JPH0724493A - Method for controlling operation of activated sludge circulation modified method - Google Patents

Method for controlling operation of activated sludge circulation modified method

Info

Publication number
JPH0724493A
JPH0724493A JP17347593A JP17347593A JPH0724493A JP H0724493 A JPH0724493 A JP H0724493A JP 17347593 A JP17347593 A JP 17347593A JP 17347593 A JP17347593 A JP 17347593A JP H0724493 A JPH0724493 A JP H0724493A
Authority
JP
Japan
Prior art keywords
tank
aerobic
activated sludge
nitrification
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17347593A
Other languages
Japanese (ja)
Inventor
Miyoko Kusumi
美代子 久住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP17347593A priority Critical patent/JPH0724493A/en
Publication of JPH0724493A publication Critical patent/JPH0724493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To provide the method for controlling operation of an activated sludge circulation modified method capable of improving nitrification efficiency in an aeration tank and enhancing denitrification effect in an anaeration tank according thereto. CONSTITUTION:This activated sludge circulation modified method treatment includes a stage for denitrifying raw water 3 by clenitrifying bacteria in the anaeration tank 1a, a stage for nitrifying the raw water in plural stages of aeration tanks 2a, 2b, 2c, 2d and a stage for subjecting the water to a sepn. of solid from liquid in a settling vessel 7. The aeration tanks are respectively arranged with pH meters 13a, 13b, 13c, 13d to measure the pH of the samples separately sampled from the respective aeration tanks. Whether the nitrification reaction is under progression or not or is already ended or not is judged. A controller 16 outputs control signals to properly control driving of a blower 5 and the opening degrees of respective blast rate regulating valves 15a, 15b, 15c, 15d from the results of the judgment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は嫌気−好気活性汚泥循環
変法を用いて廃水中の有機物及び窒素を高効率に除去す
る運転制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control method for highly efficiently removing organic matter and nitrogen in wastewater by using a modified anaerobic-aerobic activated sludge circulation method.

【0002】[0002]

【従来の技術】従来から下水等の廃水中の有機物を効率
的に除去するとともに、閉鎖性水域の富栄養化の原因物
質と考えられている窒素及びリンを除去する方法が種々
提案されている。この富栄養化とは、水域中のN,P等
の栄養塩類の濃度が増大し、これらを栄養素とする生物
活動が活発となって生態系が変化することを指してい
る。特に湖沼等に生活排水とか工場廃水が大量に流入す
ると、上記の富栄養化が急速に進行することが知られて
いる。
2. Description of the Related Art Various methods have conventionally been proposed for efficiently removing organic matter in wastewater such as sewage and removing nitrogen and phosphorus which are considered to be the causative agents of eutrophication in closed water areas. . This eutrophication refers to an increase in the concentration of nutrient salts such as N, P in the water area, which activates biological activities using these nutrients as nutrients and changes the ecosystem. In particular, it is known that the above-mentioned eutrophication rapidly progresses when a large amount of domestic wastewater or industrial wastewater flows into lakes and the like.

【0003】近時、窒素の除去率を高めることが要求さ
れており、窒素に関する規制も厳しくなることが予想さ
れるので、これを除去することができる高度処理プロセ
スを採用する施設が増加するものと考えられる。
Recently, it has been required to increase the removal rate of nitrogen, and it is expected that the regulations on nitrogen will be stricter. Therefore, the number of facilities adopting an advanced treatment process capable of removing this will increase. it is conceivable that.

【0004】廃水中の窒素とかリンを除去する手段とし
て、物理化学的な方法及び生物学的方法が提案されてい
るが、物理化学的方法はコストが嵩む関係から普及して
いない現状にある。例えば物理化学的方法として実用化
されているリン除去方法に凝集沈澱及び晶析手段がある
が、この手段はコストや維持管理面で難点がある。
Although physicochemical methods and biological methods have been proposed as means for removing nitrogen and phosphorus in wastewater, physicochemical methods are not widely used because of the high cost. For example, a phosphorus removal method which has been put into practical use as a physicochemical method includes a coagulation precipitation method and a crystallization method, but this method has a drawback in terms of cost and maintenance.

【0005】一方、生物学的に窒素とリンを同時に除去
する方法として、従来の活性汚泥循環変法として嫌気−
好気活性汚泥法が注目されている。(例えば水質汚濁研
究、第12巻,第7号 441−448,1989を参
照。)この嫌気−好気活性汚泥法とは、例えば図4に示
したように、生物反応槽を溶存酸素(通常DOと略称)
の存在しない嫌気槽1aとDOの存在する好気槽2a,
2b,2c,2dとに仕切り、この嫌気槽1aにより、
流入する原水3を無酸素状態下で撹拌機構10による撹
拌を行って活性汚泥中の脱窒菌による脱窒を行い、次に
好気槽2a,2b,2c,2dの内方に配置した各散気
管4にブロワ5から空気を供給することにより、エアレ
ーションによる酸素の存在下で活性汚泥による有機物の
酸化分解と硝化菌によるアンモニアの硝化を行う。そし
て最終段の好気槽2dの硝化液を硝化液循環ポンプ6を
用いて嫌気槽1aに送り込むことにより、嫌気槽1aの
脱窒効果が促進される。
On the other hand, as a method for biologically removing nitrogen and phosphorus simultaneously, the conventional activated sludge circulation modification method is anaerobic-
The aerobic activated sludge method is drawing attention. (See, for example, Water Pollution Research, Vol. 12, No. 7, 441-448, 1989.) This anaerobic-aerobic activated sludge method is, for example, as shown in FIG. (Abbreviated as DO)
Anaerobic tank 1a in which DO does not exist and aerobic tank 2a in which DO exists,
Partitioned into 2b, 2c, 2d, and by this anaerobic tank 1a,
The inflowing raw water 3 is agitated by an agitation mechanism 10 under anoxic conditions to denitrify by denitrifying bacteria in the activated sludge, and then each of the scatterers placed inside the aerobic tanks 2a, 2b, 2c, 2d. By supplying air from the blower 5 to the trachea 4, oxidative decomposition of organic matter by activated sludge and nitrification of ammonia by nitrifying bacteria are performed in the presence of oxygen by aeration. Then, the nitrification solution in the last-stage aerobic tank 2d is sent to the anaerobic tank 1a by using the nitrification solution circulation pump 6, whereby the denitrification effect of the anaerobic tank 1a is promoted.

【0006】上記脱窒菌とは、嫌気条件下で硝酸呼吸に
よりN02−N及びN03−NをN2やNO2に還元する細
菌を指している。又、原水中のリンは嫌気槽1a内で放
出され、好気槽2a,2b,2c,2d内で活性汚泥に
取り込まれて除去される。7は最終沈澱池であり、この
最終沈澱池7の上澄液は、図外の消毒槽等を経由してか
ら放流され、該最終沈澱池7内に沈降した汚泥の一部は
汚泥返送ポンプ8により嫌気槽1aに返送され、他の汚
泥は余剰汚泥引抜ポンプ9から図外の余剰汚泥処理装置
に送り込まれて処理される。
The above-mentioned denitrifying bacterium refers to a bacterium that reduces N0 2 -N and N0 3 -N to N 2 and NO 2 by respiration of nitric acid under anaerobic conditions. Further, phosphorus in the raw water is released in the anaerobic tank 1a, and is taken in and removed by the activated sludge in the aerobic tanks 2a, 2b, 2c, 2d. Reference numeral 7 denotes a final settling basin, and the supernatant of the final settling basin 7 is discharged after passing through a disinfecting tank not shown in the figure, and a part of the sludge settled in the final settling basin 7 is a sludge return pump. Other sludge is returned to the anaerobic tank 1a by 8 and is sent from the excess sludge drawing pump 9 to an excess sludge treatment device (not shown) for treatment.

【0007】かかる嫌気−好気活性汚泥処理方法を用い
ることにより、通常の標準活性汚泥法で達成される有機
物除去効果と同程度の効果が得られる上、窒素とリンに
関しては活性汚泥法よりも高い除去率が達成される。
By using such an anaerobic-aerobic activated sludge treatment method, an effect comparable to the organic substance removal effect achieved by the ordinary standard activated sludge method can be obtained, and nitrogen and phosphorus are more effective than the activated sludge method. A high removal rate is achieved.

【0008】[0008]

【発明が解決しようとする課題】しかしながらこのよう
な従来の嫌気−好気活性汚泥処理法の場合、効率的な運
転制御方法の確立が困難であり、特に好気槽における硝
化効率と、それに伴う嫌気槽における脱窒効果をともに
充分に高めるためのモニタリングを実施することが困難
であるという課題があった。
However, in the case of such a conventional anaerobic-aerobic activated sludge treatment method, it is difficult to establish an efficient operation control method, and in particular, the nitrification efficiency in the aerobic tank and the accompanying There was a problem that it was difficult to carry out monitoring to sufficiently enhance the denitrification effect in the anaerobic tank.

【0009】即ち、前記嫌気−好気活性汚泥法における
動作態様は、嫌気槽1aにおける脱窒反応と、好気槽2
a,2b,2c,2dにおける硝化反応とに大別するこ
とが出来るが、反応の律速となっているのは後者,即ち
硝化反応である。
That is, the operating modes in the anaerobic-aerobic activated sludge method are the denitrification reaction in the anaerobic tank 1a and the aerobic tank 2
It can be roughly divided into nitrification reactions in a, 2b, 2c and 2d, but the latter, that is, the nitrification reaction, is the rate-determining reaction.

【0010】特に嫌気−好気活性汚泥処理法によって効
率的に窒素を除去するためには、嫌気槽における脱窒と
好気槽における硝化を最適な運転条件に保持することが
要求される上、窒素除去工程は硝化工程に影響される度
合が高いため、良好な窒素除去を行うためには硝化工程
が良好に行われていることが必要である。この硝化反応
は、前記したように硝化菌によって引き起こされるが、
この硝化菌の活性は、pH,水温等の微妙な変化により
容易に影響を受けることが知られている。硝化反応は硝
化菌によるアンモニア性窒素の酸化作用であり、硝化速
度はアンモニア性窒素の減少速度又はNOX−N(NO2
−N+NO3−N)の増加速度として表わすことができ
る。
In particular, in order to efficiently remove nitrogen by the anaerobic-aerobic activated sludge treatment method, it is required to maintain denitrification in the anaerobic tank and nitrification in the aerobic tank under optimum operating conditions. Since the nitrogen removal process is highly influenced by the nitrification process, it is necessary that the nitrification process is performed well in order to perform good nitrogen removal. This nitrification reaction is caused by nitrifying bacteria as described above,
It is known that the activity of this nitrifying bacterium is easily affected by subtle changes such as pH and water temperature. Nitrification reaction is oxidation of ammonium nitrogen by nitrifying bacteria, nitrification rate decreasing speed or NO X -N ammoniacal nitrogen (NO 2
It can be expressed as an increasing rate of −N + NO 3 −N).

【0011】他方の脱窒反応は、 2NO3 -+5(H2) → N2↑+2OH-+2H2O として表わすことができる。The other denitrification reaction can be expressed as 2NO 3 +5 (H 2 ) → N 2 ↑ + 2OH + 2H 2 O.

【0012】硝化が良好に進行している場合には、脱窒
反応の良否が窒素除去率を左右するので、高い窒素除去
率を維持するには硝化反応と脱窒反応のバランスを良好
に保持することが要求される。
When the nitrification progresses satisfactorily, the quality of the denitrification reaction affects the nitrogen removal rate. Therefore, in order to maintain a high nitrogen removal rate, a good balance between the nitrification reaction and the denitrification reaction should be maintained. Required to do so.

【0013】一方、上記硝化菌によるアンモニア性窒素
の硝化は、硝化槽のDO濃度に大きく影響されることが
知られている。従ってDO濃度を高くして硝化反応を促
進することは必要であるが、その反面で硝化液の一部を
硝化槽から脱窒槽へ循環して脱窒反応を行わせる時には
DOは存在しない方が良いという問題がある。従って硝
化液の循環によるDOの持ち込みで脱窒反応が阻害され
ることを考慮すると、硝化槽内のDO濃度は、必要以上
に高くならないように管理することが肝要である。
On the other hand, it is known that nitrification of ammoniacal nitrogen by the above nitrifying bacteria is greatly affected by DO concentration in the nitrification tank. Therefore, it is necessary to increase the DO concentration to promote the nitrification reaction, but on the other hand, when a part of the nitrification solution is circulated from the nitrification tank to the denitrification tank to carry out the denitrification reaction, DO should not exist. There is a problem of being good. Therefore, considering that the denitrification reaction is hindered by the introduction of DO due to the circulation of the nitrification solution, it is important to manage the DO concentration in the nitrification tank so that it does not become higher than necessary.

【0014】以上の点から活性汚泥循環変法による効率
的な運転方法を確立するためには、硝化反応のモニタリ
ングを実施することが重要な技術的要素であるが、現状
ではこのような硝化反応のモニタリング手段は確立され
ておらず、好気槽における硝化効率と、それに伴う嫌気
槽における脱窒効果をともに充分に高めるような制御が
行われているとは言い難い状況にある。
From the above points, it is an important technical element to monitor the nitrification reaction in order to establish an efficient operation method by the modified activated sludge circulation method. No monitoring means has been established, and it is difficult to say that control is performed to sufficiently enhance both the nitrification efficiency in the aerobic tank and the denitrifying effect in the anaerobic tank.

【0015】そこで本発明はこのような嫌気−好気活性
汚泥処理が有している課題を解消して、特に上記制御因
子の中で硝化反応の進行状況をモニタリングすることに
より、好気槽における硝化反応の終了時点を簡易に判断
して、ブロワからの送風量をコントロールすることによ
り硝化効率を高めるとともに余分なDO濃度の上昇を抑
え、それに伴って嫌気槽における脱窒効果を高めること
ができる活性汚泥循環変法の運転制御方法を提供するこ
とを目的とするものである。
Therefore, the present invention solves the problems of such anaerobic-aerobic activated sludge treatment, and in particular, by monitoring the progress of the nitrification reaction among the above control factors, By simply determining the end point of the nitrification reaction and controlling the amount of air blown from the blower, it is possible to enhance the nitrification efficiency and suppress the increase of the excess DO concentration, and accordingly enhance the denitrification effect in the anaerobic tank. It is an object of the present invention to provide an operation control method of a modified activated sludge circulation method.

【0016】[0016]

【課題を解決するための手段】本発明は上記の目的を達
成するために、原水を嫌気槽で脱窒細菌により脱窒を行
う工程と、複数段の好気槽でエアレーション及び硝化細
菌の作用により硝化を行う工程と、沈澱槽で固液分離し
て上澄液を処理水として放流する工程とを含む活性汚泥
循環変法処理において、先ず請求項1により、上記複数
段の好気槽に夫々pH計を配置して、各好気槽から別々
にサンプリングした試料のpHを測定して硝化反応が進
行中であるか、もしくは終了しているかを判断し、この
判断結果から各好気槽に対する送風量を適宜制御するよ
うにした活性汚泥循環変法の運転制御方法を提供する。
In order to achieve the above-mentioned object, the present invention comprises a step of denitrifying raw water by denitrifying bacteria in an anaerobic tank, and aeration and nitrifying bacteria in a plurality of aerobic tanks. In the modified activated sludge circulation process including the step of performing nitrification by means of the step of: and separating the solid-liquid separation in the settling tank and discharging the supernatant as treated water, first, according to claim 1, Each of the aerobic tanks is equipped with a pH meter, and the pH of the sample separately sampled from each aerobic tank is measured to determine whether the nitrification reaction is in progress or has ended. Provided is an operation control method of a modified activated sludge circulation method, in which the amount of air blown to the air is controlled appropriately.

【0017】又、請求項2により、上記複数段の好気槽
に夫々pH計を配置して、各好気槽から別々にサンプリ
ングした試料のpHを測定し、この測定値に基づいてコ
ントローラが各好気槽の硝化特性を判断して、エアレー
ション用のブロワ及び各送風量調整バルブの開度を適宜
にコントロールする制御信号を出力するようにした活性
汚泥循環変法の運転制御方法を提供する。
Further, according to the second aspect, a pH meter is arranged in each of the plurality of aerobic tanks, the pH of the sample sampled separately from each aerobic tank is measured, and the controller is based on the measured value. Provided is an operation control method of a modified activated sludge circulation method, which judges the nitrification characteristics of each aerobic tank and outputs a control signal for appropriately controlling the opening of a blower for aeration and each air flow rate adjusting valve. .

【0018】上記嫌気−好気槽は、同一の生物反応槽を
仕切板で区切って構成され、且つ好気槽は少なくとも3
区画以上に分割構成してある。
The anaerobic-aerobic tank is constructed by partitioning the same biological reaction tank with a partition plate, and the aerobic tank has at least three.
It is divided into more than partitions.

【0019】[0019]

【作用】かかる活性汚泥循環変法の運転制御方法によれ
ば、原水が嫌気槽で脱窒され、好気槽での曝気と硝化細
菌の作用に基づく硝化が行われる一方、各好気槽からサ
ンプリングされた試料のpHがpH計によって別々に測
定され、各pH計の測定値に基づいてコントローラによ
り硝化反応が進行中であるか、もしくは終了しているか
の判断が行われ、該コントローラからブロワの駆動及び
送風量調整バルブへ駆動制御信号が出力されて、該ブロ
ワから各好気槽に対する送風量が適宜制御される。
[Operation] According to the operation control method of the modified activated sludge circulation method, raw water is denitrified in the anaerobic tank, aeration in the aerobic tank and nitrification based on the action of nitrifying bacteria are performed, while The pH of the sampled sample is separately measured by a pH meter, and based on the measured value of each pH meter, the controller determines whether the nitrification reaction is in progress or is completed, and the controller blows the blower. A drive control signal is output to the drive and air flow rate adjusting valve, and the air flow rate from the blower to each aerobic tank is appropriately controlled.

【0020】従って各好気槽内のpH値の変化をモニタ
リングすることによって硝化反応の進行状況が把握可能
であり、送風量の制御を実施することによって好気槽に
おける硝化効率を高め、それに伴って嫌気槽における脱
窒効果が高められるという作用が得られる。
Therefore, the progress of the nitrification reaction can be grasped by monitoring the change in the pH value in each aerobic tank, and by controlling the air flow rate, the nitrification efficiency in the aerobic tank can be increased, and accordingly. As a result, the effect of increasing the denitrification effect in the anaerobic tank can be obtained.

【0021】[0021]

【実施例】以下、図面に基づいて本発明にかかる活性汚
泥循環変法の運転制御方法の一実施例を、前記従来の構
成部分と同一の構成部分に同一の符号を付して詳述す
る。図1は本発明にかかる運転制御方法を採用した嫌気
−好気活性汚泥装置を全体的に示す概要図であり、図中
の1aは廃水の脱窒を行うための嫌気槽、2a,2b,
2c,2dは硝化を行うための複数段の好気槽であり、
この嫌気槽1aと好気槽2a,2b,2c,2dとは同
一の生物反応槽を仕切板12で区切って分割構成されて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the operation control method of the modified activated sludge circulation method according to the present invention will be described in detail below with reference to the drawings, in which the same components as those of the conventional components are designated by the same reference numerals. . FIG. 1 is a schematic view showing an overall anaerobic-aerobic activated sludge system adopting an operation control method according to the present invention, in which 1a is an anaerobic tank for denitrifying wastewater, 2a, 2b,
2c and 2d are multi-stage aerobic tanks for nitrification,
The anaerobic tank 1a and the aerobic tanks 2a, 2b, 2c and 2d are configured by dividing the same biological reaction tank by a partition plate 12.

【0022】上記嫌気槽1aの内方には、撹拌機構10
が配置されており、好気槽2a,2b,2c,2dには
エア吹出機構としての散気管4,4,4,4が配置さ
れ、外部に上記散気管4,4,4,4にエアを供給する
ためのブロワ5が配備されている。そして該ブロワ5と
各散気管4,4,4,4とを連結する管路の途中には、
開閉度調整可能なバルブ15a,15b,15c,15
dが配備されている。
A stirring mechanism 10 is provided inside the anaerobic tank 1a.
Are arranged in the aerobic tanks 2a, 2b, 2c, 2d, and air diffusers 4, 4, 4, 4 serving as air blowing mechanisms are arranged in the aerobic tanks 2a, 2b, 2c, 2d, and air is supplied to the air diffusers 4, 4, 4, 4 outside. The blower 5 for supplying is provided. And, in the middle of the pipeline connecting the blower 5 and each of the diffusers 4, 4, 4, 4.
Valves 15a, 15b, 15c, 15 whose degree of opening and closing can be adjusted
d is deployed.

【0023】本実施例では、上記好気槽2a,2b,2
c,2dに各々pH計13a,13b,13c,13d
が配置されており、各pH計の測定値がコントローラ1
6に入力されている。そして該コントローラ16の出力
信号が前記ブロワ5と各バルブ15a,15b,15
c,15dに入力されている。6は硝化液循環ポンプ、
7は最終沈澱池、8は汚泥返送ポンプ、9は余剰汚泥引
抜ポンプである。
In the present embodiment, the aerobic tanks 2a, 2b, 2
pH meter 13a, 13b, 13c, 13d on c and 2d, respectively
Is installed, and the measured value of each pH meter is the controller 1
It has been entered in 6. The output signal of the controller 16 is transmitted to the blower 5 and the valves 15a, 15b, 15
It is input to c and 15d. 6 is a nitrification solution circulation pump,
7 is a final settling tank, 8 is a sludge return pump, and 9 is an excess sludge drawing pump.

【0024】かかる装置の基本的作用は以下の通りであ
る。図1に示したように、先ず廃棄物としての原水3が
嫌気槽1aへ流入し、水中にある撹拌機構10の撹拌作
用と脱窒細菌の作用に基づいて、NO3−N、NO2−N
イオンのN2への還元、即ち脱窒が行われる。
The basic operation of such a device is as follows. As shown in FIG. 1, first, raw water 3 as waste flows into the anaerobic tank 1a, based on the stirring action and the action of denitrifying bacteria stirring mechanism 10 in the water, NO 3 -N, NO 2 - N
The reduction of the ions to N 2 is performed, that is, denitrification.

【0025】次に原水は複数段の好気槽2a,2b,2
c,2dに順次流入して、ブロワ5の駆動に伴って散気
管4,4,4,4からのエアレーションによる曝気が行
われ、硝化細菌の作用に基づいてアンモニア性窒素NH
4−NのNO2−N又はNO3−Nへの酸化、即ち硝化が
行われる。
Next, the raw water is a multi-stage aerobic tank 2a, 2b, 2
c, 2d, and the aeration by aeration from the diffusers 4, 4, 4 and 4 is performed as the blower 5 is driven, and the ammonia nitrogen NH 3 is generated based on the action of nitrifying bacteria.
Oxidation of 4- N to NO 2 -N or NO 3 -N, that is, nitrification is performed.

【0026】上記の作用時において、好気槽2a,2
b,2c,2dから別々にサンプリングされた試料のp
Hが、各々のpH計13a,13b,13c,13dに
よって測定され、各pH計の測定値に基づいてコントロ
ーラ16によって硝化反応が進行中であるか、もしくは
終了しているかの判断が行われて、該コントローラ16
から前記ブロワ5及び各バルブ15a,15b,15
c,15dへ駆動制御信号が出力されて、ブロワ5から
各好気槽2a,2b,2c,2dに対する送風量が適宜
制御される。
During the above operation, the aerobic tanks 2a, 2a
p of samples sampled separately from b, 2c and 2d
H is measured by each of the pH meters 13a, 13b, 13c, 13d, and based on the measured value of each pH meter, the controller 16 determines whether the nitrification reaction is in progress or has ended. , The controller 16
From the blower 5 and the valves 15a, 15b, 15
A drive control signal is output to c, 15d, and the blower 5 appropriately controls the amount of air blown to the aerobic tanks 2a, 2b, 2c, 2d.

【0027】図2は嫌気槽1aと各好気槽2a,2b,
2c,2dにおけるpH値とNOX−N濃度(mg/
l),即ち硝化特性をプロットしたグラフであり、この
例では好気槽2a,2b,2c,2dの各槽でNOX
Nの値が上昇しており、従って好気槽2dでも硝化反応
が終了していないことを示している。そしてこの時の各
pH計13a,13b,13c,13dの測定値は、好
気槽2aから好気槽2b,2c,2dに向けて順次減少
していることが観察された。
FIG. 2 shows an anaerobic tank 1a and aerobic tanks 2a, 2b,
2c, pH value in the 2d and NO X -N concentration (mg /
1), that is, a graph plotting nitrification characteristics, in this example, NO X − in each of the aerobic tanks 2a, 2b, 2c, 2d.
The value of N is increasing, which means that the nitrification reaction is not completed even in the aerobic tank 2d. Then, it was observed that the measured values of the respective pH meters 13a, 13b, 13c, 13d at this time gradually decreased from the aerobic tank 2a toward the aerobic tanks 2b, 2c, 2d.

【0028】一方、図3は図2と硝化条件を変えて硝化
反応を進行させ、上記と同様にpHとNOX−Nの測定
を実施した結果であり、この例では好気槽2cの段階で
硝化反応がほぼ終了している。そして各pH計による測
定値は、好気槽2bでpH7.2,好気槽2cでpH
7.2,好気槽2dでpH7.3であった。
On the other hand, FIG. 3 shows the results of measuring the pH and NO X -N in the same manner as above, by advancing the nitrification reaction under different nitrification conditions from FIG. 2, and in this example, the stage of the aerobic tank 2c. The nitrification reaction has almost finished. And the measured value by each pH meter is pH 7.2 in the aerobic tank 2b and pH in the aerobic tank 2c.
7.2, pH was 7.3 in aerobic tank 2d.

【0029】図3から分かるように、原水3が各好気槽
2a,2b,2c,2d内を順次流通している間に硝化
反応が終了すると、pH値は略一定となるか、もしくは
若干上昇している。このような測定結果から、各好気槽
2a,2b,2c,2d内のpH値をモニタリングする
ことによって硝化反応の進行状況が把握可能であること
が判明した。
As can be seen from FIG. 3, when the nitrification reaction is completed while the raw water 3 is sequentially flowing in the aerobic tanks 2a, 2b, 2c, 2d, the pH value becomes substantially constant or slightly. It is rising. From such measurement results, it was found that the progress of the nitrification reaction can be grasped by monitoring the pH value in each aerobic tank 2a, 2b, 2c, 2d.

【0030】更に図1において、好気槽2dの硝化液が
硝化液循環ポンプ6を用いて嫌気槽1aに送り込まれる
ことにより、該嫌気槽1aでの脱窒効果が促進される。
特に廃水中のリンは嫌気槽1a内で放出され、好気槽2
a,2b,2c,2d内で活性汚泥に取り込まれて除去
される。
Further, in FIG. 1, the nitrification solution in the aerobic tank 2d is fed into the anaerobic tank 1a by using the nitrification solution circulation pump 6, whereby the denitrification effect in the anaerobic tank 1a is promoted.
Particularly, phosphorus in the wastewater is released in the anaerobic tank 1a and the aerobic tank 2
It is taken into and removed by the activated sludge in a, 2b, 2c and 2d.

【0031】更に最終沈澱池7内に沈降した汚泥の一部
は、汚泥返送ポンプ8により嫌気槽1aに返送され、他
の汚泥は余剰汚泥引抜ポンプ9によって図外の余剰汚泥
処理装置に送り込まれて処理される。最終沈澱池7の上
澄液は処理水11として図外の消毒槽等を経由してから
放流される。
Further, a part of the sludge settled in the final settling basin 7 is returned to the anaerobic tank 1a by the sludge return pump 8, and the other sludge is sent to the surplus sludge treatment device (not shown) by the surplus sludge drawing pump 9. Will be processed. The supernatant of the final settling tank 7 is discharged as treated water 11 after passing through a disinfection tank (not shown).

【0032】上記実施例では、好気槽を合計4槽設けた
例を説明したが、複数段の好気槽内のpH値をモニタリ
ングするという本実施例の特徴的方法から考慮して、好
気槽は少なくとも3槽以上設けることが必要である。
In the above embodiment, an example in which a total of 4 aerobic tanks are provided has been described, but in consideration of the characteristic method of this embodiment of monitoring the pH value in a plurality of stages of aerobic tanks, it is preferable. It is necessary to provide at least three air tanks.

【0033】以上説明したように、本実施例にかかる活
性汚泥循環変法の運転制御方法によれば、各好気槽2
a,2b,2c,2dに配置したpH計によるモニタリ
ングを実施することによって好気槽における硝化反応の
終了時点を判断して、ブロワ5及び各バルブ15a,1
5b,15c,15dの開度を調整することにより、硝
化効率を高めるとともに余分なDO濃度の上昇を抑え、
嫌気槽における脱窒効果を高めるようにしたことが特徴
となっている。
As described above, according to the operation control method of the modified activated sludge circulation method according to this embodiment, each aerobic tank 2
The end time of the nitrification reaction in the aerobic tank is determined by monitoring with a pH meter disposed in a, 2b, 2c, 2d, and the blower 5 and each valve 15a, 1
By adjusting the openings of 5b, 15c and 15d, the nitrification efficiency is increased and the increase of the excess DO concentration is suppressed,
It is characterized by enhancing the denitrification effect in the anaerobic tank.

【0034】[0034]

【発明の効果】以上詳細に説明したように、本発明にか
かる活性汚泥循環変法の運転制御方法によれば、原水が
嫌気槽で脱窒され、好気槽での曝気と硝化細菌の作用に
基づく硝化が行われる一方、各槽からサンプリングされ
た試料のpHを別々に測定することにより、硝化反応が
進行中であるか、もしくは終了しているかの判断を行う
ことが可能となり、ブロワの駆動及び送風量調整バルブ
の開度を制御することによって好気槽における硝化効率
を高め、且つ嫌気槽における脱窒効果を高めることがで
きる。
As described above in detail, according to the operation control method of the modified activated sludge circulation method according to the present invention, the raw water is denitrified in the anaerobic tank, and the aeration and the action of nitrifying bacteria in the aerobic tank are performed. While nitrification is performed based on, it is possible to determine whether the nitrification reaction is in progress or completed by separately measuring the pH of the sample sampled from each tank. The nitrification efficiency in the aerobic tank can be enhanced and the denitrification effect in the anaerobic tank can be enhanced by controlling the opening of the drive and air flow adjusting valve.

【0035】特に嫌気−好気活性汚泥処理法によって効
率的に窒素を除去するためには、嫌気槽における脱窒と
好気槽における硝化を最適な運転条件に保持することが
要求される上、窒素除去工程は硝化工程に影響される度
合が高いため、高い窒素除去率を維持するには硝化反応
と脱窒反応のバランスを良好に保持することが要求され
るものであるが、本発明では硝化反応のモニタリングを
実施することにより、好気槽内のDO濃度が必要以上に
高くならないように管理して、硝化菌によるアンモニア
性窒素の硝化時のDOの持ち込みで硝化液の循環による
嫌気槽での脱窒反応が阻害されることがないという効果
が得られ、嫌気−好気活性汚泥処理の効率的な運転制御
方法を確立することができる。
Particularly, in order to remove nitrogen efficiently by the anaerobic-aerobic activated sludge treatment method, it is required to maintain denitrification in the anaerobic tank and nitrification in the aerobic tank under optimum operating conditions. Since the nitrogen removal step is highly influenced by the nitrification step, it is required to maintain a good balance between the nitrification reaction and the denitrification reaction in order to maintain a high nitrogen removal rate. By monitoring the nitrification reaction, the DO concentration in the aerobic tank will be controlled so that it will not be higher than necessary, and the anaerobic tank will circulate the nitrification solution by bringing in the DO during nitrification of ammonia nitrogen by nitrifying bacteria. It is possible to obtain the effect that the denitrification reaction in step 2 is not hindered, and an efficient operation control method for anaerobic-aerobic activated sludge treatment can be established.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる活性汚泥循環変法の運転制御方
法の一実施例を示す概要図。
FIG. 1 is a schematic diagram showing an embodiment of an operation control method of a modified activated sludge circulation method according to the present invention.

【図2】本実施例における各好気槽のpH値と硝化特性
の相関を示すグラフ。
FIG. 2 is a graph showing the correlation between the pH value and nitrification characteristics of each aerobic tank in this example.

【図3】本実施例の他の硝化条件下における各好気槽の
pH値と硝化特性の相関を示すグラフ。
FIG. 3 is a graph showing the correlation between the pH value of each aerobic tank and nitrification characteristics under other nitrification conditions of this example.

【図4】従来の嫌気−好気活性汚泥処理の一例を示す概
要図。
FIG. 4 is a schematic diagram showing an example of conventional anaerobic-aerobic activated sludge treatment.

【符号の説明】[Explanation of symbols]

1a…嫌気槽 2a,2b,2c,2d…好気槽 4…散気管 5…ブロワ 6…硝化液循環ポンプ 7…最終沈澱池 8…汚泥返送ポンプ 9…余剰汚泥引抜ポンプ 10…撹拌機構 12…仕切板 13a,13b,13c,13d…pH計 15a,15b,15c,15d…バルブ 16…コントローラ 1a ... Anaerobic tank 2a, 2b, 2c, 2d ... Aerobic tank 4 ... Diffuser pipe 5 ... Blower 6 ... Nitrification liquid circulation pump 7 ... Final sedimentation tank 8 ... Sludge return pump 9 ... Excess sludge extraction pump 10 ... Stirring mechanism 12 ... Partition plate 13a, 13b, 13c, 13d ... pH meter 15a, 15b, 15c, 15d ... Valve 16 ... Controller

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原水を嫌気槽で脱窒細菌により脱窒を行
う工程と、複数段の好気槽でエアレーション及び硝化細
菌の作用により硝化を行う工程と、沈澱槽で固液分離し
て上澄液を処理水として放流する工程とを含む活性汚泥
循環変法処理において、 上記複数段の好気槽に夫々pH計を配置して、各好気槽
から別々にサンプリングした試料のpHを測定して硝化
反応が進行中であるか、もしくは終了しているかを判断
し、この判断結果から各好気槽に対する送風量を適宜制
御するようにしたことを特徴とする活性汚泥循環変法の
運転制御方法。
1. A step of denitrifying raw water by denitrifying bacteria in an anaerobic tank, a step of nitrifying by aeration and action of nitrifying bacteria in a plurality of aerobic tanks, and solid-liquid separation in a precipitation tank. In a modified activated sludge circulation process including a step of discharging a clear liquid as treated water, pH meters are respectively arranged in the aerobic tanks of the above-mentioned stages, and the pH of a sample sampled separately from each aerobic tank is measured. It is judged whether the nitrification reaction is in progress or has ended, and the amount of air blown to each aerobic tank is appropriately controlled based on this judgment result. Control method.
【請求項2】 原水を嫌気槽で脱窒細菌により脱窒を行
う工程と、複数段の好気槽でエアレーション及び硝化細
菌の作用により硝化を行う工程と、沈澱槽で固液分離し
て上澄液を処理水として放流する工程とを含む活性汚泥
循環変法処理において、 上記複数段の好気槽に夫々pH計を配置して、各好気槽
から別々にサンプリングした試料のpHを測定し、この
測定値に基づいてコントローラが各好気槽の硝化特性を
判断して、エアレーション用のブロワ及び各送風量調整
バルブの開度を適宜にコントロールする制御信号を出力
するようにしたことを特徴とする活性汚泥循環変法の運
転制御方法。
2. A step of denitrifying raw water by denitrifying bacteria in an anaerobic tank, a step of nitrifying by the action of aeration and nitrifying bacteria in a plurality of aerobic tanks, and solid-liquid separation in a precipitation tank. In a modified activated sludge circulation process including a step of discharging a clear liquid as treated water, pH meters are respectively arranged in the aerobic tanks of the above-mentioned stages, and the pH of a sample sampled separately from each aerobic tank is measured. Then, the controller determines the nitrification characteristics of each aerobic tank based on this measurement value and outputs a control signal that appropriately controls the opening of the blower for aeration and each air flow rate adjusting valve. A method for controlling the operation of the modified activated sludge circulation method.
【請求項3】 上記嫌気−好気槽は、同一の生物反応槽
を仕切板で区切って構成され、且つ好気槽は少なくとも
3区画以上に分割構成した請求項1,2記載の活性汚泥
循環変法の運転制御方法。
3. The activated sludge circulation according to claim 1, wherein the anaerobic-aerobic tank is constructed by partitioning the same biological reaction tank with a partition plate, and the aerobic tank is divided into at least three compartments. Modified operation control method.
JP17347593A 1993-07-14 1993-07-14 Method for controlling operation of activated sludge circulation modified method Pending JPH0724493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17347593A JPH0724493A (en) 1993-07-14 1993-07-14 Method for controlling operation of activated sludge circulation modified method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17347593A JPH0724493A (en) 1993-07-14 1993-07-14 Method for controlling operation of activated sludge circulation modified method

Publications (1)

Publication Number Publication Date
JPH0724493A true JPH0724493A (en) 1995-01-27

Family

ID=15961181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17347593A Pending JPH0724493A (en) 1993-07-14 1993-07-14 Method for controlling operation of activated sludge circulation modified method

Country Status (1)

Country Link
JP (1) JPH0724493A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012425A (en) * 2006-07-05 2008-01-24 Nippon Steel Corp Method and apparatus for removing phosphorus and nitrogen from sewage
CN108046540A (en) * 2018-01-22 2018-05-18 云南合续环境科技有限公司 A kind of synchronous nitration and denitrification sewage water treatment method and its device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012425A (en) * 2006-07-05 2008-01-24 Nippon Steel Corp Method and apparatus for removing phosphorus and nitrogen from sewage
CN108046540A (en) * 2018-01-22 2018-05-18 云南合续环境科技有限公司 A kind of synchronous nitration and denitrification sewage water treatment method and its device

Similar Documents

Publication Publication Date Title
US5611927A (en) System for removing nutrients from wastewater
JPH0716595A (en) Operation control method in modified method for circulating active sludge
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP3379199B2 (en) Operation control method of activated sludge circulation method
JPH07136687A (en) Operation control method for modified active sludge circulation process in low water temperature period
JPH0724493A (en) Method for controlling operation of activated sludge circulation modified method
JP3942488B2 (en) Control method and apparatus for intermittent aeration method
JP3608256B2 (en) Operation control method for circulating nitrification denitrification
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JPH0631291A (en) Sewage treatment device
JPH0947780A (en) Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor
JPH08294698A (en) Measurement of activity of nitro-bacteria in sewage treatment facilities
JP3303475B2 (en) Operation control method of activated sludge circulation method
JPH0691292A (en) Operation control method of aerobic-anaerobic active sludge treatment apparatus
JP3782738B2 (en) Wastewater treatment method
JPH05192688A (en) Anaerobic-aerobic activated sludge treating device using buffer tank
JPH08323393A (en) Water quality simulator for circulation type nitrification and denitirification method
JPH08192179A (en) Device for setting residence time of sludge in activated sludge process
JPH08117789A (en) Operation control of two-stage activated sludge circulation variation
JPH07275888A (en) Nitration accelerating method of activated sludge circulation modified method
JP3634403B2 (en) Denitrification and dephosphorization methods in oxidation ditch
JPH05317884A (en) Anaerobic-aerobic activated sludge treating device
JPH091184A (en) Treatment of waste water