JPH09100511A - Rubber bearing body and bearing structure of bridge using this bearing body - Google Patents

Rubber bearing body and bearing structure of bridge using this bearing body

Info

Publication number
JPH09100511A
JPH09100511A JP26154095A JP26154095A JPH09100511A JP H09100511 A JPH09100511 A JP H09100511A JP 26154095 A JP26154095 A JP 26154095A JP 26154095 A JP26154095 A JP 26154095A JP H09100511 A JPH09100511 A JP H09100511A
Authority
JP
Japan
Prior art keywords
rubber
rubber bearing
bridge girder
bearing body
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26154095A
Other languages
Japanese (ja)
Inventor
Yoshihisa Yamamoto
▲吉▼久 山本
Shigeo Maruki
繁雄 丸喜
Teiji Kumaoka
禎二 熊岡
Shinichiro Kumagai
紳一郎 熊谷
Kazumichi Sasaki
和道 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Sumitomo Construction Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Sumitomo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd, Sumitomo Construction Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP26154095A priority Critical patent/JPH09100511A/en
Publication of JPH09100511A publication Critical patent/JPH09100511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce internal stress of a rubber bearing body and secure an intrinsic strength of a pier by using a material capable of relaxing the internal stress which is produced by the displacement in the shearing direction by the dry shrinkage of a concrete material as a rubber material. SOLUTION: A rubber bearing body device 1 is provided with an upper shoe 2 mounted on the bottom of concrete-made bride girder and a lower shoe 3 mounted on the top of a pier while a rubber bearing body 4 is fixed with the upper shoe 2. The rubber bearing body 4, which is substantially a rectangular-parallelepiped in shape, is slantingly formed in the vertical direction. The inclination direction is opposite to the shrinkage direction of the concrete material produced by its dry shrinkage. The inclination angle is displaced by about 7% of the thickness of the rubber bearing body 4 as for the shape of the rectangular parallelepiped. When the upper shoe 2 is moved by a specified distance, it is changed from the inclined state of the rubber bearing body 4 to a vertical state. While 24 hours have elapsed at an ambient temperature after the change, the stress relaxation rate of the rubber bearing body 4 drops to 40% and below. It, is, therefore, possible to reduce the reaction force imposed to the pier dramatically.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反力分散型のゴム
支承体およびこれを用いた橋梁の支承構造に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reaction force dispersion type rubber support and a bridge support structure using the same.

【0002】[0002]

【従来の技術】近年、橋梁技術の進歩がめざましく、橋
梁規模が年々大形化し、これに伴って長大橋が多く設計
されている。このような長大橋の支承方式として、従来
から、図15に示すように、長スパンの橋桁51を用
い、これを多数の橋脚52に固定されたゴム支承体53
で固定支持することが行われている。このような支承方
式の橋梁は、反力(水平力)分散型の橋梁と言われるも
ので、ゴム支承の水平剛性を有効に利用し、橋桁51の
慣性力を各橋脚52に任意に分配することで、橋脚52
の断面形状の均等化を図り、橋梁全体のバランスをよく
している。
2. Description of the Related Art In recent years, bridge technology has been remarkably advanced, and the scale of bridges has been increasing year by year. Accordingly, many long bridges have been designed. As a bearing system for such a long bridge, conventionally, as shown in FIG. 15, a long span bridge girder 51 is used, and a rubber bearing 53 fixed to a large number of piers 52.
Fixed support. Such a bridge of the support system is called a bridge of a distributed reaction force (horizontal force), and effectively utilizes the horizontal rigidity of the rubber bearing to arbitrarily distribute the inertial force of the bridge girder 51 to each pier 52. The pier 52
The cross-sectional shapes of the bridges have been made uniform to improve the balance of the entire bridge.

【0003】[0003]

【発明が解決しようとする課題】ところが、コンクリー
ト製長大橋の場合には、橋桁51の長さが300mにも
なるため、施工後半年〜1,2年程経過する間に、橋桁
51の乾燥収縮により長手方向に10cm程度縮む(図
15の矢印A参照)。このため、図16に示すように、
ゴム支承体53が橋桁51の長手方向に(橋桁51の中
央部に向かって)歪んでしまう。その結果、橋脚52に
はゴム支承体53の変形に伴う反力がかかり、橋桁51
の乾燥収縮後、常にこの橋の長さ方向の荷重を受けてい
ることになってしまい、橋脚52の強度上不利なものと
なる。そこで、上記橋桁51の乾燥収縮後におけるゴム
支承体の歪みを除去するものとして、特開平5−171
623号公報に示す予備剪断変形据付方法が提案されて
いる。この方法は、つぎのとおりである。すなわち、図
17および図18に示すように、橋桁51等の長手方向
に沿う両側部にストッパー56が立設されたベッドプレ
ート55と、ゴム層58の上下面に金属板59,60が
固着された略直方体形状のゴム支承体57を用意し、上
記ベッドプレート55の中央にゴム支承体57をボルト
61a,61bにより位置決め固定する。ついで、橋脚
52等を施工し、上記ベッドプレート55を橋脚52等
の上部に固定する。つぎに、ゴム支承体57の金属板5
9上面の係止突起59aをソールプレート62下面の係
止孔62aに嵌入し、その状態で橋桁51等を施工す
る。つぎに、橋桁51等の乾燥収縮およびクリープ進行
方向にあるボルト61aを撤去したのち、これと反対側
にあるボルト61bを締付け回動し、ゴム支承体57の
下部金属板60を橋桁51等の乾燥収縮およびクリープ
進行方向に押圧移動する。このようにして、ゴム支承体
57のゴム層58を予備剪断変形させたのち、ボルト6
1bを撤去し、ストッパー56と下部金属板60間に生
じた隙間にスペーサを配設しボルト止めするようにして
いる。
However, in the case of a concrete long bridge, since the length of the bridge girder 51 is 300 m, the bridge girder 51 dries during the second half to 1-2 years after construction. The contraction contracts about 10 cm in the longitudinal direction (see arrow A in FIG. 15). Therefore, as shown in FIG.
The rubber bearing 53 is distorted in the longitudinal direction of the bridge girder 51 (toward the center of the bridge girder 51). As a result, a reaction force is applied to the pier 52 due to the deformation of the rubber bearing 53, and the bridge girder 51
After the drying and shrinkage of the bridge, the bridge always receives a load in the longitudinal direction, which is disadvantageous in the strength of the pier 52. Therefore, as a means for removing the distortion of the rubber support after the bridge girder 51 has been dried and contracted, Japanese Patent Application Laid-Open No. 5-171 has been proposed.
A preliminary shearing deformation installation method disclosed in Japanese Patent No. 623 has been proposed. This method is as follows. That is, as shown in FIGS. 17 and 18, a bed plate 55 in which stoppers 56 are erected on both sides along the longitudinal direction of the bridge girder 51 and the like, and metal plates 59 and 60 are fixed to the upper and lower surfaces of the rubber layer 58. A rubber support 57 having a substantially rectangular parallelepiped shape is prepared, and the rubber support 57 is positioned and fixed to the center of the bed plate 55 with bolts 61a and 61b. Next, the bridge pier 52 or the like is constructed, and the bed plate 55 is fixed to the upper portion of the bridge pier 52 or the like. Next, the metal plate 5 of the rubber bearing 57
9 The locking projection 59a on the upper surface is fitted into the locking hole 62a on the lower surface of the sole plate 62, and the bridge girder 51 and the like are constructed in this state. Next, after removing the bolts 61a in the direction of dry shrinkage and creep of the bridge girder 51 and the like, the bolts 61b on the opposite side are tightened and rotated, and the lower metal plate 60 of the rubber support 57 is attached to the bridge girders 51 and the like. Presses and moves in the drying shrinkage and creep progress direction. In this way, the rubber layer 58 of the rubber support 57 is pre-shear-deformed, and then the bolt 6
1b is removed, a spacer is arranged in the gap formed between the stopper 56 and the lower metal plate 60, and bolted.

【0004】しかしながら、このものでは、ボルト61
bを締付け回動してゴム支承体57の下部金属板60を
押圧移動させる距離の設定が非常に難しいため、正確な
距離の設定が行えず、橋桁51等の乾燥収縮後にもゴム
支承体57のゴム層58に剪断変形が作用し続け、ゴム
支承体57等が早期に損傷するという問題がある。しか
も、このものでは、初期の状態から剪断変形がゴム支承
体57のゴム層58に作用しており、かつ、ボルト61
bの締付けにより急激に剪断変形が与えられるため、ゴ
ム層58に亀裂が生じやすい等の問題もある。さらに、
上記ボルト61bの締付け作業やスペーサの取付け作業
等細かい手作業を狭い場所で行わなければならないた
め、作業に手間取る。
However, in this case, the bolt 61
Since it is very difficult to set the distance for tightening and rotating b to press and move the lower metal plate 60 of the rubber bearing 57, the accurate distance cannot be set, and the rubber bearing 57 does not dry even after the bridge girder 51 or the like shrinks. There is a problem in that the shearing deformation continues to act on the rubber layer 58 and the rubber bearing 57 is damaged early. Moreover, in this structure, shear deformation acts on the rubber layer 58 of the rubber support 57 from the initial state, and the bolt 61
Since the shearing deformation is rapidly given by the tightening of b, there is a problem that the rubber layer 58 is likely to be cracked. further,
Since it is necessary to perform fine manual work such as tightening work of the bolt 61b and mounting work of the spacer in a narrow place, the work is troublesome.

【0005】本発明は、このような事情に鑑みなされた
もので、橋桁の乾燥収縮後再調整のための工事等を必要
とせずに、ゴム支承体の内部応力を軽減し、橋脚の本来
の強度を確保することのできるゴム支承体およびこれを
用いた橋梁の支承構造の提供をその目的とする。
The present invention has been made in view of such circumstances, and reduces the internal stress of the rubber bearing to reduce the internal stress of the bridge pier without the need for construction work for readjustment of the bridge girder after drying and shrinking. It is an object of the present invention to provide a rubber support body capable of ensuring strength and a bridge support structure using the same.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、橋脚上に固定されそれ自身の上にコンク
リート製の橋桁を載置し固定するゴム支承体であって、
そのゴム材料として、橋桁を構成するコンクリート材料
の乾燥収縮により橋桁がその長手方向に変位した際に、
この変位に伴ってそれ自身が剪断方向に変位することに
より生じる内部応力を緩和しうるゴム材料が用いられて
いるゴム支承体を第1の要旨とし、上記ゴム支承体を用
いた橋梁の支承構造を第2の要旨とする。
In order to achieve the above object, the present invention provides a rubber bearing for fixing a bridge girder made of concrete, which is fixed on a pier and is fixed on itself.
As the rubber material, when the bridge girder is displaced in its longitudinal direction due to the dry shrinkage of the concrete material that constitutes the bridge girder,
A rubber bearing which uses a rubber material capable of relaxing internal stress generated by itself displacing in the shearing direction due to this displacement is defined as a first gist, and a bridge bearing structure using the rubber bearing is described. Is the second gist.

【0007】[0007]

【発明の実施の形態】すなわち、本発明のゴム支承体
は、そのゴム材料として、橋桁を構成するコンクリート
材料の乾燥収縮により橋桁がその長手方向に変位した際
に、この変位に伴ってそれ自身が剪断方向に変位するこ
とにより生じる内部応力を緩和しうるゴム材料が用いら
れている。したがって、橋桁がその構成材料であるコン
クリート材料の乾燥収縮等により長手方向に向かって変
位すると、この変位に伴いゴム支承体が剪断方向に変位
するが、上記ゴム材料が応力緩和の大きい材料からなる
ため、ゴムのクリープを発生させ、ゴム支承体の内部応
力を緩和して残留応力を小さく、もしくは、取り除くこ
とができる。そのため、橋桁の乾燥収縮時に、橋脚にか
かる反力が著しく小さくなる。また、本発明では、上記
ゴム材料の選定等が、従来例における押圧移動距離の設
定ほど難しくなく、適正なゴム材料の選定等により、ゴ
ム支承体の内部応力を小さく、もしくは、取り除くこと
ができる。しかも、このものでは、ゴム支承体に作用す
る剪断方向の変位がコンクリート材料の乾燥収縮等の期
間中に徐々に発生し、また、この内部応力をゴム支承体
のゴム材料の性状により小さく、もしくは、取り除くこ
とができるため、作業時等にゴム支承体に亀裂等が生じ
ることがない。さらに、ゴム支承体の固定作業は、従来
例のような締付け作業や取付け作業ほど細かな作業を必
要としないため、狭い場所でも簡単に行える。一方、こ
のようなゴム支承体を用いた橋梁の支承構造とすること
で、耐久性に優れ、また、上記の優れた作用効果を奏す
る支承構造が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION That is, the rubber bearing of the present invention, as its rubber material, when the bridge girder is displaced in its longitudinal direction due to the drying shrinkage of the concrete material constituting the bridge girder, the rubber bearing itself is accompanied by this displacement. A rubber material is used that can relieve the internal stress caused by displacement in the shear direction. Therefore, when the bridge girder is displaced in the longitudinal direction due to the dry shrinkage of the concrete material that is its constituent material, the rubber bearing is displaced in the shearing direction due to this displacement, but the rubber material is made of a material with a large stress relaxation. Therefore, the creep of the rubber is generated, the internal stress of the rubber bearing is relaxed, and the residual stress can be reduced or removed. Therefore, the reaction force applied to the pier becomes significantly small when the bridge girder is dried and contracted. Further, in the present invention, the selection of the rubber material is not so difficult as the setting of the pressing movement distance in the conventional example, and the internal stress of the rubber bearing can be reduced or eliminated by selecting the proper rubber material. . Moreover, in this product, displacement in the shearing direction acting on the rubber bearing gradually occurs during the period such as drying shrinkage of the concrete material, and this internal stress is small due to the properties of the rubber material of the rubber bearing, or Since it can be removed, the rubber bearing will not be cracked during work. Further, since the fixing work of the rubber bearing does not require the finer work as the tightening work and the attaching work as in the conventional example, it can be easily performed even in a narrow place. On the other hand, by adopting a bridge support structure using such a rubber support, it is possible to obtain a support structure that is excellent in durability and has the above-mentioned excellent operational effects.

【0008】また、本発明において、橋桁の長手方向に
ゴム層の厚みの70%の変位量を与えた時の、常温で2
4時間後の応力緩和率が40%以上である場合には、コ
ンクリート材料の乾燥収縮および温度変化等による通常
の変位量(ゴム層の厚みの70%)に対し、充分な応力
緩和が得られるようになる(図10および図11参
照)。図11において、ゴム支承体はゴム層のみで構成
されている。本発明で、応力緩和率とは、コンクリート
材料の乾燥収縮により橋桁がその長手方向に変位した際
におけるゴム支承体の内部応力(P0 )と、応力緩和後
の内部応力(P1 )とから算出される値であり、下記の
式(1)で表される。
Further, in the present invention, when a displacement amount of 70% of the thickness of the rubber layer is applied in the longitudinal direction of the bridge girder, it is 2 at room temperature.
When the stress relaxation rate after 4 hours is 40% or more, sufficient stress relaxation can be obtained against the normal displacement amount (70% of the thickness of the rubber layer) due to drying shrinkage and temperature change of the concrete material. (See FIGS. 10 and 11). In FIG. 11, the rubber bearing is composed of only a rubber layer. In the present invention, the stress relaxation rate is calculated from the internal stress (P 0 ) of the rubber bearing when the bridge girder is displaced in the longitudinal direction due to the dry shrinkage of the concrete material, and the internal stress (P 1 ) after the stress relaxation. It is a calculated value and is represented by the following equation (1).

【0009】[0009]

【数1】 応力緩和率=(P0 −P1 )/P0 ×100(%)………(1)## EQU1 ## Stress relaxation rate = (P 0 −P 1 ) / P 0 × 100 (%) ... (1)

【0010】また、本発明において、橋桁の長手方向の
側面が垂直方向に対して所定角度に傾斜して形成され、
その状態で初期の固定状態とされ、橋桁の乾燥収縮後に
上記側面が略垂直面となる場合には、橋桁の乾燥収縮後
は実質的にゴム部の受圧面積が増加する(初期の固定状
態における有効受圧面積の長さを示す図8のLと、乾燥
収縮後のそれを示す図9のL′とでは、L′の方がLよ
りも長く、これにより乾燥収縮後に上記有効受圧面積が
増加していることがわかる)ことになり、実使用時の荷
重等による圧縮応力が低下する。また、内部に少なくと
も一層の中間プレートが埋設されている場合には、上記
中間プレートでゴム支承体が複数のゴム板に仕切られる
ため、各ゴム板の圧縮方向のへたりが小さくなる。
Further, in the present invention, the longitudinal side surface of the bridge girder is formed so as to be inclined at a predetermined angle with respect to the vertical direction,
In that state, when the bridge girder is dry and shrinks, the side surface becomes a substantially vertical surface, and when the bridge girder is dry and shrinks, the pressure receiving area of the rubber part increases substantially (in the initial fixed state, In L of FIG. 8 showing the length of the effective pressure receiving area and L ′ of FIG. 9 showing it after the drying shrinkage, L ′ is longer than L, whereby the effective pressure receiving area increases after the drying shrinkage. Therefore, the compressive stress due to the load during actual use decreases. Further, when at least one intermediate plate is embedded inside, the rubber bearings are divided into a plurality of rubber plates by the intermediate plates, so that the compression platen of each rubber plate is reduced.

【0011】つぎに、本発明を詳しく説明する。Next, the present invention will be described in detail.

【0012】本発明のゴム支承体は、そのゴム材料とし
て、橋桁を構成するコンクリート材料の乾燥収縮により
橋桁がその長手方向に変位した際に、この変位に伴って
それ自身が剪断方向に変位することにより生じる内部応
力を緩和しうるゴム材料が用いられている。
The rubber bearing of the present invention, as its rubber material, when the bridge girder is displaced in its longitudinal direction due to the drying shrinkage of the concrete material constituting the bridge girder, the rubber bearing itself is displaced in the shearing direction with this displacement. A rubber material that can relieve the internal stress caused by this is used.

【0013】上記ゴム材料としては、塩素化ブチルゴ
ム,クロロピレンゴム(CR),天然ゴム(NR)とブ
タジエンスチレンゴム(SRB)との混合物等があげら
れ、好適には、塩素化ブチルゴムが用いられる。このよ
うなゴム材料を用いると、橋桁の長手方向にゴム層の厚
みの70%の変位量を与えた時の、常温で24時間後の
応力緩和率が40%以上に設定することができる。
Examples of the rubber material include chlorinated butyl rubber, chloropyrene rubber (CR), a mixture of natural rubber (NR) and butadienestyrene rubber (SRB), and the like. Chlorinated butyl rubber is preferably used. . When such a rubber material is used, the stress relaxation rate after 24 hours at room temperature when the displacement amount of 70% of the thickness of the rubber layer is applied in the longitudinal direction of the bridge girder can be set to 40% or more.

【0014】上記ゴム支承体は、1種類のゴム単体で形
成されていてもよいし、内部に中間プレートを埋設する
ことによりゴム板と中間プレートが交互に積層される多
層構造に形成されていてもよい。この多層構造の場合に
は、各ゴム板を同じゴム材料で形成してもよいし、別々
のゴム材料で形成してもよい。
The rubber support may be formed of one kind of rubber alone, or may be formed in a multi-layer structure in which the rubber plates and the intermediate plates are alternately laminated by embedding the intermediate plates inside. Good. In the case of this multilayer structure, each rubber plate may be formed of the same rubber material, or may be formed of different rubber materials.

【0015】つぎに、本発明の実施の形態を図面にもと
づいて説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0016】図1は本発明を用いたゴム支承装置1の一
実施の形態を示している。この支承体装置1は、コンク
リート製橋桁の下面に取着される上沓2と、橋脚の上面
に取着される下沓3を備えており、上記上沓2には、こ
の発明のゴム支承体4が固定されている。図2は、これ
を下から見上げた図である。上記上沓2は、図3に示す
ように、長方形状の鉄製の平板体で構成される本体5
と、この本体5の上面に立設された4本のアンカーボル
ト6(2本は隠れて見えない)からなる。
FIG. 1 shows an embodiment of a rubber bearing device 1 according to the present invention. The bearing device 1 includes an upper shoe 2 attached to the lower surface of a concrete bridge girder and a lower shoe 3 attached to the upper surface of a bridge pier. The upper shoe 2 has the rubber bearing of the present invention. The body 4 is fixed. FIG. 2 is a view looking up from below. As shown in FIG. 3, the upper shoe 2 is a main body 5 composed of a rectangular flat plate made of iron.
And four anchor bolts 6 (two of which are hidden and invisible) which are erected on the upper surface of the main body 5.

【0017】上記ゴム支承体4は、図4に示すように、
略直方体形状のものを垂直方向に対して傾斜させて形成
されており(この傾斜方向は、上記橋桁がこれを構成す
るコンクリート材料の乾燥収縮により収縮する方向〔図
示の矢印方向〕とは逆の方向であり、傾斜角度は予め計
算により算出された角度に設定されている。例えば、上
記直方体形状に対して、ゴム支承体4の厚みの70%程
度変位させることが好ましい)、このゴム支承体4の上
面に接着等により長方形板状の鉄製の上側固定プレート
8が固定されているとともに、下面に接着等により長方
形板状の鉄製の下側固定プレート9が固定されている。
この下側固定プレート9の下面には、鉄製の正方形板体
で構成された固定板(凸部)10が溶接等により突設さ
れている。上記ゴム支承体4は、図5および図6に示す
ように、上記橋桁の収縮方向(すなわち、橋桁の長手方
向、図中矢印で示す)に直交する側面4c(図面では、
左右の側面になる)を図示のように傾斜形成することに
よって上面が下面に対して上記収縮方向とは逆の方向
(図中矢印とは逆の方向)にずれた状態で形成された6
枚の長方形状の塩素化ブチルゴム製のゴム板4aと、5
枚の長方形状のステンレス製の平板4b(左右および前
後の4側面が垂直面に形成されている)とを交互に積層
接着して構成されている。このようなゴム支承体4は、
図2に示すように、その上側プレート8を8本の取付ボ
ルト11で上沓2の下端面にねじ止めすることにより、
上沓2に一体的に固定されている。
The rubber bearing 4 is, as shown in FIG.
It is formed by inclining a substantially rectangular parallelepiped with respect to the vertical direction (this inclination direction is opposite to the direction in which the bridge girder contracts due to the drying shrinkage of the concrete material constituting it (the direction of the arrow in the figure)). Direction, and the inclination angle is set to an angle calculated in advance. For example, it is preferable to displace about 70% of the thickness of the rubber bearing 4 with respect to the rectangular parallelepiped shape), this rubber bearing A rectangular plate-shaped iron upper fixing plate 8 is fixed to the upper surface of 4 by bonding or the like, and a rectangular plate-shaped iron lower fixing plate 9 is fixed to the lower surface by bonding or the like.
On the lower surface of the lower fixing plate 9, a fixing plate (convex) 10 formed of an iron square plate is provided by welding or the like. As shown in FIGS. 5 and 6, the rubber bearing 4 has a side surface 4c (in the drawings, which is orthogonal to the contracting direction of the bridge girder (that is, the longitudinal direction of the bridge girder, indicated by an arrow in the drawing)).
The left and right side surfaces are inclined as shown in the drawing, so that the upper surface is displaced from the lower surface in the direction opposite to the contraction direction (the direction opposite to the arrow in the figure).
A rectangular rubber plate 4a made of chlorinated butyl rubber and 5
It is configured by alternately laminating and adhering a rectangular flat plate 4b made of stainless steel (four left and right and front and rear side surfaces are formed as vertical surfaces). Such a rubber bearing 4 is
As shown in FIG. 2, by screwing the upper plate 8 to the lower end surface of the upper shoe 2 with eight mounting bolts 11,
It is integrally fixed to the upper shoe 2.

【0018】前記下沓3は、鉄製の平板体で構成された
本体12と、この本体12の下面に立設された4本のア
ンカーボルト13(2本は隠れて見えない)とからなる
(図1参照)。上記本体12は、図7に示すように、正
方形状に形成されており、その中央部には、上記ゴム支
承体4の固定板10に嵌合する正方形の凹部14が形成
されている。図において、15は本体12の上面の4隅
に突出形成されたガイド板であり、上記下側固定プレー
ト9を左右方向にガイドする。
The lower shoe 3 is composed of a main body 12 made of a flat plate made of iron and four anchor bolts 13 (two of which are hidden and invisible) which are provided upright on the lower surface of the main body 12 ( (See FIG. 1). As shown in FIG. 7, the main body 12 is formed in a square shape, and a square recess 14 that fits into the fixing plate 10 of the rubber support 4 is formed in the central portion thereof. In the figure, reference numeral 15 is a guide plate formed at four corners of the upper surface of the main body 12 to guide the lower fixed plate 9 in the left-right direction.

【0019】上記構成において、図1の状態(上沓2に
取付けられたゴム支承体4の固定板10が下沓3の凹部
14の真上に位置するように上下の沓2,3が位置決め
されている状態)から、上沓2を下降させて下沓3上に
載置すると、図8に示すように、上沓2の固定板10が
下沓3の凹部14に嵌合し自動的に位置決め固定され
る。この状態から、上沓2に取付く橋桁のコンクリート
の乾燥収縮によって、上記上沓2が図8の右側方向(矢
印方向)に所定距離移動すると、ゴム支承体4が傾斜状
態から垂直状態に移行し、上記ずれが全くなくなるか、
僅かに残った状態になる(図9参照)。そして、上記移
行後から常温で、所定時間(例えば、24時間)が経過
する間に、ゴム支承体4の各ゴム板4aに発生する内部
応力は、各ゴム板4aの持つ性状により応力緩和されて
小さくなり、その応力緩和率は40%以上に降下する
(図10および図11参照)。
In the above construction, the upper and lower gears 2 and 3 are positioned so that the fixing plate 10 of the rubber bearing 4 attached to the upper gear 2 is located right above the recess 14 of the lower gear 3. When the upper shoe 2 is lowered and placed on the lower shoe 3, the fixing plate 10 of the upper shoe 2 is fitted into the concave portion 14 of the lower shoe 3 automatically as shown in FIG. Positioned and fixed to. From this state, due to the dry shrinkage of the concrete of the bridge girder attached to the upper shoe 2, when the upper shoe 2 moves a predetermined distance in the right direction (arrow direction) in FIG. 8, the rubber bearing 4 shifts from the inclined state to the vertical state. If the above deviation disappears,
A slight amount remains (see FIG. 9). The internal stress generated in each rubber plate 4a of the rubber support 4 during a predetermined time (for example, 24 hours) at room temperature after the above transition is relaxed by the property of each rubber plate 4a. The stress relaxation rate drops to 40% or more (see FIGS. 10 and 11).

【0020】このような支承体装置1を用い、橋梁を作
製する場合には、例えば予め、上沓2の固定板10を下
沓3の凹部14に嵌合させて上沓2を下沓3上に載置
し、その状態で紐や針金等の仮固定具により仮固定し、
作業現場に搬入する。この搬入後、あらかじめ形成され
た橋脚上部の、枠材等で囲われて形成された下沓固定部
21に、上記仮固定具により仮固定された下沓3を板材
等の仮設手段により仮設する(図12参照)。ついで、
上記下沓固定部21にコンクリート材料を打設し、下沓
固定部21を作製する。このとき同時に、下沓固定部2
1の上面に、下沓3をそのボルト13を下沓固定部21
のコンクリート部中に埋設させて固定する。つぎに、あ
らかじめ形成された橋桁の下面の、枠材等で囲われて形
成された上沓固定部20に、下沓3に相対向する状態で
上沓2を板材等で仮設する。これに先立って、上記仮固
定具の仮固定を解除しておくが、下沓3と上沓2との相
互の位置関係はそのままに保持しておく(すなわち、固
定板10を下沓3の凹部14に嵌合させたままにしてお
く)。つぎに、上記上沓固定部20にコンクリート材料
を打設して橋桁に上沓固定部20を一体に作製するとと
もに、この上沓固定部20に上沓2をそのボルト6を上
沓固定部20のコンクリート部中に埋設させて固定す
る。このようにして橋桁を橋脚に順次取付けることによ
り橋梁を完成させることができる。このようにして作製
された橋梁では、この施工後半年から1,2年程経過す
る間に、橋桁がそのコンクリート材料等の乾燥収縮によ
り右側方向(図12の矢印方向)に向かって移動し、こ
の移動に伴ってゴム支承体4が図示の傾斜状態から垂直
状態に移行する(図13参照)。この移行後所定時間が
経過すると、ゴム支承体4のゴムがクリープし、ゴム内
部に生じた内部応力が小さくなり、橋脚への反力を軽減
できる。
When a bridge is produced by using such a supporter device 1, for example, the fixing plate 10 of the upper shoe 2 is fitted into the recess 14 of the lower shoe 3 in advance, and the upper shoe 2 is lowered. Place it on the top and temporarily fix it with a temporary fixing tool such as a string or wire in that state,
Bring it to the work site. After this loading, the lower shoe 3 fixed temporarily by the above-mentioned temporary fixture is temporarily installed by a temporary means such as a plate material in the lower shoe fixing portion 21 formed by being surrounded by a frame material or the like on the upper portion of the pier formed in advance. (See Figure 12). Then
A concrete material is poured into the lower shoe fixing portion 21 to produce the lower shoe fixing portion 21. At the same time, the lower shoe fixing part 2
On the upper surface of 1, the lower shoe 3 and the bolt 13 are attached to the lower shoe fixing portion 21.
It is embedded and fixed in the concrete part of. Next, the upper shoe 2 is temporarily provided with a plate material or the like in a state of facing the lower shoe 3 to the upper shoe fixing portion 20 formed by being surrounded by the frame material or the like on the lower surface of the bridge girder formed in advance. Prior to this, the temporary fixing of the temporary fixing device is released, but the mutual positional relationship between the lower shoe 3 and the upper shoe 2 is maintained as it is (that is, the fixing plate 10 is fixed to the lower shoe 3). It remains fitted in the recess 14). Next, a concrete material is cast into the upper shoe fixing portion 20 to integrally produce the upper shoe fixing portion 20 on the bridge girder, and the upper shoe 2 is attached to the upper shoe fixing portion 20 by the bolt 6 thereof. It is embedded and fixed in 20 concrete parts. In this way, the bridge can be completed by sequentially attaching the bridge girders to the bridge piers. In the bridge manufactured in this way, the bridge girder moves toward the right direction (the direction of the arrow in FIG. 12) due to the drying shrinkage of the concrete material, etc., during a period of 1 or 2 years from the latter half of this construction. Along with this movement, the rubber bearing 4 shifts from the illustrated inclined state to the vertical state (see FIG. 13). When a predetermined time has elapsed after this transition, the rubber of the rubber support 4 creeps, the internal stress generated inside the rubber is reduced, and the reaction force to the pier can be reduced.

【0021】このように上記支承体装置1は、ゴム支承
体4を構成するゴム板4a自体のクリープ(永久歪み)
を積極的に利用しており、このゴム板4aのゴム材料と
して塩素化ブチルゴム(この塩素化ブチルゴムは高減衰
性の材料であり、この高減衰性の材料は一般的にクリー
プが大きい)を選択使用している。したがって、橋桁の
コンクリート材料の乾燥収縮等によりゴム支承体4が剪
断方向に変位し、内部応力が発生しても、この内部応力
を充分に除去することができる。この場合に、上記ゴム
材料の選定および作業内容が簡単であり、狭い場所でも
簡単に行える。しかも、このものでは、ゴム支承体4に
作用する剪断方向の変位が徐々に発生し、これにより生
じる内部応力も徐々に緩和されるため、この期間にゴム
支承体4に亀裂等が生じることがない。
As described above, in the bearing device 1, the creep (permanent distortion) of the rubber plate 4a itself constituting the rubber bearing 4 is carried out.
Chlorinated butyl rubber (the chlorinated butyl rubber is a highly damping material, and this highly damping material generally has large creep) is selected as the rubber material for the rubber plate 4a. I'm using it. Therefore, even if the rubber bearing 4 is displaced in the shearing direction due to the drying shrinkage of the concrete material of the bridge girder and the internal stress is generated, the internal stress can be sufficiently removed. In this case, the selection of the rubber material and the work contents are simple, and it can be easily performed even in a narrow place. Moreover, in this structure, the displacement in the shearing direction acting on the rubber bearing 4 is gradually generated, and the internal stress caused thereby is gradually relaxed, so that the rubber bearing 4 may be cracked during this period. Absent.

【0022】上記実施の形態において、ゴム支承体4を
構成するゴム板4aのゴム材料として、下記に示すゴム
材料を用い、その場合の応力緩和率を実測した。その結
果を表1に示す(いずれも、JIS A形硬度計にて5
5〜60HS)。
In the above embodiment, the following rubber materials were used as the rubber material of the rubber plate 4a constituting the rubber support 4, and the stress relaxation rate in that case was measured. The results are shown in Table 1 (all of which were measured with a JIS A type hardness tester.
5-60HS).

【0023】[0023]

【表1】 [Table 1]

【0024】図14は本発明の他の実施の形態を示して
いる。この形態では、ゴム支承体4の下側固定プレート
9に固定板10を取付ける代わりに、下沓3の上面に形
成される凹部14を、上記下側固定プレート9を嵌合し
うる大きさに形成し、上記下側固定プレート9を凹部1
4に嵌合させることでゴム支承体4を下沓3に固定する
ようにしている。これ以外の部分は上記実施の形態と同
様であり、同様の部分には同じ符号を付している。この
ものでは、上記実施の形態より、さらに簡単構造にな
る。
FIG. 14 shows another embodiment of the present invention. In this embodiment, instead of attaching the fixing plate 10 to the lower fixing plate 9 of the rubber bearing 4, the recess 14 formed on the upper surface of the lower shoe 3 is made large enough to fit the lower fixing plate 9. The lower fixing plate 9 is formed in the recess 1
The rubber bearing 4 is fixed to the lower shoe 3 by fitting the rubber bearing 4 to the lower shoe 3. The other parts are the same as those in the above embodiment, and the same parts are denoted by the same reference numerals. This structure has a simpler structure than the above embodiment.

【0025】なお、上記各実施の形態では、上沓2にゴ
ム支承体4を固定し、下沓3に凹部14を形成している
が、これに限定するものではなく、上沓2に凹部14を
形成し、下沓3にゴム支承体4を固定するようにしても
よい。
In each of the above embodiments, the rubber bearing 4 is fixed to the upper shoe 2 and the recess 14 is formed in the lower shoe 3. However, the present invention is not limited to this, and the recess is provided in the upper shoe 2. 14 may be formed, and the rubber bearing 4 may be fixed to the lower shoe 3.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のゴム支承体を用いた支承体装置の説明
図である。
FIG. 1 is an explanatory view of a bearing device using a rubber bearing of the present invention.

【図2】ゴム支承体を取付けた上沓を下から見た図であ
る。
FIG. 2 is a view of an upper shoe with a rubber bearing as viewed from below.

【図3】上記上沓の側面図である。FIG. 3 is a side view of the upper shoe.

【図4】上記ゴム支承体の側面図である。FIG. 4 is a side view of the rubber bearing.

【図5】上記ゴム支承体の構造説明図である。FIG. 5 is a structural explanatory view of the rubber bearing.

【図6】上記ゴム支承体の部分拡大断面図である。FIG. 6 is a partially enlarged sectional view of the rubber bearing.

【図7】上記下沓の平面図である。FIG. 7 is a plan view of the lower shoe.

【図8】上記支承体装置の作用を示す要部断面図であ
る。
FIG. 8 is a cross-sectional view of an essential part showing the operation of the bearing device.

【図9】上記支承体装置の作用を示す要部断面図であ
る。
FIG. 9 is a cross-sectional view of the main parts showing the operation of the above-mentioned support device.

【図10】内部応力と変位の関係を示す図である。FIG. 10 is a diagram showing the relationship between internal stress and displacement.

【図11】変位量の説明図である。FIG. 11 is an explanatory diagram of a displacement amount.

【図12】上記支承体装置を用いた橋梁の要部の説明図
である。
FIG. 12 is an explanatory diagram of a main part of a bridge using the support device.

【図13】上記支承体装置を用いた橋梁の作用を示す説
明図である。
FIG. 13 is an explanatory view showing the operation of a bridge using the above-mentioned support device.

【図14】この発明の他の実施の形態を示す説明図であ
る。
FIG. 14 is an explanatory diagram showing another embodiment of the present invention.

【図15】従来例の説明図である。FIG. 15 is an explanatory diagram of a conventional example.

【図16】上記従来例の作用を示す図である。FIG. 16 is a diagram showing an operation of the conventional example.

【図17】他の従来例の説明図である。FIG. 17 is an explanatory diagram of another conventional example.

【図18】その施工方法を示す説明図である。FIG. 18 is an explanatory view showing the construction method.

【符号の説明】[Explanation of symbols]

1 支承体装置 2 上沓 3 下沓 4 ゴム支承体 1 Bearing device 2 Upper shoe 3 Lower shoe 4 Rubber bearing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊岡 禎二 東京都新宿区荒木町13番地の4 住友建設 株式会社内 (72)発明者 熊谷 紳一郎 東京都新宿区荒木町13番地の4 住友建設 株式会社内 (72)発明者 佐々木 和道 東京都新宿区荒木町13番地の4 住友建設 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sadaji Kumaoka 4 13 Arakicho Shinjuku-ku, Tokyo Sumitomo Construction Co., Ltd. (72) Inventor Shinichiro Kumagai 13 13 Arakicho Shinjuku-ku Tokyo Sumitomo Construction Co., Ltd. (72) Inventor Kazumichi Sasaki 4 13-Araki-cho, Shinjuku-ku, Tokyo Sumitomo Construction Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 橋脚上に固定されそれ自身の上にコンク
リート製の橋桁を載置し固定するゴム支承体であって、
そのゴム材料として、橋桁を構成するコンクリート材料
の乾燥収縮により橋桁がその長手方向に変位した際に、
この変位に伴ってそれ自身が剪断方向に変位することに
より生じる内部応力を緩和しうるゴム材料が用いられて
いることを特徴とするゴム支承体。
1. A rubber pedestal which is fixed on a pier and on which a concrete bridge girder is placed and fixed,
As the rubber material, when the bridge girder is displaced in its longitudinal direction due to the dry shrinkage of the concrete material that constitutes the bridge girder,
A rubber bearing characterized by using a rubber material capable of relaxing internal stress generated by itself displacing in the shearing direction due to this displacement.
【請求項2】 橋桁の長手方向にゴム層の厚みの70%
の変位量を与えた時の、常温で24時間後の応力緩和率
が40%以上である請求項1記載のゴム支承体。
2. 70% of the thickness of the rubber layer in the longitudinal direction of the bridge girder
The rubber bearing according to claim 1, wherein the stress relaxation rate after 24 hours at room temperature when the amount of displacement is given is 40% or more.
【請求項3】 橋桁の長手方向の側面が垂直方向に対し
て所定角度に傾斜して形成され、その状態で初期の固定
状態とされ、橋桁の乾燥収縮後に上記側面が略垂直面と
なる請求項1記載のゴム支承体。
3. The side surface in the longitudinal direction of the bridge girder is formed so as to be inclined at a predetermined angle with respect to the vertical direction, and in that state, the initial fixed state is obtained, and the side surface becomes a substantially vertical surface after drying and shrinking of the bridge girder. The rubber bearing according to item 1.
【請求項4】 内部に少なくとも一層の中間プレートが
埋設されている請求項1記載のゴム支承体。
4. The rubber bearing according to claim 1, wherein at least one intermediate plate is embedded inside.
【請求項5】 請求項1から4のいずれか一項に記載の
ゴム支承体を用いた橋梁の支承構造。
5. A bridge support structure using the rubber support according to any one of claims 1 to 4.
JP26154095A 1995-10-09 1995-10-09 Rubber bearing body and bearing structure of bridge using this bearing body Pending JPH09100511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26154095A JPH09100511A (en) 1995-10-09 1995-10-09 Rubber bearing body and bearing structure of bridge using this bearing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26154095A JPH09100511A (en) 1995-10-09 1995-10-09 Rubber bearing body and bearing structure of bridge using this bearing body

Publications (1)

Publication Number Publication Date
JPH09100511A true JPH09100511A (en) 1997-04-15

Family

ID=17363323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26154095A Pending JPH09100511A (en) 1995-10-09 1995-10-09 Rubber bearing body and bearing structure of bridge using this bearing body

Country Status (1)

Country Link
JP (1) JPH09100511A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949292B1 (en) * 2009-06-01 2010-03-23 주식회사 오케이컨설턴트 Construction method for supports of temporary bridge dealing with thermal strain
DE102008061320A1 (en) * 2008-12-11 2010-06-17 Db Netz Ag Device for supporting bridge section, has anchor and balancing plate that is arranged between superstructure and bearing pedestal below superstructure
DE102010033159A1 (en) 2010-08-03 2012-02-09 Db Netz Ag Device for supporting railway bridge, has calotte that pushes away sliding metal sheet at steel box which is secured in base plate through head bolt dowel, over lubricating layer
DE102010033158B3 (en) * 2010-08-03 2012-02-16 Db Netz Ag Bearing device used in construction of railway bridge, has arbor whose upper portion is fixed by pivot bearings provided between bars of U-shaped push plate on which upper tie plate is secured
CN111074797A (en) * 2019-12-27 2020-04-28 安徽尚德科技有限公司 Method for replacing rubber plate by basin-type support
CN114930625A (en) * 2020-03-31 2022-08-19 三洋电机株式会社 Battery pack

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008061320A1 (en) * 2008-12-11 2010-06-17 Db Netz Ag Device for supporting bridge section, has anchor and balancing plate that is arranged between superstructure and bearing pedestal below superstructure
KR100949292B1 (en) * 2009-06-01 2010-03-23 주식회사 오케이컨설턴트 Construction method for supports of temporary bridge dealing with thermal strain
DE102010033159A1 (en) 2010-08-03 2012-02-09 Db Netz Ag Device for supporting railway bridge, has calotte that pushes away sliding metal sheet at steel box which is secured in base plate through head bolt dowel, over lubricating layer
DE102010033158B3 (en) * 2010-08-03 2012-02-16 Db Netz Ag Bearing device used in construction of railway bridge, has arbor whose upper portion is fixed by pivot bearings provided between bars of U-shaped push plate on which upper tie plate is secured
CN111074797A (en) * 2019-12-27 2020-04-28 安徽尚德科技有限公司 Method for replacing rubber plate by basin-type support
CN114930625A (en) * 2020-03-31 2022-08-19 三洋电机株式会社 Battery pack

Similar Documents

Publication Publication Date Title
US4324037A (en) Structural units and arrays therefrom
US20020108339A1 (en) Stucco fastening system
WO2016135512A1 (en) Steel-concrete composite structure
JPH09100511A (en) Rubber bearing body and bearing structure of bridge using this bearing body
JP2004124521A (en) Reinforcing structure for concrete structure body, and reinforcing method for concrete structure body
US4357784A (en) Structural units and arrays therefrom
JP3362809B2 (en) Pillar support device
JPH0512329Y2 (en)
JPH09100510A (en) Construction method of bridge and rubber bearing body used in this method
JPH01299963A (en) Method of re-clamping or repairing and reinforcing or load-reducing deformed existing structure
JP2676686B2 (en) Elastic support device with built-in control device for lift and horizontal force
JP2004068462A (en) Bearing structure for bridge of function separation type, and rubber buffer for bridge
KR102583618B1 (en) Rubber Bridge bearing including elastic pads with improved uniformity of product characteristics and maintaining a gap between rubber and steel plates
JPH08246417A (en) Bearing structure of bridge and bearing body device used for bearing structure of bridge and execution method thereof
JPH0827730A (en) Method of installing elastic pivotal-support for bridge
JP4397413B2 (en) Function separation vulcanized integrated bearing
JP3029896U (en) Laminated rubber bearing device
KR20160042849A (en) a Construction method of bearing device for Bridge and
JP3358279B2 (en) Installation method of elastic bearings and stoppers for structures
JPS6011132Y2 (en) bearing device
JPH0753966B2 (en) Semi-movable bearing structure in bridge
JPS5935607Y2 (en) Support structure
JP3029895U (en) Laminated rubber bearing device with lead plug
JP2002212958A (en) Pile foundation structure
JPH0316890Y2 (en)