JP2002212958A - Pile foundation structure - Google Patents

Pile foundation structure

Info

Publication number
JP2002212958A
JP2002212958A JP2001010198A JP2001010198A JP2002212958A JP 2002212958 A JP2002212958 A JP 2002212958A JP 2001010198 A JP2001010198 A JP 2001010198A JP 2001010198 A JP2001010198 A JP 2001010198A JP 2002212958 A JP2002212958 A JP 2002212958A
Authority
JP
Japan
Prior art keywords
footing
pile
pile head
foundation structure
rebar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001010198A
Other languages
Japanese (ja)
Other versions
JP3671153B2 (en
Inventor
Masatsugu Naka
雅嗣 仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2001010198A priority Critical patent/JP3671153B2/en
Publication of JP2002212958A publication Critical patent/JP2002212958A/en
Application granted granted Critical
Publication of JP3671153B2 publication Critical patent/JP3671153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pile foundation structure which can exert excellent earthquake resistant performance and base-isolation performance. SOLUTION: According to the pile foundation structure, a footing 6 is borne by a pile head which is an upper surface of a foundation pile, via a pin-connecting means and a drawing resistance applying means 20. The pin-connecting means connects the pile head and the footing 6 to each other in a relatively rotatable manner. The drawing resistance applying means 20 fixes a plurality of reinforcements 21 to the foundation pile such that their upper end portions 21a protrude from the pile head. Then, a plurality of reinforcement insertion passages 22 which each have a inner diameter D larger than a reinforcement diameter d, are formed in the footing 6 in a vertically penetrating manner, and the reinforcements 21 are inserted into the respective reinforcement insertion passages 22 such that the upper end portions 21a of the reinforcements 21 protrude from the footing 6. Further, a slipout preventive body 23a is attached to each reinforcement portion 21b protruding from the footing 6, and a spring member 24 is interposed between each slipout preventive body 23a and a footing upper surface 6b. The spring member 24 functions to urgingly bias the footing 6 in a downward direction with respect to the reinforcements 21.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばビルや橋梁
等のような建築・土木関係の構造物に固定されて地中地
盤に埋め込まれたコンクリート製フーチング(構造物の
基礎)を、基礎杭(硬盤層などの深い層に伝達して支持
させる先端支持杭や杭外周面と地盤土砂との間の摩擦力
で支持させる摩擦杭)の上端部たる杭頭部に支承させて
なる杭基礎構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a concrete footing (foundation of a structure) fixed to an architectural / civil engineering-related structure such as a building or a bridge and embedded in the underground ground. Pile foundation structure supported by the pile head, which is the upper end of (a tip support pile that transmits to and supports a deep layer such as a hard bed layer, or a friction pile that is supported by the frictional force between the pile outer surface and soil and sand) It is about.

【0002】[0002]

【従来の技術】この種の杭基礎構造にあっては、一般
に、図10に示す如く、地中地盤81に構造単位として
の基礎杭82を打設し、その杭頭部82aとその上位に
配置したコンクリート製のフーチング83とを、複数の
杭鉄筋84…を両者82,83にコンクリート打設によ
り埋設させることにより、剛接合しているのが普通であ
る。なお、フーチング83は、上部構造体側の柱85及
び基礎梁86に固定されている。
2. Description of the Related Art In this type of pile foundation structure, as shown in FIG. 10, a foundation pile 82 as a structural unit is generally cast on an underground ground 81, and a pile head 82a and an upper layer are placed on the foundation pile 82. Usually, the concrete footing 83 is rigidly connected to the concrete footing 83 by embedding a plurality of pile reinforcing bars 84 in both the concrete 82 and 83 by casting concrete. The footing 83 is fixed to the column 85 and the foundation beam 86 on the upper structure side.

【0003】[0003]

【発明が解決しようとする課題】しかし、かかる剛接合
構造では、地震等による過大な力(以下「地震力」とい
う)が作用した場合、両者の境界部となる杭頭部接合部
に応力が集中し、大地震時に杭頭部82a及びフーチン
グ83の下部が損傷、破損し易く、それが原因で上部構
造物の倒壊など被害が拡大する可能性がある。また、剛
接合であるため、杭頭部接合部に作用する応力が大きく
なるため、鉄筋84…の埋設数を必要以上に多くした
り、杭82やフーチング83の断面を大きくしたりする
必要がある。その結果、施工が煩雑になるばかりでな
く、配筋工事の増大によって施工コストが嵩む。また、
杭頭部接合部に損傷、破損が生じた際にはその箇所を復
旧する必要があるが、杭頭部接合部は、地中地盤81に
構造単位としてコンクリート打設された杭82に支持さ
れた下部構造であるために、復旧作業自体の作業性が非
常に悪いとともに莫大な復旧費用を要する。
However, in such a rigid joint structure, when an excessive force due to an earthquake or the like (hereinafter referred to as "seismic force") acts, stress is applied to a pile head joint part which is a boundary between the two. When a large earthquake occurs, the pile head 82a and the lower part of the footing 83 are easily damaged or broken, which may cause damage such as collapse of the upper structure. In addition, because of the rigid connection, the stress acting on the joint portion of the pile head is increased. Therefore, it is necessary to increase the number of reinforcing bars 84 to be buried more than necessary and to increase the cross sections of the pile 82 and the footing 83. is there. As a result, not only the construction becomes complicated, but also the construction cost increases due to an increase in reinforcement arrangement work. Also,
When the pile head joint is damaged or damaged, it is necessary to restore the point. However, the pile head joint is supported by a pile 82 which is concretely cast as a structural unit on the underground ground 81. Due to the low substructure, the workability of the recovery work itself is extremely poor and a huge recovery cost is required.

【0004】本発明は、このような問題を生じることな
く、優れた耐震性能及び免震性能を発揮しうる杭基礎構
造を提供することを目的とする。
An object of the present invention is to provide a pile foundation structure capable of exhibiting excellent seismic performance and seismic isolation performance without causing such problems.

【0005】[0005]

【課題を解決するための手段】この課題を解決した本発
明の杭基礎構造は、フーチングを、ピン接合手段及び引
抜抵抗力付与手段を介して、基礎杭の上端部たる杭頭部
に支承させてなるものである。而して、ピン接合手段
は、杭頭部に設けた下部支承部材とフーチングの下端部
に設けた上部支承部材との間に弾性部材を装填すること
により、杭頭部とフーチングとを相対回転自在に接合す
るものであり、引抜抵抗力付与手段は、複数の鉄筋を、
それらの上端側部分が杭頭部から突出し且つピン接合手
段による接合部分の外周環状領域を通過する状態で、基
礎杭に固設し、内径を鉄筋径より大きくした複数の鉄筋
挿通路をフーチングに上下貫通状に形成して、各鉄筋の
上端側部分をフーチング上に突出する状態に各鉄筋挿通
路に挿通させ、フーチング上に突出する各鉄筋部分に抜
止体を取り付けると共に、各抜止体とフーチング上面と
の間に、鉄筋に対してフーチングを下方へと押圧附勢す
るバネ部材を介装してなるものである。
A pile foundation structure according to the present invention which solves the above problem has a footing supported on a pile head, which is an upper end portion of a foundation pile, via a pin joining means and a pull-out resistance applying means. It is. Thus, the pin joining means is configured to load the elastic member between the lower support member provided on the pile head and the upper support member provided on the lower end of the footing, thereby relatively rotating the pile head and the footing. The pull-out resistance applying means connects a plurality of rebars,
A plurality of rebar insertion passages, which are fixed to the foundation pile and whose inner diameter is larger than the rebar diameter, are connected to the footing while their upper end portions protrude from the pile head and pass through the outer peripheral annular area of the joint portion by the pin joining means. Formed vertically, penetrate the upper end side of each reinforcing bar into each reinforcing bar insertion passage so as to protrude on the footing, attach a retaining body to each reinforcing bar portion protruding on the footing, and attach each retaining body and footing A spring member that presses and biases the footing downward against the rebar is interposed between the upper surface and the upper surface.

【0006】引抜抵抗力付与手段にあっては、各鉄筋挿
通路は、鉄筋径より大径の管状部材をフーチングに埋設
することにより形成されていることが好ましい。また、
フーチング上に突出する各鉄筋部分は、フーチング上面
に載置した金属製の支圧板を貫通しており、この支圧板
と抜止体との間にコイルスプリング,皿バネ等のバネ部
材が装填されていることが好ましい。また、フーチング
上面と支圧板との間には、低摩擦性材からなる滑り層が
形成されていることが好ましい。さらに、フーチング上
には、フーチングに対する各鉄筋の水平変位領域及び鉛
直変位領域を確保するための空間を確保するための蓋部
材が配置されていることが好ましい。
In the pull-out resistance applying means, it is preferable that each rebar insertion passage is formed by embedding a tubular member having a diameter larger than the rebar diameter in a footing. Also,
Each reinforcing bar projecting above the footing penetrates a metal supporting plate placed on the upper surface of the footing, and a spring member such as a coil spring or a disc spring is loaded between the supporting plate and the retaining body. Is preferred. It is preferable that a sliding layer made of a low friction material is formed between the upper surface of the footing and the support plate. Further, it is preferable that a lid member for securing a space for securing a horizontal displacement area and a vertical displacement area of each reinforcing bar with respect to the footing is disposed on the footing.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を図1
〜図9に基づいて具体的に説明する。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This will be specifically described with reference to FIGS.

【0008】図1〜図5は本発明の実施の形態を示すも
ので、この実施の形態における杭基礎構造にあっては、
図1に示す如く、基礎杭2の上端部たる杭頭部2aとそ
の上位に配置されたフーチング6とが、ピン接合手段7
により接合(ピン接合)されると共に引抜抵抗力付与手
段20によりピン接合による相対回転を許容する状態で
連結されている。なお、基礎杭2は、地中地盤1に場所
打施工により形成された断面中実円形の鉄筋コンクリー
ト杭(一般に「場所打杭」又は「現場造成杭」と称せら
れるもの)であり、フーチング6は、上部構造体である
建物3から下方へ一体に延設した柱4及び基礎梁5に固
定させて地中に埋め込み設置されたコンクリート製のも
のである。
FIG. 1 to FIG. 5 show an embodiment of the present invention.
As shown in FIG. 1, the pile head 2a, which is the upper end of the foundation pile 2, and the footing 6 disposed above the pile head 2a are connected to the pin joining means 7.
And the pull-out resistance applying means 20 is connected so as to allow relative rotation by the pin connection. In addition, the foundation pile 2 is a reinforced concrete pile having a solid circular cross section formed by cast-in-place on the underground ground 1 (generally referred to as a “cast-in-place pile” or a “placed in-situ pile”). It is made of concrete which is fixed to a pillar 4 and a foundation beam 5 extending downward integrally from a building 3 as an upper structure and embedded in the ground.

【0009】而して、ピン接合手段7は、図2及び図4
に示す如く、杭頭部2aに設けた下部支承部材10とフ
ーチング6の下端部に設けた上部支承部材6aとの間に
弾性部材13を装填してなる。すなわち、下部支承部材
10は、杭頭部2aの中心部に金属製のベースプレート
8とその上面に固着された金属製の筒壁9とからなるシ
ューを載置すると共に、杭頭部2a上にコンクリートの
打設により当該シュー8,9を囲繞する外堀コンクリー
ト層11を形成してなる。筒壁9及びコンクリート層1
1の上面位置は、杭工事掘削面のレベルに設定される。
上部支承部材6aはフーチング6の下面部に一体的に突
出形成されており、シュー8,9で構成される凹部12
に嵌合されている。なお、筒壁(シュー)9つまり凹部
12の横断面形状は方形又は円形をなしており、この例
では正方形をなしている。上部支承部材6aの横断面形
状は、凹部12の横断面形状より小さい相似形状をなし
ている。両支承部材6a,10間には、弾性部材13、
シムプレート14、側方変位拘束部材15、金属プレー
ト16及びクッション材17が装填されている。すなわ
ち、凹部12の底面を構成するベースプレート(シュ
ー)8と凹部12に嵌合された上部支承部材6aの下端
面との間には、ベースプレート8上に載置された弾性部
材13と、弾性部材13上に載置されたシムプレート1
4と、シムプレート14上に載置された金属プレート1
6及び側方変位拘束部材15とが装填されている。弾性
部材13は、凹部12の横断面形状に合致する平板形状
をなしており、一般に、圧縮復元特性に優れたゴム弾性
材又はゴム基材で構成されるエラストマー材で構成され
ていて、弾性変形により杭頭部2aとフーチング6との
相対回転変位を許容する。なお、弾性部材13の構成材
としては、流動変形性のある鉛や鉛合金又は粘弾性体等
を使用することも可能である。シムプレート14はPT
FE等の低摩擦性樹脂材で構成されており、弾性部材1
3と同一の横断面形状をなしている。金属プレート16
は、その周縁部16aを上方に広がる傾斜状に立ち上が
らせたものである。側方変位拘束部材15は、金属プレ
ート16の周縁部16aと筒壁9との対向面間に充填さ
れた環状体であり、内周面15aを金属プレート16の
周縁部16aに密接するテーパ面に形成してある。側方
変位拘束部材15の構成材としては、PTFE、PF
A、ゴアテックス等のフッ素系樹脂やフッ素系ゴムを使
用することが好ましいが、銅や真鏡等の銅合金を使用す
ることも可能である。また、側方変位拘束部材15の上
方における上部支承部材6aと筒壁9との対向面間に
は、筒状のクッション材17が充填されている。さら
に、下部支承部材10の上面部とフーチング6の下面部
との間には、上部支承部材6aに嵌合する環状板形状を
なすクッション材18が装填されている。これらのクッ
ション材17,18は、フーチング6及びこれに一体形
成される上部支承部材6aの施工時(コンクリート打設
時)の捨型枠として機能するものであり、コンクリート
硬化後は杭頭部2aとフーチング6との相対水平変位及
び相対回転変位を許容するためのクリアランス形成部材
として機能する。クッション材17,18の構成材とし
ては、コンクリート捨型枠としての必要強度を有してお
り且つフーチング6と杭頭部2aとの相対相対変位を許
容すべく圧縮変形しうるもの、例えば、発泡スチロール
や防水剤のスプレー塗布や防水紙の貼付け等によって内
面に防水加工が施されたダンボール材等が使用される。
[0009] The pin joining means 7 is shown in FIGS.
As shown in the figure, an elastic member 13 is loaded between a lower support member 10 provided on the pile head 2a and an upper support member 6a provided on the lower end of the footing 6. That is, the lower bearing member 10 places a shoe composed of a metal base plate 8 and a metal cylindrical wall 9 fixed to the upper surface of the shoe at the center of the pile head 2a, and places the shoe on the pile head 2a. The outer moat concrete layer 11 surrounding the shoes 8 and 9 is formed by casting concrete. Tube wall 9 and concrete layer 1
The upper surface position of 1 is set at the level of the pile construction excavation surface.
The upper support member 6a is formed integrally with the lower surface of the footing 6 so as to protrude therefrom.
Is fitted. The cross-sectional shape of the cylindrical wall (shoe) 9, that is, the concave portion 12 is square or circular, and in this example, square. The cross-sectional shape of the upper bearing member 6a has a similar shape smaller than the cross-sectional shape of the concave portion 12. An elastic member 13, between the two support members 6a, 10
A shim plate 14, a lateral displacement restraining member 15, a metal plate 16, and a cushion material 17 are loaded. That is, between the base plate (shoe) 8 constituting the bottom surface of the concave portion 12 and the lower end surface of the upper support member 6a fitted in the concave portion 12, an elastic member 13 placed on the base plate 8 and an elastic member Shim plate 1 placed on 13
4 and the metal plate 1 placed on the shim plate 14
6 and the lateral displacement restraining member 15 are loaded. The elastic member 13 has a flat plate shape that matches the cross-sectional shape of the concave portion 12, and is generally made of a rubber elastic material having excellent compression / restoring characteristics or an elastomer material made of a rubber base material. Thereby, the relative rotational displacement between the pile head 2a and the footing 6 is allowed. In addition, as a constituent material of the elastic member 13, it is possible to use lead, a lead alloy, a viscoelastic body, or the like, which has fluid deformability. Shim plate 14 is PT
The elastic member 1 is made of a low friction resin material such as FE.
3 has the same cross-sectional shape. Metal plate 16
In the figure, the peripheral portion 16a rises in an inclined shape extending upward. The lateral displacement restricting member 15 is an annular body filled between the peripheral surface 16 a of the metal plate 16 and the opposing surface of the cylindrical wall 9, and the inner peripheral surface 15 a is a tapered surface that closely contacts the peripheral surface 16 a of the metal plate 16. It is formed in. The constituent material of the lateral displacement restraining member 15 is PTFE, PF
It is preferable to use a fluorine resin such as A or Gore-Tex or a fluorine rubber, but it is also possible to use a copper alloy such as copper or a mirror. A cylindrical cushion member 17 is filled between the opposing surfaces of the upper support member 6 a and the cylindrical wall 9 above the lateral displacement restricting member 15. Further, between the upper surface of the lower support member 10 and the lower surface of the footing 6, a cushion member 18 having an annular plate shape fitted to the upper support member 6a is loaded. These cushion members 17 and 18 function as discarding frames when the footing 6 and the upper support member 6a integrally formed therewith are constructed (when concrete is cast), and after the concrete is hardened, the pile head 2a is formed. It functions as a clearance forming member for allowing relative horizontal displacement and relative rotational displacement between the motor and the footing 6. As a constituent material of the cushion members 17 and 18, a material which has a necessary strength as a concrete scrap frame and which can be compressed and deformed to allow a relative relative displacement between the footing 6 and the pile head 2 a, for example, styrene foam A cardboard material or the like whose inner surface is waterproofed by spray application of a waterproofing agent or pasting of waterproofing paper is used.

【0010】以上のようなピン接合手段7による杭頭部
接合構造においては、地震力が作用した場合、杭頭部2
aとフーチング6とがクッション材17により規制され
ている凹部12内の所定範囲内で相対的に水平移動しつ
つ、そのときのエネルギーがクッション材17部分によ
って吸収されるだけでなく、クッション材17,18及
び凹部12の底部に収納されている弾性部材13により
杭頭部2aとフーチング6とが全方向に相対回転変位し
つつ、そのときのエネルギーが弾性部材13及びクッシ
ョン材17,18部分で吸収されることになる。これに
よって、地震力が作用したときの杭頭部2aとフーチン
グ6との接合部への応力集中が著しく減少されるため
に、杭2及びフーチング6の断面を強度上の必要最低限
に縮小し、かつ、配筋量も低減して施工の容易性及び低
コスト化を図りながらも、過大な水平力が作用したとき
でも、杭頭部2a及びフーチング6の損傷、破損を防止
して優れた耐震性能、免震性能を発揮させることが可能
となる。
In the joint structure of the pile head by the pin joining means 7 described above, when the seismic force acts, the pile head 2
a and the footing 6 relatively horizontally move within a predetermined range within the concave portion 12 regulated by the cushioning material 17, and not only the energy at that time is absorbed by the cushioning material 17 but also the cushioning material 17. , 18 and the elastic member 13 accommodated in the bottom of the concave portion 12, the pile head 2 a and the footing 6 are relatively rotationally displaced in all directions, and the energy at that time is transmitted to the elastic member 13 and the cushion members 17, 18. Will be absorbed. As a result, stress concentration at the joint between the pile head 2a and the footing 6 when seismic force acts is significantly reduced, so that the cross sections of the pile 2 and the footing 6 are reduced to the minimum necessary in strength. In addition, while reducing the amount of reinforcement, the ease of construction and the cost are reduced, and even when an excessive horizontal force is applied, the pile head 2a and the footing 6 are prevented from being damaged or broken. Seismic performance and seismic isolation performance can be demonstrated.

【0011】ところで、凹部12に収納されている弾性
部材13にはフーチング6を通じて上部構造体の重量が
長期鉛直荷重として作用しており、さらに、地震力が作
用した場合には、杭頭部2aとフーチング6との相対回
転変位に伴い弾性部材13には強大な偏荷重が作用する
ことになり、このとき、凹部12の内周面(筒壁9の内
周面)とフーチング6の上部支承部材6aとの間に僅か
な隙間があっても、その隙間に弾性部材13の周縁部が
はみ出して弾性部材13が損傷(亀裂が入る等)し易
く、それに伴い所定のエネルギー吸収機能が損なわれる
可能性がある。
By the way, the weight of the upper structure acts as a long-term vertical load on the elastic member 13 accommodated in the concave portion 12 through the footing 6, and further, when seismic force acts, the pile head 2a A strong offset load acts on the elastic member 13 in accordance with the relative rotational displacement between the footing 6 and the footing 6. At this time, the inner peripheral surface of the recess 12 (the inner peripheral surface of the cylindrical wall 9) and the upper support of the footing 6 Even if there is a slight gap between the elastic member 13 and the member 6a, the peripheral portion of the elastic member 13 protrudes into the gap, so that the elastic member 13 is easily damaged (cracked, etc.), and accordingly, a predetermined energy absorbing function is impaired. there is a possibility.

【0012】しかし、凹部12内に収納されている弾性
部材13の上面全域にはシムプレート14が敷設されて
いると共に、シムプレート14上には上向きテーパ面1
5aを有する側方変位拘束部材15が載置されているの
で、杭頭部2aとフーチング6との相対水平移動時にお
ける弾性部材13の上面の摩耗や破損がシムプレート1
4により阻止されるだけでなく、弾性部材13に長期鉛
直荷重や杭頭部2aとフーチング6との相対回転変位に
伴う偏荷重が作用したとき、それら荷重は側方変位拘束
部材15のテーパ面15aにより弾性部材13側への押
圧力と筒壁9の内周面側への押付力との分力に分けら
れ、さらに、側方変位拘束部材15の下面がシムプレー
ト14で受けられているので、筒壁9の内周面側への側
方変位拘束部材15の押付力が増強されることになる。
However, a shim plate 14 is laid on the entire upper surface of the elastic member 13 housed in the concave portion 12, and an upward tapered surface 1 is provided on the shim plate 14.
Since the lateral displacement restraining member 15 having the upper surface 5a is mounted on the shim plate 1, the upper surface of the elastic member 13 is worn or damaged when the pile head 2a and the footing 6 move relative to each other horizontally.
In addition to being blocked by the elastic member 13, when a long-term vertical load or an eccentric load due to the relative rotational displacement between the pile head 2 a and the footing 6 acts on the elastic member 13, the load is reduced by the tapered surface of the lateral displacement restraining member 15. The pressing force on the elastic member 13 side and the pressing force on the inner peripheral surface side of the cylindrical wall 9 are divided by a component 15a, and the lower surface of the lateral displacement restricting member 15 is received by the shim plate 14. Therefore, the pressing force of the lateral displacement restricting member 15 on the inner peripheral surface side of the cylindrical wall 9 is increased.

【0013】したがって、地震等の発生時においても、
筒壁9で構成される凹部12の内周面と上部支承部材6
aとの間に隙間が発生されることが皆無となり、弾性部
材13の周縁部のはみ出しによる亀裂等の損傷を防止す
ることが可能であると同時に、弾性部材13の腐食及び
劣化も低減することが可能となり、これによって、弾性
部材13による上述の優れた耐震性能、免震性能を長期
に亘って安定よく維持することができる。
Therefore, even when an earthquake or the like occurs,
Inner peripheral surface of recess 12 formed by cylindrical wall 9 and upper support member 6
No gap is generated between the elastic member 13 and the elastic member 13, thereby preventing damage such as a crack due to protrusion of the peripheral portion of the elastic member 13, and at the same time, reducing corrosion and deterioration of the elastic member 13. This makes it possible to maintain the above-described excellent seismic performance and seismic isolation performance of the elastic member 13 stably over a long period of time.

【0014】また、側方変位拘束部材15を筒壁9の内
周面とシムプレート14と金属プレート16の下向きテ
ーパ面16aとで取り囲むことにより、フーチング6と
杭頭部2aとの相対水平移動や相対回転変位時に側方変
位拘束部材15自体がコンクリートに直に接触して破損
されたり、歪変形されたりすることを防ぎ、この側方変
位拘束部材15による本来の弾性部材はみ出し防止機能
を一層安定よく保持して、長期間経過後においても所定
の耐震性能、免震性能をより確実に発揮させることがで
きる。
The lateral displacement restraining member 15 is surrounded by the inner peripheral surface of the cylindrical wall 9, the shim plate 14, and the downward tapered surface 16a of the metal plate 16, so that the relative horizontal movement between the footing 6 and the pile head 2a is achieved. And the side displacement restricting member 15 itself is prevented from being damaged by direct contact with the concrete at the time of relative rotational displacement or being deformed by deformation, and the function of preventing the original elastic member from protruding by the side displacement restricting member 15 is further enhanced. By maintaining it stably, it is possible to more reliably exhibit the predetermined seismic performance and seismic isolation performance even after a long period of time.

【0015】また、シムプレート14の上面に金属プレ
ート16を配置し、この金属プレート16の周縁部に側
方変位拘束部材15の上向きテーパ面に対面する下向き
テーパ面を形成する構成を採用することによって、側方
変位拘束部材15を立上がり筒壁9の内周面とシムプレ
ート14と金属プレート16の下向きテーパ面16aと
で取り囲んでフーチング6と杭頭部2aとの相対水平移
動や相対回転変位時に側方変位拘束部材15自体が破損
されたり、歪変形されたりすることを防ぎ、この側方変
位拘束部材15による本来の弾性部材はみ出し防止機能
を安定保持して、長期間経過後においても所定の耐震性
能、免震性能を確実に発揮させることができる。また、
金属プレート16とシムプレート14との間に低摩擦に
よるすべり機能を持たせることが可能であり、地震等に
よる回転力を一層効果的に吸収することができる。ま
た、金属プレート16の周縁部先端をクリアランス内に
配置する構成とすることにより、金属プレート16の周
縁部先端が側方変位拘束部材15に食い込むことによる
側方変位拘束部材15の損傷を可及的に回避して本来の
弾性部材はみ出し防止機能を長期間に亘って安定よく保
持させることができる。なお、図6又は図7に示す如
く、金属プレート16を周縁部が立ち上がらない平板形
状として、上部支承部材6aの下端外周縁部を側方変位
拘束部材15のテーパ面15aに密接するテーパ面に形
成した場合にも、上記した場合とほぼ同等の弾性部材は
み出し防止機能を発揮させることができる。
Further, a configuration is adopted in which a metal plate 16 is disposed on the upper surface of the shim plate 14, and a downward tapered surface facing the upward tapered surface of the lateral displacement restraint member 15 is formed on the peripheral edge of the metal plate 16. As a result, the lateral displacement restraining member 15 rises and is surrounded by the inner peripheral surface of the cylindrical wall 9 and the downward tapered surface 16a of the shim plate 14 and the metal plate 16, and the relative horizontal movement and relative rotational displacement between the footing 6 and the pile head 2a are formed. Sometimes, the side displacement restraining member 15 itself is prevented from being damaged or deformed, and the function of preventing the original elastic member from protruding by the side displacement restraining member 15 is stably maintained. The seismic performance and seismic isolation performance of can be fully demonstrated. Also,
It is possible to provide a sliding function due to low friction between the metal plate 16 and the shim plate 14, and it is possible to more effectively absorb the rotational force due to an earthquake or the like. Further, by arranging the distal end of the metal plate 16 in the clearance, damage to the lateral displacement restricting member 15 due to the distal end of the metal plate 16 biting into the lateral displacement restricting member 15 is possible. Thus, the original elastic member protruding prevention function can be stably held for a long period of time. As shown in FIG. 6 or FIG. 7, the metal plate 16 is formed in a flat plate shape whose peripheral edge does not rise, and the outer peripheral edge of the lower end of the upper support member 6 a is formed on a tapered surface which is in close contact with the tapered surface 15 a of the lateral displacement restraining member 15. Also in the case where the elastic member is formed, the function of preventing the protrusion of the elastic member substantially the same as the case described above can be exerted.

【0016】ところで、中高層建物の外周部の柱(特
に、隅柱)4には地震力や水の浮力等によって大きな引
抜力が作用することがあるが、かかる場合、杭頭部2a
とフーチング6とを上記したピン接合手段7によって接
合した杭基礎構造にあっては、当該引抜力に十分に対抗
することができず、相対的にフーチング6から基礎杭2
が抜け出す虞れがある。このような状態となると、構造
物全体の力の釣り合いが急激に崩れて、構造物に甚大な
被害が生じることになる。そこで、本発明に係る杭基礎
構造にあっては、杭頭部2aとフーチング6とを次のよ
うな引抜抵抗力付与手段20により連結しておくことに
よって、ピン接合手段7による上記した耐震機能,免震
機能を何ら損なうことなく、当該引抜力に十分対抗でき
る抵抗力(引抜抵抗力)を確保できるように工夫してあ
る。
By the way, a large pull-out force may be applied to the pillars (particularly corner pillars) 4 on the outer peripheral portion of the middle and high-rise building due to seismic force or buoyancy of water.
In the pile foundation structure in which the footing 6 and the footing 6 are joined by the above-mentioned pin joining means 7, the pulling force cannot be sufficiently countered, and the footing 6 is relatively moved from the footing 6 to the foundation pile 2.
May come off. In such a state, the balance of the force of the entire structure is suddenly broken, and the structure is seriously damaged. Therefore, in the pile foundation structure according to the present invention, by connecting the pile head 2a and the footing 6 with the pull-out resistance applying means 20 as described below, the above-described seismic function by the pin joining means 7 is achieved. , It is devised so as to ensure a resistance (pull-out resistance) enough to oppose the pull-out force without impairing the seismic isolation function.

【0017】すなわち、引抜抵抗力付与手段20は、図
2、図3及び図5に示す如く、複数の鉄筋21…を、そ
れらの上端側部分21a…が杭頭部2aから突出し且つ
ピン接合手段7による接合部分(上部支承部材6aと下
部支承部材10(凹部12)との嵌合部分)の外周環状
領域を通過する状態で、基礎杭2に固設し、内径Dを鉄
筋径dより大きくした複数の鉄筋挿通路22…をフーチ
ング6に上下貫通状に形成して、各鉄筋21の上端側部
分21aをフーチング6上に突出する状態に各鉄筋挿通
路22に挿通させ、フーチング6上に突出する各鉄筋部
分21bに抜止体23を取り付けると共に、各抜止体2
3とフーチング上面(フーチング天面)6bとの間に、
鉄筋21に対してフーチング6を下方へと押圧附勢する
バネ部材24を介装してなる。
That is, as shown in FIGS. 2, 3 and 5, the pull-out resistance applying means 20 comprises a plurality of rebars 21. 7 and fixed to the foundation pile 2 while passing through the outer peripheral annular region of the joint portion (the fitting portion between the upper bearing member 6a and the lower bearing member 10 (the concave portion 12)), and the inner diameter D is larger than the rebar diameter d. Are formed in the footing 6 in a vertically penetrating manner, and the upper end portions 21a of the reinforcing bars 21 are inserted into the reinforcing bar insertion passages 22 so as to protrude above the footing 6, and the footing 6 is placed on the footing 6. A retaining body 23 is attached to each protruding reinforcing bar portion 21b, and each retaining body 2
3 and the footing upper surface (footing top surface) 6b,
The footing 6 is provided with a spring member 24 for urging the reinforcing bar 21 to press the footing 6 downward.

【0018】鉄筋21…は、図2及び図3に示す如く、
基礎杭2と同心をなす円上に等ピッチで並列し且つコン
クリート層11を貫通する状態で、基礎杭2に埋設固定
されており、その上端側部分21aは、フーチング天面
6bを所定量超える位置まで鉛直上方に延びている。各
鉄筋21は、フーチング天面6b上に突出する上端部分
21bにネジ部21cを刻設した主鉄筋又はPC鋼材で
ある。なお、鉄筋21…の基礎杭2(及びコンクリート
層11)に埋設された部分は帯鉄筋(図示せず)により
上記した円形配置形態で相互連結されている。
As shown in FIG. 2 and FIG.
The pile 21 is buried and fixed in the foundation pile 2 in a state of being arranged at equal pitch on a circle concentric with the foundation pile 2 and penetrating the concrete layer 11, and the upper end side portion 21a exceeds the footing top surface 6b by a predetermined amount. It extends vertically upward to the position. Each reinforcing bar 21 is a main reinforcing bar or a PC steel material in which a screw portion 21c is engraved on an upper end portion 21b protruding above the footing top surface 6b. The portions of the reinforcing bars 21 buried in the foundation pile 2 (and the concrete layer 11) are interconnected by a band reinforcing bar (not shown) in the above-described circular arrangement.

【0019】鉄筋挿通路22…は、図3に示す如く、鉄
筋21…と同一の配置形態をなしてフーチング6に形成
されており、各鉄筋21は各鉄筋挿通路22にその中心
部に位置した状態で挿通されている。鉄筋挿通路22に
挿通された鉄筋部分21aは、図5に示す如く、両者2
1a,22の径差D−dに応じた範囲において、鉄筋挿
通路22に対して水平方向に相対変位することができる
が、鉄筋挿通路22の径Dは、かかる鉄筋部分21aの
水平方向における相対変位量がピン接合手段7によって
許容される杭頭部2aとフーチング6との水平方向相対
変位量(地震力を吸収すべく両者2a,6が相対回転変
位することによって生じる水平方向相対変位量)に一致
又は略一致するように、鉄筋径dに応じて設定されてい
る。各鉄筋挿通路22は、内径をDとする管状部材22
aをフーチング6に埋設することにより形成されてい
る。すなわち、管状部材22a…をフーチング形成用の
型枠の一部(捨型枠)としてコンクリートを打設するこ
とにより、鉄筋挿通路22…を有するフーチング6が形
成されるのである。したがって、管状部材22aとして
は、コンクリート打設時及びコンクリート硬化時の圧力
に耐えることができる程度(押し潰されない程度)の剛
性を有するものであればよく、鋼管等の金属管や樹脂
管,紙製管(カポスタック等)を使用することができ
る。
As shown in FIG. 3, the rebar insertion passages 22 are formed in the footing 6 in the same arrangement form as the rebars 21, and each rebar 21 is located at the center of each rebar insertion passage 22. It is inserted in the state where it was done. As shown in FIG. 5, the rebar portion 21a inserted into the rebar insertion passage 22
In the range corresponding to the diameter difference D-d between the reinforcing bars 1a and 22, it is possible to relatively displace in the horizontal direction with respect to the reinforcing bar insertion passage 22, but the diameter D of the reinforcing bar insertion passage 22 in the horizontal direction of the reinforcing bar portion 21a. The relative displacement between the pile head 2a and the footing 6 in the horizontal direction (the relative displacement in the horizontal direction caused by the relative rotational displacement of the two 2a and 6 to absorb seismic force) for which the relative displacement is permitted by the pin joining means 7 ) Is set according to the rebar diameter d so as to coincide with or substantially coincide with the diameter d. Each rebar insertion passage 22 has a tubular member 22 having an inner diameter D.
a is buried in the footing 6. That is, the footing 6 having the rebar insertion passages 22 is formed by casting concrete using the tubular members 22a as a part of the mold for forming the footing (discarded form). Therefore, the tubular member 22a may have a rigidity enough to withstand the pressure during concrete casting and concrete hardening (not to be crushed), such as a metal pipe such as a steel pipe, a resin pipe, or a paper pipe. Pipe making (capo stack etc.) can be used.

【0020】各鉄筋21の上端部分つまりフーチング天
面6b上に突出する鉄筋部分21bには、図5に示す如
く、下方から順に、鉄筋挿通路22より大径をなす金属
製環状板である支圧板25、環状座金26、環状のバネ
部材24及び環状座金27が挿通されると共に、抜止体
23が取り付けられている。支圧板25は、中心部に鉄
筋部分21bが挿通するに必要且つ十分な径の貫通孔を
形成したもので、鉄筋挿通路22内での鉄筋変位(水平
方向変位)に追従してフーチング天面6b上を滑動する
ものである。バネ部材24としては、圧縮コイルスプリ
ング(コイル断面が円形又は方形をなすもの)又は複数
の皿バネを積層したもの等が使用されるが、図示の例で
はコイル断面が円形の圧縮コイルスプリングが使用され
ている。抜止体23は、鉄筋21のネジ部21cに螺着
された一対のナット(ダブルナット)23a,23aで
ある。而して、バネ部材24により鉄筋21に対してフ
ーチング6が下方へと押圧附勢されるが、その附勢力
は、ナット23a,23aによる締め付け量を変更する
ことによって調整することができ、ピン接合手段7によ
り許容される杭頭部2aとフーチング6との鉛直方向相
対変位(地震力を吸収すべく両者2a,6が相対回転変
位することによって生じる鉛直方向相対変位)を妨げな
い範囲において基礎杭2のフーチング6からの引き抜き
を十分に阻止しうる程度に設定される。
As shown in FIG. 5, the upper end portion of each reinforcing bar 21, that is, the reinforcing bar portion 21b protruding above the footing top surface 6b, is formed of a metal annular plate having a diameter larger than the reinforcing bar insertion passage 22 in order from the bottom. The pressure plate 25, the annular washer 26, the annular spring member 24, and the annular washer 27 are inserted, and the retaining body 23 is attached. The support plate 25 is formed with a through-hole having a diameter necessary and sufficient for the reinforcing bar portion 21b to pass therethrough at the center thereof. The supporting plate 25 follows a reinforcing bar displacement (horizontal displacement) in the reinforcing bar insertion passage 22 and a footing top surface. 6b. As the spring member 24, a compression coil spring (a coil having a circular or square cross section) or a stack of a plurality of disc springs is used. In the illustrated example, a compression coil spring having a circular coil cross section is used. Have been. The retaining body 23 is a pair of nuts (double nuts) 23 a and 23 a screwed to the screw portion 21 c of the reinforcing bar 21. Thus, the footing 6 is urged downward by the spring member 24 against the rebar 21, and the urging force can be adjusted by changing the amount of tightening by the nuts 23a, 23a. In the range where the vertical relative displacement of the pile head 2a and the footing 6 allowed by the joining means 7 (the vertical relative displacement caused by the relative rotational displacement of the two 2a and 6 to absorb the seismic force) is not hindered. It is set to such an extent that the pulling out of the stake 2 from the footing 6 can be sufficiently prevented.

【0021】したがって、上記した引抜抵抗力付与手段
20によれば、ピン接合手段7による杭頭部2aとフー
チング6との相対変位を妨げることなく、基礎杭2のフ
ーチング6からの引き抜きを確実に防止することができ
る。すなわち、杭頭部2aとフーチング6との鉛直方向
の相対変位はバネ部材24の伸縮により吸収され、両者
2a,6の水平方向変位は鉄筋挿通路22内での鉄筋移
動(支圧板25の滑動)によって吸収されて、ピン接合
手段7による耐震機能及び免震機能が損なわれることが
ない。また、基礎杭2の引き抜きは抜止体23によって
確実に阻止される。したがって、杭頭部2aとフーチン
グ6との間を両手段7,20により接合,連結された杭
基礎構造によれば、建物3の耐震性能及び免震性能を大
幅に向上させることができる。
Therefore, according to the pull-out resistance applying means 20, the foundation pile 2 can be reliably pulled out from the footing 6 without hindering the relative displacement between the pile head 2a and the footing 6 by the pin connecting means 7. Can be prevented. That is, the relative displacement in the vertical direction between the pile head 2a and the footing 6 is absorbed by the expansion and contraction of the spring member 24, and the displacement in the horizontal direction of the two members 2a and 6 is caused by the movement of the rebar in the rebar insertion passage 22 (sliding of the support plate 25). ), The seismic function and seismic isolation function of the pin joining means 7 are not impaired. Further, pulling out of the foundation pile 2 is reliably prevented by the retaining body 23. Therefore, according to the pile foundation structure in which the pile head 2a and the footing 6 are joined and connected by both means 7 and 20, the seismic performance and seismic isolation performance of the building 3 can be greatly improved.

【0022】ところで、フーチング天面6b上に基礎
梁,スラブ,柱等のコンクリート打設が行われる場合が
あるが、かかる場合には、図5に示す如く、フーチング
天面6b上に、各鉄筋21のフーチング6に対する水平
変位領域(支圧板25の滑動領域)及び鉛直変位領域
(バネ部材24の伸縮領域)を確保するための空間28
aを確保するための蓋部材28を配置しておく。蓋部材
28は捨型枠であり、コンクリート打設時及びコンクリ
ート硬化時の圧力に耐えることができる程度(押し潰さ
れない程度)の圧縮強度を有するものであればよく、金
属製,樹脂製のものを使用することができる。また、こ
のような蓋部材28に代えて、図8に示す如く、上記空
間28aに相当する空間に、コンクリート打設時及びコ
ンクリート硬化時の圧力に耐えることができる程度の圧
縮強度を有し且つ支圧板25の滑動及びバネ部材24の
伸縮を妨げない程度の弾性を有する発泡ウレタン等の弾
性層29を充填させておいてもよい。
In some cases, concrete beams such as foundation beams, slabs, and columns are cast on the footing top surface 6b. In such a case, as shown in FIG. 5, each reinforcing bar is placed on the footing top surface 6b. A space 28 for securing a horizontal displacement area (sliding area of the support plate 25) and a vertical displacement area (expandable area of the spring member 24) with respect to the footing 6 of 21.
A cover member 28 for securing a is arranged. The cover member 28 is a discarded frame, and may be made of metal or resin as long as it has a compressive strength enough to withstand the pressure during concrete casting and concrete hardening (not to be crushed). Can be used. As shown in FIG. 8, instead of such a cover member 28, the space corresponding to the space 28a has a compressive strength enough to withstand the pressure during concrete placing and concrete hardening, and An elastic layer 29 made of urethane foam or the like having an elasticity that does not hinder the sliding of the support plate 25 and the expansion and contraction of the spring member 24 may be filled in advance.

【0023】また、支圧板25のフーチング天面6b上
における滑動をより円滑に行われるように、フーチング
天面6bと支圧板25との間に低摩擦性材からなる滑り
層30を形成しておくことが好ましい。滑り層30は、
図8に示す如く支圧板25に一体形成したものであって
も、図9に示す如く支圧板25と別体構成をなすもので
あっても、何れでもよい。すなわち、図8に示すもので
は、滑り層30が、支圧板25の下面にPTFE等の低
摩擦性材をコーティングすることによって構成されてい
る。また、図9に示すものでは、滑り層30が、フーチ
ング天面6bより僅かに突出させた管状部材22aの上
端部に嵌合固定させたPTFE等の低摩擦性材製の滑り
板で構成されている。
A sliding layer 30 made of a low-friction material is formed between the footing top surface 6b and the support plate 25 so that the support plate 25 slides smoothly on the footing top surface 6b. Preferably. The sliding layer 30 is
The support plate 25 may be formed integrally with the support plate 25 as shown in FIG. 8, or may be formed separately from the support plate 25 as shown in FIG. That is, in the embodiment shown in FIG. 8, the sliding layer 30 is formed by coating the lower surface of the support plate 25 with a low friction material such as PTFE. In FIG. 9, the sliding layer 30 is formed of a sliding plate made of a low friction material such as PTFE, which is fitted and fixed to the upper end of the tubular member 22a slightly projecting from the footing top surface 6b. ing.

【0024】[0024]

【発明の効果】以上のように、本発明の杭基礎構造によ
れば、冒頭で述べた問題を生じることなく、建物の耐震
性能及び免震性能を大幅に向上させることができる。特
に、引抜抵抗力付与手段により、ピン接合機能を損なう
ことなく、中高層建物の外周部の柱(特に隅柱)に地震
力や水の浮力等によって作用する引抜力に良好に対抗す
ることができる。
As described above, according to the pile foundation structure of the present invention, seismic performance and seismic isolation performance of a building can be significantly improved without the problems described at the outset. In particular, the pull-out resistance applying means can satisfactorily withstand the pull-out force acting on the pillars (particularly corner pillars) on the outer peripheral portion of the middle and high-rise building by seismic force or buoyancy of water without impairing the pin joining function. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る杭基礎構造の一例を示す縦断正面
図である。
FIG. 1 is a vertical sectional front view showing an example of a pile foundation structure according to the present invention.

【図2】図1の要部(隅柱の周辺部分)を示す拡大詳細
図である。
FIG. 2 is an enlarged detailed view showing a main part (a peripheral part of a corner post) of FIG. 1;

【図3】図2のIII−III線に沿う横断平面図である。FIG. 3 is a cross-sectional plan view taken along the line III-III in FIG. 2;

【図4】図2の要部(ピン接合手段の周辺部分)の拡大
図である。
FIG. 4 is an enlarged view of a main part of FIG. 2 (a peripheral part of a pin joining unit).

【図5】図2の要部(引抜抵抗力付与手段の周辺部分)
を拡大して示す詳細図である。
FIG. 5 is a main part of FIG. 2 (a part around the pull-out resistance applying means);
FIG.

【図6】ピン接合手段の変形例を示す図4相当の縦断正
面図である。
FIG. 6 is a longitudinal sectional front view corresponding to FIG. 4 showing a modification of the pin joining means.

【図7】ピン接合手段の他の変形例を示す図4相当の縦
断正面図である。
FIG. 7 is a longitudinal sectional front view corresponding to FIG. 4, showing another modification of the pin joining means.

【図8】引抜抵抗力付与手段の変形例を示す図7相当の
縦断正面図である。
8 is a longitudinal sectional front view corresponding to FIG. 7, showing a modification of the pull-out resistance applying means.

【図9】引抜抵抗力付与手段の他の変形例を示す図7相
当の縦断正面図である。
FIG. 9 is a longitudinal sectional front view corresponding to FIG. 7, showing another modification of the pull-out resistance applying means.

【図10】従来の杭基礎構造を示す縦断正面図である。FIG. 10 is a vertical sectional front view showing a conventional pile foundation structure.

【符号の説明】[Explanation of symbols]

2…基礎杭、2a…杭頭部、6…フーチング、6a…上
部支承部材、6b…フーチング天面(フーチングの上
面)、7…ピン接合手段、10…下部支承部材、13…
弾性部材、20…引抜抵抗力付与手段、21…鉄筋、2
1a…鉄筋の上端側部分、21b…フーチング上に突出
する鉄筋部分、22…鉄筋挿通路、22a…管状部材、
23…抜止体、23a…ナット(抜止体)、24…バネ
部材、25…支圧板、28…蓋部材、28a…空間、3
0…滑り層、D…鉄筋挿通路の径、d…鉄筋径。
2 ... foundation pile, 2a ... pile head, 6 ... footing, 6a ... upper support member, 6b ... toping top surface (upper surface of footing), 7 ... pin joining means, 10 ... lower support member, 13 ...
Elastic member, 20 ... pull-out resistance applying means, 21 ... rebar, 2
1a: upper end side portion of the reinforcing bar, 21b: a reinforcing bar portion projecting on the footing, 22: a reinforcing bar insertion passage, 22a: a tubular member,
Reference numeral 23: retaining body, 23a: nut (preventing body), 24: spring member, 25: supporting plate, 28: lid member, 28a: space, 3
0: sliding layer, D: diameter of reinforcing bar insertion passage, d: diameter of reinforcing bar.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 フーチングを、ピン接合手段及び引抜抵
抗力付与手段を介して、基礎杭の上端部たる杭頭部に支
承させてなり、 ピン接合手段は、杭頭部に設けた下部支承部材とフーチ
ングの下端部に設けた上部支承部材との間に弾性部材を
装填することにより、杭頭部とフーチングとを相対回転
自在に接合するものであり、 引抜抵抗力付与手段は、複数の鉄筋を、それらの上端側
部分が杭頭部から突出し且つピン接合手段による接合部
分の外周環状領域を通過する状態で、基礎杭に固設し、
内径を鉄筋径より大きくした複数の鉄筋挿通路をフーチ
ングに上下貫通状に形成して、各鉄筋の上端側部分をフ
ーチング上に突出する状態に各鉄筋挿通路に挿通させ、
フーチング上に突出する各鉄筋部分に抜止体を取り付け
ると共に、各抜止体とフーチング上面との間に、鉄筋に
対してフーチングを下方へと押圧附勢するバネ部材を介
装してなるものであることを特徴とする杭基礎構造。
1. A footing is supported on a pile head, which is an upper end portion of a foundation pile, via a pin connecting means and a pull-out resistance applying means, wherein the pin connecting means comprises a lower bearing member provided on the pile head. The pile head and the footing are relatively rotatably joined by loading an elastic member between the pile head and the upper bearing member provided at the lower end of the footing, and the pull-out resistance applying means comprises a plurality of reinforcing bars. Are fixed to the foundation pile in a state where their upper end portions protrude from the pile head and pass through the outer peripheral annular region of the joint portion by the pin joining means,
A plurality of rebar insertion passages whose inner diameter is larger than the rebar diameter are formed in the footing so as to penetrate vertically, and the upper end side of each rebar is inserted into each rebar insertion passage in a state protruding on the footing,
A retaining member is attached to each reinforcing bar portion protruding above the footing, and a spring member that presses and biases the footing downward with respect to the reinforcing bar is interposed between each retaining member and the upper surface of the footing. A pile foundation structure characterized by the following.
【請求項2】 各鉄筋挿通路は、鉄筋径より大径の管状
部材をフーチングに埋設することにより形成されている
ことを特徴とする、請求項1に記載する杭基礎構造。
2. The pile foundation structure according to claim 1, wherein each rebar insertion passage is formed by embedding a tubular member having a diameter larger than the rebar diameter in a footing.
【請求項3】 フーチング上に突出する各鉄筋部分は、
フーチング上面に載置した金属製の支圧板を貫通してお
り、この支圧板と抜止体との間にバネ部材が装填されて
いることを特徴とする、請求項1又は請求項2に記載す
る杭基礎構造。
3. Reinforcing bars projecting on the footing are:
3. The spring according to claim 1, wherein a metal supporting plate mounted on the footing upper surface is penetrated, and a spring member is mounted between the supporting plate and the retaining body. Pile foundation structure.
【請求項4】 フーチング上面と支圧板との間には、低
摩擦性材からなる滑り層が形成されていることを特徴と
する、請求項3項に記載する杭基礎構造。
4. The pile foundation structure according to claim 3, wherein a sliding layer made of a low friction material is formed between the upper surface of the footing and the support plate.
【請求項5】 フーチング上には、フーチングに対する
各鉄筋の水平変位領域及び鉛直変位領域を確保するため
の空間を確保するための蓋部材が配置されていることを
特徴とする、請求項1、請求項2、請求項3又は請求項
4に記載する杭基礎構造。
5. A cover member for securing a space for securing a horizontal displacement area and a vertical displacement area of each reinforcing bar with respect to the footing is arranged on the footing. The pile foundation structure according to claim 2, 3, or 4.
JP2001010198A 2001-01-18 2001-01-18 Pile foundation structure Expired - Fee Related JP3671153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001010198A JP3671153B2 (en) 2001-01-18 2001-01-18 Pile foundation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001010198A JP3671153B2 (en) 2001-01-18 2001-01-18 Pile foundation structure

Publications (2)

Publication Number Publication Date
JP2002212958A true JP2002212958A (en) 2002-07-31
JP3671153B2 JP3671153B2 (en) 2005-07-13

Family

ID=18877550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001010198A Expired - Fee Related JP3671153B2 (en) 2001-01-18 2001-01-18 Pile foundation structure

Country Status (1)

Country Link
JP (1) JP3671153B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000955A (en) * 2014-05-20 2016-01-07 青木あすなろ建設株式会社 Pile head pin joining structure
CN114658040A (en) * 2020-11-03 2022-06-24 阳光学院 Offshore wind turbine pile foundation shock-absorbing structure capable of reducing impact
CN115787755A (en) * 2023-01-18 2023-03-14 西南石油大学 Simulation test system and method for pile inserting and pulling operation of self-elevating drilling platform
JP7406102B2 (en) 2020-04-28 2023-12-27 日本製鉄株式会社 Pile foundation structure and construction method of structure foundation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000955A (en) * 2014-05-20 2016-01-07 青木あすなろ建設株式会社 Pile head pin joining structure
JP7406102B2 (en) 2020-04-28 2023-12-27 日本製鉄株式会社 Pile foundation structure and construction method of structure foundation
CN114658040A (en) * 2020-11-03 2022-06-24 阳光学院 Offshore wind turbine pile foundation shock-absorbing structure capable of reducing impact
CN114658040B (en) * 2020-11-03 2024-05-10 阳光学院 Can reduce marine wind turbine pile foundation shock-absorbing structure of impact
CN115787755A (en) * 2023-01-18 2023-03-14 西南石油大学 Simulation test system and method for pile inserting and pulling operation of self-elevating drilling platform

Also Published As

Publication number Publication date
JP3671153B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
US6474030B1 (en) Pile foundation structure
US8196368B2 (en) Ductile seismic shear key
US5303524A (en) Earthquaker protection system and method of installing same
EP0894900B1 (en) Structure of pile foundation
JP2002212958A (en) Pile foundation structure
JP2021102915A (en) Anchorage structure and construction method for exposure type leg pillar capable of dealing with epicentral earthquake
JP3455644B2 (en) Pile foundation structure
JP3882633B2 (en) Steel pipe damper and rocking foundation structure using the same
KR101742438B1 (en) Integral abutment bridge having rotation receptive device at abutment-pile jointing site
JP2008057125A (en) Seismic strengthening frame using tendon, and its construction method
JP4111262B2 (en) Connection structure between foundation pile and superstructure, pile head joint, connection method between foundation pile and superstructure
JP5052396B2 (en) Pile head joint structure and temporary tool for pile head joint used in its construction
JP3438108B2 (en) Pile head support structure
JP2004339894A (en) Aseismic reinforcement structure of pile foundation structure
JP2013189750A (en) Fixation component for transmitting shear force, with fixation maintaining function
JP3581691B2 (en) Mounting method and mounting structure of horizontal force damper for structure
JP2007154558A (en) Pile head base-isolating structure
JP3881671B2 (en) Stopper device for bridge
JP3002740B2 (en) Seismic reinforcement structure of columnar structure
JP3165063B2 (en) Seismic foundation structure
JP3838472B2 (en) Exposed column base construction method
JP3671155B2 (en) Pile foundation structure
JP3511001B2 (en) Pile head joint structure in pile foundation
KR101166691B1 (en) Bearing apparatus of structure and construncting method thereof
JP4664738B2 (en) Method for enhancing bending strength of pile upper end or column upper and lower ends of structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040602

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees