JPH09108694A - Method of assuming mixed state of nitrification/ denitrification reaction tank by activated sludge process - Google Patents

Method of assuming mixed state of nitrification/ denitrification reaction tank by activated sludge process

Info

Publication number
JPH09108694A
JPH09108694A JP21338096A JP21338096A JPH09108694A JP H09108694 A JPH09108694 A JP H09108694A JP 21338096 A JP21338096 A JP 21338096A JP 21338096 A JP21338096 A JP 21338096A JP H09108694 A JPH09108694 A JP H09108694A
Authority
JP
Japan
Prior art keywords
tank
reaction tank
model
parameters
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21338096A
Other languages
Japanese (ja)
Inventor
Kazuhiro Toyooka
和宏 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP21338096A priority Critical patent/JPH09108694A/en
Publication of JPH09108694A publication Critical patent/JPH09108694A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove organic materials and nitrogen with high efficiency by performing optimization treatment of parameters by the measured value of tracer concentration, the number of models used for examination and an equation expressing models and comparing parameters obtained every model to determine a model having optimum reversely mixed quantity. SOLUTION: In a circulation type activated sludge process, anaerobic tanks 1a, 1b for performing denitrification of feed water, aerobic tanks 2a-2c for performing nitrification and a sedimentation tank 7 for performing solid-liquid separation are included. In a controller to which the measured value of tracer concentration measured by a tracer method, the number of models used for examination and an equation expressing models are inputted during operation, optimization is repeatedly per-formed until the convergence range of parameters becomes a set value or less. Next, when the optimization is finished for all models, parameters obtained every model are compared, and in consideration of a sum of squares of residuals to the measured value and consistency of parameters and models and the like, a model having optimum parameters is determined to assume the mixed state of a reaction tank.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は活性汚泥法による硝
化・脱窒反応を用いて原水中の有機物及び窒素を高効率
に除去する装置における生物反応槽の混合状態推定方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating a mixed state of a biological reaction tank in an apparatus for highly efficiently removing organic matter and nitrogen in raw water by using a nitrification / denitrification reaction by an activated sludge method.

【0002】[0002]

【従来の技術】従来から下水等の廃水中の有機物を効率
的に除去するとともに、閉鎖性水域の富栄養化の原因物
質と考えられている窒素及びリンを除去する方法が種々
提案されている。更に近時は窒素の除去率を高めること
が要求されており、窒素に関する規制も厳しくなること
が予想されるので、これを除去することができる高度処
理プロセスを採用する施設が増加するものと考えられ
る。
2. Description of the Related Art Various methods have conventionally been proposed for efficiently removing organic matter in wastewater such as sewage and removing nitrogen and phosphorus which are considered to be the causative agents of eutrophication in closed water areas. . Furthermore, it is expected that the removal rate of nitrogen will be increased in recent years, and regulations on nitrogen will be tightened.Therefore, it is thought that the number of facilities adopting advanced treatment processes that can remove this will increase. To be

【0003】廃水中の窒素とかリンを除去する手段とし
て、物理化学的な方法及び生物学的方法が提案されてい
るが、物理化学的方法はコストが嵩む関係から普及して
いない現状にある。例えば物理化学的方法として実用化
されているリン除去方法に凝集沈澱及び晶析手段がある
が、この手段はコストや維持管理面で難点がある。
Although physicochemical methods and biological methods have been proposed as means for removing nitrogen and phosphorus in wastewater, physicochemical methods are not widely used because of the high cost. For example, a phosphorus removal method which has been put into practical use as a physicochemical method includes a coagulation precipitation method and a crystallization method, but this method has a drawback in terms of cost and maintenance.

【0004】生物学的に窒素とリンを同時に除去する方
法として、従来の活性汚泥法の変法として循環式硝化脱
窒法とオキシデーション・ディッチ法が注目されてい
る。循環式硝化脱窒法は、例えば図13に示したように
生物反応槽を溶存酸素(以下DOと略称)の存在しない
嫌気槽1a,1bとDOの存在する複数段の好気槽2
a,2b,2cとに仕切り、この嫌気槽1a,1bによ
り、流入する原水3を無酸素状態下で撹拌機構10によ
る撹拌を行って活性汚泥中の脱窒菌による脱窒を行い、
次に好気槽2a,2b,2cの内方に配置した散気管4
にブロワ5から空気を供給することにより、エアレーシ
ョンによる酸素の存在下で活性汚泥による有機物の酸化
分解と硝化菌によるアンモニアの硝化を行う。
As a method for biologically removing nitrogen and phosphorus simultaneously, a circulation type nitrification denitrification method and an oxidation ditch method are drawing attention as a modified method of the conventional activated sludge method. In the circulating nitrification denitrification method, for example, as shown in FIG. 13, the biological reaction tanks are anaerobic tanks 1a and 1b in which dissolved oxygen (hereinafter abbreviated as DO) does not exist and a plurality of aerobic tanks 2 in which DO exists.
a, 2b, 2c, and the anaerobic tanks 1a, 1b are used to agitate the inflowing raw water 3 by an agitation mechanism 10 under anoxic conditions to denitrify by denitrifying bacteria in the activated sludge,
Next, the air diffuser 4 arranged inside the aerobic tanks 2a, 2b, 2c
By supplying air from the blower 5, oxidative decomposition of organic matter by activated sludge and nitrification of ammonia by nitrifying bacteria are performed in the presence of oxygen by aeration.

【0005】そして最終段の好気槽2cの硝化液を硝化
液循環ポンプ6を用いて嫌気槽1aに送り込むことによ
り、嫌気槽1a,1bの脱窒効果が促進される。
Then, the nitrification solution in the last-stage aerobic tank 2c is fed into the anaerobic tank 1a by using the nitrification solution circulation pump 6, whereby the denitrification effect of the anaerobic tanks 1a and 1b is promoted.

【0006】前記脱窒菌とは、嫌気条件下で硝酸呼吸に
よりN02−N及びN03−NをN2に還元する細菌を指
している。7は最終沈澱池であり、この最終沈澱池7の
上澄液は、処理水11として図外の消毒槽等を経由して
から放流され、該最終沈澱池7内に沈降した汚泥の一部
は汚泥返送ポンプ8により嫌気槽1aに返送され、他の
汚泥は余剰汚泥引抜ポンプ9から図外の余剰汚泥処理装
置に送り込まれて処理される。
The denitrifying bacterium is a bacterium that reduces N0 2 -N and N0 3 -N to N 2 by respiration of nitric acid under anaerobic conditions. Reference numeral 7 denotes a final settling basin, and the supernatant of the final settling basin 7 is discharged as treated water 11 after passing through a disinfection tank or the like not shown in the figure, and a part of sludge settled in the final settling basin 7. Is returned to the anaerobic tank 1a by the sludge return pump 8, and other sludge is sent from the excess sludge drawing pump 9 to an excess sludge treatment device (not shown) for treatment.

【0007】かかる循環式硝化脱窒法を用いることによ
り、通常の標準活性汚泥法で達成される有機物除去効果
と同程度の効果が得られる上、窒素とリンに関しては活
性汚泥法よりも高い除去率が達成される。
[0007] By using such a circulating nitrification denitrification method, an effect comparable to the organic matter removal effect achieved by a normal standard activated sludge method can be obtained, and nitrogen and phosphorus removal rates higher than those of the activated sludge method. Is achieved.

【0008】他方のオキシデーション・ディッチ法は活
性汚泥法の一種であり、小規模な下水処理場での処理方
法としてシステム構成が簡易であって建設費及び維持管
理費が低廉で処理水質が安定していることで知られてい
る。このオキシデーション・ディッチ法(以下OD法と
略称する)は、図14に示したように適宜な水深を有す
る無終端水路で成る楕円形のプール状生物反応槽15内
に原水3を流入し、隔壁16を利用して平面状の循環流
を作り、ロータ等の機械的曝気撹拌機17,17を用い
て矢印Aに示したように原水3を循環させながら活性汚
泥と混合して、処理に必要な酸素を供給する。7は最終
沈澱池であり、この最終沈澱池7の上澄液は処理水11
として放流され、該最終沈澱池7内に沈降した汚泥の一
部は管路18を経由して生物反応槽15に返送される。
機械的曝気撹拌機17は生物反応槽1基につき1台か2
台、もしくは4台使用されるのが通例である。
On the other hand, the oxidation / ditch method is a type of activated sludge method, and has a simple system configuration as a treatment method in a small-scale sewage treatment plant, the construction cost and maintenance cost are low, and the treated water quality is stable. Known for doing In this oxidation-ditch method (hereinafter abbreviated as OD method), raw water 3 is introduced into an elliptical pool-like biological reaction tank 15 which is an endless water channel having an appropriate water depth as shown in FIG. The partition 16 is used to create a planar circulation flow, and the mechanical aeration stirrer 17, 17 such as a rotor is used to circulate the raw water 3 as shown by the arrow A while mixing with the activated sludge for treatment. Supply the required oxygen. 7 is a final sedimentation tank, and the supernatant of this final sedimentation tank 7 is treated water 11
Part of the sludge settled in the final settling basin 7 is returned to the biological reaction tank 15 via a pipe 18.
Mechanical aeration stirrer 17 is 1 or 2 per bioreactor
It is customary to use four or four units.

【0009】このOD法は流入する原水3に対するエア
レーション時間を24〜48時間程度に長くすることに
よって反応に余裕を持たせるのと同時に水理学的滞留時
間(HRT)が標準活性汚泥法よりも長く設定されるこ
とと、活性汚泥浮遊物(MLSS)を高くすることによ
り、容積負荷と汚泥負荷がともに低く運転されるという
特徴がある。従って流入負荷変動に強く、汚泥発生量が
少ないという長所があり、維持管理が比較的容易である
ことから小規模な下水処理場での採用数が増えている現
状にある。
In the OD method, the aeration time for the inflowing raw water 3 is increased to about 24 to 48 hours to allow a reaction to have a margin, and at the same time, the hydraulic retention time (HRT) is longer than that of the standard activated sludge method. It is characterized in that both volume load and sludge load are operated low by setting and increasing the activated sludge suspended matter (MLSS). Therefore, it has the advantages that it is resistant to fluctuations in inflow load and that the amount of sludge generated is small, and because it is relatively easy to maintain and manage, the number of small-scale sewage treatment plants is increasing.

【0010】このような循環式硝化・脱窒反応槽におけ
る窒素除去反応は、硝化反応と脱窒反応の2つに大別さ
れるが、両反応は溶存酸素(DO)の影響を受けやすい
ので、硝化反応では好気槽の入口における好気状態の管
理が、嫌気槽においては下流の好気槽と隣合う出口部分
の嫌気状態の管理が重要である。嫌気及び好気状態は隣
り合う両反応槽を隔てる隔壁を設けることによって完全
に保たれるが、両者を完全に分離する隔壁がない場合は
下流の反応槽から逆混合(又はバック混合ともいう)が
起きて、両反応槽間の混合液の移動が生じるため、それ
によるDOの影響がかなり大きくなる。
The nitrogen removal reaction in such a circulation type nitrification / denitrification reaction tank is roughly classified into a nitrification reaction and a denitrification reaction, but both reactions are susceptible to dissolved oxygen (DO). In the nitrification reaction, it is important to control the aerobic state at the inlet of the aerobic tank, and in the anaerobic tank, the anaerobic state at the outlet adjacent to the downstream aerobic tank. Anaerobic and aerobic conditions are completely maintained by providing a partition wall that separates both adjacent reaction tanks, but if there is no partition wall that completely separates both reaction tanks, back mixing (or back mixing) is performed from the downstream reaction tank. Occurs, the movement of the mixed liquid between the both reaction tanks occurs, so that the influence of the DO becomes considerably large.

【0011】例えば図7の概要図に示したように、生物
反応槽1への流入量(=見かけの流量)をQ0(m3/m
in)とし、第〔n+1〕槽から第n槽への逆混合量を
b(m3/min)とすると、第n槽から第〔n+1〕
槽への見かけの流量はQ0であるので、第n槽から第
〔n+1〕槽への実際の流出量Qは〔Q0+b〕(m3
min)となる。
For example, as shown in the schematic view of FIG. 7, the inflow amount (= apparent flow rate) into the biological reaction tank 1 is Q 0 (m 3 / m)
in) and the back mixing amount from the (n + 1) th tank to the nth tank is b (m 3 / min), the nth tank to the [n + 1] th tank
Since the apparent flow rate into the tank is Q 0 , the actual outflow Q from the n-th tank to the [n + 1] -th tank is [Q 0 + b] (m 3 /
min).

【0012】従って逆混合量bが大きくなると、隣り合
う槽への流出量Qも大きくなり、且つ隣り合う反応槽の
実際の混合状態は大きく変化する。そのため隔壁のない
生物反応槽における嫌気槽では、下流の好気槽からの逆
混合によるDOの持ち込み現象に伴ってDOが上昇し、
そのために脱窒阻害が発生したり、上流の嫌気槽からの
DOの低い混合液の流出によるDOの低下に伴って硝化
律速が起きることがある。そのため、各反応槽間での逆
混合量等を調べて常に反応槽の混合状態を把握すること
が肝要である。
Therefore, when the back mixing amount b increases, the outflow amount Q to the adjacent tanks also increases, and the actual mixing state of the adjacent reaction tanks changes greatly. Therefore, in the anaerobic tank in the biological reaction tank without a partition, DO increases with the phenomenon of bringing in DO from the downstream aerobic tank due to back mixing,
Therefore, denitrification inhibition may occur, or nitrification rate limiting may occur with the decrease of DO due to the outflow of the mixed solution having low DO from the upstream anaerobic tank. Therefore, it is important to always understand the mixed state of the reaction tanks by checking the amount of back mixing between the reaction tanks.

【0013】一方、生物反応槽内ではブロワ5から供給
された空気によるエアレーション、もしくは撹拌とエア
レーションの併用によって液が混合されるが、この際に
生物反応槽底壁周辺の角部に、図7のdで示したデッド
スペースが生じる場合がある。このデッドスペースdは
液が充分に混合されずによどんだ状態となっており、従
ってデッドスペースd内では反応が起こらず、残りの部
分だけで反応が進行することになる。
On the other hand, in the bioreaction tank, the liquids are mixed by aeration by the air supplied from the blower 5 or a combination of agitation and aeration. At this time, the liquid is mixed at the corners around the bottom wall of the bioreaction tank. In some cases, the dead space indicated by d in FIG. In this dead space d, the liquid is not sufficiently mixed and is stagnant, so that the reaction does not occur in the dead space d and the reaction proceeds only in the remaining portion.

【0014】仮に撹拌機の回転数が不足していたり、エ
アレーション時の空気量が不足している場合には、上記
デッドスペースdが大きくなり、反応槽の実際の容積に
対して反応が起きている容積はかなり小さくなってしま
うことも考えられるため、操作量の制御精度を高める上
でデッドスペースdの容積を把握することが重要であ
る。
If the rotation speed of the stirrer is insufficient or the amount of air during aeration is insufficient, the dead space d becomes large and a reaction occurs with respect to the actual volume of the reaction tank. Since the volume of the dead space may be considerably reduced, it is important to understand the volume of the dead space d in order to improve the control accuracy of the operation amount.

【0015】反応槽内の混合状態を調査する手法として
トレーサー法が挙げられる(下水試験方法を参照)。こ
のトレーサー法とは、トレーサー物質を溶かした水溶液
を生物反応槽の入口に投入し、時間の経過とともに混合
状態を調べたい反応槽で混合液をサンプリングしてその
中のトレーサー物質の濃度を分析する方法であり、得ら
れたトレーサー濃度の分析値に合うようにモデルの各パ
ラメータを決定している。
The tracer method is mentioned as a method for investigating the mixed state in the reaction tank (see the sewage test method). In this tracer method, an aqueous solution in which a tracer substance is dissolved is put into the inlet of a biological reaction tank, and the mixture is sampled in a reaction tank whose mixed state is desired to be checked over time, and the concentration of the tracer substance in the sample is analyzed. In this method, each parameter of the model is determined so as to match the obtained analysis value of the tracer concentration.

【0016】例えば上記下水試験方法に基づいてエアレ
ーションタンクの混合特性を試験する方法として、エア
レーションタンク入口に混合液の塩素イオン量に対して
約2倍量以上になるように塩化ナトリウム水溶液を瞬時
に投入し、投入後しばらくしてエアレーションタンク出
口の混合液を適当な時間間隔で塩素イオン濃度が定常に
なるまで一定の時間間隔で採取して測定する。トレーサ
ー試験中はエアレーションタンク流入下水量とか返送汚
泥量及び空気量は一定に保持している。
For example, as a method for testing the mixing characteristics of the aeration tank based on the above sewage test method, an aqueous solution of sodium chloride is instantaneously added to the inlet of the aeration tank so that the amount of chlorine ions in the mixed solution is about twice or more the amount. After the introduction, some time after the introduction, the mixed solution at the outlet of the aeration tank is sampled at a proper time interval and measured at a constant time interval until the chloride ion concentration becomes steady. During the tracer test, the amount of sewage flowing into the aeration tank, the amount of returned sludge and the amount of air are kept constant.

【0017】図7の例では、計算間隔を1(min)と
し、時間t(min)後の第n槽のトレーサー濃度をC
n(t),時間t+1(min)後の第n槽のトレーサ
ー濃度をCn(t+1)とすると、第n槽のt+1(m
in)後のトレーサー濃度Cn(t+1)は以下の差分
方程式で表わされる。
In the example of FIG. 7, the calculation interval is 1 (min), and the tracer concentration of the n-th tank after the time t (min) is C
Assuming that the tracer concentration of the n-th tank after n (t) and time t + 1 (min) is C n (t + 1), t + 1 (m
The tracer concentration C n (t + 1) after (in) is represented by the following difference equation.

【0018】 Cn(t+1)={Cn-1(t)・Q+Cn(t)・(V・(1−d)−Q−b) +Cn+1(t)・b}/{V・(1−d)} ・・・・・・・・・・(1) ここでCn-1(t):t(min)後の第(n−1)槽の
トレーサー濃度 V:第n槽の容積 Cn+1(t):t(min)後の第(n+1)槽のトレー
サー濃度 Q:原水の流量(m3/min) (上流槽から下流槽への実際の流出量) b:逆混合量(m3/min) d:デッドスペース比(−) 全ての反応槽について(1)式のような差分方程式をた
ててQ,b,dを入力し、tについて1(min)毎に
計算を行うことによって各槽のトレーサー濃度の計算値
の経時変化が求められる。
C n (t + 1) = {C n-1 (t) · Q + C n (t) · (V · (1-d) −Q−b) + C n + 1 (t) · b} / {V・ (1-d)} (1) where C n-1 (t): Tracer concentration in the (n-1) th tank after t (min) V: nth Tank volume C n + 1 (t): Tracer concentration in the (n + 1) th tank after t (min) Q: Flow rate of raw water (m 3 / min) (actual outflow from upstream tank to downstream tank) b : Backmixing amount (m 3 / min) d: Dead space ratio (-) For all reaction tanks, enter difference equations such as equation (1), enter Q, b, and d, and set t to 1 (min ), The change with time of the calculated value of the tracer concentration of each tank can be obtained.

【0019】一方、OD法における窒素除去は、無終端
水路で成る反応槽15内の流れ方向に溶存酸素(以下D
Oと略称する)の濃度勾配を設けて部分的に嫌気・好気
状態を作り、脱窒・硝化反応を起こすことによって行う
ことが可能であるが、この際には生物反応槽1内にDO
の濃度勾配を保ちながら汚泥の混合状態を均一に保つこ
とが重要である。
On the other hand, nitrogen removal in the OD method is carried out by dissolving oxygen (hereinafter D) in the flow direction in the reaction tank 15 which is an endless water channel.
It can be carried out by providing a concentration gradient of O) to partially create an anaerobic / aerobic state and causing a denitrification / nitrification reaction.
It is important to keep the sludge mixing state uniform while maintaining the concentration gradient of.

【0020】OD法により水質シミュレーションを実施
する場合、図9に示したように完全混合槽15a(第1
槽),15b(第k−1槽),15c(第k槽),15
d(第k+1槽)及び15e(最終槽)が循環路20に
より連結したモデルを考えて反応モデルを構築するが、
いくつの完全混合槽から成るかを把握することが重要で
ある。又、硝化反応においては硝化が起きるだけの充分
なDOを保つ必要があり、脱窒反応においては嫌気状態
を維持する必要がある。
When the water quality simulation is carried out by the OD method, as shown in FIG. 9, the complete mixing tank 15a (first
Tank), 15b (k-th tank), 15c (k-th tank), 15
The reaction model is constructed by considering a model in which d (k + 1st tank) and 15e (final tank) are connected by the circulation path 20,
It is important to know how many complete mixing tanks it will consist of. In addition, in the nitrification reaction, it is necessary to maintain sufficient DO for nitrification, and in the denitrification reaction, it is necessary to maintain an anaerobic state.

【0021】しかしOD法による反応槽内の撹拌機の回
転数が低く、流速が小さい場合には、同図の矢印Eに示
す下流からの逆混合が生じるため、DOの影響が大きく
なる可能性がある。つまり嫌気部分では下流の好気部分
からの逆混合によるDOの持ち込みによりDOが上がっ
て脱窒阻害が発生し、好気部分では上流の嫌気部分から
のDOの低い混合液の流入によるDOの低下に伴う硝化
律速が発生する。従って完全混合槽間の逆混合量を調べ
て混合状態を把握することも重要である。
However, when the rotational speed of the stirrer in the reaction vessel by the OD method is low and the flow rate is low, back mixing from the downstream shown by arrow E in the figure occurs, so that the influence of DO may increase. There is. That is, in the anaerobic part, the DO is brought in by the reverse mixing from the downstream aerobic part to increase the DO and denitrification inhibition occurs, and in the aerobic part, the DO decreases due to the inflow of the low-DO mixed liquid from the upstream anaerobic part. A nitrification rate-controlling occurs. Therefore, it is important to understand the mixing state by examining the amount of back mixing between the complete mixing tanks.

【0022】又、OD法の場合でも前記循環式硝化脱窒
法と同様に生物反応槽15の側壁周辺の角部にdで示し
たデッドスペースが生じる場合があり、このデッドスペ
ースd内では反応が起こらず、残りの部分だけで反応が
進行する。特に撹拌機の回転数が不足していたり、エア
レーション時の空気量が不足している場合に上記デッド
スペースdが大きくなり、反応槽の実際の容積に対して
反応が起きている容積はかなり小さくなってしまうた
め、デッドスペースdの容積を把握することが重要であ
る。
Also in the case of the OD method, as in the case of the circulation type nitrification denitrification method, a dead space indicated by d may occur at the corners around the side wall of the biological reaction tank 15, and the reaction occurs in this dead space d. It does not happen and the reaction proceeds only in the remaining part. In particular, when the rotation speed of the stirrer is insufficient or the amount of air at the time of aeration is insufficient, the dead space d becomes large, and the volume in which the reaction takes place is considerably smaller than the actual volume of the reaction tank. Therefore, it is important to know the volume of the dead space d.

【0023】OD法のトレーサー試験は、トレーサー物
質を溶かした水溶液を生物反応槽15の入口に投入し、
前記に説明したように時間の経過とともに混合状態を調
べたい反応槽で混合液をサンプリングしてトレーサー物
質の濃度を分析し、この分析値に合うようにモデルの各
パラメータを決定する。
In the tracer test of the OD method, an aqueous solution in which a tracer substance is dissolved is charged into the inlet of the biological reaction tank 15,
As described above, the mixed solution is sampled in a reaction tank whose mixed state is to be examined over time, the concentration of the tracer substance is analyzed, and each parameter of the model is determined so as to match the analyzed value.

【0024】図9に示したn槽の完全混合槽からなるモ
デル例では、計算間隔を1(min)とし、時間t(m
in)後の第k槽のトレーサー濃度をCk(t),時間
t+1(min)後の第k槽のトレーサー濃度をC
k(t+1),t(min)後の最終沈澱池7のトレー
サー濃度をCn+1(t)とすると、第k槽のt+1(m
in)後のトレーサー濃度Ck(t+1)は以下の差分
方程式で表わされる。
In the example of the model consisting of n perfect mixing tanks shown in FIG. 9, the calculation interval is 1 (min) and the time t (m
in) the kth tank tracer concentration is C k (t), and the time t + 1 (min) is the kth tank tracer concentration is C
Assuming that the tracer concentration in the final settling tank 7 after k (t + 1), t (min) is C n + 1 (t), t + 1 (m
The tracer concentration C k (t + 1) after (in) is represented by the following difference equation.

【0025】k=1のとき、 Ck(t+1)={Cn+1(t)・Qr+Cn(t)・(S・v−b−(Q0+Qr)) +Ck(t)・(V・(1−d)−S・v)+Ck+1(t)・b} /{V・(1−d)} ・・・・・・・・・・(2) 1<k<nのとき、 Ck(t+1)={Ck-1(t)・S・v+Ck(t)・(V・(1−d)−S・v−b) +Ck+1(t)・b}/{V・(1−d)} ・・・・・・・(3) k=nのとき、 Ck(t+1)={Ck-1(t)・S・v+Ck(t)・(V・(1−d)−b −(S・v−b−(Q0+Qr))−(Q0+Qr)} /{V・(1−d)} ・・・・・・・(4) ここでCk-1(t):t(min)後の第(k−1)槽の
トレーサー濃度 Ck(t):t(min)後の第(k)槽のトレーサー濃
度 Ck+1(t):t(min)後の第(k+1)槽のトレー
サー濃度 V:第k槽の容積 Q0:流入原水の流量(m3/min) Qr:最終沈澱池からの返送汚泥流量(m3/min) b:逆混合量(m3/min) d:デッドスペース比(−) s:OD内の混合液断面積(m3) v:OD内流速(m/min) 全ての反応槽について(2)〜(4)式のような差分方
程式をたててQ,b,dを入力し、tについて1(mi
n)毎に計算を行うことによって各槽のトレーサー濃度
の計算値の経時変化が求められる。
When k = 1, C k (t + 1) = {C n + 1 (t) Q r + C n (t)  (Sv-b- (Q 0 + Q r )) + C k (t ) ・ (V ・ (1-d) -S ・ v) + C k + 1 (t) ・ b} / {V ・ (1-d)} ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (2) 1 < When k <n, C k (t + 1) = {C k-1 (t) · S · v + C k (t) · (V · (1-d) −S · v−b) + C k + 1 (t ) · B} / {V · (1-d)} ···· (3) When k = n, C k (t + 1) = {C k−1 (t) · S · v + C k ( t) · (V · (1 -d) -b - (S · v-b- (Q 0 + Q r)) - (Q 0 + Q r)} / {V · (1-d)} ···· (4) where C k-1 (t): t (min) after the (k-1) tank of tracer concentration C k (t): t ( min) after the first (k) tank tracer concentration C k + 1 (t): t (min) after the (k + 1) tank Racer concentration V: the k tank volume Q 0: flow rate of the inflow raw water (m 3 / min) Q r : return sludge flow rate from the final sedimentation basin (m 3 / min) b: backmixing amount (m 3 / min) d: dead space ratio (-) s: mixed solution cross-sectional area in OD (m 3 ) v: flow rate in OD (m / min) For all reaction tanks, a difference equation such as equations (2) to (4) is used. Vertically input Q, b, d, and for t, 1 (mi
By performing the calculation for each n), the change with time of the calculated value of the tracer concentration in each tank can be obtained.

【0026】[0026]

【発明が解決しようとする課題】活性汚泥法による生物
反応槽の混合状態は、前記したようにいくつかの混合モ
デルについてトレーサー法によって得られたトレーサー
物質の濃度の実測値に合うように、モデルのパラメータ
としての逆混合量bとデッドスペース比dを試行錯誤法
で求めているのが実状である。しかしながら嫌気槽と好
気槽とが存在する循環式硝化脱窒法とかOD法において
は、反応槽の撹拌とかエアレーションの有無(嫌気状態
もしくは好気状態)によって混合状態が異なるため、予
想されるパラメータ数が多くなり、該パラメータを決定
するのに長時間を要したり、求められたパラメータの精
度が低下する惧れがある。
The mixed state of the bioreactor by the activated sludge method should be modeled so as to match the measured values of the concentration of the tracer substance obtained by the tracer method for some mixing models as described above. The actual situation is that the amount of reverse mixing b and the dead space ratio d as parameters of are determined by a trial and error method. However, in the circulation type nitrification denitrification method or OD method in which an anaerobic tank and an aerobic tank exist, the mixing state differs depending on the stirring of the reaction tank and the presence or absence of aeration (anaerobic state or aerobic state). Therefore, it may take a long time to determine the parameter, or the accuracy of the obtained parameter may decrease.

【0027】更に生物反応槽底壁周辺の角部には、前記
dで示したデッドスペースが生じやすいため、このデッ
ドスペースd内では液が混合されずによどんだ状態とな
って反応が起こらず、生物反応槽の実際の容積に対して
反応が起きている容積はかなり小さくなってしまうこと
を考慮して、操作量の制御精度を高めるために前記パラ
メータを決定しなければならない。
Further, since the dead space indicated by d is likely to occur at the corner portion around the bottom wall of the biological reaction tank, the liquid is not mixed in the dead space d and becomes a stagnation state so that the reaction does not occur. In consideration of the fact that the volume in which the reaction takes place becomes considerably smaller than the actual volume of the biological reaction tank, the above parameters must be determined in order to improve the control accuracy of the manipulated variable.

【0028】そこで本発明はこのような活性汚泥法によ
る硝化・脱窒反応槽の制御における生物反応槽の混合状
態を推定して、逆混合量とデッドスペース比を考慮して
生物反応槽の混合状態を表わす混合モデルの中から最適
なパラメータを持つモデルを短時間で決定することがで
きる混合状態推定方法を提供することを目的とするもの
である。
Therefore, the present invention estimates the mixing state of the biological reaction tank in the control of the nitrification / denitrification reaction tank by such an activated sludge method, and considers the back mixing amount and the dead space ratio to mix the biological reaction tank. It is an object of the present invention to provide a mixed state estimation method capable of determining a model having optimal parameters from mixed models representing states in a short time.

【0029】[0029]

【課題を解決するための手段】本発明は上記の目的を達
成するために、原水を嫌気槽で脱窒細菌により脱窒を行
う工程と、好気槽で硝化細菌により硝化を行う工程と、
沈澱槽で固液分離して上澄液を処理水として放流する工
程とを含む循環式活性汚泥法による硝化・脱窒反応槽に
よる処理において、トレーサー法により測定したトレー
サー濃度の実測値と、検討に用いるモデルの数及びモデ
ルを表わす方程式により、パラメータとして下流の反応
槽から上流の反応槽への混合液が移動する逆混合量の収
束範囲が予め設定された値以下になるまで該パラメータ
の最適化処理を行い、全てのモデルについて最適化を行
った後にそれぞれのモデルについて求められたパラメー
タを比較して最適な逆混合量を持つモデルを決定するよ
うにした活性汚泥法による硝化・脱窒反応槽の混合状態
推定方法を提供する。
In order to achieve the above-mentioned object, the present invention comprises a step of denitrifying raw water with denitrifying bacteria in an anaerobic tank, and a step of nitrifying with nitrifying bacteria in an aerobic tank,
In the treatment by the nitrification / denitrification reaction tank by the circulation type activated sludge method including the step of separating the solid-liquid in the settling tank and discharging the supernatant as treated water, the actual measurement value of the tracer concentration measured by the tracer method and examination According to the number of models used in the above and the equations representing the models, the parameter is optimized until the convergence range of the amount of backmixing in which the mixed solution moves from the downstream reaction tank to the upstream reaction tank becomes less than or equal to a preset value. The nitrification / denitrification reaction by the activated sludge method, in which the model with the optimum amount of backmixing is determined by comparing the parameters obtained for each model after performing the optimization process and optimizing for all models. A method for estimating a mixed state of a tank is provided.

【0030】請求項2により、トレーサー法により測定
したトレーサー濃度の実測値と、検討に用いるモデルの
数及びモデルを表わす方程式により、パラメータとして
下流の反応槽から上流の反応槽への混合液が移動する逆
混合量と生物反応槽内のデッドスペース比の最適化処理
を行い、トレーサー濃度の実測値を計算値の残差2乗
和,又は換算率の収束範囲が予め設定された値以下にな
るまで続行して全てのモデルについて最適化を行った後
にそれぞれのモデルについて求められたパラメータを比
較して最適な逆混合量を持つモデルを決定するようにし
た活性汚泥法による硝化・脱窒反応槽の混合状態推定方
法を提供する。
According to the second aspect, the measured value of the tracer concentration measured by the tracer method, the number of models used for the study, and the equation representing the model are used to move the mixed solution from the downstream reaction tank to the upstream reaction tank as a parameter. The amount of backmixing and the dead space ratio in the biological reaction tank are optimized, and the actual value of the tracer concentration is calculated as the residual sum of squares of the calculated value, or the convergence range of the conversion rate becomes less than or equal to the preset value. The nitrification / denitrification reaction tank by the activated sludge method, in which the parameters obtained for each model are compared with each other to determine the model having the optimum amount of back-mixing A mixed state estimation method is provided.

【0031】活性汚泥法による硝化・脱窒反応槽とし
て、原水を無終端水路で成る生物反応槽内に流入し、隔
壁を利用して平面状に形成された循環流内に配備された
機械的曝気撹拌機による曝気作用を伴って原水を循環さ
せながら活性汚泥と混合処理するようにしたオキシデー
ション・ディッチ法を用いる場合には、生物反応槽を複
数の完全混合槽が循環路により連結したモデルとして考
え、前記と同様にして硝化・脱窒反応槽の混合状態推定
する。
As a nitrification / denitrification reaction tank by the activated sludge method, raw water is introduced into a biological reaction tank consisting of an endless water channel, and a mechanical device is provided in a circulation flow formed in a flat shape by using partition walls. When using the oxidation ditch method in which raw water is mixed with activated sludge while aeration is performed by an aeration stirrer, a model in which multiple complete mixing tanks are connected to a biological reaction tank by a circulation path is used. Then, the mixed state of the nitrification / denitrification reaction tank is estimated in the same manner as described above.

【0032】上記パラメータとモデルとの整合性をとる
ために、嫌気槽同士の逆混合量は嫌気槽と好気槽の逆混
合量よりも小さいことと、撹拌機の回転数が大きい生物
反応槽のデッドスペース比は回転数が小さい生物反応槽
のデッドスペース比よりも小さくなるという因子を用い
ている。
In order to ensure consistency between the above parameters and the model, the amount of backmixing between the anaerobic tanks is smaller than the amount of backmixing between the anaerobic tank and the aerobic tank, and the biological reaction tank in which the rotation speed of the agitator is large. The dead space ratio of is smaller than the dead space ratio of the bioreactor with small rotation speed.

【0033】かかる反応槽の混合状態推定方法によれ
ば、パラメータとしての各反応槽間での逆混合量とデッ
ドスペース比から常時反応槽の混合状態を把握すること
が可能となり、逆混合量が大きくなるのに伴う隣り合う
槽への流出量が増大することによる反応槽の実際の混合
状態の変化とか、隔壁のない生物反応槽における嫌気槽
への下流の好気槽からの逆混合によるDOの持ち込み現
象に伴う脱窒阻害、もしくは上流の嫌気槽からの混合液
の流出によるDOの低下に伴う硝化律速をなくす等の運
転制御を行うことができる。
According to such a method for estimating the mixed state of the reaction tank, it becomes possible to constantly grasp the mixed state of the reaction tank from the amount of back mixing and dead space ratio between the reaction tanks as parameters, and the amount of back mixed can be calculated. The change in the actual mixing state of the reaction tanks due to the increase in the outflow amount to the adjacent tanks as the size increases, or the DO due to the back mixing from the aerobic tank downstream to the anaerobic tank in the biological reaction tank without a partition wall It is possible to perform operation control such as inhibition of denitrification due to the phenomenon of bringing in NO, or elimination of nitrification rate limiting due to decrease in DO due to outflow of the mixed solution from the upstream anaerobic tank.

【0034】[0034]

【発明の実施の形態】以下、図面に基づいて本発明にか
かる活性汚泥法による硝化・脱窒反応槽の混合状態推定
方法及び装置の各種実施例を、前記従来の構成部分と同
一の構成部分に同一の符号を付して詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Various embodiments of a method and apparatus for estimating a mixed state of a nitrification / denitrification reaction tank by an activated sludge method according to the present invention will be described below with reference to the drawings. Will be described in detail with the same reference numerals.

【0035】図1は循環式硝化脱窒法による生物反応槽
の混合モデルを推定するための実際の測定操作例を示す
フロー図であり、先ずステップ100で操作がスタート
し、ステップ101でトレーサー法により測定したトレー
サー濃度の実測値(経時変化)を入力する。次にステッ
プ102で検討に用いるモデルの数(n)を入力し、更に
ステップ103でモデルを表わす方程式を入力すると、ス
テップ104,105でパラメータの収束範囲が予め設定され
た値以下になるまで最適化が繰り返して行われ、ステッ
プ106で求められたパラメータはパラメータの変数に格
納される。
FIG. 1 is a flow chart showing an example of an actual measurement operation for estimating a mixed model of a biological reaction tank by the circulation type nitrification denitrification method. First, the operation is started in step 100 and the tracer method is used in step 101. Enter the measured value (change over time) of the measured tracer concentration. Next, in step 102, the number (n) of models used for examination is input, and in step 103, an equation representing the model is input. Then, in steps 104 and 105, the parameters are optimized until the convergence range of the parameters becomes equal to or less than a preset value. The conversion is repeated, and the parameter obtained in step 106 is stored in the parameter variable.

【0036】全てのモデルについて最適化が終了する
と、ステップ107,108でそれぞれのモデルについて求め
られたパラメータを比較し、実測値との残差2乗和、パ
ラメータとモデルとの整合性等を考慮してステップ109
で最適なパラメータを持つモデルを決定し、ステップ11
0で操作を終了する。
When the optimization is completed for all the models, the parameters obtained for each model are compared in steps 107 and 108, and the residual sum of squares with the measured value, the consistency between the parameters and the model, etc. are considered. Then step 109
Determine the model with the optimal parameters in step 11
The operation ends with 0.

【0037】パラメータとモデルとの整合性とは、例え
ば嫌気槽同士の逆混合量は嫌気槽と好気槽の逆混合量よ
りも小さいこと、及び撹拌機の回転数が大きい生物反応
槽のデッドスペース比は回転数が小さい生物反応槽のデ
ッドスペース比よりも小さくなる等のデータに基づく。
The consistency between the parameters and the model means, for example, that the amount of backmixing between the anaerobic tanks is smaller than the amount of backmixing between the anaerobic tank and the aerobic tank, and the deadness of the biological reaction tank in which the rotation speed of the agitator is large. The space ratio is based on data such as being smaller than the dead space ratio of a biological reaction tank with a small rotation speed.

【0038】尚、本実施例では、生物反応槽の底壁周辺
の角部に前記デッドスペースdが生じる場合と生じない
場合の両方のケースについて考察する。入力するモデル
方程式は非線形な差分方程式であるので、各モデルにお
けるパラメータの最適化には非線形シンプレックス法を
用いる。
In the present embodiment, both cases where the dead space d is generated at the corners around the bottom wall of the biological reaction tank and when the dead space d is not generated will be considered. Since the input model equation is a nonlinear difference equation, the nonlinear simplex method is used to optimize the parameters in each model.

【0039】図2〜図6により、嫌気槽と好気槽の混合
槽における逆混合モデルの例を5つ示す。尚、逆混合を
表わすパラメータは、逆混合量と生物反応槽への流入量
との比、即ち対流入量比を用いる。更にdで示したデッ
ドスペース比は各槽毎に異なるものとする。
2 to 6 show five examples of the reverse mixing model in the mixing tanks of the anaerobic tank and the aerobic tank. As a parameter indicating the back mixing, the ratio of the back mixing amount and the inflow amount to the biological reaction tank, that is, the inflow ratio is used. Further, the dead space ratio indicated by d is different for each tank.

【0040】図2の例は、生物反応槽1を構成する好気
槽から嫌気槽への逆混合比が一律(b0)の場合であ
り、図3の例は、逆混合比が隣り合う反応槽の曝気状態
により、嫌気槽 ⇔ 嫌気槽(b0)、嫌気槽 ⇔ 好気槽
(b1)、好気槽 ⇔ 嫌気槽(b2)、好気槽 ⇔ 好気槽
(b3)の4つに分けられる例である。
The example of FIG. 2 is a case where the reverse mixing ratio from the aerobic tank to the anaerobic tank constituting the biological reaction tank 1 is uniform (b0), and the example of FIG. Depending on the aeration state of the tank, it is divided into 4 types, anaerobic tank ⇔ anaerobic tank (b0), anaerobic tank ⇔ aerobic tank (b1), aerobic tank ⇔ anaerobic tank (b2), aerobic tank ⇔ aerobic tank (b3). It is an example.

【0041】図4の例は、逆混合比が隣り合う反応槽の
曝気状態により、嫌気槽 ⇔ 嫌気槽(b0)、嫌気槽 ⇔
好気槽(b1)、好気槽 ⇔ 好気槽(b2)の3つに分
けられる例である。この場合、嫌気槽 ⇔ 好気槽、好気
槽 ⇔ 嫌気槽の逆混合状態は同一と考える。
In the example of FIG. 4, the anaerobic tank ⇔ anaerobic tank (b0), anaerobic tank ⇔ depending on the aeration state of the reaction tanks having the reverse mixing ratios adjacent to each other.
In this example, there are three aerobic tanks (b1) and aerobic tanks ⇔ aerobic tanks (b2). In this case, it is considered that the anaerobic tank ⇔ aerobic tank and the aerobic tank ⇔ anaerobic tank have the same reverse mixing state.

【0042】図5の例は、各反応槽間での逆混合比が異
なる(b0,b1,b2,b3,b4,b5,b6)場合であ
り、図6の例は、嫌気槽同士及び好気槽同士の混合では
撹拌による逆混合(b0)が生じ、嫌気槽と好気槽の混合
では撹拌とエアリフト効果による逆混合(b1)が生じ
ている場合である。この場合、好気槽内ではエアリフト
効果が起きているが、隣り合う好気槽同士のエアリフト
効果は相殺されるので、撹拌による逆混合のみとした。
The example of FIG. 5 is a case where the reverse mixing ratios between the reaction tanks are different (b0, b1, b2, b3, b4, b5, b6), and the example of FIG. This is the case where back mixing (b0) due to stirring occurs in mixing between air tanks, and back mixing (b1) due to stirring and air lift effect occurs in mixing between the anaerobic tank and aerobic tank. In this case, the air lift effect occurs in the aerobic tank, but the air lift effect between the adjacent aerobic tanks is canceled, so only the reverse mixing by stirring is performed.

【0043】次に図8によりOD法による生物反応槽1
5の混合モデルを推定するための測定操作例を説明す
る。先ずステップ200で操作がスタートし、ステップ201
でトレーサー法により測定したトレーサー濃度の実測値
(経時変化)を入力する。次にステップ202,203でパラ
メータの収束範囲が予め設定された値以下になるまでパ
ラメータの最適化が繰り返して行われ、ステップ204で
求められたパラメータが格納記憶され、ステップ205で
操作を終了する。モデルを表す方程式は非線形な差分方
程式であるので、各モデルにおけるパラメータの最適化
には非線形シンプレックス法を用いる。
Next, referring to FIG. 8, the biological reaction tank 1 by the OD method
A measurement operation example for estimating the mixed model of No. 5 will be described. First, the operation starts in step 200, and then step 201
Enter the measured value (change with time) of the tracer concentration measured by the tracer method. Next, in steps 202 and 203, the parameters are repeatedly optimized until the convergence range of the parameters becomes equal to or smaller than a preset value, the parameters obtained in step 204 are stored and stored, and the operation ends in step 205. Since the equations representing the model are nonlinear difference equations, the nonlinear simplex method is used to optimize the parameters in each model.

【0044】このOD法は基本的に低負荷運転で行われ
るように設定されているが、運転開始の初期には更に負
荷が小さくなっているのが一般的であって、計画水量に
なるまでかなりの時間を要する。このように時に連続し
て撹拌動作を実施すると、DO濃度が高くなって過曝気
の状態になり易く、汚泥の分散とか最終沈澱池7におけ
る汚泥の沈澱分離性が低下して処理水質が悪化する惧れ
が生じる。更に全体的にDO濃度が高くなることによっ
て嫌気状態を必要とする脱窒反応が生じにくくなるの
で、窒素除去率も低下することになる。
This OD method is basically set to be carried out at low load operation, but generally the load is further reduced at the initial stage of operation start until the planned water quantity is reached. It takes a considerable amount of time. When the stirring operation is continuously performed as described above, the DO concentration becomes high and the state of over-aeration tends to occur, sludge dispersion and sludge sedimentation separability in the final sedimentation basin 7 are deteriorated, and the treated water quality is deteriorated. Fear occurs. Further, since the DO concentration becomes higher as a whole, the denitrification reaction that requires an anaerobic state is less likely to occur, so that the nitrogen removal rate also decreases.

【0045】上記に対処して、ある時間帯に撹拌動作を
停止することによる間欠曝気を実施する手段もあるが、
このような間欠曝気手段は曝気と停止の時間比とか1サ
イクルの合計時間の設定によって処理効率が異なってし
まい、且つ前記したデッドスペース比が大きくなるとい
う問題点が生じる。
In response to the above, there is also a means for carrying out intermittent aeration by stopping the stirring operation at a certain time zone.
Such an intermittent aeration means has a problem that the processing efficiency differs depending on the setting of the aeration / stopping time ratio or the total time of one cycle, and the dead space ratio increases.

【0046】図10〜図12により、OD法による逆混
合を伴った反応モデルの例を3つ示す。図10の例は、
前記図14に示したようにOD法による生物反応槽15
が楕円形であり、且つ原水3の流入口3aと流出口3b
が反応槽15の長軸上の反対側にあって逆混合比が一律
bの場合の反応モデル図である。この例では完全混合槽
15e(最終槽)内の原水が循環路20を経由して15
a(第1槽)に戻って循環しており、所定時間反応させ
た完全混合槽15c(第k槽)内の原水が最終沈澱池7
に送り込まれて上澄水が処理水11として放流され、該
最終沈澱池7内に沈降した汚泥の一部は返送汚泥Qr
して原水3中に返送される。
10 to 12 show three examples of reaction models involving back mixing by the OD method. The example in FIG.
As shown in FIG. 14, the biological reaction tank 15 by the OD method.
Has an elliptical shape, and has an inlet 3a and an outlet 3b for the raw water 3.
Is a reaction model diagram in the case where is on the opposite side of the long axis of the reaction tank 15 and the reverse mixing ratio is uniform b. In this example, the raw water in the complete mixing tank 15e (final tank) passes through the circulation path 15
The raw water in the complete mixing tank 15c (k-th tank) which has been circulated back to the a (first tank) and reacted for a predetermined time is the final settling basin 7
And the supernatant water is discharged as treated water 11 and a part of the sludge settled in the final settling basin 7 is returned to the raw water 3 as return sludge Q r .

【0047】図11の例は、生物反応槽15が楕円形で
あり、且つ原水3の流入口3aと流出口3bが反応槽1
5の同一側にあって、且つ流出口3bが流入口3aの直
前に位置しており、逆混合比は一律bの場合である。こ
の例における反応モデルは前記図9の説明と同一であ
り、完全混合槽15e(最終槽)内の原水が15a(第
1槽)に戻って循環しており、所定時間反応させた完全
混合槽15e(最終槽)内の原水が最終沈澱池7に送り
込まれて上澄水が処理水11として放流され、該最終沈
澱池7内に沈降した汚泥の一部は返送汚泥Qrとして原
水3中に返送されている。
In the example of FIG. 11, the biological reaction tank 15 has an elliptical shape, and the inlet 3a and outlet 3b of the raw water 3 are the reaction tank 1.
5, the outlet 3b is located immediately before the inlet 3a, and the reverse mixing ratio is uniform b. The reaction model in this example is the same as that described in FIG. 9, and the raw water in the complete mixing tank 15e (final tank) is returned to 15a (first tank) and circulated, and the complete mixing tank is reacted for a predetermined time. The raw water in 15e (final tank) is sent to the final settling basin 7 and the supernatant water is discharged as treated water 11. A part of the sludge settled in the final settling basin 7 is returned sludge Q r into the raw water 3 as raw water. It has been returned.

【0048】図12の例は生物反応槽が馬蹄形であり、
原水3の流入口3aと流出口3bが反応槽15の長軸上
の反対側にあって逆混合比が一律bの場合である。曝気
撹拌機17は生物反応槽1基に4台使用されている。こ
の例における反応モデルは図10と同一であり、完全混
合槽15e(最終槽)内の原水が15a(第1槽)に戻
って循環しており、所定時間反応させた完全混合槽15
c(第k槽)内の原水が最終沈澱池7に送り込まれて上
澄水が処理水11として放流され、該最終沈澱池7内に
沈降した汚泥の一部は返送汚泥Qrとして原水3中に返
送されている。
In the example of FIG. 12, the bioreactor is horseshoe-shaped,
This is the case where the inflow port 3a and the outflow port 3b of the raw water 3 are on the opposite sides of the long axis of the reaction tank 15 and the reverse mixing ratio is uniform b. Four aeration stirrers 17 are used for one biological reaction tank. The reaction model in this example is the same as that in FIG. 10, and the raw water in the complete mixing tank 15e (final tank) returns to 15a (first tank) and circulates, and the complete mixing tank 15 is reacted for a predetermined time.
The raw water in c (tank k) is sent to the final settling basin 7, the supernatant water is discharged as treated water 11, and part of the sludge settled in the final settling basin 7 is returned sludge Q r in the raw water 3 Have been sent back to.

【0049】[0049]

【発明の効果】以上詳細に説明したように、本発明にか
かる活性汚泥法による硝化・脱窒反応槽の混合状態推定
方法によれば、嫌気槽と好気槽とが存在する反応槽の運
転状態による混合状態が異なっても、各反応槽間での逆
混合量から反応槽の混合状態を把握することが可能とな
り、逆混合量が大きくなった時に隣り合う槽への流出量
が増大することによる混合状態の変化とか、隔壁のない
生物反応槽における下流の好気槽からの嫌気槽へのDO
の持ち込み現象に伴う脱窒阻害、もしくは上流の嫌気槽
からの混合液の流出によるDOの低下に伴う硝化律速を
なくした運転制御を行うことができる。
As described in detail above, according to the method for estimating the mixed state of the nitrification / denitrification reaction tank by the activated sludge method according to the present invention, the operation of the reaction tank including the anaerobic tank and the aerobic tank is operated. Even if the mixing state differs depending on the state, it becomes possible to grasp the mixing state of the reaction tank from the back mixing amount between each reaction tank, and when the back mixing amount becomes large, the outflow amount to the adjacent tank increases. Due to changes in the mixing state, DO from the aerobic tank downstream to the anaerobic tank in the biological reaction tank without partition walls
It is possible to perform operation control in which denitrification is inhibited due to the phenomenon of bringing in nitrogen, or nitrification rate limiting due to a decrease in DO due to the outflow of the mixed solution from the upstream anaerobic tank is eliminated.

【0050】又、パラメータとして各反応槽間での逆混
合量だけでなく、撹拌機回転数の大小に左右される生物
反応槽の底壁等に発生するデッドスペース比をも考慮し
て、混合状態の変化とか脱窒阻害、混合液の流出による
DOの低下現象等を把握しているために推定精度が高
く、特に予想されるパラメータ数が多くなっても該パラ
メータを決定するのに長時間を要することがなくなり、
且つ求められたパラメータの精度が高いという特徴があ
り、反応槽の混合状態を表わす混合モデルの中から最適
なパラメータを持つモデルを短時間で決定することがで
きる。
In addition, not only the amount of backmixing between the reaction tanks as a parameter but also the dead space ratio generated in the bottom wall of the biological reaction tank, which depends on the rotation speed of the agitator, is taken into consideration. The accuracy of estimation is high because the change in state, inhibition of denitrification, and the decrease phenomenon of DO due to the outflow of the mixed solution are grasped. In particular, even if the expected number of parameters increases, it takes a long time to determine the parameters. No longer needed
Further, there is a feature that the obtained parameters have high accuracy, and a model having optimum parameters can be determined in a short time from the mixing models representing the mixed state of the reaction tank.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例にかかる活性汚泥法による硝化・脱窒
反応槽の混合モデルを推定するための測定操作例を示す
フロー図。
FIG. 1 is a flow chart showing an example of measurement operation for estimating a mixed model of a nitrification / denitrification reaction tank by the activated sludge method according to the present embodiment.

【図2】嫌気槽と好気槽の混合槽における逆混合モデル
の一例を示す概要図。
FIG. 2 is a schematic diagram showing an example of a reverse mixing model in a mixing tank of an anaerobic tank and an aerobic tank.

【図3】嫌気槽と好気槽の混合槽における逆混合モデル
の他の例を示す概要図。
FIG. 3 is a schematic diagram showing another example of a reverse mixing model in a mixing tank of an anaerobic tank and an aerobic tank.

【図4】嫌気槽と好気槽の混合槽における逆混合モデル
の他の例を示す概要図。
FIG. 4 is a schematic diagram showing another example of a reverse mixing model in a mixing tank of an anaerobic tank and an aerobic tank.

【図5】嫌気槽と好気槽の混合槽における逆混合モデル
の他の例を示す概要図。
FIG. 5 is a schematic diagram showing another example of a reverse mixing model in a mixing tank of an anaerobic tank and an aerobic tank.

【図6】嫌気槽と好気槽の混合槽における逆混合モデル
の他の例を示す概要図。
FIG. 6 is a schematic diagram showing another example of a reverse mixing model in a mixing tank of an anaerobic tank and an aerobic tank.

【図7】反応槽への原水の流入と流出及び逆混合の関係
を示す概要図。
FIG. 7 is a schematic diagram showing a relationship between inflow and outflow of raw water into a reaction tank and back mixing.

【図8】OD法による生物反応槽の混合モデルを推定す
るための測定操作例を説明するフロー図。
FIG. 8 is a flowchart illustrating an example of measurement operation for estimating a mixing model of a biological reaction tank by the OD method.

【図9】OD法による生物反応槽が楕円形で原水の流入
口と流出口が同一側で且つ流出口が流入口の直前に位置
し、逆混合比が一律の場合の反応モデル図。
FIG. 9 is a reaction model diagram in the case where the biological reaction tank according to the OD method is elliptical, the raw water inlet and outlet are on the same side, the outlet is located immediately before the inlet, and the reverse mixing ratio is uniform.

【図10】OD法による生物反応槽が楕円形で原水の流
入口と流出口が反対側で且つ逆混合比が一律の場合の反
応モデル図。
FIG. 10 is a reaction model diagram according to the OD method in the case where the biological reaction tank is elliptical, the raw water inlet and outlet are on opposite sides, and the reverse mixing ratio is uniform.

【図11】OD法による生物反応槽が楕円形で原水の流
入口と流出口が同一側で且つ流出口が流入口の直前に位
置する場合の概要図。
FIG. 11 is a schematic diagram when the biological reaction tank by the OD method is elliptical, the raw water inlet and outlet are on the same side, and the outlet is located immediately before the inlet.

【図12】OD法による生物反応槽が馬蹄形で原水の流
入口と流出口が反対側である場合の概要図。
FIG. 12 is a schematic diagram when the biological reaction tank by the OD method is horseshoe-shaped and the raw water inlet and outlet are on opposite sides.

【図13】循環式硝化脱窒法の一例を示す概要図。FIG. 13 is a schematic diagram showing an example of a circulating nitrification denitrification method.

【図14】オキシデーション・ディッチ法の一例を示す
概要図。
FIG. 14 is a schematic diagram showing an example of the oxidation / ditch method.

【符号の説明】[Explanation of symbols]

1a,1b…嫌気槽 2a,2b,2c…好気槽 4…散気管 5…ブロワ 6…硝化液循環ポンプ 7…最終沈澱池 8…汚泥返送ポンプ 9…余剰汚泥引抜ポンプ 10…撹拌機構 11…処理水 15…生物反応槽 16…隔壁 17…機械的曝気撹拌機 20…循環路 1a, 1b ... anaerobic tank 2a, 2b, 2c ... aerobic tank 4 ... aeration pipe 5 ... blower 6 ... nitrification liquid circulation pump 7 ... final sedimentation tank 8 ... sludge return pump 9 ... excess sludge extraction pump 10 ... stirring mechanism 11 ... Treated water 15 ... Biological reaction tank 16 ... Partition wall 17 ... Mechanical aeration agitator 20 ... Circulation path

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原水を嫌気槽で脱窒細菌により脱窒を行
う工程と、好気槽で硝化細菌により硝化を行う工程と、
沈澱槽で固液分離して上澄液を処理水として放流する工
程とを含む循環式活性汚泥法による硝化・脱窒反応槽に
よる処理において、 トレーサー法により測定したトレーサー濃度の実測値
と、検討に用いるモデルの数及びモデルを表わす方程式
により、パラメータとして下流の反応槽から上流の反応
槽への混合液が移動する逆混合量の収束範囲が予め設定
された値以下になるまで該パラメータの最適化処理を行
い、全てのモデルについて最適化を行った後にそれぞれ
のモデルについて求められたパラメータを比較して最適
な逆混合量を持つモデルを決定することを特徴とする活
性汚泥法による硝化・脱窒反応槽の混合状態推定方法。
1. A step of denitrifying raw water with denitrifying bacteria in an anaerobic tank, and a step of nitrifying with nitrifying bacteria in an aerobic tank.
In the treatment by the nitrification / denitrification reaction tank by the circulation type activated sludge method, which includes the step of separating the solid-liquid in the settling tank and discharging the supernatant as treated water, the measured value of the tracer concentration measured by the tracer method and examination According to the number of models used in the above and the equations representing the models, the parameter is optimized until the convergence range of the amount of backmixing in which the mixed solution moves from the downstream reaction tank to the upstream reaction tank becomes less than or equal to a preset value. The nitrification and denitrification by the activated sludge method is characterized in that the model having the optimum backmixing amount is determined by comparing the parameters obtained for each model after performing the optimization process and optimizing for all models. A method for estimating the mixed state of a nitrogen reaction tank.
【請求項2】 原水を嫌気槽で脱窒細菌により脱窒を行
う工程と、好気槽で硝化細菌により硝化を行う工程と、
沈澱槽で固液分離して上澄液を処理水として放流する工
程とを含む循環式活性汚泥法による硝化・脱窒反応槽に
よる処理において、 トレーサー法により測定したトレーサー濃度の実測値
と、検討に用いるモデルの数及びモデルを表わす方程式
により、パラメータとして下流の反応槽から上流の反応
槽への混合液が移動する逆混合量と生物反応槽内のデッ
ドスペース比の最適化処理を行い、トレーサー濃度の実
測値を計算値の残差2乗和,又は換算率の収束範囲が予
め設定された値以下になるまで続行して全てのモデルに
ついて最適化を行った後にそれぞれのモデルについて求
められたパラメータを比較して最適な逆混合量を持つモ
デルを決定するようにした活性汚泥法による硝化・脱窒
反応槽の混合状態推定方法。
2. A step of denitrifying raw water with denitrifying bacteria in an anaerobic tank, and a step of nitrifying with nitrifying bacteria in an aerobic tank.
In the treatment by the nitrification / denitrification reaction tank by the circulation type activated sludge method, which includes the step of separating the solid-liquid in the settling tank and discharging the supernatant as treated water, the measured value of the tracer concentration measured by the tracer method and examination Based on the number of models used for the model and the equations representing the models, the tracer is optimized by optimizing the dead space ratio in the biological reaction tank and the amount of backmixing that moves the mixed solution from the downstream reaction tank to the upstream reaction tank as parameters. It was calculated for each model after continuing to optimize the measured value of the concentration until the sum of squared residuals of the calculated value or the convergence range of the conversion rate was less than or equal to a preset value. A method for estimating the mixed state of a nitrification / denitrification reaction tank by the activated sludge method, which compares parameters and determines a model having an optimum backmixing amount.
【請求項3】 原水を無終端水路で成る生物反応槽内に
流入し、隔壁を利用して平面状に形成された循環流内に
配備された機械的曝気撹拌機による曝気作用を伴って原
水を循環させながら活性汚泥と混合処理するようにした
オキシデーション・ディッチ法による水処理装置におい
て、 上記生物反応槽を複数の完全混合槽が循環路により連結
したモデルとし、トレーサー法により測定したトレーサ
ー濃度の実測値と、検討に用いるモデルの数及びモデル
を表わす方程式により、パラメータとして下流の反応槽
から上流の反応槽への混合液が移動する逆混合量の収束
範囲が予め設定された値以下になるまで該パラメータの
最適化処理を行い、全てのモデルについて最適化を行っ
た後にそれぞれのモデルについて求められたパラメータ
を比較して最適な逆混合量を持つモデルを決定すること
を特徴とする活性汚泥法による硝化・脱窒反応槽の混合
状態推定方法。
3. Raw water is introduced into a biological reaction tank consisting of an endless water channel, and is accompanied by aeration by a mechanical aeration stirrer provided in a circulating flow formed in a flat shape by using partition walls. In the water treatment equipment by the oxidation-ditch method, which mixes with activated sludge while circulating, the biological reaction tank is a model in which a plurality of complete mixing tanks are connected by a circulation path, and the tracer concentration measured by the tracer method. Based on the measured value of, the number of models used in the study, and the equations representing the models, the convergence range of the amount of backmixing in which the mixed solution moves from the downstream reaction tank to the upstream reaction tank is set as a parameter or less as a parameter. The parameters are optimized until all the parameters are reached, and the parameters obtained for each model are compared and then optimized. Mixed state estimation method of nitrification and denitrification reactor by activated sludge process, characterized in that to determine the model with a reverse mixing amount.
【請求項4】 前記パラメータとモデルとの整合性をと
るために、嫌気槽同士の逆混合量は嫌気槽と好気槽の逆
混合量よりも小さいことと、撹拌機の回転数が大きい生
物反応槽のデッドスペース比は回転数が小さい生物反応
槽のデッドスペース比よりも小さくなるという因子を用
いた請求項1又は2記載の活性汚泥法による硝化・脱窒
反応槽の混合状態推定方法。
4. In order to make the parameters consistent with the model, the amount of backmixing between the anaerobic tanks is smaller than the amount of backmixing between the anaerobic tank and the aerobic tank, and an organism with a large agitator rotation speed. The method for estimating the mixed state of a nitrification / denitrification reaction tank by the activated sludge method according to claim 1 or 2, wherein a factor that the dead space ratio of the reaction tank is smaller than the dead space ratio of the biological reaction tank having a small rotation speed.
JP21338096A 1995-08-16 1996-08-13 Method of assuming mixed state of nitrification/ denitrification reaction tank by activated sludge process Pending JPH09108694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21338096A JPH09108694A (en) 1995-08-16 1996-08-13 Method of assuming mixed state of nitrification/ denitrification reaction tank by activated sludge process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20857695 1995-08-16
JP7-208576 1995-08-16
JP21338096A JPH09108694A (en) 1995-08-16 1996-08-13 Method of assuming mixed state of nitrification/ denitrification reaction tank by activated sludge process

Publications (1)

Publication Number Publication Date
JPH09108694A true JPH09108694A (en) 1997-04-28

Family

ID=26516909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21338096A Pending JPH09108694A (en) 1995-08-16 1996-08-13 Method of assuming mixed state of nitrification/ denitrification reaction tank by activated sludge process

Country Status (1)

Country Link
JP (1) JPH09108694A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198590A (en) * 2000-01-17 2001-07-24 Hitachi Ltd Simulation method and device of activated-sludge water treating device
JP2009125607A (en) * 2007-11-19 2009-06-11 Sumitomo Chemical Co Ltd Apparatus for calculating number of mixing steps

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198590A (en) * 2000-01-17 2001-07-24 Hitachi Ltd Simulation method and device of activated-sludge water treating device
JP2009125607A (en) * 2007-11-19 2009-06-11 Sumitomo Chemical Co Ltd Apparatus for calculating number of mixing steps

Similar Documents

Publication Publication Date Title
Stenstrom et al. Effects of oxygen transport limitation on nitrification in the activated sludge process
Glover et al. Modelling of wastewater treatment plants–how far shall we go with sophisticated modelling tools?
EP3222590B1 (en) Method for controlling aeration airflow in activated sludge
JP2020116578A (en) Wastewater treatment method
JP2012200705A (en) Nitrogen-containing wastewater treatment method and apparatus
JP2001353496A (en) Sewage disposal system and measuring system
JP4304453B2 (en) Operation control device for nitrogen removal system
JPH09108694A (en) Method of assuming mixed state of nitrification/ denitrification reaction tank by activated sludge process
JP3058414B1 (en) Water treatment equipment
JPH1043787A (en) Device for simulating amount of nitrous oxide of activated sludge method
JPH0716595A (en) Operation control method in modified method for circulating active sludge
KR101638602B1 (en) sewage and wastewater treatment apparatus having two Sequencing Bath Reactor and metal ion supply function, sewage and wastewater treatment method
JPH1015590A (en) Removal of nitrogen of waste water and apparatus therefor
JP2003260484A (en) Wastewater treatment apparatus
JP3123167B2 (en) Nitrification and denitrification process simulator
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP3608256B2 (en) Operation control method for circulating nitrification denitrification
JPH08294698A (en) Measurement of activity of nitro-bacteria in sewage treatment facilities
JPH0615288A (en) Sewage treatment apparatus and method therefor
JP2003334583A (en) Control method for intermittent aeration method and control device therefor
JP2001334286A (en) Simulation apparatus of oxidation ditch method
JP2001198590A (en) Simulation method and device of activated-sludge water treating device
JPH0724493A (en) Method for controlling operation of activated sludge circulation modified method
JPH0691292A (en) Operation control method of aerobic-anaerobic active sludge treatment apparatus
JPH08117793A (en) Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628