JPH09104911A - Method for smelting low-p concentration chromium-containing molten metal by smelting reduction - Google Patents

Method for smelting low-p concentration chromium-containing molten metal by smelting reduction

Info

Publication number
JPH09104911A
JPH09104911A JP26148695A JP26148695A JPH09104911A JP H09104911 A JPH09104911 A JP H09104911A JP 26148695 A JP26148695 A JP 26148695A JP 26148695 A JP26148695 A JP 26148695A JP H09104911 A JPH09104911 A JP H09104911A
Authority
JP
Japan
Prior art keywords
chromium
chromium oxide
carbon
molten metal
denotes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26148695A
Other languages
Japanese (ja)
Inventor
Kimiharu Aida
公治 会田
Yasuo Kishimoto
康夫 岸本
Hiroshi Nishikawa
廣 西川
Soichiro Watanabe
宗一郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26148695A priority Critical patent/JPH09104911A/en
Publication of JPH09104911A publication Critical patent/JPH09104911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To smelt low-P concn. chromium-containing molten metal without being accompanied by the oxidation loss of chromium by specifying the charging amt. of carbon, molten iron temp. and the stirring driving power density by a bottom blowing gas at the time of smelting reduction of chromium oxide. SOLUTION: The smelting reduction of the chromium oxide is executed by charging the chromium oxide, carbon source and flux into a steel bath charged into a top and bottom blown refining vessel. At this time, the ratio (the amt. of the carbon/the amt. of the chromium oxide) of the charging amt. of the carbon to the chromium oxide is adjusted to 1.0 to 3.0 and the molten iron temp. is adjusted to <=1500 deg.C. The operation is executed under such conditions under which the stirring driving power density ε by the bottom blowing gas determined by the equation satisfies 5 to 30kW/t. In the equation, Q denotes the flow rate (Nm<3> /min) of the gas, T denotes the temp. (K) of the molten metal, Wm denotes the weight (t) of the molten metal, h denotes the blowing depth (cm) of the gas, P denotes the pressure (Torr) of the atmosphere. The low-P concn. chromium-containing molten metal is smelted without the need for using a flux for dephosphorization, etc., according to this method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、溶融還元による
低P濃度含クロム溶湯の溶製方法に関し、クロム酸化物
を溶融還元して含クロム溶銑を得るに際し、その溶銑の
脱Pをも同時に行おうとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for smelting a chromium-containing molten metal having a low P concentration by smelting reduction, and when chrome-melting and reducing chromium oxide to obtain a chromium-containing molten iron, the molten iron is also de-Ped. It is the one to try.

【0002】[0002]

【従来の技術】P濃度の低い含クロム溶銑を得る方法と
しては、予め脱Pを行う等の手段によって得たP濃度が
低くC濃度の高い溶鉄と、Fe−Cr等の高クロム含有合金
とを混合、溶解する方法が知られているが、この場合
に、原材料中のPは全て含クロム溶銑中に移行する。
2. Description of the Related Art As a method for obtaining a chromium-containing hot metal having a low P concentration, molten iron having a low P concentration and a high C concentration obtained by a method such as de-Ping in advance, and an alloy containing a high chromium content such as Fe-Cr. A method of mixing and dissolving is known, but in this case, all P in the raw material is transferred to the chromium-containing hot metal.

【0003】一方、クロムを含有する溶鉄を脱Pする方
法としては、還元脱P、酸化脱Pの2種類の方法が提案
されている。前者については、例えば特公昭58-52539号
公報に、 CaO−CaF2−CaC2系フラックスを利用する方法
が開示されている。また、後者については、例えば特開
平3−247717号公報に、 CaO−CaF2−酸化鉄系のフラッ
クスをインジェクションする方法が開示されている。さ
らに、特開昭63−223112号公報には、鉄鉱石の溶融還元
法においてスラグ組成を調整することにより低P溶銑を
得る方法が示されている。
On the other hand, as a method for dephosphorizing molten iron containing chromium, two types of methods have been proposed: reduction de-P and oxidation de-P. Regarding the former, for example, Japanese Patent Publication No. 58-52539 discloses a method using a CaO—CaF 2 —CaC 2 system flux. Regarding the latter, for example, JP-A-3-247717 discloses a method of injecting a CaO—CaF 2 —iron oxide-based flux. Further, Japanese Patent Laid-Open No. 63-223112 discloses a method of obtaining low P hot metal by adjusting the slag composition in the smelting reduction method of iron ore.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来法はいずれも、以下に述べるような問題を残して
いた。すなわち、特公昭58-52539号公報に開示の方法
は、フラックスが高価なだけでなく、反応生成分の処理
が難しいという問題があった。また、特開平3−247717
号公報に開示の方法では、クロムの酸化によるロスが避
けられないだけでなく、比較的安価とはいうもののやは
り特別なフラックスを必要とする不利があった。さら
に、特開昭63−223112号公報に開示の方法は、Feよりも
容易に酸化されるクロムを含有する溶銑には適用できな
いという問題があった。
However, all of the above-mentioned conventional methods have the following problems. That is, the method disclosed in Japanese Examined Patent Publication No. 58-52539 has problems that not only the flux is expensive, but also the treatment of the reaction product is difficult. In addition, JP-A-3-247717
The method disclosed in Japanese Patent Laid-Open Publication No. 1994-29242 not only inevitably causes a loss due to oxidation of chromium, but also has a disadvantage of requiring a special flux although it is relatively inexpensive. Further, the method disclosed in JP-A-63-223112 has a problem that it cannot be applied to hot metal containing chromium which is more easily oxidized than Fe.

【0005】この発明は、上記の問題を有利に解決する
もので、特別なフラックスを用いることなく、溶融還元
操業を所定の条件下で行うだけで、クロムの酸化ロスを
伴うことなしに低P濃度の溶銑を得ることができる溶融
還元による低P濃度含クロム溶湯の溶製方法を提案する
ことを目的とする。
The present invention advantageously solves the above-mentioned problems, that is, the smelting reduction operation is performed under a predetermined condition without using a special flux, and the low P content does not occur with the oxidation loss of chromium. It is an object of the present invention to propose a method for producing a low P-concentration chromium-containing molten metal by smelting reduction, which enables obtaining hot metal with a high concentration.

【0006】[0006]

【課題を解決するための手段】すなわち、この発明は、
上底吹き機能を有する精錬容器内に装入した鉄浴中に、
クロムの酸化物、炭素源および媒溶剤を投入してクロム
酸化物の溶融還元を行うに際し、クロム酸化物に対する
炭素の投入量の比(炭素量/クロム酸化物量)を 1.0〜
3.0 に調整した上で、溶鉄温度が1500℃以下でかつ、底
吹きガスによる下記 (1)式から求まる攪拌動力密度
That is, the present invention provides:
In the iron bath charged in the refining container with the top and bottom blowing function,
When the chromium oxide, carbon source and solvent are added to perform the smelting reduction of chromium oxide, the ratio of the amount of carbon to chromium oxide (carbon amount / chromium oxide amount) is 1.0 to
After adjusting to 3.0, the molten iron temperature is 1500 ° C or lower, and the stirring power density obtained from the following equation (1) by the bottom-blown gas

【外2】 が5〜30kw/tを満足する条件下で操業を行うことを特徴
とする溶融還元による低P濃度含クロム溶湯の溶製方法
である。 記
[Outside 2] Is a process for producing a chromium-containing molten metal having a low P concentration by smelting reduction, which is characterized in that the operation is carried out under the condition that the ratio of 5 to 30 kw / t. Record

【数2】 (Equation 2)

【0007】[0007]

【発明の実施の形態】溶融還元による含クロム溶湯の製
造は、炭素による酸化クロムの還元反応を利用して行わ
れるが、この反応は吸熱反応であるため、溶鉄温度が高
いほど酸化クロムの還元には有利である。一方、原料中
からのPの混入はP2O5の酸化物の形で生じるが、溶鉄温
度が高いと、次式 P2O5+5C=2P+5CO↑ の反応が生じて、Pが溶鉄中に取り込まれる。従って、
通常の溶融還元法では事実上脱Pは望み得なかった。
BEST MODE FOR CARRYING OUT THE INVENTION The production of a chromium-containing molten metal by smelting reduction is carried out by utilizing the reduction reaction of chromium oxide with carbon. Since this reaction is an endothermic reaction, the higher the temperature of molten iron, the more the reduction of chromium oxide occurs. Is advantageous to On the other hand, mixing of P from the raw material occurs in the form of an oxide of P 2 O 5 , but if the molten iron temperature is high, the reaction of the following equation P 2 O 5 + 5C = 2P + 5CO ↑ occurs and P is contained in the molten iron. It is captured. Therefore,
In the conventional smelting reduction method, dephosphorization was practically impossible.

【0008】発明者らは、かかる溶融還元法によっても
何とか脱Pを実現すべく、操業条件の見直しを行った。
まず、発明者らは、溶鉄温度を低下した場合における、
酸化クロムおよび酸化りんの還元反応状況を調査した。
その結果、温度を1500℃以下まで低下させれば、上掲式
に示したような酸化りん(P2O5)の還元反応は生じな
い、換言すれば、溶鉄中への原料からのPの侵入を阻止
できることが判明した。
The inventors have reviewed the operating conditions so as to manage to remove P by the smelting reduction method.
First, the inventors have found that when the molten iron temperature is lowered,
The state of reduction reaction of chromium oxide and phosphorus oxide was investigated.
As a result, if the temperature is reduced to 1500 ° C. or lower, the reduction reaction of phosphorus oxide (P 2 O 5 ) as shown in the above formula does not occur. In other words, the P reaction from the raw material into the molten iron is reduced. It turns out that it can stop the intrusion.

【0009】しかしながら、溶鉄温度を1500℃以下にす
ると、当然のことながら、酸化クロムの還元反応もにぶ
り、生産能率の低下を招く。そこで、次に発明者らは、
溶鉄温度が1500℃以下であっても、酸化クロムの還元反
応の劣化を阻止すべく、鋭意研究を重ねた。その結果、
クロム酸化物に対する炭素の投入量の比(重量比)を
1.0〜3.0 とし、かつ底吹きによる攪拌動力密度を5〜3
0kw/tとすれば、所期した目的が有利に達成されること
が究明されたのである。
However, if the temperature of the molten iron is set to 1500 ° C. or lower, the reduction reaction of chromium oxide will naturally occur and the production efficiency will be lowered. So, next, the inventors
Even if the temperature of molten iron is 1500 ° C or less, intensive research was conducted to prevent deterioration of the reduction reaction of chromium oxide. as a result,
The ratio of carbon input to chromium oxide (weight ratio)
1.0 to 3.0, and stirring power density by bottom blowing of 5 to 3
It was clarified that the intended purpose could be advantageously achieved at 0 kw / t.

【0010】図1に、溶鉄温度が1490℃で、炭素とクロ
ム酸化物との比および底吹きによる攪拌動力密度
FIG. 1 shows the ratio of carbon to chromium oxide and the stirring power density by bottom blowing at a molten iron temperature of 1490 ° C.

【外3】 を種々に変化させた場合における脱P率について調べた
結果を示す。ただし、ここでいう脱P率とは投入された
全原料に含まれるPを 100%とした場合のメタル中への
Pの残留の程度を表わすものであり、投入したPが全て
メタルに残留した場合を脱P率:0%とする。。同図か
ら明らかなように、炭素量/クロム酸化物比が 1.0〜3.
0 でかつ、攪拌動力密度
[Outside 3] The result of having investigated about the P removal rate when variously changed is shown. However, the P removal rate as used herein means the degree of P remaining in the metal when P contained in all the input raw materials is 100%, and all the input P remains in the metal. In this case, the P removal rate is 0%. . As is clear from the figure, the carbon content / chromium oxide ratio is 1.0 to 3.
0 and agitation power density

【外4】 が5〜30kw/tであれば、60〜70%という優れた脱P率を
得ることができた。
[Outside 4] Was 5 to 30 kw / t, an excellent P removal rate of 60 to 70% could be obtained.

【0011】これに対し、底吹き攪拌動力密度On the other hand, the bottom blowing agitation power density

【外5】 が3kw/tの場合には、脱P率は炭素量/クロム酸化物量
比を 3.0以下としても20%前後の低い値しか得られなか
った。この理由は、攪拌力の不足によりスラグ/メタル
間の反応が十分に進行しないためと考えられる。一方、
40kw/tの場合にも、脱P率は15%前後と低かった。この
理由は、攪拌力が過大すぎるためスラグ中のクロム酸化
物濃度が低くなり過ぎ、それに伴いPの酸化物濃度も低
下したためと考えられる。
[Outside 5] When the carbon content was 3 kw / t, the dephosphorization rate was as low as around 20% even when the carbon content / chromium oxide content ratio was 3.0 or less. It is considered that this is because the reaction between the slag and the metal does not proceed sufficiently due to the insufficient stirring force. on the other hand,
Even at 40 kw / t, the P removal rate was as low as around 15%. It is considered that the reason is that the stirring power is too large, so that the chromium oxide concentration in the slag becomes too low, and the P oxide concentration also decreases accordingly.

【0012】従って、底吹きによる攪拌動力密度Therefore, the stirring power density by bottom blowing

【外6】 は5〜30kw/tの範囲に限定した。また、炭素量/クロム
酸化物量比は 1.0〜3.0 の範囲に限定した。
[Outside 6] Was limited to the range of 5 to 30 kw / t. The carbon content / chromium oxide content ratio was limited to the range of 1.0 to 3.0.

【0013】次に、図2に、図1よりも溶銑温度が30℃
高い1520℃の場合における調査結果を示したが、温度が
30℃上昇し1500℃を超えると、攪拌動力密度
Next, in FIG. 2, the hot metal temperature is 30 ° C. higher than in FIG.
The results of the survey were shown at a high temperature of 1520 ° C.
When the temperature rises 30 ° C and exceeds 1500 ° C, the stirring power density

【外7】 の如何にかかわらず、脱P率は大幅に低下する。この理
由は、温度の上昇によって還元傾向が強まり、それに伴
って酸化りんの還元も進むことによるものと考えられ
る。従って、溶鉄温度は1500℃以下とするが、あまり低
いとクロム酸化物の還元が悪化し、Cr歩留りの低下を招
くので、その下限温度は1450℃程度とするのが好まし
い。
[Outside 7] Regardless of the above, the P removal rate is significantly reduced. It is considered that the reason for this is that the reduction tendency becomes stronger as the temperature rises, and the reduction of phosphorus oxide proceeds accordingly. Therefore, the molten iron temperature is set to 1500 ° C. or lower, but if it is too low, the reduction of chromium oxide is deteriorated and the Cr yield is lowered. Therefore, the lower limit temperature is preferably set to about 1450 ° C.

【0014】さらに、図3には、図1と同一の条件で操
業した場合におけるクロム歩留りを示す。底吹きによる
攪拌力が弱い場合にはクロム歩留りは低下するが、これ
はスラグの攪拌が不十分で還元が十分に進行しないため
である。この点、底吹きによる攪拌動力密度
Further, FIG. 3 shows the chromium yield when operating under the same conditions as in FIG. When the stirring force by bottom blowing is weak, the chromium yield decreases, but this is because the stirring of the slag is insufficient and the reduction does not proceed sufficiently. In this respect, stirring power density by bottom blowing

【外8】 が5kw/t以上であれば、80%前後のクロム歩留りを得る
ことができる。
[Outside 8] If it is 5 kw / t or more, a chromium yield of about 80% can be obtained.

【0015】[0015]

【作用】この発明に従い、クロム酸化物に対する炭素の
投入量の比を 1.0〜3.0 、鉄浴温度を1500℃以下、さら
に底吹きによる攪拌動力密度を5〜30kw/tとすることに
よって、極めて効率的に低P濃度の含クロム溶銑を得る
ことができる。この理由は、スラグ中のクロム酸化物の
濃度を、その還元による溶鉄中への回収には支障なく、
しかも脱Pにとって適正な範囲に維持できるためと考え
られる。ここでいう適正な範囲とは、スラグがクロムの
酸化物で飽和する最小の量ということであり、 CaO/Si
O2=2〜4、(%Al2O3)=10〜30%、(%MgO)=10〜30
%のスラグ中では通常、1%前後と推定される。
According to the present invention, the ratio of carbon to chromium oxide is 1.0 to 3.0, the iron bath temperature is 1500 ° C or less, and the stirring power density by bottom blowing is 5 to 30 kw / t. As a result, a chromium-containing hot metal having a low P concentration can be obtained. The reason for this is that the concentration of chromium oxide in the slag does not hinder the recovery into molten iron by its reduction,
Moreover, it is considered that the range can be maintained in an appropriate range for P removal. The proper range here is the minimum amount of slag saturated with chromium oxide, which is CaO / Si.
O 2 = 2~4, (% Al 2 O 3) = 10~30%, (% MgO) = 10~30
% Of slag is usually estimated to be around 1%.

【0016】また、上記したクロム酸化物濃度が最適で
ある理由としては、次のように考えることができる。こ
の発明における脱P反応は酸化反応であり、この酸化反
応に必要な酸素はクロムの酸化物より供給される。この
ため本来クロム酸化物濃度が高いほど脱Pには有利と考
えられる。しかしながら、実際にはクロムの酸化物は高
融点の化合物であり、単体で存在していても脱P反応へ
の寄与はほとんどなく、スラグ中へ溶解して初めて操業
時間内での脱P反応に寄与する。つまり、飽和溶解度分
以上のクロム酸化物が存在していても脱Pに関しては効
果がないと考えられる。一方、クロムの歩留りという面
からは、スラグ中クロム濃度は低いほど好ましい。以上
の2点より、クロムの歩留りを高く保ち、しかも同時に
脱Pを進行させるためには、スラグがクロムの酸化物で
ちょうど飽和している点が最適と考えられるのである。
The reason why the above chromium oxide concentration is optimum can be considered as follows. The de-P reaction in the present invention is an oxidation reaction, and oxygen necessary for this oxidation reaction is supplied from a chromium oxide. Therefore, it is considered that the higher the chromium oxide concentration is, the more advantageous it is to remove P. However, in reality, chromium oxide is a compound with a high melting point, and even if it exists as a simple substance, it hardly contributes to the dephosphorization reaction, and is not dissolved in the slag until the dephosphorization reaction occurs within the operating time. Contribute. That is, it is considered that there is no effect on P removal even if chromium oxide having a saturation solubility or higher is present. On the other hand, from the viewpoint of the yield of chromium, the lower the chromium concentration in the slag, the more preferable. From the above two points, it is considered that the slag is just saturated with the oxide of chromium in order to keep the yield of chromium high and to promote the de-Ping at the same time.

【0017】[0017]

【実施例】【Example】

実施例1 上底吹き転炉中に溶銑:5t を装入し、コークスを炭素
量にして 2.4t、クロム鉱石を Cr2O3分にして 0.8t投
入した。投入時間は90分としてこの時間内に連続的に投
入した。このとき同時に酸素の上底吹き(上吹き:14 N
m3/min、底吹き:6 Nm3/min)を行った。この場合、酸
素を吹き込んでいるので溶銑中に吹き込まれた時点で大
部分がCOとなり、このCO量が実際の吹き込みの量とな
る。従ってQは、約12 Nm3/minとなる。また、処理中の
浴の温度はランス高さの調整による2次燃焼率の調節に
よって1480℃±10℃の範囲に保持した。さらに、溶鉄重
量 (Wm )は5t、ガス吹込み深さ(h;静止湯面から
底吹き羽口先端までの深さ)は45cm、雰囲気圧力(P)
は760 Torrであったので、前掲 (1)式による攪拌動力密
Example 1 5 tons of hot metal was charged into a top-and-bottom blowing converter, the coke amount was changed to 2.4 tons, and the chromium ore to Cr 2 O 3 was added to 0.8 tons. The charging time was 90 minutes, and the charging was continued within this time. At the same time, top-bottom blowing of oxygen (top blowing: 14 N
m 3 / min, bottom blowing: 6 Nm 3 / min). In this case, since oxygen is blown in, most of it becomes CO when it is blown into the hot metal, and this amount of CO becomes the actual blown amount. Therefore, Q is about 12 Nm 3 / min. The temperature of the bath during the treatment was kept in the range of 1480 ° C ± 10 ° C by adjusting the secondary combustion rate by adjusting the lance height. Furthermore, the weight of molten iron (Wm) is 5t, the gas injection depth (h; the depth from the stationary molten metal surface to the tip of the bottom blowing tuyeres) is 45 cm, and the atmospheric pressure (P)
Was 760 Torr, so the agitation power density according to Eq. (1) above.

【外9】 の値は13〜14 kw/t となる。なおスラグ塩基度は CaOを
投入して 2.5となるように調整した。上記の溶融還元処
理後におけるクロム歩留りと脱P率を表1に示す。
[Outside 9] The value of is 13 to 14 kw / t. The slag basicity was adjusted to 2.5 by adding CaO. Table 1 shows the chromium yield and the P removal rate after the above-mentioned smelting reduction treatment.

【0018】実施例2 実施例1と同様の処理を行った。ただしコークス投入量
を炭素量にして 0.8tとし、また上吹き送酸速度を5 N
m3/minとした。処理後のクロム歩留り、脱P率を表1に
示す。
Example 2 The same process as in Example 1 was performed. However, the amount of carbon in the coke was 0.8t, and the rate of top-blown acid was 5 N.
m 3 / min. Table 1 shows the chromium yield and P removal rate after the treatment.

【0019】実施例3 実施例1と同様の処理を行った。ただし、上吹き送酸速
度を5 Nm3/minとし、底吹き送酸速度を12 Nm3/minとし
た。このため底吹き攪拌動力密度
Example 3 The same process as in Example 1 was performed. However, the top blowing acid rate was 5 Nm 3 / min and the bottom blowing acid rate was 12 Nm 3 / min. Therefore, the bottom blowing agitation power density

【外10】 は26〜27 kw/t となる。処理後のCr歩留り、脱P率を
表1に示す。
[Outside 10] Will be 26-27 kw / t. Table 1 shows the Cr yield and P removal rate after the treatment.

【0020】比較例1 実施例1と同様の処理を行った。ただしコークス投入量
を炭素量にして 3.2tに増加した。処理後のクロム歩留
り、脱P率を表1に示す。
Comparative Example 1 The same treatment as in Example 1 was performed. However, the amount of coke added was increased to 3.2 tons. Table 1 shows the chromium yield and P removal rate after the treatment.

【0021】比較例2 実施例1と同様の処理を行った。ただし底吹き送酸速度
は18 Nm3/min、上吹き送酸速度は2 Nm3/minとした。こ
のため底吹きによる攪拌動力密度
Comparative Example 2 The same treatment as in Example 1 was performed. However, the bottom blowing acid rate was 18 Nm 3 / min and the top blowing acid rate was 2 Nm 3 / min. Therefore, the stirring power density by bottom blowing

【外11】 は39〜41 kw/t となった。処理後のクロム歩留り、脱P
率を表1に示す。
[Outside 11] Became 39 to 41 kw / t. Chromium yield after treatment, de-P
The rates are shown in Table 1.

【0022】比較例3 実施例1と同様の処理を行った。ただし底吹き送酸速度
は1 Nm3/min、上吹き送酸速度は19 Nm3/minとした。こ
のため底吹きによる攪拌動力密度
Comparative Example 3 The same process as in Example 1 was performed. However, the bottom blowing acid rate was 1 Nm 3 / min and the top blowing acid rate was 19 Nm 3 / min. Therefore, the stirring power density by bottom blowing

【外12】 は2 kw/t となった。処理後のクロム歩留り、脱P率を
表1に示す。
[Outside 12] Became 2 kw / t. Table 1 shows the chromium yield and P removal rate after the treatment.

【0023】比較例4 実施例1と同様の処理を行った。ただし上吹きのランス
高さの調整により2次燃焼率を調節し、処理中の浴の温
度を1520℃±10℃の範囲に保持した。処理後のクロム歩
留り、脱P率を表1に示す。
Comparative Example 4 The same treatment as in Example 1 was performed. However, the secondary combustion rate was adjusted by adjusting the lance height of the upper blowing, and the temperature of the bath during the treatment was kept within the range of 1520 ° C ± 10 ° C. Table 1 shows the chromium yield and P removal rate after the treatment.

【0024】[0024]

【表1】 [Table 1]

【0025】同表から明らかなように、この発明に従
い、炭素量/クロム酸化物量: 1.0〜3.0 、溶鉄温度:
1500℃以下および底吹きガスによる攪拌動力密度
As is clear from the table, according to the present invention, carbon content / chromium oxide content: 1.0 to 3.0, molten iron temperature:
Stirring power density of 1500 ℃ or less and bottom blowing gas

【外13】 が5〜30kw/tを満足する条件下で操業を行った場合にの
み、高いクロム歩留りと良好な脱P率が得られている。
[Outside 13] Shows a high chromium yield and a good P-removal rate only when the operation is carried out under the condition of 5 to 30 kw / t.

【0026】[0026]

【発明の効果】かくして、この発明によれば、従来望み
得なかった溶融還元時における脱Pを、クロム歩留りの
低下を招くことなく、また特別な脱P用フラックス等を
使用する必要なしに、効果的に実現することができ、溶
融還元精錬においてP含有量の低い含クロム溶銑を得る
ことが可能となった。
As described above, according to the present invention, dephosphorization at the time of smelting reduction, which has not been heretofore desired, does not cause a reduction in the chromium yield, and it is not necessary to use a special dephosphorization flux or the like. This can be effectively realized, and it becomes possible to obtain chromium-containing hot metal having a low P content in the smelting reduction refining.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶鉄温度:1490℃で、炭素とクロム酸化物との
比および底吹きによる攪拌動力密度を種々に変化させた
場合における脱P率を示したグラフである。
FIG. 1 is a graph showing the P removal rate when the ratio of carbon to chromium oxide and the stirring power density by bottom blowing were variously changed at a molten iron temperature of 1490 ° C.

【図2】溶鉄温度:1520℃で、炭素とクロム酸化物との
比および底吹きによる攪拌動力密度を種々に変化させた
場合における脱P率を示したグラフである。
FIG. 2 is a graph showing a P removal rate when the ratio of carbon to chromium oxide and the stirring power density by bottom blowing were variously changed at a molten iron temperature of 1520 ° C.

【図3】溶鉄温度:1490℃で、炭素とクロム酸化物との
比および底吹きによる攪拌動力密度を種々に変化させた
場合におけるクロム歩留りを示したグラフである。
FIG. 3 is a graph showing a chromium yield when the molten iron temperature was 1490 ° C. and the ratio of carbon to chromium oxide and the stirring power density by bottom blowing were variously changed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西川 廣 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 渡辺 宗一郎 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroshi Nishikawa, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba, Kawasaki Steel Co., Ltd. Chiba Works (72) Soichiro Watanabe, 1 Kawasaki-cho, Chuo-ku, Chiba, Kawasaki Chiba Steel Works, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 上底吹き機能を有する精錬容器内に装入
した鉄浴中に、クロムの酸化物、炭素源および媒溶剤を
投入してクロム酸化物の溶融還元を行うに際し、 クロム酸化物に対する炭素の投入量の比(炭素量/クロ
ム酸化物量)を 1.0〜3.0 に調整した上で、溶鉄温度が
1500℃以下でかつ、底吹きガスによる下記 (1)式から求
まる攪拌動力密度 【外1】 が5〜30kw/tを満足する条件下で操業を行うことを特徴
とする溶融還元による低P濃度含クロム溶湯の溶製方
法。記 【数1】
1. When performing smelting reduction of chromium oxide by introducing chromium oxide, carbon source and solvent into an iron bath charged in a refining vessel having a top-bottom blowing function, chromium oxide After adjusting the ratio of carbon input (carbon amount / chromium oxide amount) to 1.0 to 3.0, the molten iron temperature
Stirring power density of 1500 ° C or less and bottom blowing gas obtained from the following equation (1) [External 1] Is carried out under conditions satisfying 5 to 30 kw / t, and a method for producing a chromium-containing molten metal having a low P concentration by smelting reduction. Note
JP26148695A 1995-10-09 1995-10-09 Method for smelting low-p concentration chromium-containing molten metal by smelting reduction Pending JPH09104911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26148695A JPH09104911A (en) 1995-10-09 1995-10-09 Method for smelting low-p concentration chromium-containing molten metal by smelting reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26148695A JPH09104911A (en) 1995-10-09 1995-10-09 Method for smelting low-p concentration chromium-containing molten metal by smelting reduction

Publications (1)

Publication Number Publication Date
JPH09104911A true JPH09104911A (en) 1997-04-22

Family

ID=17362584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26148695A Pending JPH09104911A (en) 1995-10-09 1995-10-09 Method for smelting low-p concentration chromium-containing molten metal by smelting reduction

Country Status (1)

Country Link
JP (1) JPH09104911A (en)

Similar Documents

Publication Publication Date Title
US3336132A (en) Stainless steel manufacturing process and equipment
JP3966156B2 (en) Method for melting ultra-low phosphorus stainless steel
JP3220233B2 (en) Refining method of ultra-low carbon / ultra low sulfur chromium-containing molten steel
JPH09104911A (en) Method for smelting low-p concentration chromium-containing molten metal by smelting reduction
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JPS58147506A (en) Preliminary treatment of molten iron
JP3063537B2 (en) Stainless steel manufacturing method
JP2722899B2 (en) Decarburization refining method for high Mn steel
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JPH0987720A (en) Method for decarburize-refining chromium-containing molten steel
JPH0967608A (en) Production of stainless steel
JPH0959708A (en) Method for efficently decarburization-blowing stainless steel
JP3414811B2 (en) Recovery method of residual alloy components in slag after refining when smelting low alloy steel
JPH06145767A (en) Method for removing manganese in molten iron and production of pure iron for industrial purpose
JPS5938319A (en) Method for refining high chromium steel
JPH0885815A (en) Method for effectively refining molten chromium-containing steel using decarburized slag
JPH07216429A (en) Production of stainless crude molten steel using decarburized slag
JP3757435B2 (en) Method for decarburizing and refining chromium-containing molten steel
JPH089730B2 (en) Decarburization refining method for molten steel containing chromium
JPH0841519A (en) Steelmaking method
JP3173325B2 (en) How to make stainless steel
JPH0978119A (en) Method for denitrification of molten metal and flux for denitrification
JPH06104843B2 (en) High alloy steel melting method
KR20200049076A (en) Method for processing molten material and stainless steel manufactured using the same
US20050166710A1 (en) Method for treating alloyed carbonic iron smelts used for the production of steel