JPH09105412A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH09105412A
JPH09105412A JP7263162A JP26316295A JPH09105412A JP H09105412 A JPH09105412 A JP H09105412A JP 7263162 A JP7263162 A JP 7263162A JP 26316295 A JP26316295 A JP 26316295A JP H09105412 A JPH09105412 A JP H09105412A
Authority
JP
Japan
Prior art keywords
rotary shaft
bearing
radial
rotation
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7263162A
Other languages
Japanese (ja)
Inventor
Yasushi Maejima
靖 前島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Seiki KK
Original Assignee
Seiko Seiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Seiki KK filed Critical Seiko Seiki KK
Priority to JP7263162A priority Critical patent/JPH09105412A/en
Priority to PCT/JP1996/002812 priority patent/WO1997013985A1/en
Publication of JPH09105412A publication Critical patent/JPH09105412A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/02Relieving load on bearings using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid bringing a protection bearing into a state to make contact with a rotary shaft during the rise of rotation of the rotary shaft, to prevent the occurrence of co-rotation, and to normally increase the number of revolutions up to the ordinary number of revolutions. SOLUTION: A conical trapezoidal part 24 having a taper surface (even a contact surface having a curvature mey be employed) axially linearly changed is formed between the large part 21 and the middle part 22 of a rotary shaft 2. The taper surface of the conical trapezoidal part 24 is formed in such a manner to make contact with the edge on the inner surface side of the inner ring 17 of a protection bearing 7. This constitution brings the taper surface of the conical trapezoidal part 24 of the rotary shaft 2 into contact with the edge on the inner surface side of the protection bearing 7. Thus, since, during the rise of rotation of the rotary shaft 2, whirling of the rotary shaft 2 is supported by a protection bearing 7 through the taper surface of the trapezoidal conical part 24, swirling of the rotary shaft 2 is suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ターボ分子ポンプや工
作機械の主軸などに応用される磁気軸受装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing device applied to a turbo molecular pump or a main shaft of a machine tool.

【0002】[0002]

【従来の技術】従来、ターボ分子ポンプに組み込まれて
使用される磁気軸受装置としては、例えば図8に示すよ
うな3軸制御型のものが知られている。この磁気軸受装
置は、両端が開口する円筒型の取付枠1を有し、この取
付枠1内の中央に回転軸2を駆動する高周波モータ3を
配置させている。回転軸2は、半径方向をラジアル軸受
4で磁気的に支持させるとともに、その軸方向をスラス
ト軸受5で磁気的に支持させるように構成されている。
2. Description of the Related Art Conventionally, as a magnetic bearing device incorporated in a turbo molecular pump and used, for example, a triaxial control type as shown in FIG. 8 is known. This magnetic bearing device has a cylindrical mounting frame 1 whose both ends are open, and a high frequency motor 3 for driving a rotating shaft 2 is arranged in the center of the mounting frame 1. The rotary shaft 2 is configured to be magnetically supported in the radial direction by a radial bearing 4 and magnetically supported in the axial direction by a thrust bearing 5.

【0003】ラジアル軸受4は、取付枠1の内周面に取
り付けられた半径方向電磁石41と、半径方向電磁石4
1に対応して回転軸2に取り付けられた回転子鉄心42
とから形成される。スラスト軸受5は、取付枠1の内周
面に取り付けた軸方向電磁石51と、回転軸2の下端部
に一体に取り付けたアーマチャディスク52および永久
磁石53と、この永久磁石53に対向する永久磁石54
とから形成される。取付枠1の上側の内周面と軸方向電
磁石51の内周面には、回転軸2の異常回転などからラ
ジアル軸受4またはスラスト軸受5を保護するために、
ころがり軸受などの保護軸受6、7が設けられている。
The radial bearing 4 includes a radial electromagnet 41 mounted on the inner peripheral surface of the mounting frame 1 and a radial electromagnet 4.
Rotor core 42 attached to rotary shaft 2 corresponding to 1
And formed from The thrust bearing 5 includes an axial electromagnet 51 attached to the inner peripheral surface of the mounting frame 1, an armature disc 52 and a permanent magnet 53 integrally attached to the lower end of the rotary shaft 2, and a permanent magnet facing the permanent magnet 53. 54
And formed from In order to protect the radial bearing 4 or the thrust bearing 5 from the abnormal rotation of the rotary shaft 2 and the like on the inner peripheral surface on the upper side of the mounting frame 1 and the inner peripheral surface of the axial electromagnet 51,
Protective bearings 6, 7 such as rolling bearings are provided.

【0004】回転軸2は、大径部21と、保護軸受7に
挿通される中径部22と、アーマチャディスク53など
を取り付ける小径部23からなり、これらは大径部2
1、中径部22、小径部23の順でその径が小さくなる
ように形成されている。回転軸2の小径部23にスペー
サ8、アーマチャディスク52、および永久磁石53を
挿通させたのち、ナット9を小径部23の先端にネジ結
合することにより、アーマチャディスク52および永久
磁石53を小径部23の所定位置に固定させるととも
に、アーマチャディスク52を軸方向電磁石51に対向
させている。
The rotating shaft 2 comprises a large diameter portion 21, a medium diameter portion 22 inserted into the protective bearing 7, and a small diameter portion 23 to which an armature disc 53 and the like are attached.
1, the medium diameter portion 22 and the small diameter portion 23 are formed so that the diameter thereof becomes smaller in this order. After inserting the spacer 8, the armature disk 52, and the permanent magnet 53 into the small-diameter portion 23 of the rotating shaft 2, the nut 9 is screwed to the tip of the small-diameter portion 23, whereby the armature disk 52 and the permanent magnet 53 are joined together. The armature disc 52 is fixed to a predetermined position of 23 and the axial electromagnet 51 is opposed to the armature disc 52.

【0005】取付枠1の内周面には、回転軸2の半径方
向の変位を検出する半径方向センサ10を取り付けてい
る。また、回転軸2の軸方向の下方の所定位置には、回
転軸2の軸方向の変位を検出する軸方向センサ11を固
定状態で配置させている。次に、図8に示す磁気軸受装
置の動作について説明すると、回転軸2が半径方向電磁
石41と軸方向電磁石51とによって磁気浮上される。
そして、半径方向センサ10が回転軸2の半径方向の変
位を検出するとともに、軸方向センサ11が回転軸2の
軸方向の変位を検出し、この両検出変位が図示しない制
御回路に入力される。制御回路は、その検出変位に基づ
いて回転軸2の半径方向および軸方向の位置をそれぞれ
求め、その求めた位置を回転軸2の目標位置と比較し、
回転軸2が目標位置になるように、半径方向電磁石41
および軸方向電磁石51の各励磁電流を制御している。
A radial sensor 10 for detecting the radial displacement of the rotary shaft 2 is mounted on the inner peripheral surface of the mounting frame 1. Further, an axial direction sensor 11 for detecting the axial displacement of the rotary shaft 2 is arranged in a fixed state at a predetermined position below the rotary shaft 2 in the axial direction. Next, the operation of the magnetic bearing device shown in FIG. 8 will be described. The rotating shaft 2 is magnetically levitated by the radial electromagnet 41 and the axial electromagnet 51.
The radial sensor 10 detects the radial displacement of the rotary shaft 2, the axial sensor 11 detects the axial displacement of the rotary shaft 2, and both detected displacements are input to a control circuit (not shown). . The control circuit obtains the radial position and the axial position of the rotary shaft 2 based on the detected displacement, and compares the obtained position with the target position of the rotary shaft 2,
The radial electromagnet 41 is set so that the rotary shaft 2 is at the target position.
And each exciting current of the axial electromagnet 51 is controlled.

【0006】このようにして目標位置に磁気浮上した回
転軸2は、高周波モータ3への通電が行われると、静止
状態から徐々に加速されて定格回転数に移行していく。
When the high frequency motor 3 is energized, the rotating shaft 2 magnetically levitated at the target position in this way is gradually accelerated from the stationary state to the rated speed.

【0007】[0007]

【発明が解決しようとする課題】ところが、この回転軸
2の回転の立上げの際に、回転軸2の回転数が1次共振
点(剛性モードの共振点)付近に達するときに、回転軸
2が大きく振れ回る。しかし、ターボ分子ポンプに使用
される従来の3軸制御型の磁気軸受装置では、上記回転
軸2の立ち上げ時における回転軸2の振れ回りを制御ま
たは防止する手段が特に設けられてはいなかった。
However, when the rotation of the rotary shaft 2 is started up, when the rotational speed of the rotary shaft 2 reaches the vicinity of the primary resonance point (resonance point of the rigid mode), the rotary shaft 2 is rotated. 2 swings around greatly. However, in the conventional three-axis control type magnetic bearing device used for the turbo molecular pump, no means for controlling or preventing whirling of the rotary shaft 2 at the time of starting the rotary shaft 2 is particularly provided. .

【0008】このため、回転軸2が保護軸受7に不規則
に衝突したり、または衝突後に接触状態になり、保護軸
受7が回転軸2と一体に連れ回って回転数が上がらず定
格回転数に到達しないという欠点があった。そこで、本
発明は、回転軸の回転の立上り時に、保護軸受と回転軸
が接触状態になり連れ回ることを避け、もって正常に回
転数を上げて定常回転数に到達させることを目的とす
る。
For this reason, the rotating shaft 2 randomly collides with the protective bearing 7 or comes into contact with the protective bearing 7 after the collision, and the protective bearing 7 rotates together with the rotating shaft 2 so that the rotating speed does not increase and the rated rotating speed is reached. It had the drawback of not reaching. Therefore, it is an object of the present invention to prevent the protective bearing and the rotating shaft from coming into contact with each other at the start of rotation of the rotating shaft, and thereby to rotate the rotating shaft normally to reach a steady rotating speed.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明で
は、回転軸と、この回転軸の半径方向を磁気的に支持す
るラジアル軸受と、前記回転軸の軸方向を磁気的に支持
するスラスト軸受と、前記ラジアル軸受および前記スラ
スト軸受を保護する保護軸受とを備えた3軸制御型の磁
気軸受装置に、前記回転軸と前記保護軸受とを接触自在
に形成し、前記回転軸の回転の立上り時に、前記回転軸
と前記保護軸受とが一時的に接触するように制御する制
御手段を具備させて前記目的を達成する。
According to a first aspect of the present invention, there is provided a rotary shaft, a radial bearing for magnetically supporting the radial direction of the rotary shaft, and a thrust for magnetically supporting the axial direction of the rotary shaft. The rotary shaft and the protective bearing are formed so as to be freely contactable with each other in a three-axis control type magnetic bearing device including a bearing and a protective bearing that protects the radial bearing and the thrust bearing. The object is achieved by providing control means for controlling the rotating shaft and the protective bearing so as to temporarily contact each other at the time of rising.

【0010】請求項2記載の発明では、請求項1記載の
磁気軸受装置において、前記回転軸と前記保護軸受との
接触部において、前記回転軸と前記保護軸受との少なく
とも一方に傾斜面を形成させ、前記回転軸と前記保護軸
受とを接触させるようにしたことで前記目的を達成す
る。
According to a second aspect of the present invention, in the magnetic bearing device according to the first aspect, an inclined surface is formed on at least one of the rotary shaft and the protective bearing at a contact portion between the rotary shaft and the protective bearing. The rotating shaft and the protective bearing are brought into contact with each other to achieve the above object.

【0011】請求項3記載の発明では、回転軸と、この
回転軸の半径方向を磁気的に支持するラジアル軸受と、
前記回転軸の軸方向を磁気的に支持するスラスト軸受
と、前記ラジアル軸受および前記スラスト軸受を保護す
る保護軸受とを備えた3軸制御型の磁気軸受装置に、前
記回転軸の振れ回りを抑制する回転軸振れ回り抑制用軸
受を備え、前記回転軸の回転の立上り時に、前記回転軸
振れ回り抑制用軸受が前記回転軸を一時的に軸受けする
ように制御する制御手段を備えたことで前記目的を達成
する。
According to a third aspect of the present invention, a rotary shaft and a radial bearing that magnetically supports the rotary shaft in the radial direction,
A three-axis control type magnetic bearing device including a thrust bearing that magnetically supports the rotating shaft in the axial direction and a protective bearing that protects the radial bearing and the thrust bearing, and suppresses whirling of the rotating shaft. By providing a rotating shaft whirling suppressing bearing, when the rotation of the rotating shaft rises, the rotating shaft whirling suppressing bearing is provided with control means for controlling the bearing to temporarily support the rotating shaft. Achieve the purpose.

【0012】[0012]

【作用】請求項1記載の発明では、制御手段が、回転軸
の回転の立上り時に、回転軸と保護軸受とが一時的に接
触するように制御するので、回転軸の振れ回りが保護軸
受で受けられて、回転軸の振れ回りが抑制される。
According to the present invention, the control means controls the rotary shaft so that the rotary shaft and the protective bearing temporarily contact each other when the rotation of the rotary shaft rises. By being received, whirling of the rotating shaft is suppressed.

【0013】請求項2記載の発明では、回転軸の回転の
立上り時に、回転軸と保護軸受とが一時的に接触され、
回転軸の振れ回りが保護軸受で受けられるので、回転軸
の振れ回りが抑制される。請求項3記載の発明では、制
御手段が、回転軸の回転の立上り時に、回転軸振れ回り
抑制用軸受が回転軸を一時的に軸受けするように制御す
るので、回転軸の振れ回りが回転軸振れ回り抑制用軸受
で受けられて、回転軸の振れ回りが抑制される。
According to the second aspect of the invention, when the rotation of the rotary shaft rises, the rotary shaft and the protective bearing are temporarily contacted,
Since the whirling of the rotating shaft is received by the protective bearing, the whirling of the rotating shaft is suppressed. In the invention according to claim 3, since the control means controls the rotation shaft whirling suppression bearing so as to temporarily support the rotation shaft when the rotation of the rotation shaft rises. It is received by the whirling suppression bearing, and whirling of the rotating shaft is suppressed.

【0014】[0014]

【実施例】以下、本発明の実施例を図1ないし図7を参
照して詳細に説明する。図1は、本発明の第1実施例の
磁気軸受装置において、要部であるスラスト軸受5およ
び保護軸受7の部分の構成を表したものである。なお、
第1実施例の磁気軸受装置は、スラスト軸受5および保
護軸受7の部分を除き図8で説明した磁気軸受装置とほ
ぼ同様の構成であるので、同一部分には同一符号を付し
てその説明を適宜省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to FIGS. FIG. 1 shows the configuration of the thrust bearing 5 and the protective bearing 7, which are the main parts, in the magnetic bearing device of the first embodiment of the present invention. In addition,
The magnetic bearing device according to the first embodiment has substantially the same configuration as the magnetic bearing device described in FIG. 8 except for the thrust bearing 5 and the protective bearing 7, and therefore, the same parts are designated by the same reference numerals. Are omitted as appropriate.

【0015】この磁気軸受装置では、図1に示すよう
に、回転軸2の大径部21と中径部22との間に、軸方
向に直線的に変化するテーパ面を有する円錐台形部24
を形成させるとともに、この円錐台形部24のテーパ面
が保護軸受7の内輪71の内面側端縁に接触自在に形成
させる。円錐台形部24の接触面(テーパ面)は、図4
(A)に示す円錐台形部24Aまたは図4(B)に示す
円錐台形部24Bのように、曲率を持つ接触面、すなわ
ち軸方向に曲線的に変化する接触面でも良い。また、円
錐台形部24と保護軸受7の内輪71との接触は、3点
以上で接触する構成であれば良い。
In this magnetic bearing device, as shown in FIG. 1, a frustoconical portion 24 having a tapered surface linearly changing in the axial direction is provided between the large diameter portion 21 and the medium diameter portion 22 of the rotary shaft 2.
The tapered surface of the truncated cone 24 is formed so as to be in contact with the inner surface side edge of the inner ring 71 of the protective bearing 7. The contact surface (tapered surface) of the truncated cone 24 is shown in FIG.
A contact surface having a curvature, that is, a contact surface that changes in a curved line in the axial direction may be used, such as the truncated cone portion 24A shown in FIG. 4A or the truncated cone portion 24B shown in FIG. Further, the frustoconical portion 24 and the inner ring 71 of the protective bearing 7 may come into contact with each other at three or more points.

【0016】図2は、図1の磁気軸受装置の制御系の構
成を表したものである。この磁気軸受装置の制御系は、
回転軸2の磁気浮上位置をラジアル軸受4およびスラス
ト軸受5の目標位置に制御するとともに、回転軸2の回
転の立上り時に回転軸2の振れ回りを抑制するために、
回転軸2の軸方向の位置を制御する制御回路12を備え
ている。
FIG. 2 shows the configuration of the control system of the magnetic bearing device of FIG. The control system of this magnetic bearing device is
In order to control the magnetic levitation position of the rotary shaft 2 to the target positions of the radial bearing 4 and the thrust bearing 5, and to suppress whirling of the rotary shaft 2 when the rotation of the rotary shaft 2 rises,
A control circuit 12 for controlling the axial position of the rotary shaft 2 is provided.

【0017】すなわち、制御回路12の入力側に半径方
向センサ10、軸方向センサ11、および回転軸2の回
転数を検出する回転数センサ16が接続され、制御回路
12の出力側に半径方向電磁石41および軸方向電磁石
51が接続されている。そして、制御回路12は、半径
方向センサ10と軸方向センサ11の両検出変位に基づ
いて回転軸2の位置を求め、その求めた回転軸2の位置
を目標位置と比較し、回転軸2が目標位置になるよう
に、半径方向電磁石41および軸方向電磁石51の各励
磁電流を制御するようになっている。さらに制御回路1
2は、上記の制御に加えて、回転軸2の回転の立上り時
に、回転軸2の円錐台形部24のテーパ面を保護軸受7
の内輪71の内面側端縁に一時的に接触させ、回転軸2
の振れ回りを抑制するための制御をするようになってい
る。
That is, the radial direction sensor 10, the axial direction sensor 11, and the rotation speed sensor 16 for detecting the rotation speed of the rotary shaft 2 are connected to the input side of the control circuit 12, and the radial electromagnet is connected to the output side of the control circuit 12. 41 and the axial electromagnet 51 are connected. Then, the control circuit 12 obtains the position of the rotating shaft 2 based on the detected displacements of both the radial sensor 10 and the axial sensor 11, compares the obtained position of the rotating shaft 2 with the target position, and Each exciting current of the radial electromagnet 41 and the axial electromagnet 51 is controlled so as to reach the target position. Further control circuit 1
In addition to the control described above, the reference numeral 2 designates a protective bearing for the tapered surface of the truncated cone 24 of the rotary shaft 2 when the rotation of the rotary shaft 2 rises.
Of the rotary shaft 2 by temporarily contacting the inner surface side edge of the inner ring 71 of
The control is performed to suppress the whirling.

【0018】次に、このように構成される第1実施例の
動作について説明する。いま、電源が投入されると、磁
気軸受装置の回転軸2は、半径方向電磁石41と軸方向
電磁石51とによって磁気浮上される。制御回路12に
は、半径方向センサ10が検出する回転軸2の半径方向
の変位と、軸方向センサ11が検出する回転軸2の軸方
向の変位とが入力される。制御回路12は、その検出変
位に基づいて回転軸2の半径方向と軸方向の位置を求
め、その求めた回転軸2の位置を目標位置と比較し、目
標位置になるように、半径方向電磁石41および軸方向
電磁石51の各励磁電流を制御する。
Next, the operation of the first embodiment configured as described above will be described. Now, when the power is turned on, the rotary shaft 2 of the magnetic bearing device is magnetically levitated by the radial electromagnet 41 and the axial electromagnet 51. The radial displacement of the rotary shaft 2 detected by the radial sensor 10 and the axial displacement of the rotary shaft 2 detected by the axial sensor 11 are input to the control circuit 12. The control circuit 12 calculates the radial and axial positions of the rotary shaft 2 based on the detected displacement, compares the calculated position of the rotary shaft 2 with the target position, and sets the radial electromagnet so that the target position is reached. Each exciting current of 41 and the axial electromagnet 51 is controlled.

【0019】ところで、回転軸2の回転の立上り時(開
始時)には、回転軸2の半径方向の目標位置はラジアル
軸受4の中心位置とする。回転軸2の軸方向の目標位置
は、図3(A)に示すように円錐台形部24のテーパ面
が保護軸受7の内輪71の内面側端縁と接触状態になる
位置とし、しかも回転軸2の自重がその内輪71の内面
側端縁にかからない状態とする。そのため、制御回路1
2は、その求めた回転軸2の半径方向と軸方向の位置が
その目標位置になり、しかも回転軸2の自重がその内輪
71の内面側端縁にかからない状態になるように、半径
方向電磁石41および軸方向電磁石51の各励磁電流を
制御する。
When the rotation of the rotary shaft 2 rises (starts), the radial target position of the rotary shaft 2 is the center position of the radial bearing 4. As shown in FIG. 3 (A), the axial target position of the rotary shaft 2 is a position where the tapered surface of the truncated cone portion 24 comes into contact with the inner surface side edge of the inner ring 71 of the protective bearing 7, and It is assumed that the own weight of No. 2 is not applied to the inner surface side edge of the inner ring 71. Therefore, the control circuit 1
2 is a radial electromagnet so that the determined radial and axial positions of the rotary shaft 2 are the target positions thereof, and that the weight of the rotary shaft 2 is not applied to the inner surface side edge of the inner ring 71. Each exciting current of 41 and the axial electromagnet 51 is controlled.

【0020】このようにして所定位置に磁気浮上した回
転軸2は、高周波モータ3への通電が行われると、静止
状態から徐々に加速されて定格回転数に移行していく。
ところが、この回転軸2の回転の立上げ時には、上述の
ように回転軸2の軸方向はその円錐台形部24のテーパ
面が保護軸受7の内輪71の内面側端縁と接触状態にな
るように制御されている。そのため、回転軸2の回転の
立上り時において、回転軸2の回転数が1次共振点(剛
性モードの共振点)付近に達しても、回転軸2の振れ回
りを円錐台形部24のテーパ面が保護軸受7で受けてい
るので、回転軸2は大きく振れ回ることはない。
When the high-frequency motor 3 is energized, the rotating shaft 2 magnetically levitated at the predetermined position in this way is gradually accelerated from the stationary state to the rated speed.
However, when the rotation of the rotary shaft 2 is started up, the tapered surface of the truncated cone 24 of the rotary shaft 2 is in contact with the inner surface side edge of the inner ring 71 of the protective bearing 7 in the axial direction of the rotary shaft 2 as described above. Controlled by. Therefore, even when the number of rotations of the rotary shaft 2 reaches the vicinity of the primary resonance point (resonance point of the rigid mode) at the rising of the rotation of the rotary shaft 2, the whirling of the rotary shaft 2 is reduced by the tapered surface of the truncated cone 24. Is received by the protective bearing 7, the rotary shaft 2 does not swing around greatly.

【0021】その後、回転数センサ16が検出する回転
軸2の回転数が1次共振点を通過すると、回転軸2の軸
方向の目標位置が定常回転の位置に変更されるので、回
転軸2は、図3(A)の状態から上昇して図3(B)に
示すように保護軸受7と非接触状態になる。回転軸2の
上昇時には、円錐台形部24がテーパ面を有するので、
その上昇は迅速かつ円滑に行われる。以後、回転軸2
は、その軸方向の位置が定常回転の位置になるように、
制御回路12により制御される。
After that, when the rotation speed of the rotation shaft 2 detected by the rotation speed sensor 16 passes the primary resonance point, the axial target position of the rotation shaft 2 is changed to the steady rotation position. 3 rises from the state of FIG. 3 (A) to be in a non-contact state with the protective bearing 7 as shown in FIG. 3 (B). When the rotating shaft 2 rises, the truncated cone portion 24 has a tapered surface,
The rise is quick and smooth. After that, the rotating shaft 2
So that its axial position is the position of steady rotation,
It is controlled by the control circuit 12.

【0022】以上述べた第1実施例によれば、回転軸2
の回転の立上り時に、回転軸2の円錐台形部24のテー
パ面を保護軸受7の内面側端縁に接触させるようにし
た。従って、回転軸2の回転の立上り時には、保護軸受
7と回転軸2が共振点を過ぎても連れ回ることが避けら
れ、もって定常回転数に到達させることができる。
According to the first embodiment described above, the rotary shaft 2
The tapered surface of the truncated cone portion 24 of the rotary shaft 2 is brought into contact with the inner surface side edge of the protective bearing 7 when the rotation of the rotary shaft rises. Therefore, when the rotation of the rotary shaft 2 rises, it is possible to avoid the protective bearing 7 and the rotary shaft 2 from entraining each other even after passing the resonance point, so that the steady rotation speed can be reached.

【0023】なお、上記の第1実施例では、回転軸2に
円錐台形部24を設け、この円錐台形部24のテーパ面
が保護軸受7の内輪71の内面側端縁に接触自在とし
た。しかし、本発明は、回転軸2と保護軸受7とが接触
自在とする構成であればその形態は問わず、例えば回転
軸2は図8と同様に構成し、この回転軸2の大径部21
の下端縁が保護軸受7の内輪71に接触自在になるよう
に、その内輪71の内面側を漏斗状に形成するようにし
てもよい。また、回転軸2と保護軸受7とは、回転軸2
の回転の立上がり時に、面接触するようにしてもよい。
この場合には、回転軸2の円錐台形部24が面接触する
ように、保護軸受7の内輪71の内面側を漏斗状に形成
させる。
In the first embodiment described above, the conical trapezoidal portion 24 is provided on the rotary shaft 2, and the tapered surface of the conical trapezoidal portion 24 is allowed to come into contact with the inner surface side edge of the inner ring 71 of the protective bearing 7. However, the present invention may have any form as long as the rotary shaft 2 and the protective bearing 7 can contact each other. For example, the rotary shaft 2 has the same structure as that shown in FIG. 21
The inner surface side of the inner ring 71 may be formed in a funnel shape so that the lower end edge of the inner ring 71 can freely contact the inner ring 71 of the protective bearing 7. In addition, the rotary shaft 2 and the protective bearing 7 are
The surface contact may be made at the start of the rotation.
In this case, the inner surface side of the inner ring 71 of the protective bearing 7 is formed in a funnel shape so that the frustoconical portion 24 of the rotary shaft 2 comes into surface contact.

【0024】次に、本発明の第2実施例の磁気軸受装置
について説明する。なお、この第2実施例の磁気軸受装
置は、スラスト軸受5および保護軸受7の部分を除き図
1で説明した磁気軸受装置とほぼ同様の構成であるの
で、同一部分には同一符号を付してその説明を適宜省略
する。
Next, a magnetic bearing device according to a second embodiment of the present invention will be described. The magnetic bearing device of the second embodiment has substantially the same configuration as the magnetic bearing device described in FIG. 1 except for the thrust bearing 5 and the protective bearing 7, and therefore the same parts are designated by the same reference numerals. The description thereof will be omitted as appropriate.

【0025】図5は、第2実施例の磁気軸受装置におい
て、スラスト軸受5および保護軸受7の部分の構成を表
したものである。この磁気軸受装置では、図5に示すよ
うに、回転軸2の下端部に取付けた永久磁石53に、軸
方向に直線的に変化するテーパ面を有する円錐台形部5
31を下方に向けて突設させるとともに、この円錐台形
部531が回転軸2の回転の立上り時に、回転軸2の振
れ回りを抑制する回転軸振れ回り抑制用軸受13に軸受
けされるように構成される。円錐台形部531の接触面
(テーパ面)は、軸方向に直線的に変化するのみなら
ず、軸方向に曲線的に変化するもの,すなわち曲率を持
つ接触面でも良い。
FIG. 5 shows the structure of the thrust bearing 5 and the protective bearing 7 in the magnetic bearing device of the second embodiment. In this magnetic bearing device, as shown in FIG. 5, the permanent magnet 53 attached to the lower end of the rotary shaft 2 has a truncated cone portion 5 having a tapered surface that linearly changes in the axial direction.
31 is provided so as to project downward, and the frustoconical portion 531 is configured to be borne by the rotary shaft whirling motion suppression bearing 13 that suppresses whirling of the rotary shaft 2 when the rotation of the rotary shaft 2 rises. To be done. The contact surface (tapered surface) of the truncated cone portion 531 may not only linearly change in the axial direction but also curved in the axial direction, that is, a contact surface having a curvature.

【0026】回転軸振れ回り抑制用軸受13は、ころが
り軸受などからなり、その内輪131の内面側が、永久
磁石53の円錐台形部531が挿通して軸受けできるよ
うに漏斗状に形成される。また、回転軸振れ回り抑制用
軸受13は、ソレノイド(図示せず)などの利用によ
り、図5で示す位置とその位置よりも下方の所定位置と
の間を往復動できるように構成される。
The rotary shaft whirling suppression bearing 13 is formed of a rolling bearing or the like, and the inner surface side of the inner ring 131 thereof is formed in a funnel shape so that the truncated cone-shaped portion 531 of the permanent magnet 53 can be inserted therethrough for bearing. Further, the rotation shaft whirling suppression bearing 13 is configured to be able to reciprocate between the position shown in FIG. 5 and a predetermined position below the position by using a solenoid (not shown) or the like.

【0027】なお、上記のように、永久磁石53側に円
錐台形部531を形成させ、これに対応して回転軸振れ
回り抑制用軸受13を漏斗状にするのは、後述のように
回転軸振れ回り抑制用軸受13が上昇、下降する際に、
その動作が円滑に行えるようにするためである。
As described above, the conical trapezoidal portion 531 is formed on the permanent magnet 53 side, and the rotary shaft whirling suppression bearing 13 is correspondingly formed into a funnel shape, as will be described later. When the whirling suppression bearing 13 moves up and down,
This is so that the operation can be performed smoothly.

【0028】図6は、図5の磁気軸受装置の制御系の構
成を表したものである。この磁気軸受装置の制御系で
は、回転軸2の磁気浮上位置をラジアル軸受4およびス
ラスト軸受5の目標位置に制御するとともに、回転軸2
の回転の立上り時に回転軸2の振れ回りを抑制するため
に、回転軸振れ回り抑制用軸受13の軸方向の位置を制
御する制御回路14を備えている。
FIG. 6 shows the configuration of the control system of the magnetic bearing device of FIG. In the control system of this magnetic bearing device, the magnetic levitation position of the rotary shaft 2 is controlled to the target positions of the radial bearing 4 and the thrust bearing 5, and the rotary shaft 2 is controlled.
In order to suppress whirling of the rotating shaft 2 when the rotation of the rotating shaft rises, a control circuit 14 that controls the axial position of the rotating shaft whirling suppressing bearing 13 is provided.

【0029】すなわち、制御回路14の入力側に半径方
向センサ10、軸方向センサ11、および回転軸2の回
転数を検出する回転数センサ16が接続され、その出力
側に半径方向電磁石41、軸方向電磁石51、および回
転軸振れ回り抑制用軸受13を上述のように往復動させ
るためのソレノイド15が接続されている。そして、制
御回路14は、半径方向センサ10と軸方向センサ11
の両検出変位に基づいて回転軸2の位置を求め、その求
めた回転軸2の位置を目標位置と比較し、回転軸2が目
標位置になるように、半径方向電磁石41および軸方向
電磁石51の各励磁電流を制御するようになっている。
さらに制御回路14は、上記の制御に加えて、回転軸2
の回転の立上り時に、回転軸2が回転軸振れ回り抑制用
軸受13に一時的に軸受けされるように、回転軸振れ回
り抑制用軸受13の位置を制御をするようになってい
る。
That is, the radial direction sensor 10, the axial direction sensor 11, and the rotation speed sensor 16 for detecting the rotation speed of the rotary shaft 2 are connected to the input side of the control circuit 14, and the radial electromagnet 41 and the shaft are connected to the output side thereof. The directional electromagnet 51 and the solenoid 15 for reciprocating the rotating shaft whirling suppression bearing 13 as described above are connected. Then, the control circuit 14 includes the radial sensor 10 and the axial sensor 11
The position of the rotary shaft 2 is calculated based on both detected displacements of the two, and the calculated position of the rotary shaft 2 is compared with the target position. Each exciting current is controlled.
In addition to the above control, the control circuit 14 further controls the rotary shaft 2
The position of the rotating shaft whirling motion suppressing bearing 13 is controlled so that the rotating shaft 2 is temporarily supported by the rotating shaft whirling motion suppressing bearing 13 at the start of rotation.

【0030】次に、このように構成される第2実施例の
動作について説明する。いま、電源が投入されると、磁
気軸受装置の回転軸2は、半径方向電磁石41と軸方向
電磁石51とによって磁気浮上される。制御回路14に
は、半径方向センサ10が検出する回転軸2の半径方向
の変位と、軸方向センサ11が検出する回転軸2の軸方
向の変位とが入力される。制御回路14は、その検出変
位に基づいて回転軸2の半径方向と軸方向の位置を求
め、その求めた回転軸2の位置を目標位置と比較し、目
標位置になるように、半径方向電磁石41および軸方向
電磁石51の各励磁電流を制御する。この回転軸2の回
転の開始に先立って、制御回路14がソレノイド15を
励磁するので、回転軸振れ回り抑制用軸受13は図7
(A)に示す位置にある。
Next, the operation of the second embodiment thus constructed will be described. Now, when the power is turned on, the rotary shaft 2 of the magnetic bearing device is magnetically levitated by the radial electromagnet 41 and the axial electromagnet 51. The radial displacement of the rotary shaft 2 detected by the radial sensor 10 and the axial displacement of the rotary shaft 2 detected by the axial sensor 11 are input to the control circuit 14. The control circuit 14 obtains the radial and axial positions of the rotary shaft 2 based on the detected displacement, compares the obtained position of the rotary shaft 2 with the target position, and sets the radial electromagnet so that the target position is reached. Each exciting current of 41 and the axial electromagnet 51 is controlled. Since the control circuit 14 excites the solenoid 15 prior to the start of the rotation of the rotary shaft 2, the rotary shaft whirling suppression bearing 13 is arranged in the direction shown in FIG.
It is in the position shown in FIG.

【0031】このようにして目標位置に磁気浮上した回
転軸2は、高周波モータ3への通電が行われると、静止
状態から徐々に加速されて定格回転数に移行していく。
ところが、この回転軸2の回転の立上げ時には、上述の
ように回転軸2と一体の永久磁石53の円錐台形部53
1が回転軸振れ回り抑制用軸受13に一時的に挿通して
軸受けされる。そのため、回転軸2の回転の立上り時に
おいて、回転軸2の回転数が1次共振点(剛性モードの
共振点)付近に達しても、回転軸2の振れ回りを磁石5
3の円錐台形部531のテーパ面が回転軸振れ回り抑制
用軸受13で受けているので、回転軸2の大きな振れ回
りが抑制される。
When the high frequency motor 3 is energized, the rotary shaft 2 magnetically levitated at the target position in this way is gradually accelerated from the stationary state to the rated speed.
However, when the rotation of the rotary shaft 2 is started up, as described above, the truncated cone portion 53 of the permanent magnet 53 integrated with the rotary shaft 2 is formed.
1 is temporarily inserted into the bearing 13 for suppressing whirling of the rotating shaft to be received. Therefore, even when the rotation speed of the rotating shaft 2 reaches the vicinity of the primary resonance point (resonance point of the rigid mode) at the start of rotation of the rotating shaft 2, the whirling motion of the rotating shaft 2 is caused by the magnet 5.
Since the tapered surface of the truncated cone-shaped portion 531 of No. 3 is received by the rotating shaft whirling suppression bearing 13, a large whirling of the rotating shaft 2 is suppressed.

【0032】その後、回転数センサ16が検出する回転
軸2の回転数が1次共振点を通過した時点で、制御回路
14がソレノイド15の励磁を解くので、回転軸振れ回
り抑制用軸受13は、図7(A)に示す位置から図7
(B)に示すように所定位置まで下降して永久磁石53
の円錐台形部531と非接触の状態となり、その状態を
維持する。以後は、回転軸2は目標位置になるように、
制御回路14により制御される。
After that, when the rotation speed of the rotation shaft 2 detected by the rotation speed sensor 16 passes through the primary resonance point, the control circuit 14 deenergizes the solenoid 15, so that the rotation shaft whirling suppression bearing 13 is From the position shown in FIG.
As shown in (B), the permanent magnet 53 is lowered to a predetermined position.
It is in a non-contact state with the truncated cone-shaped portion 531 and maintains that state. After that, so that the rotary shaft 2 reaches the target position,
It is controlled by the control circuit 14.

【0033】以上述べた第2実施例によれば、回転軸2
の回転の立上り時に、回転軸2と一体の永久磁石53の
円錐台形部531が回転軸振れ回り抑制用軸受13に一
時的に軸受されるようにした。従って、回転軸2の回転
の立上り時には、保護軸受7と回転軸2が共振点を過ぎ
ても連れ回ることが避けられ、もって定常回転数に到達
させることができる。
According to the second embodiment described above, the rotary shaft 2
At the start of the rotation of, the truncated cone-shaped portion 531 of the permanent magnet 53 integrated with the rotating shaft 2 is temporarily supported by the rotating shaft whirling suppression bearing 13. Therefore, when the rotation of the rotary shaft 2 rises, it is possible to avoid the protective bearing 7 and the rotary shaft 2 from entraining each other even after passing the resonance point, so that the steady rotation speed can be reached.

【0034】[0034]

【発明の効果】以上説明したように本発明の磁気軸受装
置によれば、回転軸の回転の立上り時に、回転軸の振れ
回りを抑制するようにしたので、保護軸受と回転軸が共
振点を過ぎても連れ回ることが避けられ、もって定常回
転数に到達させることができる。
As described above, according to the magnetic bearing device of the present invention, whirling of the rotary shaft is suppressed when the rotation of the rotary shaft rises, so that the protective bearing and the rotary shaft have resonance points. Even if it passes, it is possible to avoid entrainment and to reach a steady rotation speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例である磁気軸受装置の断面
図である。
FIG. 1 is a sectional view of a magnetic bearing device according to a first embodiment of the present invention.

【図2】同磁気軸受装置の制御系の構成を示すブロック
図である。
FIG. 2 is a block diagram showing a configuration of a control system of the magnetic bearing device.

【図3】同磁気軸受装置の動作を説明する図である。FIG. 3 is a diagram illustrating an operation of the magnetic bearing device.

【図4】同磁気軸受装置の円錐台形部の他の例を示す図
である。
FIG. 4 is a view showing another example of the truncated cone portion of the magnetic bearing device.

【図5】本発明の第2実施例である磁気軸受装置の断面
図である。
FIG. 5 is a sectional view of a magnetic bearing device according to a second embodiment of the present invention.

【図6】同磁気軸受装置の制御系の構成を示すブロック
図である。
FIG. 6 is a block diagram showing a configuration of a control system of the magnetic bearing device.

【図7】同磁気軸受装置の動作を説明する図である。FIG. 7 is a diagram illustrating an operation of the magnetic bearing device.

【図8】従来の磁気軸受装置の構成を示す概略断面図で
あり、図面を見易くするために必要に応じて適宜ハッチ
ングは省略している。
FIG. 8 is a schematic cross-sectional view showing a configuration of a conventional magnetic bearing device, and hatching is appropriately omitted as necessary to make the drawing easy to see.

【符号の説明】[Explanation of symbols]

1 取付枠 2 回転軸 3 高周波モータ 4 ラジアル軸受 5 スラスト軸受 6 保護軸受 7 保護軸受 8 スペーサ 9 ナット 10 半径方向センサ 11 軸方向センサ 12 制御回路 13 回転軸振れ回り抑制用軸受 14 制御回路 15 ソレノイド 16 回転数センサ 21 大径部 22 中径部 23 小径部 24、24A、24B 円錐台形部 41 半径方向電磁石 42 回転子鉄心 51 軸方向電磁石 52 アーマチャディスク 53、54 永久磁石 71 内輪 131 内輪 531 円錐台形部 1 Mounting Frame 2 Rotating Shaft 3 High Frequency Motor 4 Radial Bearing 5 Thrust Bearing 6 Protective Bearing 7 Protective Bearing 8 Spacer 9 Nut 10 Radial Sensor 11 Axial Sensor 12 Control Circuit 13 Rotating Shaft Whirl Suppression Bearing 14 Control Circuit 15 Solenoid 16 Rotation speed sensor 21 Large diameter part 22 Medium diameter part 23 Small diameter part 24, 24A, 24B Cone trapezoidal part 41 Radial electromagnet 42 Rotor core 51 Axial electromagnet 52 Armature disk 53, 54 Permanent magnet 71 Inner ring 131 Inner ring 531 Cone trapezoidal part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回転軸と、この回転軸の半径方向を磁気
的に支持するラジアル軸受と、前記回転軸の軸方向を磁
気的に支持するスラスト軸受と、前記ラジアル軸受およ
び前記スラスト軸受を保護する保護軸受とを備えた3軸
制御型の磁気軸受装置において、 前記回転軸と前記保護軸受とを接触自在に形成し、 前記回転軸の回転の立上り時に、前記回転軸と前記保護
軸受とが一時的に接触するように制御する制御手段を備
えたことを特徴とする磁気軸受装置。
1. A rotary shaft, a radial bearing that magnetically supports the radial direction of the rotary shaft, a thrust bearing that magnetically supports the axial direction of the rotary shaft, and protects the radial bearing and the thrust bearing. In a three-axis control type magnetic bearing device including a protective bearing, the rotary shaft and the protective bearing are formed so as to be in contact with each other, and the rotary shaft and the protective bearing are separated from each other when the rotation of the rotary shaft rises. A magnetic bearing device comprising a control means for controlling to make temporary contact.
【請求項2】 前記回転軸と前記保護軸受との接触部に
おいて、前記回転軸と前記保護軸受との少なくとも一方
に傾斜面を形成させ、前記回転軸と前記保護軸受とを接
触させるようにしたことを特徴とする請求項1記載の磁
気軸受装置。
2. An inclined surface is formed on at least one of the rotary shaft and the protective bearing at a contact portion between the rotary shaft and the protective bearing so that the rotary shaft and the protective bearing are in contact with each other. The magnetic bearing device according to claim 1, wherein:
【請求項3】 回転軸と、この回転軸の半径方向を磁気
的に支持するラジアル軸受と、前記回転軸の軸方向を磁
気的に支持するスラスト軸受と、前記ラジアル軸受およ
び前記スラスト軸受を保護する保護軸受とを備えた3軸
制御型の磁気軸受装置において、 前記回転軸の振れ回りを抑制する回転軸振れ回り抑制用
軸受を備え、前記回転軸の回転の立上り時に、前記回転
軸振れ回り抑制用軸受が前記回転軸を一時的に軸受けす
るように制御する制御手段を備えたことを特徴とする磁
気軸受装置。
3. A rotary shaft, a radial bearing that magnetically supports the radial direction of the rotary shaft, a thrust bearing that magnetically supports the axial direction of the rotary shaft, and protects the radial bearing and the thrust bearing. In a three-axis control type magnetic bearing device including a protective bearing, a rotating shaft whirl-whirling suppressing bearing that suppresses whirling of the rotating shaft is provided, and the rotating shaft whirling occurs when the rotation of the rotating shaft rises. A magnetic bearing device comprising a control means for controlling the suppressing bearing so as to temporarily support the rotating shaft.
JP7263162A 1995-10-11 1995-10-11 Magnetic bearing device Pending JPH09105412A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7263162A JPH09105412A (en) 1995-10-11 1995-10-11 Magnetic bearing device
PCT/JP1996/002812 WO1997013985A1 (en) 1995-10-11 1996-09-27 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7263162A JPH09105412A (en) 1995-10-11 1995-10-11 Magnetic bearing device

Publications (1)

Publication Number Publication Date
JPH09105412A true JPH09105412A (en) 1997-04-22

Family

ID=17385648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7263162A Pending JPH09105412A (en) 1995-10-11 1995-10-11 Magnetic bearing device

Country Status (2)

Country Link
JP (1) JPH09105412A (en)
WO (1) WO1997013985A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247619A (en) * 2006-03-20 2007-09-27 Jtekt Corp Compressor for fuel cell
JP2010519453A (en) * 2007-02-24 2010-06-03 オーリコン レイボルド バキューム ゲーエムベーハー High speed rotary vacuum pump
JP2016536543A (en) * 2013-09-13 2016-11-24 グリーン リフリッジレイション エクィップメント エンジニアリング リサーチ センター オブ ズーハイ グリー シーオー., エルティーディー.Green Refrigeration Equipment Engineering Research Center of Zhuhai Gree Co., Ltd. Magnetic levitation bearing and centrifugal compressor
CN111503150A (en) * 2020-04-01 2020-08-07 江苏理工学院 Electromagnetic protection bearing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140072253A1 (en) * 2011-05-12 2014-03-13 Schaeffler Technologies AG & Co. KG Bearing arrangement with a back-up bearing, in particular for mounting the rapidly rotating shaft of a compressor
EP2770222A1 (en) * 2013-02-20 2014-08-27 Sulzer Pump Solutions AB A machine provided with safety bearing
CN109707734B (en) * 2019-01-02 2020-05-26 江苏理工学院 Electromagnetic adsorption type bearing protection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663116A (en) * 1979-10-26 1981-05-29 Seiko Instr & Electronics Ltd Magnetic bearing device
JP2620855B2 (en) * 1987-02-03 1997-06-18 光洋精工株式会社 Magnetic bearing device
JPS63126616U (en) * 1987-02-12 1988-08-18
JPS6447559U (en) * 1987-09-16 1989-03-23

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247619A (en) * 2006-03-20 2007-09-27 Jtekt Corp Compressor for fuel cell
JP4706523B2 (en) * 2006-03-20 2011-06-22 株式会社ジェイテクト Compressor for fuel cell
JP2010519453A (en) * 2007-02-24 2010-06-03 オーリコン レイボルド バキューム ゲーエムベーハー High speed rotary vacuum pump
JP2016536543A (en) * 2013-09-13 2016-11-24 グリーン リフリッジレイション エクィップメント エンジニアリング リサーチ センター オブ ズーハイ グリー シーオー., エルティーディー.Green Refrigeration Equipment Engineering Research Center of Zhuhai Gree Co., Ltd. Magnetic levitation bearing and centrifugal compressor
CN111503150A (en) * 2020-04-01 2020-08-07 江苏理工学院 Electromagnetic protection bearing device
CN111503150B (en) * 2020-04-01 2021-10-19 江苏理工学院 Electromagnetic protection bearing device

Also Published As

Publication number Publication date
WO1997013985A1 (en) 1997-04-17

Similar Documents

Publication Publication Date Title
JPH11313471A (en) Brushless dc motor, magnetic bearing device and turbomolecular pump
KR20140104373A (en) A machine provided with safety bearing
JPH09105412A (en) Magnetic bearing device
JP3114085B2 (en) Magnetic bearing device with radial position correcting electromagnet
JP3820479B2 (en) Flywheel equipment
US5717264A (en) Concentric-double-shaft simultaneously rotating apparatus
JP2000257586A (en) Turbo molecular pump
EP1072803A2 (en) Magnetic bearing device
JP3042545B2 (en) Magnetic bearing device
JPH07103231A (en) Emergency bearing device
US12117009B2 (en) Vacuum pump including magnetic bearing and motor bearing operable as radial magnetic bearing, motor, and thrust magnetic bearing
JP2000274391A (en) Over hang type turbo molecular pump
JP4427828B2 (en) Magnetic bearing
JP2002349277A (en) Bearing part oil film rigidity control device of turbocharger
US20220205449A1 (en) Vacuum Pump
JP2722238B2 (en) centrifuge
JP2933287B2 (en) Magnetic bearing device for rotating machinery
JP2010096098A (en) Vacuum pump
JP2549819Y2 (en) pump
JPH11146609A (en) Manufacture of permanent magnet rotor
JP2007263250A (en) Magnetic bearing device
JPH04116014U (en) Magnetic bearing control device
JP2688624B2 (en) Operation control method of turbo molecular pump
JP2002322978A (en) Flywheel type power storage device
JPH064392U (en) Turbo molecular pump

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817