JPH09101274A - Thermal analyzer - Google Patents

Thermal analyzer

Info

Publication number
JPH09101274A
JPH09101274A JP27970995A JP27970995A JPH09101274A JP H09101274 A JPH09101274 A JP H09101274A JP 27970995 A JP27970995 A JP 27970995A JP 27970995 A JP27970995 A JP 27970995A JP H09101274 A JPH09101274 A JP H09101274A
Authority
JP
Japan
Prior art keywords
heating furnace
temperature
furnace body
sample
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27970995A
Other languages
Japanese (ja)
Inventor
Koji Nishino
孝二 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP27970995A priority Critical patent/JPH09101274A/en
Publication of JPH09101274A publication Critical patent/JPH09101274A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To sufficiently attenuate temperature fluctuation in a heating furnace caused by temperature control noise and, at the same time, to improve the heat radiating efficiency of the furnace by forming through holes in the body of the furnace. SOLUTION: A plurality of through holes 1b is formed in the body 1 of a heating furnace so that the temperature fluctuation caused by temperature control noise can be prevented from being transmitted to the sample housing section 1a of the main body 1 by the increased heat resistance of such a fluid as an inert gas, etc., which is supplied to the periphery of the section 1a when the density of the fluid increases. When a lid body 5 is put on the body 1, in addition, the upper openings of the holes 1b are blocked with the jaw section 5b of the lid body 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、示差走査熱量測定
(DSC)等を行う熱分析装置に関する。
TECHNICAL FIELD The present invention relates to a thermal analyzer for performing differential scanning calorimetry (DSC) and the like.

【0002】[0002]

【従来の技術】種々の材料の熱的物性を求めたり、各種
の無機・有機化合物の熱安定性を調べるための試験方法
の一つとして熱分析が広く利用されている。そして、こ
の熱分析の中でも最も多く利用されるのが、示差走査熱
量測定である。示差走査熱量測定は、測定対象となる試
料と、熱的に不活性な基準物質との温度差を測定し、こ
の温度差を示す信号に基づき試料に余分に供給され又は
少なめに供給される単位時間当たりの熱エネルギーを求
めて、この試料の転移や化学反応に伴うエンタルピー変
化を調べるものである。
2. Description of the Related Art Thermal analysis is widely used as one of the test methods for obtaining the thermal properties of various materials and for investigating the thermal stability of various inorganic and organic compounds. The most frequently used thermal analysis is differential scanning calorimetry. Differential scanning calorimetry measures the temperature difference between a sample to be measured and a thermally inactive reference substance, and is a unit that is supplied extra or less to the sample based on the signal indicating this temperature difference. The enthalpy change associated with the transition and chemical reaction of this sample is investigated by obtaining the thermal energy per unit time.

【0003】上記示差走査熱量測定を行う従来の熱分析
装置の構成を図5に示す。加熱炉本体1は、炉内の温度
分布を均一にするために銀等の熱伝導率の高い材料によ
って構成される。この加熱炉本体1には、上面に開口す
る凹状の試料収納部1aが形成され、この試料収納部1
a内にセンサユニット2が収納されている。センサユニ
ット2は、試料容器3と基準物質容器4を載置するため
の円盤状のプレート2aと、このプレート2aにおける
試料容器3と基準物質容器4の載置部の裏面に接合され
た熱電対の線材2bとからなり、各線材2bの下方端
は、加熱炉本体1の微小な孔を通して裏面側に導出され
ている。従って、これら熱電対の線材2bでの起電力を
検出することにより、試料容器3内の試料8の温度Ts
やこの温度Ts と基準物質容器4内の基準物質9の温度
との温度差ΔT等を測定することができるようになって
いる。また、この試料収納部1aの上方開口部には、加
熱炉本体1と同様の熱伝導率の高い材料からなる蓋体5
が嵌め込まれ、センサユニット2を収納した試料収納部
1a内部を塞ぐようになっている。
FIG. 5 shows the configuration of a conventional thermal analysis device for performing the differential scanning calorimetry. The heating furnace body 1 is made of a material having a high thermal conductivity such as silver in order to make the temperature distribution in the furnace uniform. The heating furnace body 1 is formed with a concave sample storage portion 1a having an opening on the upper surface.
The sensor unit 2 is housed in a. The sensor unit 2 includes a disk-shaped plate 2a for mounting the sample container 3 and the reference material container 4, and a thermocouple bonded to the back surfaces of the mounting portions of the sample container 3 and the reference material container 4 on the plate 2a. And the lower end of each wire 2b is led out to the back surface side through a minute hole of the heating furnace main body 1. Therefore, the temperature T s of the sample 8 in the sample container 3 is detected by detecting the electromotive force in the wire 2b of these thermocouples.
The temperature difference ΔT between the temperature T s and the temperature of the reference substance 9 in the reference substance container 4 can be measured. A lid 5 made of a material having a high thermal conductivity similar to that of the heating furnace body 1 is provided in the upper opening of the sample storage portion 1a.
Is fitted to close the inside of the sample storage portion 1a in which the sensor unit 2 is stored.

【0004】上記加熱炉本体1の外周側面には、ヒータ
線6が巻回されている。また、加熱炉本体1の外周側面
の少し内側には、熱電対による温度センサ7が埋め込ま
れ、ヒータ線6によって加熱される加熱炉本体1の温度
f を検出することができるようになっている。そし
て、この温度センサ7によって検出された温度Tf をヒ
ータ線6の制御装置にフィードバックすることにより、
加熱炉本体1の温度を精密に制御できるようになってい
る。
A heater wire 6 is wound around the outer peripheral side surface of the heating furnace body 1. Further, a temperature sensor 7 by a thermocouple is embedded slightly inside the outer peripheral side surface of the heating furnace body 1 so that the temperature T f of the heating furnace body 1 heated by the heater wire 6 can be detected. There is. Then, by feeding back the temperature T f detected by the temperature sensor 7 to the controller of the heater wire 6,
The temperature of the heating furnace body 1 can be precisely controlled.

【0005】[0005]

【発明が解決しようとする課題】上記ヒータ線6の制御
装置は、PID制御に基づき、温度プログラムに従って
加熱炉本体1の温度を制御する。ところで、この温度制
御システムでは、加熱炉本体1は通常大きな熱容量を有
するためヒータ線6の発熱が該加熱炉本体1に伝わり温
度センサ7によって検出されるまでの間に時間遅れ要素
が加わるので、温度センサ7を加熱炉本体1のヒータ線
6に最も近い位置に埋め込むことにより、この時間遅れ
要素の影響ができるだけ小さくなるようにしている。し
かし、この時間遅れ要素を完全に除去することはできな
いので、実際の加熱炉本体1の温度Tf は、温度プログ
ラムの設定温度に正確に追従するのではなく、例えば図
6に示すように振幅nc の変動を生じながら追従するこ
とになり、このような温度変動が温度制御ノイズとな
る。そして、この温度制御ノイズによる温度変動が試料
8等に伝わると、通常の温度制御であれば無視し得るよ
うなわずかな温度変動ではあるが、微小な温度差等を精
密に測定する必要がある示差走査熱量測定等の場合に
は、測定結果に悪影響を及ぼすおそれが生じる。
The controller for the heater wire 6 controls the temperature of the heating furnace body 1 according to the temperature program based on the PID control. By the way, in this temperature control system, since the heating furnace body 1 usually has a large heat capacity, a time delay element is added until the heat generation of the heater wire 6 is transmitted to the heating furnace body 1 and detected by the temperature sensor 7. By embedding the temperature sensor 7 at a position closest to the heater wire 6 of the heating furnace body 1, the influence of this time delay element is minimized. However, since this time delay element cannot be completely removed, the actual temperature T f of the heating furnace main body 1 does not accurately follow the set temperature of the temperature program, but the amplitude as shown in FIG. It follows that a change in n c occurs, and such a temperature change becomes temperature control noise. When the temperature fluctuation due to the temperature control noise is transmitted to the sample 8 and the like, it is a slight temperature fluctuation that can be ignored in normal temperature control, but it is necessary to measure a minute temperature difference or the like precisely. In the case of differential scanning calorimetry or the like, there is a possibility that the measurement result may be adversely affected.

【0006】そこで、従来の熱分析装置では、加熱炉本
体1をある程度大きくして熱容量を増加させることによ
り、図7に示すように、温度Tf に温度制御ノイズによ
る振幅nc の温度変動が現れたとしても、加熱炉本体1
自身のダンピング効果によってこの温度変動を減衰さ
せ、試料8の温度Ts には極めて小さい振幅nd の温度
変動のみが現れるようにして、温度制御ノイズの影響を
低減させていた。しかし、加熱炉本体1は、銀等の熱伝
導率の高い材料からなりダンピング効果が低いため、従
来の熱分析装置では、試料8の温度Ts に現れる温度変
動の振幅nd が十分に減衰せず、温度制御ノイズが測定
に悪影響を及ぼすおそれを完全に払拭することができな
いという問題が生じていた。
Therefore, in the conventional thermal analysis apparatus, the heating furnace body 1 is enlarged to some extent to increase the heat capacity, so that the temperature Tf causes a temperature fluctuation of the amplitude n c due to temperature control noise, as shown in FIG. Even if it appears, the furnace body 1
This temperature fluctuation is attenuated by its own damping effect so that only the temperature fluctuation having an extremely small amplitude n d appears in the temperature T s of the sample 8 to reduce the influence of the temperature control noise. However, since the heating furnace body 1 is made of a material having a high thermal conductivity such as silver and has a low damping effect, the amplitude n d of the temperature fluctuation appearing in the temperature T s of the sample 8 is sufficiently attenuated in the conventional thermal analysis device. However, there is a problem in that it is impossible to completely eliminate the possibility that the temperature control noise adversely affects the measurement.

【0007】また、加熱炉本体1の外周側面にセメント
やセラミックスファイバ等の耐熱性断熱材を介してヒー
タ線6を巻回するようにすれば、これら熱伝導率の低い
断熱材のダンピング効果により、図7に示した試料8の
温度Ts の振幅nd を十分に減衰させて、上記問題を解
消することができる。しかし、このような断熱材は大き
な熱抵抗となって試料8の温度Ts の加熱炉本体1の温
度Tf への追随性を著しく損なう上熱容量が大きいため
に、測定の完了後に加熱炉本体1を冷却する際に長い時
間を要する。しかも、この加熱炉本体1を空冷しようと
しても、外周側面が断熱材で覆われているので、放熱効
率が悪くなる。従って、このような断熱材を用いると、
同じ熱分析装置を用いて測定を繰り返す場合に、加熱炉
本体1の冷却に時間を取られて作業効率が悪くなるとい
う問題が生じる。
If the heater wire 6 is wound around the outer peripheral surface of the heating furnace main body 1 through a heat resistant heat insulating material such as cement or ceramic fiber, the damping effect of these heat insulating materials having low thermal conductivity is achieved. it can by sufficiently attenuate the amplitude n d of the temperature T s of the sample 8 shown in FIG. 7, to solve the above problems. However, since such a heat insulating material has a large thermal resistance and significantly impairs the trackability of the temperature T s of the sample 8 to the temperature T f of the heating furnace body 1, the heat capacity is large, and therefore, the heating furnace body after the measurement is completed. It takes a long time to cool 1. Moreover, even if an attempt is made to cool the heating furnace main body 1 by air, the heat radiation efficiency deteriorates because the outer peripheral side surface is covered with the heat insulating material. Therefore, with such a heat insulating material,
When the measurement is repeated using the same thermal analysis device, it takes time to cool the heating furnace body 1 and the work efficiency deteriorates.

【0008】この発明は、かかる事情に鑑みてなされた
ものであり、加熱炉本体に貫通孔を穿設することによ
り、温度制御ノイズによる温度変動を十分に減衰させる
と共に、放熱効率も向上させることができる熱分析装置
を提供することを目的としている。
The present invention has been made in view of the above circumstances, and it is possible to sufficiently attenuate the temperature fluctuation due to temperature control noise and improve the heat dissipation efficiency by forming a through hole in the heating furnace main body. It is an object of the present invention to provide a thermal analysis device capable of performing the above.

【0009】[0009]

【課題を解決するための手段】即ち、この発明は、上記
課題を解決するために、加熱炉本体の内部に試料を収
納するための試料収納部が設けられると共に、この加熱
炉本体の周囲に加熱手段が設けられた熱分析装置におい
て、加熱炉本体における試料収納部の周囲に貫通孔が穿
設されたことを特徴とする。
That is, in order to solve the above-mentioned problems, the present invention is provided with a sample storage portion for storing a sample inside a heating furnace main body, and is provided around the heating furnace main body. In the thermal analyzer provided with the heating means, a through hole is formed around the sample storage portion in the heating furnace body.

【0010】の手段によれば、加熱手段からの熱が加
熱炉本体を伝導して試料収納部に伝わるときの伝導路中
に貫通孔が配置されることになる。ここで、加熱炉本体
は、一般に銀等の十分に熱伝導率の高い材料によって構
成されるが、貫通孔中には、加熱炉本体の周囲に充填さ
れた不活性ガス等の流体が充満するので、この貫通孔の
熱伝導率は極めて低いものとなる。このため、加熱手段
からの熱は、この貫通孔の熱抵抗によってダンピングさ
れるので、温度制御ノイズによる温度変動が試料に伝わ
るのを防止できるようになる。
According to the means of (1), the through hole is arranged in the conduction path when the heat from the heating means is conducted through the heating furnace main body and is transmitted to the sample storage portion. Here, the heating furnace body is generally made of a material having a sufficiently high thermal conductivity such as silver, but the through hole is filled with a fluid such as an inert gas filled around the heating furnace body. Therefore, the thermal conductivity of this through hole is extremely low. Therefore, the heat from the heating means is damped by the thermal resistance of the through hole, so that the temperature fluctuation due to the temperature control noise can be prevented from being transmitted to the sample.

【0011】また、加熱炉本体は、貫通孔のないものと
同じ大きさであれば熱容量が小さくなるので、放熱する
熱量が少なくて済み、測定後に短時間で冷却できるよう
になる。そして、同じ熱容量であれば貫通孔のないもの
よりも大型で表面積が大きくなるので放熱量も多くな
り、この場合にも測定後に短時間で冷却できるようにな
る。しかも、貫通孔中を自然対流する流体又は強制的に
送り込まれる流体によって、加熱炉本体の放熱を促進さ
せてさらに急速に冷却することができる。
If the heating furnace main body has the same size as the one without through holes, the heat capacity is small, so that the amount of heat to be radiated is small, and the heating furnace can be cooled in a short time after the measurement. Further, if the heat capacity is the same, since the size is larger and the surface area is larger than that without the through hole, the heat radiation amount is also large, and in this case also, it becomes possible to cool in a short time after the measurement. Moreover, the fluid that naturally convects in the through-hole or the fluid that is forcedly fed can accelerate the heat dissipation of the heating furnace body and cool it further rapidly.

【0012】また、前記の貫通孔が、加熱炉本体を
上下方向に貫通する複数の孔であり、かつ、試料収納部
の周囲を囲むように配置されたものであることを特徴と
する。
Further, the above-mentioned through holes are a plurality of holes penetrating through the heating furnace main body in the vertical direction, and are arranged so as to surround the periphery of the sample storage portion.

【0013】の手段によれば、複数の貫通孔が試料収
納部の周囲を囲むように配置されるので、加熱手段から
の熱のダンピング効果を均一で安定したものとすること
ができる。しかも、これらの貫通孔は、加熱炉本体を上
下方向に貫通するので、測定後の冷却時に流体が容易に
自然対流できるようになり、放熱効率を向上させること
ができる。
According to the means of (1), since the plurality of through holes are arranged so as to surround the periphery of the sample storage portion, the effect of damping the heat from the heating means can be made uniform and stable. Moreover, since these through holes penetrate the heating furnace body in the vertical direction, the fluid can easily naturally convect during cooling after the measurement, and the heat dissipation efficiency can be improved.

【0014】さらに、前記の加熱炉本体に装着して
試料収納部の上方開口部を塞ぐ蓋体を有し、かつ、この
蓋体の周縁部に、加熱炉本体への装着時に周囲の貫通孔
の上端開口部を塞ぐ鍔部が形成されたことを特徴とす
る。
Further, there is provided a lid body which is attached to the heating furnace body and closes the upper opening of the sample storage section, and a peripheral through-hole at the time of attachment to the heating furnace body at the peripheral portion of the lid body. A collar portion for closing the upper end opening of the is formed.

【0015】の手段によれば、測定時に蓋体を装着す
ると、この蓋体の鍔部によって貫通孔の上方開口部も塞
がれるので、この貫通孔中の流体が外部との流通をしゃ
断される。従って、測定時には、貫通孔中の流体が流出
することがなくなり蓄熱効果を発揮するので、大きなダ
ンピング効果を得ることができるようになる。
According to the above means, when the lid is mounted at the time of measurement, the flange of the lid also closes the upper opening of the through hole, so that the fluid in the through hole is blocked from flowing to the outside. It Therefore, at the time of measurement, the fluid in the through hole does not flow out and the heat storage effect is exerted, so that a large damping effect can be obtained.

【0016】さらに、前記の複数の貫通孔の開口端
間を管路で接続して流路を形成すると共に、この流路に
流体を送る流体供給手段が設けられたことを特徴とす
る。
Further, the present invention is characterized in that the opening ends of the plurality of through holes are connected by a pipe line to form a flow path, and a fluid supply means for sending a fluid to the flow path is provided.

【0017】の手段によれば、流体供給手段によって
貫通孔中に冷媒等を流すことができるので、測定後の加
熱炉本体をより一層効果的に冷却することができる。ま
た、測定中にも流体供給手段によって貫通孔中に冷媒等
を流し、この流量等を制御すれば、加熱手段のみによる
場合よりもさらに広範な温度制御を行うことができるよ
うになる。
According to the means of (1), since the cooling medium or the like can be made to flow into the through hole by the fluid supply means, the heating furnace body after the measurement can be cooled more effectively. Further, even during measurement, if a coolant or the like is caused to flow through the through hole by the fluid supply means and the flow rate or the like is controlled, it becomes possible to perform a wider temperature control than in the case where only the heating means is used.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1乃至図4は本発明の一実施形態を示す
ものであって、図1は熱分析装置の構成を示す縦断面斜
視図、図2は熱分析装置の平面図、図3は測定時の熱分
析装置を示す縦断面斜視図、図4は冷却時の熱分析装置
を示す縦断面斜視図である。なお、図5に示した従来例
と同様の機能を有する構成部材には同じ番号を付記す
る。
1 to 4 show an embodiment of the present invention. FIG. 1 is a vertical cross-sectional perspective view showing the structure of a thermal analysis apparatus, FIG. 2 is a plan view of the thermal analysis apparatus, and FIG. FIG. 4 is a vertical cross-sectional perspective view showing the thermal analyzer during measurement, and FIG. 4 is a vertical cross-sectional perspective view showing the thermal analyzer during cooling. In addition, the same numbers are added to the components having the same functions as those of the conventional example shown in FIG.

【0020】本実施形態では、示差走査熱量測定を行う
熱分析装置について説明する。熱分析装置は、図1及び
図2に示すように、銀等の熱伝導率の高い材料を円柱形
状とした加熱炉本体1を有している。この加熱炉本体1
の中央部には、上面に開口する円形の凹部である試料収
納部1aが形成され、この試料収納部1a内にセンサユ
ニット2が収納されている。センサユニット2は、図5
に示した従来例と同様の構成であり、試料容器3と基準
物質容器4を載置するためのプレート2aと、このプレ
ート2aの裏面に接合された熱電対の線材2bとからな
る。加熱炉本体1における試料収納部1aの周囲には、
上下方向にまっすぐに貫通する貫通孔1bがこの試料収
納部1aを取り囲むように複数穿設されている。
In this embodiment, a thermal analysis device for performing differential scanning calorimetry will be described. As shown in FIGS. 1 and 2, the thermal analysis apparatus has a heating furnace body 1 having a cylindrical shape made of a material having a high thermal conductivity such as silver. This heating furnace body 1
A sample storage portion 1a, which is a circular concave portion having an opening on the upper surface, is formed in the center of the sample storage portion 1a, and the sensor unit 2 is stored in the sample storage portion 1a. The sensor unit 2 is shown in FIG.
The structure is similar to that of the conventional example shown in FIG. 1 and includes a plate 2a for mounting the sample container 3 and the reference material container 4, and a thermocouple wire 2b bonded to the back surface of the plate 2a. Around the sample storage portion 1a of the heating furnace body 1,
A plurality of through holes 1b penetrating straight in the vertical direction are formed so as to surround the sample storage portion 1a.

【0021】上記加熱炉本体1における試料収納部1a
の上方開口部には、蓋体5の中央部5aが嵌め込まれる
ようになっている。この蓋体5は、加熱炉本体1と同様
の熱伝導率の高い材料からなる円盤であり、周縁部に鍔
部5bが設けられている。そして、図3に示すように、
蓋体5の中央部5aが試料収納部1aに嵌まり込んだ際
に、この鍔部5bが加熱炉本体1の上面の貫通孔1bの
開口部を塞ぐようになっている。また、加熱炉本体1の
外周側面には、電熱線を絶縁してステンレス等の管内に
収容したヒータ線6が巻回されている。さらに、この加
熱炉本体1の外周側面の少し内側には、熱電対による温
度センサ7が埋め込まれている。
Sample storage section 1a in the heating furnace body 1
The central portion 5a of the lid 5 is fitted into the upper opening of the. The lid body 5 is a disk made of a material having a high thermal conductivity similar to that of the heating furnace body 1, and has a flange portion 5b at the peripheral edge portion. Then, as shown in FIG.
When the central portion 5a of the lid 5 is fitted into the sample storage portion 1a, the flange portion 5b closes the opening of the through hole 1b on the upper surface of the heating furnace body 1. Further, a heater wire 6 which is insulated from a heating wire and accommodated in a tube made of stainless steel or the like is wound around the outer peripheral side surface of the heating furnace body 1. Further, a temperature sensor 7 by a thermocouple is embedded slightly inside the outer peripheral side surface of the heating furnace body 1.

【0022】上記構成の熱分析装置は、図1に示すよう
に、センサユニット2のプレート2a上に、試料8を入
れた試料容器3と基準物質9を入れた基準物質容器4と
を載置し、図3に示すように、蓋体5の中央部5aを試
料収納部1aの上部に嵌め込む。そして、図示しない制
御装置によってヒータ線6に通電を行うことにより、加
熱炉本体1の温度を温度プログラムに従って制御しなが
ら示差走査熱量測定を行う。この際、制御装置は、温度
センサ7によって検出した加熱炉本体1の温度Tf をフ
ィードバックすることによりヒータ線6への通電を制御
するので、図6に示したように、この温度Tf は温度制
御ノイズによって振幅nc の温度変動を生じる。
As shown in FIG. 1, the thermal analyzer having the above-described structure mounts a sample container 3 containing a sample 8 and a reference substance container 4 containing a reference substance 9 on a plate 2a of a sensor unit 2. Then, as shown in FIG. 3, the central portion 5a of the lid 5 is fitted into the upper portion of the sample storage portion 1a. Then, the heater wire 6 is energized by a controller (not shown) to perform the differential scanning calorimetry while controlling the temperature of the heating furnace body 1 according to the temperature program. At this time, the control device controls the energization to the heater wire 6 by feeding back the temperature T f of the heating furnace body 1 detected by the temperature sensor 7, so that the temperature T f is controlled as shown in FIG. Temperature control noise causes temperature fluctuations of amplitude n c .

【0023】しかし、ヒータ線6からの熱は、各貫通孔
1bの間隙とこれらの貫通孔1b自身を通して試料収納
部1aに伝わる。そして、各貫通孔1bの間隙は、熱伝
導率の高い加熱炉本体1の材料による伝導路が両側の貫
通孔1bによって狭められているので熱抵抗が大きくな
る。また、貫通孔1b自身は、内部に充満する窒素ガス
等の不活性ガスによる断熱効果により熱伝導率が極めて
低くなるので、さらに熱抵抗が大きくなる。しかも、各
貫通孔1bは、蓋体5の鍔部5bによって上方開口部が
塞がれるので、内部の不活性ガスが流通をしゃ断されて
蓄熱性が大きくなる。従って、この加熱炉本体1は、ヒ
ータ線6からの熱が外周側面から中央の試料収納部1a
に伝わる際に、貫通孔1bによる大きなダンピング効果
が得られるようになり、図7に示したように、試料収納
部1a内の試料8の温度Ts に生じる温度変動の振幅n
d を十分に減衰させることができるようになる。
However, the heat from the heater wire 6 is transmitted to the sample storage portion 1a through the gaps between the through holes 1b and the through holes 1b themselves. The gap between the through holes 1b has a large thermal resistance because the conduction path made of the material of the heating furnace body 1 having a high thermal conductivity is narrowed by the through holes 1b on both sides. Further, the through hole 1b itself has a very low thermal conductivity due to an adiabatic effect of an inert gas such as nitrogen gas filling the inside thereof, so that the thermal resistance further increases. In addition, since the upper opening of each through hole 1b is closed by the flange portion 5b of the lid 5, the inert gas inside is blocked from flowing, and the heat storage property is increased. Therefore, in the heating furnace body 1, the heat from the heater wire 6 is transferred from the outer peripheral side surface to the central sample storage portion 1a.
A large damping effect due to the through-hole 1b is obtained when it is transmitted to the device 1. As shown in FIG. 7, the amplitude n of the temperature fluctuation generated in the temperature T s of the sample 8 in the sample storage unit 1a is n
d can be attenuated sufficiently.

【0024】また、上記示差走査熱量測定が完了する
と、図4に示すように、蓋体5を取り外し、センサユニ
ット2のプレート2a上から試料容器3と基準物質容器
4を除去して、加熱炉本体1を冷却する。この際、加熱
炉本体1は、同じ大きさの従来のものに比べ貫通孔1b
の分だけ熱容量が小さくなるので、放熱する熱量も少な
くて済み、短時間で放熱が完了する。しかも、蓋体5が
取り外されることにより、各貫通孔1bの上方開口部が
開口されて通気が可能となるので、加熱炉本体1は、上
下端面や外周側面に加えてこれら貫通孔1bの内周面に
よる表面積が広がり、放熱効率が高くなる。さらに、図
4の矢印に示すように、下方からブロアー等で不活性ガ
スを強制的に吹き付けると、この放熱効率をさらに向上
させることができる。
When the differential scanning calorimetry is completed, the lid 5 is removed, the sample container 3 and the reference material container 4 are removed from the plate 2a of the sensor unit 2 as shown in FIG. Cool the body 1. At this time, the heating furnace body 1 has a through hole 1b that is larger than that of a conventional furnace of the same size.
Since the heat capacity is reduced by that amount, the amount of heat to be radiated is small, and the heat radiation is completed in a short time. Moreover, since the lid 5 is removed, the upper opening of each through hole 1b is opened to allow ventilation, so that the heating furnace main body 1 has a structure in which not only the upper and lower end surfaces and the outer peripheral side surface but also the inside of these through holes 1b are covered. The surface area by the peripheral surface is expanded, and the heat dissipation efficiency is increased. Furthermore, as shown by the arrow in FIG. 4, if an inert gas is forcibly blown from below with a blower or the like, this heat dissipation efficiency can be further improved.

【0025】以上説明したように、本実施形態の熱分析
装置によれば、加熱炉本体1に穿設された複数の貫通孔
1bによるダンピング効果によって、温度制御ノイズに
よる温度変動を十分に減衰させて試料8や基準物質9の
温度を制御することができるようになる。また、測定完
了後は、貫通孔1bを通して効率良く放熱できるので、
加熱炉本体1を短時間に冷却し次の測定に備えることが
できるようになる。
As described above, according to the thermal analysis apparatus of this embodiment, the damping effect of the plurality of through holes 1b formed in the heating furnace body 1 sufficiently attenuates the temperature fluctuation due to the temperature control noise. Thus, the temperatures of the sample 8 and the reference substance 9 can be controlled. After the measurement is completed, heat can be efficiently dissipated through the through hole 1b.
It becomes possible to cool the heating furnace main body 1 in a short time and prepare for the next measurement.

【0026】なお、上記実施形態では、貫通孔1bに周
囲の不活性ガスをそのまま流入させたが、各貫通孔1b
の開口部間を管路で繋いで流路を形成し、ここに液体窒
素や冷凍機で冷却したフロン等の冷媒を流せば、さらに
効率良く放熱を行うことができる。しかも、この場合に
は、積極的に加熱炉本体1の冷却を行うことができるの
で、冷媒の流量等を調整して冷却能力を変化させること
により、加熱炉本体1の降温速度等を広範囲に制御する
ことができるようになる。
In the above embodiment, the surrounding inert gas is allowed to flow into the through holes 1b as it is.
If a flow path is formed by connecting the openings of the above with a pipe, and a refrigerant such as liquid nitrogen or CFC cooled by a refrigerator is flowed through this, heat can be radiated more efficiently. Moreover, in this case, since the heating furnace body 1 can be positively cooled, the cooling rate of the heating furnace body 1 can be widely varied by adjusting the flow rate of the refrigerant and changing the cooling capacity. Be able to control.

【0027】また、上記実施形態では、加熱炉本体1の
外周側面に直接ヒータ線6を巻回したが、セメントやセ
ラミックスファイバ等の耐熱性断熱材を介してこのヒー
タ線6を巻回するようにしてもよい。このような断熱材
を使用すると、従来は放熱効率が悪化したが、本実施形
態では、貫通孔1bからの放熱によってこの放熱効率の
悪化を防止することができる。しかも、ヒータ線6との
間にこのような断熱材を介在させると、この断熱材の蓄
熱効果によりダンピング効果をさらに向上させることが
できるようになる。
Further, in the above embodiment, the heater wire 6 is wound directly on the outer peripheral side surface of the heating furnace body 1, but the heater wire 6 may be wound via a heat resistant heat insulating material such as cement or ceramic fiber. You may When such a heat insulating material is used, the heat radiation efficiency is deteriorated in the past, but in the present embodiment, the heat radiation efficiency from the through hole 1b can be prevented from being deteriorated. Moreover, by interposing such a heat insulating material between the heater wire 6 and the heater wire 6, the damping effect can be further improved by the heat storage effect of the heat insulating material.

【0028】さらに、上記実施形態では、示差走査熱量
測定を行う熱分析装置について説明したが、他の熱分析
を行う熱分析装置に実施した場合にも同様の効果を得る
ことができる。
Furthermore, in the above-described embodiment, the thermal analysis device for performing the differential scanning calorimetry has been described, but the same effect can be obtained when the thermal analysis device for performing another thermal analysis is performed.

【0029】[0029]

【発明の効果】以上の説明から明らかなように、本発明
の熱分析装置によれば、加熱手段からの熱を貫通孔の熱
抵抗によってダンピングすることにより、試料収納部に
伝わる温度制御ノイズによる温度変動を減衰させること
ができる。また、測定後には、この貫通孔中を流れる流
体によって加熱炉本体を急速に冷却することができるよ
うになる。
As is apparent from the above description, according to the thermal analysis apparatus of the present invention, the heat from the heating means is damped by the thermal resistance of the through hole, so that the temperature control noise transmitted to the sample storage portion causes The temperature fluctuation can be attenuated. Further, after the measurement, the heating furnace body can be rapidly cooled by the fluid flowing in the through hole.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示すものであって、熱分
析装置の構成を示す縦断面斜視図である。
FIG. 1 shows an embodiment of the present invention and is a vertical cross-sectional perspective view showing the configuration of a thermal analysis apparatus.

【図2】本発明の一実施形態を示すものであって、熱分
析装置の平面図である。
FIG. 2 shows an embodiment of the present invention and is a plan view of a thermal analysis device.

【図3】本発明の一実施形態を示すものであって、測定
時の熱分析装置を示す縦断面斜視図である。
FIG. 3 shows an embodiment of the present invention and is a vertical cross-sectional perspective view showing a thermal analysis device at the time of measurement.

【図4】本発明の一実施形態を示すものであって、冷却
時の熱分析装置を示す縦断面斜視図である。
FIG. 4 shows an embodiment of the present invention and is a vertical cross-sectional perspective view showing a thermal analysis device during cooling.

【図5】従来例を示すものであって、熱分析装置の構成
を示す縦断面斜視図である。
FIG. 5 is a vertical cross-sectional perspective view showing a configuration of a thermal analysis device, showing a conventional example.

【図6】温度制御ノイズによる影響を受けた加熱炉本体
の温度Tfの変動を示すタイムチャートである。
FIG. 6 is a time chart showing fluctuations in the temperature Tf of the heating furnace body affected by temperature control noise.

【図7】温度制御ノイズによる影響を受けた試料の温度
Tsの変動を示すタイムチャートである。
FIG. 7 is a time chart showing changes in the temperature Ts of a sample affected by temperature control noise.

【符号の説明】[Explanation of symbols]

1 加熱炉本体 1a 試料収納部 1b 貫通孔 5 蓋体 5b 鍔部 6 ヒータ線 1 Heating Furnace Main Body 1a Sample Storage 1b Through Hole 5 Lid 5b Collar 6 Heater Wire

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加熱炉本体の内部に試料を収納するため
の試料収納部が設けられると共に、この加熱炉本体の周
囲に加熱手段が設けられた熱分析装置において、加熱炉
本体における試料収納部の周囲に貫通孔が穿設されたこ
とを特徴とする熱分析装置。
1. A thermal analyzer in which a sample storage unit for storing a sample is provided inside the heating furnace main body, and a heating means is provided around the heating furnace main body. A thermal analysis device, wherein a through hole is formed around the periphery of the.
JP27970995A 1995-10-02 1995-10-02 Thermal analyzer Pending JPH09101274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27970995A JPH09101274A (en) 1995-10-02 1995-10-02 Thermal analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27970995A JPH09101274A (en) 1995-10-02 1995-10-02 Thermal analyzer

Publications (1)

Publication Number Publication Date
JPH09101274A true JPH09101274A (en) 1997-04-15

Family

ID=17614791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27970995A Pending JPH09101274A (en) 1995-10-02 1995-10-02 Thermal analyzer

Country Status (1)

Country Link
JP (1) JPH09101274A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651807A (en) * 2010-03-29 2016-06-08 日本株式会社日立高新技术科学 Thermal analyzer
CN112858382A (en) * 2020-12-31 2021-05-28 东软睿驰汽车技术(沈阳)有限公司 Method and device for detecting heat dissipation performance of liquid cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651807A (en) * 2010-03-29 2016-06-08 日本株式会社日立高新技术科学 Thermal analyzer
CN112858382A (en) * 2020-12-31 2021-05-28 东软睿驰汽车技术(沈阳)有限公司 Method and device for detecting heat dissipation performance of liquid cooling system

Similar Documents

Publication Publication Date Title
US7802916B2 (en) Differential scanning calorimeter
JP3338699B2 (en) Infrared heating differential thermal analyzer
EP1227317B1 (en) Thermal analysis assembly with distributed resistance and integral flange for mounting various cooling devices
US6390668B1 (en) Blackbody source using a heat pipe principle and transition region
JP3666831B2 (en) Thermal analysis and X-ray measurement equipment
JPH09101274A (en) Thermal analyzer
JP6326184B1 (en) Normal incident acoustic characteristic measuring apparatus and normal incident acoustic characteristic measuring method
WO2006006795A1 (en) Apparatus for maintaining constant temperature in water quality measuring instruments
WO2019159339A1 (en) Orthogonally-incident-sound-characteristic measurement device and orthogonally-incident-sound-characteristic measurement method
JPH06118039A (en) Thermal analyzing device
JP3712990B2 (en) Incubator equipment
JP3315368B2 (en) Thermal conductivity measuring device and measuring method
GB2250581A (en) Temperature control for sample incubator
JP3669615B2 (en) Sample heating / cooling device and thermal analysis device
WO1994006000A1 (en) Differential scanning calorimeter
US11231399B2 (en) Sample temperature adjustment device
JP2762952B2 (en) Differential thermal analyzer
CN115884711A (en) Quick body temperature measuring device and monitoring system
TR199901519T1 (en) Reactive thermo-elastic criostat.
JPS59112254A (en) Heating and cooling device for sample
JPH10104147A (en) Thermogravimetry device
KR100387591B1 (en) Method of measuring temperature of sample heated by radiation
JPH0989821A (en) Thermal analysis device and method
JP2009097882A (en) Device for measuring amount of insulated heat
JP2005091110A (en) Analyzer and method for analyzing mechanical heat characteristic