期間1〜11において、炉内
半径方向に沿った任意の位置で鉱石/コークス比を実測
した。鉱石/コークス比の相対値を実炉で設定したベル
レス強度比との関係で整理した結果を図4に示す。な
お、図4のベルレス強度比は、(コークスの平均落下位
置指数)/(鉱石の平均落下位置指数)で表した。
[Embodiment] An embodiment in which the present invention is applied to an action of changing a charging pattern in an initial stage of setting fire is described.
As shown in Fig. 2, a flat coke terrace L with a predetermined length is used to strengthen the central gas flow at the initial stage of firing.
It is necessary to have a charge distribution that has formed, and the ore swing is directed. Therefore, as shown in FIG. 3, on the triangular diagram in which the radial direction in the furnace is divided into three regions of the central part, the central part and the peripheral part, the gas flow distribution ratio obtained from the charge distribution prediction model is shown. The calculated values were plotted, and the action of changing the charging pattern in the periods 1 to 10 was performed using the movement of the predicted value as an index. In addition, in FIG. 3, the calculated values of the gas flow distribution after the period 11 described in FIG. 4 to which the present invention is applied are also shown for reference. In the periods 1 to 11, the ore / coke ratio was actually measured at an arbitrary position along the radial direction in the furnace. Fig. 4 shows the result of arranging the relative value of the ore / coke ratio in relation to the bellless strength ratio set in the actual furnace. The bellless strength ratio in FIG. 4 is expressed by (average drop position index of coke) / (average drop position index of ore).

【0010】期間1〜11をコークステラス長さで分類
すると、期間1〜9はショートテラス,期間10〜11
はロングテラスとしてそれぞれ大別することができた。
特に、期間1よりコークステラス長さをあまり変えずに
鉱石の外振りアクションを主体に指向した際には、期間
9でコークステラスL上への鉱石の積み付け状態が不安
定化し、炉の中心方向への鉱石の流れ込みが発生した。
その結果、炉壁側ポイント(4)の相対層厚比が低下
し、炉中心寄りポイント(2)の相対層厚比が増大して
いることが図4に示されている。中心ガス流の強化を狙
って実施した期間5から期間6にかけての装入物層厚変
更アクションでは、図3に従った予測に対比して図4の
実績が中心ガス流強化とは逆方向となっており、従来の
装入物分布制御手段のみの予測では不十分であることを
示している。また、ガス流分布が一定となる条件下でコ
ークスの崩れ現象のみを抑制するためにコークステラス
長さを大きく変更する期間9から期間10にかけての装
入物層厚分布変更アクションにみられるように、装入物
分布予測モデルの使用のみでは的中できず、炉内通気性
が著しく低下した。
When the periods 1 to 11 are classified by the length of the coke terrace, the periods 1 to 9 are short terraces and the periods 10 to 11 are
Could be divided into long terraces.
In particular, from the period 1 onwards, when the ore swinging action is mainly used without changing the coke terrace length so much, the state of ore loading on the coke terrace L becomes unstable in the period 9 and the center of the furnace becomes unstable. The flow of ore into the direction occurred.
As a result, it is shown in FIG. 4 that the relative layer thickness ratio at the furnace wall side point (4) decreases and the relative layer thickness ratio at the furnace center side point (2) increases. In the action of changing the charge layer thickness from the period 5 to the period 6 for strengthening the central gas flow, the actual result of FIG. 4 is in the opposite direction to the central gas flow strengthening in comparison with the prediction according to FIG. This shows that the conventional prediction of only the charge distribution control means is not sufficient. Also, as seen in the action of changing the charge layer thickness distribution from the period 9 to the period 10 in which the coke terrace length is greatly changed to suppress only the coke collapse phenomenon under the condition that the gas flow distribution is constant. However, it was not possible to hit the target only by using the charge distribution prediction model, and the air permeability in the furnace decreased significantly.

【0011】そこで、図1に示すフローチャートに従っ
た手段によってベルレス装入パターン調整を施した。期
間11では崩れ現象が抑制され、且つ通気性に優れた中
心ガス流型の流速分布を得ることができた。因みに、期
間8から期間11までのベルレス装入パターンの具体的
条件は、表1に示す通りである。本発明の手段によれ
ば、期間8から期間11へのパターン変更アクション
は、図5に示すようにコークス崩れを生じた期間9の段
階で、次ぎステップへのパターン変更は近刊10を経由
することなく、期間11を探索し得たことが判る。期間
1〜11における実炉の実績を送風率及びK値に及ぼす
ベルレス強度比の影響で整理し、図6及び図7にそれぞ
れ示す。ここで、K値は、高炉内の通気抵抗を送風量の
影響を取り除いて表した指標であり、送風圧力をPB
(g/cm2),炉頂圧力をPT (g/cm2 ),ボッ
シュガス流量をVBOSH(Nm3 /分)とするとき、K=
(PB 2−PT 2)/VBOSH 1.7 で表される。このK値は、
炉内装入物分布の状態を直接評価するものとして有効な
指標である。期間11へのベルレス装入パターン変更の
結果、図6及び図7に示すように炉内の通気抵抗が低減
し、火入れ計画当初の操業度を達成できた。
Therefore, the bellless charging pattern was adjusted by means according to the flowchart shown in FIG. In period 11, the collapse phenomenon was suppressed and a central gas flow type flow velocity distribution excellent in air permeability could be obtained. Incidentally, the specific conditions of the bellless charging pattern from period 8 to period 11 are as shown in Table 1. According to the means of the present invention, the pattern change action from the period 8 to the period 11 is at the stage of the period 9 in which the coke collapse occurs as shown in FIG. 5, and the pattern change to the next step goes through the forthcoming publication 10. It is understood that the period 11 can be searched for without any search. The actual results of the actual furnace in the periods 1 to 11 are arranged by the influence of the bellless strength ratio on the air flow rate and the K value, and are shown in FIGS. 6 and 7, respectively. Here, the K value is an index representing the ventilation resistance in the blast furnace by removing the influence of the air flow rate, and the air flow pressure is P B
(G / cm 2 ), the furnace top pressure is P T (g / cm 2 ), and the Bosch gas flow rate is V BOSH (Nm 3 / min), K =
It is represented by (P B 2 −P T 2 ) / V BOSH 1.7 . This K value is
It is an effective index for directly evaluating the state of the distribution of the contents inside the furnace. As a result of changing the bellless charging pattern to the period 11, the ventilation resistance in the furnace was reduced as shown in FIGS. 6 and 7, and the operating rate at the beginning of the firing plan was achieved.

【0012】 [0012]

【0013】[0013]

【発明の効果】以上に説明したように、本発明において
は、ベルレス装入パターンを変更する際、過去の実炉デ
ータから予め求めた炉内半径方向複数箇所における鉱石
/コークスの相対層厚比とベルレス強度比との相関関係
を使用してコークス平均落下位置を微調整することによ
り、変更後の炉況に応じて必要とされるガス流分布を迅
速且つ的確に選定することが可能となる。この方法は、
試行錯誤的に装入物の層厚分布を制御する必要がないた
め、操業管理が容易になり、高出銑比で高炉を操業する
ことが可能になる。
As described above, in the present invention, when the bellless charging pattern is changed, the relative ore / coke relative layer thickness ratios at a plurality of locations in the radial direction in the furnace, which are obtained in advance from past actual furnace data. By finely adjusting the average coke drop position using the correlation between the strength ratio and the bellless strength ratio, it becomes possible to quickly and accurately select the required gas flow distribution according to the changed furnace conditions. . This method
Since it is not necessary to control the layer thickness distribution of the charge by trial and error, operation management becomes easy and it becomes possible to operate the blast furnace at a high tap ratio.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に従って最適なベルレス装入パターン
を選定するフロー
FIG. 1 is a flow for selecting an optimum bellless charging pattern according to the present invention.

【図2】 炉頂近傍の装入物分布状態[Fig. 2] Distribution of charging material near the furnace top

【図3】 炉内半径方向に沿って中心部,中間部及び周
辺部に区分した三角ダイアグラム
[Fig. 3] Triangular diagram divided into a central part, an intermediate part and a peripheral part along the radial direction in the furnace

【図4】 炉内半径方向の任意の位置における鉱石/コ
ークスの相対層厚比の実績値と実炉で設定したベルレス
強度比との関係を表したグラフ
FIG. 4 is a graph showing the relationship between the actual value of the relative layer thickness ratio of ore / coke at an arbitrary position in the radial direction in the furnace and the bellless strength ratio set in the actual furnace.

【図5】 期間8から期間11のベルレス装入パターン
変更に本発明を適用した場合の予測変更アクションを示
すグラフ
FIG. 5 is a graph showing a prediction change action when the present invention is applied to a bellless charging pattern change from period 8 to period 11.

【図6】 ベルレス強度比が送風率に及ぼす影響を表し
たグラフ
FIG. 6 is a graph showing the effect of bellless intensity ratio on air flow rate.

【図7】 ベルレス強度比がK値に及ぼす影響を表した
グラフ
FIG. 7 is a graph showing the influence of bellless strength ratio on K value.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コークス層崩れを生じた際のベルレス式
高炉の装入物分布制御方法において、高炉炉頂部に設け
たプロフィール計で炉内半径方向に沿った複数箇所で鉱
石/コークスの実測層厚比を求め、装入原料全体の鉱石
/コークスの平均層厚比に対する前記実測層厚比の比率
を前記複数箇所における相対層厚比として算出すると共
に、コークス平均落下位置と鉱石平均落下位置との比で
表されるベルレス強度比と前記相対層厚比との相関関係
を装入条件が異なる複数の過去の実炉データから予め求
めておき、ベルレス装入パターンの変更に際し、変更計
画時のベルレス強度比から予想される複数箇所での相対
層厚比と実際の複数箇所での相対層厚比に差異を生じた
場合には更にコークス平均落下位置を微調整することを
特徴とする高炉炉頂装入物の分布制御方法。
1. A method for controlling a charge distribution of a bellless type blast furnace when coke layer collapse occurs, wherein ore / coke measurement layers are provided at a plurality of locations along a radial direction in the furnace by a profile meter provided at the top of the blast furnace. The thickness ratio is calculated, and the ratio of the measured layer thickness ratio to the average ore / coke average layer thickness ratio of the entire charging raw material is calculated as the relative layer thickness ratio at the plurality of locations, and the coke average drop position and the ore average drop position are calculated. The correlation between the bellless strength ratio represented by the ratio and the relative layer thickness ratio is obtained in advance from a plurality of past actual furnace data with different charging conditions, and when the bellless charging pattern is changed, when the change is planned. Blast furnace furnace characterized by finely adjusting the average coke drop position when there is a difference between the relative layer thickness ratio at multiple locations expected from the bellless strength ratio and the actual relative layer thickness ratio at multiple locations Summit Control method of distribution of charge.
JP29373195A 1995-10-16 1995-10-16 Method for controlling distribution of charging material from furnace top of blast furnace Withdrawn JPH09111321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29373195A JPH09111321A (en) 1995-10-16 1995-10-16 Method for controlling distribution of charging material from furnace top of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29373195A JPH09111321A (en) 1995-10-16 1995-10-16 Method for controlling distribution of charging material from furnace top of blast furnace

Publications (1)

Publication Number Publication Date
JPH09111321A true JPH09111321A (en) 1997-04-28

Family

ID=17798519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29373195A Withdrawn JPH09111321A (en) 1995-10-16 1995-10-16 Method for controlling distribution of charging material from furnace top of blast furnace

Country Status (1)

Country Link
JP (1) JPH09111321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990268A (en) * 2022-06-21 2022-09-02 首钢集团有限公司 Material distribution method of blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990268A (en) * 2022-06-21 2022-09-02 首钢集团有限公司 Material distribution method of blast furnace

Similar Documents

Publication Publication Date Title
JP6930507B2 (en) Hot metal temperature prediction method, hot metal temperature prediction device, blast furnace operation method, operation guidance device, hot metal temperature control method, and hot metal temperature control device
CN113139275B (en) Blast furnace throat temperature estimation method based on multilayer ore-coke ratio distribution model
EP0488318B1 (en) Control method of and apparatus for material charging at top of blast furnace
JP6248550B2 (en) How to determine blast furnace operating conditions
JPH09111321A (en) Method for controlling distribution of charging material from furnace top of blast furnace
JP3039279B2 (en) Support method for distribution control of bellless blast furnace charge
CA1154966A (en) Process for blast furnace operation
JP2018178199A (en) Phosphorus concentration estimation method in molten steel, converter blowing control device, program, and recording medium
JP3598824B2 (en) Blast furnace operation method
JP3514120B2 (en) Distribution control method of blast furnace top charge
JP2001323306A (en) Method for estimating distribution of charged material in blast furnace
JPH07113108A (en) Operation of blast furnace
JPH093512A (en) Method for deciding lap iron tapping of blast furnace and its instrument
JP2020012127A (en) Blast furnace operation method
JP2020015937A (en) Method for predicting distribution of charge in blast furnace, program and computer storage medium
JP2730751B2 (en) Blast furnace operation method
JP2001049312A (en) Method for charging raw material in bell-less blast furnace
JP2006265647A (en) Method for determining distribution state of charged material in blast furnace
JPS61238904A (en) Method for adjusting distribution of gaseous flow in blast furnace in stage of changing operation
JP3522511B2 (en) Blast furnace operation method
JPS6136564B2 (en)
JPH05239518A (en) Method for controlling furnace heat in blast furnace
JPH02182815A (en) Method for controlling distribution of charged material in blast furnace
JP2023057594A (en) Blast furnace operation method, charging method control device, and charging method control program
JP2725529B2 (en) Charge distribution control method in blast furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107