JPH09102314A - Negative electrode for alkaline storage battery and battery using the same - Google Patents

Negative electrode for alkaline storage battery and battery using the same

Info

Publication number
JPH09102314A
JPH09102314A JP8115972A JP11597296A JPH09102314A JP H09102314 A JPH09102314 A JP H09102314A JP 8115972 A JP8115972 A JP 8115972A JP 11597296 A JP11597296 A JP 11597296A JP H09102314 A JPH09102314 A JP H09102314A
Authority
JP
Japan
Prior art keywords
storage battery
negative electrode
alkaline storage
fullerene compound
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8115972A
Other languages
Japanese (ja)
Other versions
JP3475652B2 (en
Inventor
Yoshiaki Nitta
芳明 新田
Toru Kikuyama
亨 菊山
Kazuhiro Okamura
一広 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11597296A priority Critical patent/JP3475652B2/en
Publication of JPH09102314A publication Critical patent/JPH09102314A/en
Application granted granted Critical
Publication of JP3475652B2 publication Critical patent/JP3475652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode for use in a high-capacity alkaline storage battery by using a fulleride containing at least one kind of metal selected from among Li, Na, K, Mg, and Ca and to provide an alkaline storage battery using the same. SOLUTION: A negative plate 1 uses a fulleride containing either one of these metals: Li, Na, K, Mg, and Ca. The fulleride is represented by a general formula Mx Cn. In the general formula Mx Cn, M represents at least one kind of metal selected from among Li, Na, K, Mg, and Ca, (x) represents a stoichiometric composition ratio (1<=x<=3), and (n) represents carbon atom (n=60). Or in the general formula Mx Cn, (x)=1 and (n)=82. A nickel hydroxide used in a positive plate 2 is 9 to 12μm in average particle diameter and contains 10wt.% cobalt oxide or hydroxide and 8 to 9wt.% zinc oxide or hydroxide as additives.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ蓄電池用負極
の高容量化と、これを用いた電池の高性能化、特に容量
密度の向上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to increasing the capacity of a negative electrode for an alkaline storage battery and improving the performance of a battery using the same, in particular to improving the capacity density.

【0002】[0002]

【従来の技術】近年、各種の小型ポータブル機器用電源
として高信頼性が期待できるアルカリ蓄電池の需要が高
まっている。代表的なアルカリ蓄電池として、正極活物
質に水酸化ニッケルを用い、負極活物質にカドミウムを
用いたニッケル−カドミウム蓄電池と、高容量密度が期
待できる水素吸蔵合金負極を用いたニッケル−水素蓄電
池が実用化されている。
2. Description of the Related Art In recent years, there has been an increasing demand for alkaline storage batteries that can be expected to have high reliability as power sources for various small portable devices. As a typical alkaline storage battery, a nickel-cadmium storage battery using nickel hydroxide as the positive electrode active material and cadmium as the negative electrode active material and a nickel-hydrogen storage battery using a hydrogen storage alloy negative electrode that can be expected to have high capacity density are in practical use. Has been converted.

【0003】[0003]

【発明が解決しようとする課題】アルカリ蓄電池のさら
なる高容量化に向けて、水素吸蔵合金材料の改良研究が
行われている。これらの材料の内、代表的なAB5系の
合金を実際の電池に用いた場合の容量密度は300mA
h/g程度に止どまっている。したがって、より高エネ
ルギー密度の電池を得るために、水素を電気化学的に吸
蔵・放出できる新規な負極材料を得ることが必要とされ
ている。
DISCLOSURE OF THE INVENTION In order to further increase the capacity of alkaline storage batteries, researches for improving hydrogen storage alloy materials are being conducted. Of these materials, the typical AB 5 alloy has a capacity density of 300 mA when used in an actual battery.
It has stopped at about h / g. Therefore, in order to obtain a battery with higher energy density, it is necessary to obtain a novel negative electrode material capable of electrochemically absorbing and desorbing hydrogen.

【0004】本発明は、このような課題を解決するため
に、水素を吸蔵・放出できるフラーレンの特質に注目
し、これを金属との化合物として改質することにより、
電池用として有用な新規な負極材料を見出し、高容量密
度の負極とこれを用いたエネルギー密度の高いアルカリ
蓄電池を提供することを目的としたものである。
In order to solve such problems, the present invention pays attention to the characteristics of fullerenes capable of storing and releasing hydrogen, and by modifying them as a compound with a metal,
The object of the present invention is to find a novel negative electrode material useful for batteries, and to provide a high capacity density negative electrode and an alkaline storage battery using the same with a high energy density.

【0005】[0005]

【課題を解決するための手段】本発明はLi,Na,
K,Mg,Caの金属のうち少なくとも1種を含むフラ
ーレン化合物を用いて高容量密度のアルカリ蓄電池用負
極を提供し、さらにこの負極と水酸化ニッケル正極と、
アルカリ性電解液とを備えた電池を構成することによ
り、高性能のアルカリ蓄電池を提供するものである。
The present invention comprises Li, Na,
Provided is a negative electrode for a high capacity density alkaline storage battery using a fullerene compound containing at least one of K, Mg and Ca metals, and further, this negative electrode and a nickel hydroxide positive electrode,
A high-performance alkaline storage battery is provided by constructing a battery provided with an alkaline electrolyte.

【0006】さらに、上記のフラーレン化合物として、
一般式MxCn(MはLi,Na,K,Mg,Caのい
ずれかの金属のうち少なくとも1種、xは化学量論組成
比を示し、1≦x≦3であり、nは炭素原子を示し、n
=60)で表されるもの、或いは上記の一般式MxCn
においてx=1、n=82であるものを用いることを特
徴とするものである。
Further, as the above fullerene compound,
The general formula MxCn (M is at least one metal selected from Li, Na, K, Mg, and Ca, x is a stoichiometric composition ratio, 1 ≦ x ≦ 3, and n is a carbon atom. , N
= 60) or the above general formula MxCn
Is characterized by using x = 1 and n = 82.

【0007】[0007]

【発明の実施の形態】フラーレンC60は、既に1985
年にKrotoらによって合成に成功している。形状は
ほぼサッカーボールと同様の球状である。このほかのフ
ラーレンとして、C70、C82、或いはそれ以上の炭素数
で形成されたものがあり、5員環、6員環で構成されて
いる。これらのフラーレンの電子構造は通常の半金属性
の黒鉛と異なり、半導体的性質を示す。その理由は電子
構造が、球の外側と内側ではパイ性電子の電子密度状態
が異なり、外側で高く内側で低くなる傾向を示し、さら
にシグマ性軌道が混成するため、単純なSP2混成軌道
で規定できなくなり、伝導帯と価電子帯に約1.5eV
のバンドギャップが生じるからである。従って、フラー
レンの電子伝導性や電荷移動は黒鉛よりも劣るが、予め
伝導帯に他原子からの電子供与があれば、電子親和力の
大きい水素に容易にフラーレン上で電荷移動が行われ、
水素イオンが吸蔵されやすくなる。これは、例えば黒鉛
に予めカリウムをインターカレートしたC8Kという材
料が、黒鉛の伝導帯にカリウムからの電子が入っている
ために容易に水素へ電子供与を行い(電荷移動)、吸蔵
が可能となる事実(榎ら 炭素 143,136(19
90))と似通っている。
BEST MODE FOR CARRYING OUT THE INVENTION Fullerene C 60 is already 1985.
It was successfully synthesized by Kuroto et al. The shape is almost the same as a soccer ball. Other fullerenes include those having a carbon number of C 70 , C 82 , or higher, and are composed of a 5-membered ring or a 6-membered ring. The electronic structure of these fullerenes, unlike ordinary semi-metallic graphite, shows semiconductor-like properties. The reason is the electronic structure, the outer and inner sphere different electron density states of pi-electric electron, tended to be lower in higher inside the outside, to further sigma orbital is mixed, in a simple SP 2 hybrid orbital Unspecified, about 1.5 eV in conduction band and valence band
This is because the band gap of Therefore, although the electron conductivity and charge transfer of fullerenes are inferior to those of graphite, if there is an electron donation from another atom in the conduction band in advance, charge transfer is easily carried out on fullerenes to hydrogen having a high electron affinity,
Hydrogen ions are easily absorbed. This is because, for example, a material called C 8 K in which potassium is intercalated in graphite in advance easily donates electrons to hydrogen (charge transfer) because electrons from potassium are contained in the conduction band of graphite, so that occlusion occurs. Feasible Facts (Enoki et al. Carbon 143, 136 (19
90)).

【0008】こうした水素の吸蔵はサッカーボール状の
フラーレンの主として外側にC−H結合を形成すること
で可能となる。イオン半径を殆ど持たない水素イオンは
このような水素の吸蔵が可能であるが、例えば、Li+
イオンのように2S軌道閉鎖構造により、明確なイオン
半径を持つ化学種は立体的因子において吸蔵が困難であ
る。
The storage of hydrogen is possible by forming C--H bonds mainly outside the soccer ball-shaped fullerene. Hydrogen ions having almost no ionic radius can absorb such hydrogen, but for example, Li +
Due to the 2S orbital closed structure like ions, it is difficult for occluded chemical species with a clear ionic radius to absorb by steric factors.

【0009】本発明者らはこれらの事柄に着目し、フラ
ーレンの伝導帯に電子を与えるのに有効な元素は、イオ
ン化ポテンシャルが低いアルカリ金属あるいはアルカリ
土類金属と考え、これらをドーピングすることで電子伝
導性を向上させ、これにより電子密度を高めたフラーレ
ンに容易に水素を吸蔵・放出することを期待できるもの
と考えた。本発明ではアルカリ金属あるいはアルカリ土
類金属の中でも、特にイオン化ポテンシャルが低く、か
つ軽量なLi,Na,K,Mg,Caがドーピングする
元素として特に適したものと注目して検討した。
The present inventors pay attention to these matters, and consider that an element effective for giving electrons to the conduction band of fullerene is an alkali metal or alkaline earth metal having a low ionization potential, and doping them We thought that it would be expected that fullerene with improved electron conductivity and thereby increased electron density could easily absorb and release hydrogen. In the present invention, among the alkali metals or alkaline earth metals, it was noted that it is particularly suitable as an element to be doped with Li, Na, K, Mg, and Ca, which has a low ionization potential and is lightweight.

【0010】C60への一般的なドーピングの方法として
は、C60を1つの原子として見立てた結晶固体の格子間
位置、つまりC60の外側へ金属原子をドープする方法
と、C 60の中空に金属原子を閉じこめて内包させる方法
が報告されている。前者はC60の1個当たり3個の金属
原子からなる単位格子を固体結晶としてドープが可能で
あり、後者ではC60の1個当たり1個の金属原子をドー
プすることが可能である。また、高次フラーレンである
82の方が金属原子を内包し易い性質があることが報告
されている。
C60As a general method of doping into
Is C60Interstitials of crystalline solids with the atom as one atom
Position, ie C60Method of doping metal atoms to the outside
And C 60To enclose and enclose metal atoms in the hollow of
Have been reported. The former is C603 pieces of metal
The unit cell consisting of atoms can be doped as a solid crystal.
Yes, C in the latter60One metal atom is added for each
It is possible to It is also a higher fullerene
C82Is reported to have the property of containing metal atoms more easily
Have been.

【0011】本発明者らはいずれの方法でLi,Na,
K,Mg,Caをドーピングしても、伝導帯を形成する
1u軌道(正二十面体対称性とし、11の軌道から生じ
る3重縮退のLUMO(最低空状態)を形成する軌道)
に電子が入って、電子密度及び電子伝導性が向上し、こ
れにより電子親和力の大きい水素イオンは容易にこの軌
道から電子を授受(電荷移動)し、負電荷を帯びた電子
状態でフラーレンに吸蔵されるものと考えた。このよう
にして得られた金属含有フラーレン化合物をアルカリ蓄
電池の負極として用いた場合の電気化学的作用は次のよ
うに説明できる。まず充電時には、電解液中の水素イオ
ンが電荷密度の高められた金属含有フラーレン化合物上
で電荷移動によりC−H結合を形成し、水素イオンが吸
蔵される。放電時には、フラーレン化合物から脱電子反
応による電荷移動のためC−H結合が切れ、水素イオン
が電解液中に拡散する。この場合、金属がドープされた
状態で1個のC60分子に、最高60個の水素原子が吸蔵
でき、これを放電電気容量密度に換算すると約1900
mAh/gが可能となり、水素吸蔵合金負極よりも理論
的に高容量密度化が図れる。
[0011] The present inventors have found that Li, Na,
A t 1u orbital that forms a conduction band even if doped with K, Mg, and Ca (orbital that forms a regular icosahedral symmetry and forms a triple degenerate LUMO (lowest empty state) that occurs from 11 orbitals)
Electrons are introduced into the electron, and the electron density and electron conductivity are improved. As a result, hydrogen ions with high electron affinity easily exchange electrons (charge transfer) from this orbit, and occlude the fullerene in the negatively charged electronic state. I thought it would be done. The electrochemical action when the metal-containing fullerene compound thus obtained is used as the negative electrode of an alkaline storage battery can be explained as follows. First, at the time of charging, hydrogen ions in the electrolytic solution form C—H bonds on the metal-containing fullerene compound having an increased charge density by charge transfer, and the hydrogen ions are occluded. During discharge, C—H bonds are broken due to charge transfer due to a deelectron reaction from the fullerene compound, and hydrogen ions diffuse into the electrolytic solution. In this case, up to 60 hydrogen atoms can be occluded in one C 60 molecule in a metal-doped state, and when converted into discharge electric capacity density, it is about 1900.
Since it is possible to achieve mAh / g, theoretically higher capacity density can be achieved as compared with the hydrogen storage alloy negative electrode.

【0012】上記により、負極に金属をドーピングした
フラーレン化合物を用いることにより、高容量のアルカ
リ蓄電池を提供することが可能となる。
As described above, it is possible to provide a high capacity alkaline storage battery by using a metal-doped fullerene compound for the negative electrode.

【0013】[0013]

【実施例】図1は、本発明の一実施例におけるフラーレ
ン化合物を用いたニッケルー炭素蓄電池の概略構成図で
ある。図1において、1は本発明のLi,Na,K,M
g,Caのいずれかの金属を備えたフラーレン化合物を
用いた負極板、2は水酸化ニッケル正極板、3はセパレ
ータ、4は絶縁板、5は電池ケース、6は正極リード、
7はガスケット、8は正極キャップ、9は安全弁、10
は封口板である。
EXAMPLE FIG. 1 is a schematic configuration diagram of a nickel-carbon storage battery using a fullerene compound in one example of the present invention. In FIG. 1, 1 is Li, Na, K, M of the present invention.
A negative electrode plate using a fullerene compound containing a metal of g or Ca, 2 a nickel hydroxide positive electrode plate, 3 a separator, 4 an insulating plate, 5 a battery case, 6 a positive electrode lead,
7 is a gasket, 8 is a positive electrode cap, 9 is a safety valve, 10
Is a sealing plate.

【0014】本発明の実施例において負極に用いたフラ
ーレン化合物の製造法について説明する。基本的な製造
メカニズムはアーク放電法であり、先ずガラス容器に予
め各種金属の炭酸塩をドーパントとして混合して成型し
た直径1cmの炭素棒電極を垂直に設置した。次いで容
器内を真空に排気し、キャリァガスとしてヘリウムガス
(約200Torr)を導入し、電極に直流電圧23V
を印加し、40mA程度を通電してアーク放電を発生さ
せた。放電反応を行うと対極の先端部に金属を含んだ炭
素の堆積物が成長してくる。この堆積物を分析の結果、
フラーレン化合物の収率は18%であった。この炭素材
から約90%の純度のフラーレン化合物をオクタデシル
シリカなどを用いて分別し、これを評価用負極材料とし
て用いた。固体結晶性のフラーレン化合物、即ちx=3
のものについては上記の方法によって得たが、金属内包
タイプ、即ちx=1のものについては、さらにx=3の
フラーレン化合物をアルゴンガス雰囲気下1200℃で
532nmのYAGレーザーを照射し、1個のフラーレ
ン化合物当たり、1個の金属を内包した。
A method for producing the fullerene compound used for the negative electrode in the examples of the present invention will be described. The basic manufacturing mechanism is the arc discharge method. First, a carbon rod electrode having a diameter of 1 cm, which was formed by mixing carbonates of various metals as a dopant in advance and was placed in a glass container, was installed vertically. Then, the container is evacuated to a vacuum, helium gas (about 200 Torr) is introduced as a carrier gas, and a DC voltage of 23 V is applied to the electrodes.
Was applied, and an electric current of about 40 mA was applied to generate arc discharge. When the discharge reaction is performed, a carbon-containing carbon deposit grows on the tip of the counter electrode. As a result of analyzing this deposit,
The yield of the fullerene compound was 18%. A fullerene compound having a purity of about 90% was fractionated from this carbon material using octadecyl silica or the like, and this was used as a negative electrode material for evaluation. Solid crystalline fullerene compound, ie x = 3
For the metal-encapsulated type, that is, for x = 1, the fullerene compound with x = 3 was further irradiated with a YAG laser of 532 nm at 1200 ° C. under an argon gas atmosphere to obtain 1 One metal was included in each fullerene compound.

【0015】負極板1は5重量%のポリテトラフルオロ
エチレン(PTFE)フッ素樹脂ディスパージョンをこ
の樹脂がフラーレン化合物に対して3倍になるように加
えると同時に導電材である炭素材をフラーレン化合物に
対し3重量%加えてペーストをつくり、このペーストを
厚さ0.17mm、孔径1.8mm、開口度53%の鉄
製でニッケル鍍金を施したパンチングメタル板に塗着
し、0.6mmのスリットを通して平滑化した。その
後、120℃で1時間乾燥し、この電極をローラープレ
ス機に通して厚さ0.5mmに調整した。負極リード板
をスポット溶接により取り付けた。ここで、結着剤とし
て、ポリビニルアルコール(PVA)、ポリエチレン
(PE)、カルボキシメチルセルロース(CMC)、ポ
リスチレン(PS)、メチルセルロース(MC)などを
用いても同様の効果が得られた。また、芯材として発泡
基板、金属繊維系あるいは炭素繊維系の3次元構造体、
金属メッシュ、エキスパンドメタルなどの形態を有する
ものなどでも同様の効果が得られる。負極板1の導電性
を得るには、フラーレン化合物に対し、比導電率が10
1s/cm以上の特性を持つ黒鉛などを5重量%以上添
加する必要がある。しかし、Li,Na,K,Mg,C
aのいずれかの金属を備えたフラーレン化合物を用いた
負極は、結晶固体の電子伝電性が向上しているのでこの
場合、フラーレン化合物に対し3重量%添加することで
電池特性は十分引き出せた。
To the negative electrode plate 1, 5% by weight of polytetrafluoroethylene (PTFE) fluororesin dispersion was added so that the amount of this resin was 3 times that of the fullerene compound, and at the same time, the carbon material as a conductive material was added to the fullerene compound. 3% by weight was added to form a paste, and this paste was applied to a punching metal plate made of iron and having a thickness of 0.17 mm, a hole diameter of 1.8 mm, and an opening degree of 53%, which was plated with nickel, and passed through a slit of 0.6 mm. Smoothed. Then, it was dried at 120 ° C. for 1 hour, and this electrode was passed through a roller press to adjust the thickness to 0.5 mm. The negative electrode lead plate was attached by spot welding. Here, the same effect was obtained by using polyvinyl alcohol (PVA), polyethylene (PE), carboxymethyl cellulose (CMC), polystyrene (PS), methyl cellulose (MC), etc. as the binder. Further, a foam substrate as a core material, a metal fiber-based or carbon fiber-based three-dimensional structure,
The same effect can be obtained with a metal mesh, an expanded metal, or the like. To obtain the conductivity of the negative electrode plate 1, the specific conductivity is 10 with respect to the fullerene compound.
It is necessary to add 5 wt% or more of graphite having a characteristic of 1 s / cm or more. However, Li, Na, K, Mg, C
In the negative electrode using the fullerene compound containing any of the metals a, the electron conductivity of the crystalline solid was improved. In this case, therefore, the battery characteristics could be sufficiently obtained by adding 3% by weight to the fullerene compound. .

【0016】正極板2には多孔性の発泡ニッケル基板に
10重量%のコバルトを含む平均粒径10μmの水酸化
ニッケルを充填したもの、セパレータには親水処理を施
したポリプロピレン製の不織布を用いた。電解液には比
重1.25の水酸化カリウム水溶液に25g/lの水酸
化リチウムを溶解して用いた。ここで、正極板2には、
水酸化ニッケル粒子同士の電子伝導性をもたせる作用を
持つコバルト以外に、充電時の酸素過電圧を高める作用
のあるZnの酸化物もしくは水酸化物が8〜9重量%添
加された正極合剤においても同様の結果が得られる。ま
た、水酸化ニッケルの平均粒径は、充填性と充放電特性
を鑑み検討した結果、9〜12μmのものが最も良好で
あった。セパレータとしては、ポリプロピレン製の不織
布以外にポリオレフィン系スルフォン化ポリプロピレン
製のもの、あるいはアクリル酸グラフト重合体を用いて
も効果が得られる。電解液としては、比重が20℃作動
で1.2〜1.3で効果が得られるが、1.25の時、
最も充放電特性が良好であった。また、アルカリ性電解
液として、水酸化ナトリウムを用いても同様の効果が得
られる。
As the positive electrode plate 2, a porous foamed nickel substrate filled with nickel hydroxide containing 10% by weight of cobalt and having an average particle size of 10 μm, and a separator made of hydrophilic polypropylene nonwoven fabric was used. . As the electrolytic solution, 25 g / l of lithium hydroxide was dissolved in a potassium hydroxide aqueous solution having a specific gravity of 1.25 and used. Here, in the positive electrode plate 2,
In addition to cobalt, which has the function of giving electronic conductivity between nickel hydroxide particles, also in a positive electrode mixture containing 8 to 9% by weight of Zn oxide or hydroxide, which has the function of increasing the oxygen overvoltage during charging. Similar results are obtained. The average particle size of nickel hydroxide was 9 to 12 μm, which was the best as a result of studying the filling property and charge / discharge characteristics. As the separator, the effect can be obtained by using a polyolefin sulfonated polypropylene or an acrylic acid graft polymer in addition to the polypropylene non-woven fabric. As an electrolytic solution, the effect is obtained at a specific gravity of 1.2 to 1.3 at 20 ° C. operation, but when 1.25,
The charge / discharge characteristics were the best. Also, the same effect can be obtained by using sodium hydroxide as the alkaline electrolyte.

【0017】なお、正極の活物質の充填容量が負極の充
填容量に対して大過剰となるように正極板2を構成し、
電池特性が負極の特性によって規制されるように電池を
構成した。比較例としては、ミッシュメタルとニッケル
を主成分としたAB5タイプの水素吸蔵合金を用いて上
記と同様の手法で構成した負極を用いて実施例と同様の
構成法でニッケル−水素蓄電池を作成した。これらの実
施例の電池と比較例の電池とを0.17Aで11時間の
定電流充電を行った後、0.5Aで0.9Vまで定電流
放電を行った。その結果を(表1)に示す。
The positive electrode plate 2 is constructed so that the filling capacity of the positive electrode active material is in excess of the filling capacity of the negative electrode.
The battery was configured such that the battery characteristics were regulated by the characteristics of the negative electrode. As a comparative example, a nickel-hydrogen storage battery was prepared by the same construction method as that of the example, using a negative electrode constructed in the same manner as above using an AB5 type hydrogen storage alloy containing misch metal and nickel as main components. . The batteries of these Examples and the batteries of Comparative Examples were subjected to constant current charging at 0.17 A for 11 hours, and then constant current discharging to 0.5 V at 0.5 A. The results are shown in (Table 1).

【0018】[0018]

【表1】 [Table 1]

【0019】ただし、容量については、比較試料の負極
に用いた水素吸蔵合金の重量当たりの放電容量密度を1
00とした場合の、フラーレン化合物の重量当たりの放
電容量密度の相対値を示した。なお、比較試料の平均電
圧は1.24Vであった。
However, regarding the capacity, the discharge capacity density per weight of the hydrogen storage alloy used for the negative electrode of the comparative sample is 1
The relative value of the discharge capacity density per weight of the fullerene compound when 00 was shown. The average voltage of the comparative sample was 1.24V.

【0020】(表1)からわかるように、Li,Na,
K,Mg,Caを備えたフラーレン化合物を負極に用い
た電池は、電圧、容量ともに金属を添加していないフラ
ーレンよりも優れており、かつ水素吸蔵合金を負極に用
いた場合よりも高容量密度が得られている。これらの理
由は次のように考えられる。まず、金属元素を添加して
いないフラーレンにおいて電圧が低いのは、その負極電
位が金属水素化物よりも貴な電位にあるからであり、こ
れは先述したようにフラーレンの1.5eVのバンドギ
ャップ間にフェルミレベルが存在するのでエネルギー準
位的に低い位置に電極電位が置かれるためである。しか
し、金属を添加するとt1u軌道に電子が供与されるので
フェルミレベルが上がり、エネルギー準位的に高い位置
に電極電位が置かれ、電位が卑な方向へシフトしたため
に電池電圧が高くなたものと考えられる。また、金属元
素を添加していないフラーレンにおいて容量が十分得ら
れないのは、先述のバンドギャップが存在するので電荷
移動あるいは電子伝導性の低下などで過電圧が大きく、
負極電位が貴な電位で作動したことなどにより放電終止
電圧に早く達したことが原因と考えられる。
As can be seen from Table 1, Li, Na,
Batteries using a fullerene compound containing K, Mg, and Ca in the negative electrode are superior to fullerene in which voltage and capacity are not added with metal, and have a higher capacity density than when a hydrogen storage alloy is used in the negative electrode. Has been obtained. These reasons are considered as follows. First, the reason why the voltage is low in the fullerene to which the metal element is not added is that the negative electrode potential is nobler than that of the metal hydride. This is because the fullerene has a band gap of 1.5 eV as described above. This is because the Fermi level exists in the electrode and the electrode potential is placed at a low energy level. However, when a metal is added, electrons are donated to the t 1u orbit, so that the Fermi level rises, the electrode potential is placed at a position higher in energy level, and the potential shifts to the base direction, which increases the battery voltage. It is considered to be a thing. In addition, the reason why full capacity is not obtained in fullerene to which a metal element is not added is that the above-mentioned band gap exists, so overvoltage is large due to charge transfer or reduction in electron conductivity,
It is considered that the discharge end voltage was reached early because the negative electrode potential operated at a noble potential.

【0021】なお、表中の※印はx=1の場合である
が、この時のnは82であり、C82に1個の金属原子
が内包されており、x=3の時はn=60であり、C6
0と金属が周期性をもった結晶固体であることが確認さ
れた。上記の実施例以外に、n=60の場合には結晶中
に金属の欠損部が偏在する可能性があり、このような場
合にはxは1以上で3未満の値を示す。このような範囲
の様々なx値を示すフラーレン化合物が混在する試料を
負極材料に用いた電池に於いても実施例の電池と同レベ
ルの電池特性が得られたことから、n=60の場合は1
≦x≦3において本発明の効果が発揮できることが確認
された。尚、本発明は上述のC60、C82をベースとした
フラーレン化合物以外にもLi,Na,K,Mg,Ca
を備えた他のフラーレン化合物を負極に用いた場合にも
同様の作用による効果が期待できる。
In the table, the mark * indicates the case of x = 1. At this time, n is 82, and one metal atom is included in C82, and when x = 3, n = 60 and C6
It was confirmed that 0 and the metal were crystalline solids having periodicity. In addition to the above examples, when n = 60, metal defects may be unevenly distributed in the crystal. In such a case, x shows a value of 1 or more and less than 3. In the case where n = 60, the same level of battery characteristics as the battery of the example was obtained even in the battery using the sample in which the fullerene compounds showing various x values in such a range were mixed as the negative electrode material. Is 1
It was confirmed that the effect of the present invention can be exhibited when ≦ x ≦ 3. In addition to the above-mentioned C 60 and C 82- based fullerene compounds, the present invention is also applicable to Li, Na, K, Mg and Ca.
Even when another fullerene compound having the above is used for the negative electrode, the same effect can be expected.

【0022】[0022]

【発明の効果】以上のように、本発明はLi,Na,
K,Mg,Caのいずれかの金属の少なくとも1種を含
むフラーレン化合物をアルカリ蓄電池用負極に用いるこ
とにより、高容量を有する負極とその電池が提供できる
ものである。
As described above, according to the present invention, Li, Na,
By using a fullerene compound containing at least one metal selected from K, Mg, and Ca for a negative electrode for an alkaline storage battery, a negative electrode having a high capacity and the battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例におけるフラーレン化合物負
極を用いたニッケル水素蓄電池の概略構成図
FIG. 1 is a schematic configuration diagram of a nickel-hydrogen storage battery using a fullerene compound negative electrode according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 フラーレン化合物を用いた負極 2 水酸化ニッケル正極 3 セパレータ 4 絶縁板 5 電池ケース 6 正極リード 7 ガスケット 8 正極キャップ 9 安全弁 10 封口板 1 Negative electrode using a fullerene compound 2 Nickel hydroxide positive electrode 3 Separator 4 Insulating plate 5 Battery case 6 Positive electrode lead 7 Gasket 8 Positive electrode cap 9 Safety valve 10 Sealing plate

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】Li,Na,K,Mg,Caからなる金属
群のうちの少なくとも1種を含むフラーレン化合物を用
いたことを特徴とするアルカリ蓄電池用負極。
1. A negative electrode for an alkaline storage battery, comprising a fullerene compound containing at least one metal selected from the group consisting of Li, Na, K, Mg and Ca.
【請求項2】フラーレン化合物が、一般式MxCn(M
はLi,Na,K,Mg,Caのいずれかの金属の少な
くとも1種、xは化学量論組成比を示し、1≦x≦3で
あり、nは炭素原子数を示し、n=60)で表されるフ
ラーレン化合物であることを特徴とする請求項1記載の
アルカリ蓄電池用負極。
2. A fullerene compound is represented by the general formula MxCn (M
Is at least one metal selected from Li, Na, K, Mg, and Ca, x is a stoichiometric composition ratio, 1 ≦ x ≦ 3, n is the number of carbon atoms, and n = 60) The negative electrode for an alkaline storage battery according to claim 1, which is a fullerene compound represented by:
【請求項3】フラーレン化合物が、一般式MxCn(M
はLi,Na,K,Mg,Caのいずれかの金属の少な
くとも1種、xは化学量論組成比を示し、x=1であ
り、nは炭素原子数を示し、n=82)で表されるフラ
ーレン化合物であることを特徴とする請求項1記載のア
ルカリ蓄電池用負極。
3. A fullerene compound is represented by the general formula MxCn (M
Is at least one metal selected from Li, Na, K, Mg, and Ca, x is a stoichiometric composition ratio, x = 1, n is the number of carbon atoms, and n = 82). 2. The negative electrode for an alkaline storage battery according to claim 1, which is a fullerene compound.
【請求項4】水酸化ニッケルを用いた正極と、Li,N
a,K,Mg,Caからなる金属群のうちの少なくとも
1種を含むフラーレン化合物を用いた負極と、アルカリ
性電解液とを備えたことを特徴とするアルカリ蓄電池。
4. A positive electrode using nickel hydroxide and Li, N
An alkaline storage battery, comprising: a negative electrode using a fullerene compound containing at least one of a metal group consisting of a, K, Mg, and Ca, and an alkaline electrolyte.
【請求項5】Li,Na,K,Mg,Caからなる金属
群のうち少なくとも1種を含むフラーレン化合物を用い
た負極において導電剤がフラーレン化合物に対し、3重
量%含まれることを特徴とする請求項4記載のアルカリ
蓄電池。
5. A negative electrode using a fullerene compound containing at least one metal selected from the group consisting of Li, Na, K, Mg and Ca, wherein the conductive agent is contained in an amount of 3% by weight based on the fullerene compound. The alkaline storage battery according to claim 4.
【請求項6】水酸化ニッケルが平均粒径9〜12μmで
あり、添加物としてコバルト酸化物もしくは水酸化物が
10重量%、亜鉛の酸化物もしくは水酸化物が8〜9重
量%含まれる正極を用いることを特徴とする請求項4記
載のアルカリ蓄電池。
6. A positive electrode containing nickel hydroxide having an average particle diameter of 9 to 12 μm, containing 10 wt% of cobalt oxide or hydroxide and 8 to 9 wt% of zinc oxide or hydroxide as additives. The alkaline storage battery according to claim 4, wherein:
【請求項7】アルカリ性電解液が、添加剤として水酸化
リチウムを含む水酸化カリウムもしくは水酸化ナトリウ
ムの水溶液であって、比重が20℃で1.2〜1.3で
ある電解液を用いることを特徴とする請求項4記載のア
ルカリ蓄電池。
7. An alkaline electrolyte is an aqueous solution of potassium hydroxide or sodium hydroxide containing lithium hydroxide as an additive, and an electrolyte having a specific gravity of 1.2 to 1.3 at 20 ° C. is used. 5. The alkaline storage battery according to claim 4.
【請求項8】Li,Na,K,Mg,Caからなる金属
群のうち少なくとも1種を含むフラーレン化合物を用い
た負極の構成において、結着剤がポリビニールアルコー
ル、ポリエチレン、ポリテトラフルオロエチレン、カル
ボキシメチルセルロース、ポリスチレン、メチルセルロ
ースのいずれかを用いることを特徴とする請求項4記載
のアルカリ蓄電池。
8. A negative electrode having a fullerene compound containing at least one metal selected from the group consisting of Li, Na, K, Mg and Ca, wherein the binder is polyvinyl alcohol, polyethylene, polytetrafluoroethylene, The alkaline storage battery according to claim 4, wherein any one of carboxymethyl cellulose, polystyrene, and methyl cellulose is used.
【請求項9】Li,Na,K,Mg,Caからなる金属
群のうち少なくとも1種を含むフラーレン化合物を用い
た負極の構成において、芯材が発泡基板、金属繊維もし
くは炭素繊維状の3次元構造体、金属メッシュ、パンチ
ングメタル、エキスパンドメタルのいずれかを用いるこ
とを特徴とする請求項4記載のアルカリ蓄電池。
9. A three-dimensional structure in which a core material is a foamed substrate, a metal fiber or a carbon fiber, in the constitution of a negative electrode using a fullerene compound containing at least one kind of metal group consisting of Li, Na, K, Mg and Ca. The alkaline storage battery according to claim 4, wherein any one of a structure, a metal mesh, a punching metal, and an expanded metal is used.
【請求項10】セパレータが、ポリプロピレン製不織
布、ポリオレフィン系スルフォン化処理を施した不織
布、アクリル酸グラフト重合体を用いることを特徴とす
る請求項4記載のアルカリ蓄電池。
10. The alkaline storage battery according to claim 4, wherein the separator is a polypropylene non-woven fabric, a non-woven fabric subjected to a polyolefin sulfonation treatment, or an acrylic acid graft polymer.
JP11597296A 1995-07-31 1996-05-10 Negative electrode for alkaline storage battery and battery using the same Expired - Fee Related JP3475652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11597296A JP3475652B2 (en) 1995-07-31 1996-05-10 Negative electrode for alkaline storage battery and battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-194564 1995-07-31
JP19456495 1995-07-31
JP11597296A JP3475652B2 (en) 1995-07-31 1996-05-10 Negative electrode for alkaline storage battery and battery using the same

Publications (2)

Publication Number Publication Date
JPH09102314A true JPH09102314A (en) 1997-04-15
JP3475652B2 JP3475652B2 (en) 2003-12-08

Family

ID=26454386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11597296A Expired - Fee Related JP3475652B2 (en) 1995-07-31 1996-05-10 Negative electrode for alkaline storage battery and battery using the same

Country Status (1)

Country Link
JP (1) JP3475652B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025433A1 (en) * 2004-08-31 2006-03-09 Ideal Star Inc. Photoelectric transduction material, photoelectric transduction apparatus and process for producing photoelectric transduction material
JP2011249238A (en) * 2010-05-28 2011-12-08 National Institute Of Advanced Industrial & Technology Power storage device with proton as insertion species
US9525166B2 (en) 2011-07-28 2016-12-20 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225023B2 (en) 2013-10-04 2015-12-29 Toyota Motor Engineering & Manufacturing North America, Inc. Fullerenes as high capacity cathode materials for a rechargeable magnesium battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025433A1 (en) * 2004-08-31 2006-03-09 Ideal Star Inc. Photoelectric transduction material, photoelectric transduction apparatus and process for producing photoelectric transduction material
JP2006073201A (en) * 2004-08-31 2006-03-16 Ideal Star Inc Photoelectric conversion material, photoelectric conversion device and manufacturing method of photoelectric conversion material
JP2011249238A (en) * 2010-05-28 2011-12-08 National Institute Of Advanced Industrial & Technology Power storage device with proton as insertion species
US9525166B2 (en) 2011-07-28 2016-12-20 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery
US9748560B2 (en) 2011-07-28 2017-08-29 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery

Also Published As

Publication number Publication date
JP3475652B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
CN108520985B (en) Method for prolonging cycle life of zinc battery and application thereof
KR100725609B1 (en) Composite positive electrode material and method for making same
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3558590B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP4839573B2 (en) Electrochemical device and electrode
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JPH10275631A (en) Powder material, electrode structure, manufacture of them, and secondary battery
JP2012227106A (en) Nickel-metal hydride battery
US5004657A (en) Battery
JP2012188728A (en) Composite hydrogen-storage alloy and nickel-metal hydride storage battery
JP3475652B2 (en) Negative electrode for alkaline storage battery and battery using the same
JPH06215765A (en) Alkaline storage battery and manufacture thereof
KR101485483B1 (en) Manufacturing method of Cathode material for Mg rechargeable batteries, and Cathode material for Mg rechargeable batteries made by the same
JP2018147626A (en) Alkaline secondary battery
JPH09199123A (en) Negative electrode active material for alkaline storage battery and battery with it
JP3473221B2 (en) Negative electrode for alkaline storage battery and battery using the same
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JP3500858B2 (en) Negative electrode for alkaline storage battery and battery using the same
Maurya et al. Carbon-Based and TMDs-Based Air Cathode for Metal–Air Batteries
JPH04188561A (en) Alkaline storage battery
JPH09274931A (en) Metal oxide/fullerenee storage battery
JP2022115451A (en) Iron-carbon composite material, manufacturing method of the same, negative electrode, and nickel-hydrogen battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JP2023030793A (en) Battery and method for manufacturing battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees