JPH09100510A - Construction method of bridge and rubber bearing body used in this method - Google Patents

Construction method of bridge and rubber bearing body used in this method

Info

Publication number
JPH09100510A
JPH09100510A JP26153995A JP26153995A JPH09100510A JP H09100510 A JPH09100510 A JP H09100510A JP 26153995 A JP26153995 A JP 26153995A JP 26153995 A JP26153995 A JP 26153995A JP H09100510 A JPH09100510 A JP H09100510A
Authority
JP
Japan
Prior art keywords
rubber
rubber bearing
bearing body
bridge
bridge girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26153995A
Other languages
Japanese (ja)
Inventor
Yoshihisa Yamamoto
▲吉▼久 山本
Shigeo Maruki
繁雄 丸喜
Teiji Kumaoka
禎二 熊岡
Shinichiro Kumagai
紳一郎 熊谷
Kazumichi Sasaki
和道 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Sumitomo Construction Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Sumitomo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd, Sumitomo Construction Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP26153995A priority Critical patent/JPH09100510A/en
Publication of JPH09100510A publication Critical patent/JPH09100510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce internal stress of a rubber bearing body produced by the aging dry shrinkage of bride girders and secure an instinct strength of a pier by heating the rubber bearing body interposed between concrete-made bride girders and the piers. SOLUTION: A rubber bearing body 4 interposed between an upper shoe 2 fixed with the bottom of a concrete-made bridge girder 20 and a lower shoe 3 fixed with the top of a pier 21, is formed with six rectangular board-shaped natural rubber-made boards and five stainless steel plates, which are alternately laminated and bonded with each other. The bridge girder 20 is moved resultant from aging dry shrinkage of the bridge girder 20 so that shearing strain may be produced on the rubber bearing body 4. In this case, a belt-like insulating material 17 is surrounded around the rubber bearing body 4 where a hot air is supplied thereto by driving a hot air generator 18, such as a blower, thereby heating the rubber bearing body so that the rubber of the bearing body 4 may be forcibly crept. It is, therefore, possible to remove the internal stress of the rubber bearing body 4 and reduce the reaction force to the pier 21.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反力分散型の橋梁
の施工方法およびこれに用いるゴム支承体に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for constructing a bridge of reaction force dispersion type and a rubber bearing used for the method.

【0002】[0002]

【従来の技術】近年、橋梁技術の進歩がめざましく、橋
梁規模が年々大形化し、これに伴って長大橋が多く設計
されている。このような長大橋の支承方式として、従来
から、図16に示すように、長スパンの橋桁51を用
い、これを多数の橋脚52に固定されたゴム支承体53
で固定支持することが行われている。このような支承方
式の橋梁は、反力(水平力)分散型の橋梁と言われるも
ので、ゴム支承の水平剛性を有効に利用し、橋桁51の
慣性力を各橋脚52に任意に分配することで、橋脚52
の断面形状の均等化を図り、橋梁全体のバランスをよく
している。
2. Description of the Related Art In recent years, bridge technology has been remarkably advanced, and the scale of bridges has been increasing year by year. Accordingly, many long bridges have been designed. As a bearing system for such a long bridge, conventionally, as shown in FIG. 16, a long span bridge girder 51 is used, and a rubber bearing 53 fixed to a large number of bridge piers 52.
Fixed support. Such a bridge of the support system is called a bridge of a distributed reaction force (horizontal force), and effectively utilizes the horizontal rigidity of the rubber bearing to arbitrarily distribute the inertial force of the bridge girder 51 to each pier 52. The pier 52
The cross-sectional shapes of the bridges have been made uniform to improve the balance of the entire bridge.

【0003】[0003]

【発明が解決しようとする課題】ところが、コンクリー
ト製長大橋の場合には、橋桁51の長さが300mにも
なるため、施工後半年〜1,2年程経過する間に、橋桁
51の乾燥収縮により長手方向に10cm程度縮む(図
16の矢印A参照)。このため、図17に示すように、
ゴム支承体53が橋桁51の長手方向に(橋桁51の中
央部に向かって)歪んでしまう。その結果、橋脚52に
はゴム支承体53の変形に伴う反力がかかり、橋桁51
の乾燥収縮後、常にこの橋の長さ方向の荷重を受けてい
ることになってしまい、橋桁52の強度上不利なものに
なる。そこで、上記橋桁51の乾燥収縮後におけるゴム
支承体の歪みを除去するものとして、特開平5−171
623号公報に示す予備剪断変形据付方法が提案されて
いる。この方法は、つぎのとおりである。すなわち、図
18および図19に示すように、橋桁51等の長手方向
に沿う両側部にストッパー56が立設されたベッドプレ
ート55と、ゴム層58の上下面に金属板59,60が
固着されて略直方体形状のゴム支承体57を用意し、上
記ベッドプレート55の中央にゴム支承体57をボルト
61a,61bにより位置決め固定する。ついで、橋脚
52等を施工し、上記ベッドプレート55を橋脚52等
の上部に固定する。つぎに、ゴム支承体57の上部金属
板59上面の係止突起59aをソールプレート62下面
の係止孔62aに嵌入し、その状態で橋桁51等を施工
する。つぎに、橋桁51等の乾燥収縮およびクリープ進
行方向にあるボルト61aを撤去したのち、これと反対
側にあるボルト61bを締付け回動し、ゴム支承体57
の下部金属板60を橋桁51等の乾燥収縮およびクリー
プ進行方向に押圧移動する。このようにして、ゴム支承
体57のゴム層58を予備剪断変形させたのち、ボルト
61bを撤去し、ストッパー56と下部金属板60間に
生じた隙間にスペーサを配設しボルト止めするようにし
ている。
However, in the case of a concrete long bridge, since the length of the bridge girder 51 is 300 m, the bridge girder 51 dries during the second half to 1-2 years after construction. The contraction contracts about 10 cm in the longitudinal direction (see arrow A in FIG. 16). Therefore, as shown in FIG.
The rubber bearing 53 is distorted in the longitudinal direction of the bridge girder 51 (toward the center of the bridge girder 51). As a result, a reaction force is applied to the pier 52 due to the deformation of the rubber bearing 53, and the bridge girder 51
After drying and shrinking, the bridge girder 52 is always subjected to a load in the lengthwise direction, which is disadvantageous in terms of strength of the bridge girder 52. Therefore, as a means for removing the distortion of the rubber support after the bridge girder 51 is dried and contracted, Japanese Patent Application Laid-Open No. 5-171 has been proposed.
A preliminary shearing deformation installation method disclosed in Japanese Patent No. 623 has been proposed. This method is as follows. That is, as shown in FIGS. 18 and 19, a bed plate 55 in which stoppers 56 are erected on both sides along the longitudinal direction of the bridge girder 51 and the like, and metal plates 59, 60 are fixed to the upper and lower surfaces of the rubber layer 58. As a result, a substantially rectangular parallelepiped rubber support 57 is prepared, and the rubber support 57 is positioned and fixed to the center of the bed plate 55 with bolts 61a and 61b. Next, the bridge pier 52 or the like is constructed, and the bed plate 55 is fixed to the upper portion of the bridge pier 52 or the like. Next, the locking projection 59a on the upper surface of the upper metal plate 59 of the rubber bearing 57 is fitted into the locking hole 62a on the lower surface of the sole plate 62, and the bridge girder 51 and the like are constructed in this state. Next, after removing the bolt 61a on the bridge girder 51 and the like in the drying shrinkage and creeping direction, the bolt 61b on the opposite side is tightened and rotated to rotate the rubber support 57.
The lower metal plate 60 is pressed and moved in the drying shrinkage and creep advancing direction of the bridge girder 51 and the like. In this way, after the rubber layer 58 of the rubber support 57 is pre-shear-deformed, the bolt 61b is removed, a spacer is arranged in the gap formed between the stopper 56 and the lower metal plate 60, and bolted. ing.

【0004】しかしながら、このものでは、ボルト61
bを締付け回動してゴム支承体57の下部金属板60を
押圧移動させる距離の設定が非常に難しいため、正確な
距離の設定が行えず、橋桁51等の乾燥収縮後にもゴム
支承体57のゴム層58に剪断変形が作用し続け、ゴム
支承体57等が早期に損傷するという問題がある。しか
も、このものでは、初期の状態から剪断変形がゴム支承
体57のゴム層58に作用しており、かつ、ボルト61
bの締付けにより急激に剪断変形が与えられるため、ゴ
ム層58に亀裂が生じやすい等の問題もある。さらに、
上記ボルト61bの締付け作業やスペーサの取付け作業
等の細かい手作業を狭い場所で行わなければならないた
め、作業に手間取る。
However, in this case, the bolt 61
Since it is very difficult to set the distance for tightening and rotating b to press and move the lower metal plate 60 of the rubber bearing 57, the accurate distance cannot be set, and the rubber bearing 57 does not dry even after the bridge girder 51 or the like shrinks. There is a problem in that the shearing deformation continues to act on the rubber layer 58 and the rubber bearing 57 is damaged early. Moreover, in this structure, shear deformation acts on the rubber layer 58 of the rubber support 57 from the initial state, and the bolt 61
Since the shearing deformation is rapidly given by the tightening of b, there is a problem that the rubber layer 58 is likely to be cracked. further,
Since it is necessary to perform fine manual work such as the tightening work of the bolt 61b and the mounting work of the spacer in a narrow place, it takes time and effort.

【0005】本発明は、このような事情に鑑みなされた
もので、橋桁の乾燥収縮後再調整のための工事等を必要
とせずに、ゴム支承体の内部応力を軽減し、橋脚の本来
の強度を確保することのできる橋梁の施工方法およびこ
れに用いるゴム支承体の提供をその目的とする。
The present invention has been made in view of the above circumstances, and reduces the internal stress of the rubber support and reduces the internal stress of the bridge pier without the need for construction work for readjustment of the bridge girder after drying and shrinking. It is an object of the present invention to provide a bridge construction method capable of ensuring strength and a rubber support used for the method.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、橋脚の上部にゴム支承体を固定する工程
と、上記ゴム支承体上に橋桁を載置して固定する工程
と、所定期間経過後に上記ゴム支承体を加熱してその内
部応力を除去する工程とを備えた橋梁の施工方法を第1
の要旨とし、上記橋梁の施工方法に用いるゴム支承体で
あって、ゴム本体内部に少なくとも一層の中間プレート
が埋設されているゴム支承体を第2の要旨とする。
In order to achieve the above object, the present invention comprises a step of fixing a rubber bearing on the upper part of a bridge pier, and a step of placing and fixing a bridge girder on the rubber bearing. First, there is provided a bridge construction method including a step of heating the rubber support after a predetermined period of time to remove internal stress thereof.
The second gist of the present invention is a rubber bearing used for the method of constructing a bridge, in which at least one intermediate plate is embedded inside the rubber body.

【0007】[0007]

【発明の実施の形態】すなわち、本発明の橋梁の施工方
法は、橋脚の上部にゴム支承体を固定する工程と、上記
ゴム支承体上に橋桁を載置して固定する工程と、所定期
間経過後に上記ゴム支承体を加熱してその内部応力を除
去する工程とを備えている。したがって、橋桁がその構
成材料の乾燥収縮等により長手方向に向かって所定距離
移動すると、この移動に伴いゴム支承体が剪断変形する
が、ゴム支承体を加熱することにより、ゴムのクリープ
を発生させ、ゴム支承体の内部応力を取り除くことがで
きる。そのため、橋桁の乾燥収縮時に、橋脚にかかる反
力が著しく小さくなる。また、本発明では、上記加熱時
の加熱条件等が、従来例における押圧移動距離の設定ほ
ど難しくなく、正確な加熱条件等の設定により、ゴム支
承体の内部応力を取り除くことができる。しかも、この
ものでは、ゴム支承体に作用する剪断変形が所定期間中
に徐々に発生し、また、ゴム支承体の内部応力を取り除
く手段が加熱であるため、作業時等にゴム支承体に亀裂
等が生じることがない。さらに、加熱作業は、従来例の
ような締付け作業や取付け作業ほど細かな作業を必要と
しないため、狭い場所でも簡単に行える。本発明におい
て、所定期間とは、一般に、コンクリート製橋桁施工後
半年〜3年の期間を指し、例えば、長さが300m程度
であるコンクリート製橋桁の場合で、橋桁施工後半年〜
1,2年程度である。一方、本発明のゴム支承体は、本
発明の施工方法に用いられるものであり、本発明の方法
が容易に実現できる。また、本発明において、ゴム支承
体の橋桁の長手方向の側面が垂直方向に対して所定角度
に傾斜して形成され、その状態で初期の取付け状態とさ
れ、橋桁の乾燥収縮後に上記側面が略垂直面となる場合
には、橋桁の乾燥収縮後は、実質的にゴム部の受圧面積
が増加する(初期の取付け状態における有効受圧面積の
長さを示す図13のLと、乾燥収縮後のそれを示す図7
のL′とでは、L′の方がLよりも長く、これにより乾
燥収縮後に上記有効受圧面積が増加していることがわか
る)ことになり、実使用時の荷重等による圧縮応力が低
下する。
BEST MODE FOR CARRYING OUT THE INVENTION That is, a method of constructing a bridge according to the present invention comprises a step of fixing a rubber bearing on an upper part of a pier, a step of placing and fixing a bridge girder on the rubber bearing, and a predetermined period. And the step of heating the rubber bearing to remove the internal stress after the passage. Therefore, when the bridge girder moves for a predetermined distance in the longitudinal direction due to drying shrinkage of its constituent materials, etc., the rubber bearing undergoes shear deformation due to this movement, but heating the rubber bearing causes creep of the rubber to occur. The internal stress of the rubber bearing can be removed. Therefore, the reaction force applied to the pier becomes significantly small when the bridge girder is dried and contracted. Further, in the present invention, the heating conditions at the time of heating are not so difficult as the setting of the pressing movement distance in the conventional example, and the internal stress of the rubber bearing can be removed by setting the accurate heating conditions. Moreover, in this product, the shear deformation acting on the rubber bearing gradually occurs during the predetermined period, and the means for removing the internal stress of the rubber bearing is heating, so that the rubber bearing is cracked during work. Etc. will not occur. Further, since the heating work does not require the finer work as the tightening work and the mounting work as in the conventional example, the heating work can be easily performed even in a narrow place. In the present invention, the predetermined period generally refers to a period from the latter half year to 3 years of concrete bridge girder construction, for example, in the case of a concrete bridge girder having a length of about 300 m, the latter half year of bridge girder construction
It's been about a year or two. On the other hand, the rubber bearing of the present invention is used in the construction method of the present invention, and the method of the present invention can be easily realized. Further, in the present invention, the longitudinal side surfaces of the bridge girder of the rubber bearing are formed to incline at a predetermined angle with respect to the vertical direction, and in that state, the initial mounting state is achieved, and after the bridge girder is dried and contracted, the side surfaces are substantially In the case of a vertical surface, the pressure receiving area of the rubber portion increases substantially after the bridge girder is dried and contracted (L in FIG. 13 showing the length of the effective pressure receiving area in the initial mounting state and the dry contraction after the contraction). Figure 7 showing it
L'is longer than L, which means that the effective pressure receiving area increases after drying and shrinking), and the compressive stress due to the load during actual use decreases. .

【0008】つぎに、本発明の実施の形態を図面にもと
づいて説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0009】図1は本発明に用いる支承体装置1の一実
施の形態を示している。この支承体装置1は、コンクリ
ート製橋桁の下面に取着される上沓2と、橋脚の上面に
取着される下沓3を備えており、上記上沓2に本発明の
ゴム支承体4が固定されている。図2は、これを下から
見上げた図である。上記上沓2は、図3に示すように、
長方形状の鉄製の平板体で構成される本体5と、この本
体5の上面に立設された4本のアンカーボルト6(2本
は隠れて見えない)からなる。
FIG. 1 shows an embodiment of a bearing device 1 used in the present invention. The bearing device 1 includes an upper shoe 2 attached to the lower surface of a concrete bridge girder and a lower shoe 3 attached to the upper surface of a bridge pier, and the rubber shoe 4 of the present invention is attached to the upper shoe 2. Is fixed. FIG. 2 is a view looking up from below. The upper shoe 2 is, as shown in FIG.
The main body 5 is composed of a rectangular flat plate made of iron, and four anchor bolts 6 (two of which are hidden and invisible) are erected on the upper surface of the main body 5.

【0010】上記ゴム支承体4は、図4に示すように、
略直方体形状に形成されており、このゴム支承体4の上
面に接着等により長方形平板状の鉄製の上側固定プレー
ト8が固定されているとともに、下面に接着等により長
方形平板状の鉄製の下側固定プレート9が固定されてい
る。この下側固定プレート9の下面には、鉄製の正方形
板体で構成された固定板10が溶接等により突設されて
いる。上記ゴム支承体4は、図5に示すように、6枚の
長方形平板状の天然ゴム製(またはクロロプレンゴム製
等の剪断応力を大きく緩和しうる弾性材料製)ゴム板4
aと、5枚の長方形平板状のステンレス製平板4bとを
交互に積層接着して構成されている。このようなゴム支
承体4は、図2に示すように、その上側固定プレート8
を8本の取付ボルト11で上沓2の下端面にねじ止めす
ることにより、上沓2に一体的に固定されている。
The rubber bearing 4 is, as shown in FIG.
It is formed in a substantially rectangular parallelepiped shape, and a rectangular flat plate-shaped iron upper fixing plate 8 is fixed to the upper surface of the rubber support 4 by adhesion or the like, and a rectangular flat plate-shaped iron lower side is bonded to the lower surface by adhesion or the like. The fixed plate 9 is fixed. On the lower surface of the lower fixing plate 9, a fixing plate 10 made of an iron square plate is provided by welding or the like. As shown in FIG. 5, the rubber bearing 4 is made of six rectangular flat plate-shaped rubber plates 4 (or elastic material such as chloroprene rubber which can greatly relieve shear stress).
a and five rectangular flat plate-shaped stainless steel plates 4b are alternately laminated and bonded. As shown in FIG. 2, such a rubber bearing 4 has its upper fixing plate 8
Is fixed to the upper shoe 2 integrally by screwing it to the lower end surface of the upper shoe 2 with eight mounting bolts 11.

【0011】前記下沓3は、鉄製の平板体で構成された
本体12と、この本体12の下面に立設された4本のア
ンカーボルト13(2本は隠れて見えない)とからなる
(図1参照)。上記本体12は、図6に示すように、正
方形状に形成されており、その中央部には、上記ゴム支
承体4の固定板10に嵌合する正方形の凹部14が形成
されている。図において、15は本体12の上面の4隅
に突出形成されたガイド板であり、上記下側固定プレー
ト9を左右方向にガイドする。
The lower shoe 3 is composed of a main body 12 made of an iron flat plate, and four anchor bolts 13 (two of which are hidden and invisible) which are provided upright on the lower surface of the main body 12 ( (See FIG. 1). As shown in FIG. 6, the main body 12 is formed in a square shape, and a square recess 14 that fits into the fixing plate 10 of the rubber bearing 4 is formed in the central portion thereof. In the figure, reference numeral 15 is a guide plate formed at four corners of the upper surface of the main body 12 to guide the lower fixed plate 9 in the left-right direction.

【0012】上記構成において、図1の状態(上沓2に
取付けられたゴム支承体4の固定板10が下沓3の凹部
14の真上に位置するように上下の沓2,3が位置決め
されている状態)から、上沓2を下降させて下沓3上に
載置すると、図7に示すように、上沓2の固定板10が
下沓3の凹部14に嵌合し自動的に位置決め固定され
る。この状態から、上沓2に取付く橋桁のコンクリート
の乾燥収縮によって、上記上沓2が図7の右側方向(矢
印方向)に所定距離移動すると、ゴム支承体4が垂直状
態から傾斜状態に移行する(図8参照)。この状態で
は、ゴム支承体4の各ゴム板4aに内部応力が発生して
おり、この内部応力を除去する方法として、ゴム支承体
4を加熱することが行われる。
In the above construction, the upper and lower gears 2, 3 are positioned so that the fixing plate 10 of the rubber bearing 4 mounted on the upper gear 2 is located right above the recess 14 of the lower gear 3. When the upper shoe 2 is lowered and placed on the lower shoe 3, the fixing plate 10 of the upper shoe 2 is fitted into the concave portion 14 of the lower shoe 3 automatically as shown in FIG. Positioned and fixed to. From this state, when the upper shoe 2 moves a predetermined distance in the right direction (arrow direction) in FIG. 7 due to the drying shrinkage of the concrete of the bridge girder attached to the upper shoe 2, the rubber support 4 shifts from the vertical state to the inclined state. (See FIG. 8). In this state, internal stress is generated in each rubber plate 4a of the rubber support 4, and the rubber support 4 is heated as a method of removing this internal stress.

【0013】このような支承体装置1を用い、橋梁を作
製する場合には、例えば予め、上沓2の固定板10を下
沓3の凹部14に嵌合させて上沓2を下沓3上に載置
し、その状態で紐や針金等の仮固定具により仮固定し、
作業現場に搬入する。この搬入後、あらかじめ形成され
た橋脚上部の、枠材等で囲われて形成された下沓固定部
21に、上記仮固定具により仮固定された下沓3を板材
等の仮設手段により仮設する(図9参照)。ついで、上
記下沓固定部21にコンクリート材料を打設し、下沓固
定部21を作製する。このとき同時に、下沓固定部21
の上面に、下沓3をそのボルト13を下沓固定部21の
コンクリート部中に埋設させて固定する。つぎに、あら
かじめ形成された橋桁の下面の、枠材等で囲われて形成
された上沓固定部20に、下沓3に相対向する状態で上
沓2を板材等で仮設する。これに先立って、上記仮固定
具の仮固定を解除しておくが、下沓3と上沓2との相互
の位置関係はそのままに保持しておく(すなわち、固定
板10を下沓3の凹部14に嵌合させたままにしてお
く)。つぎに、上記上沓固定部20にコンクリート材料
を打設して橋桁に上沓固定部20を一体に作製するとと
もに、この上沓固定部20に、上沓2をそのボルト6を
上沓固定部20のコンクリート部中に埋設させて固定す
る。このようにして橋桁を橋脚に順次取付けることによ
り、橋梁を完成させることができる。このようにして作
製された橋梁では、この施工後半年から1,2年程経過
する間に、橋桁がそのコンクリート材料等の乾燥収縮に
より右側方向(図9の矢印方向)に向かって移動し、こ
の移動に伴ってゴム支承体4が図示の垂直状態から傾斜
状態に移行する(図10参照)。この移行後に、図11
に示すように、ゴム支承体4との間に所定空間をあけた
状態で帯状の断熱材17を環状にして配置し、これによ
り断熱材17でゴム支承体4を取り囲む。そののち、上
記空間にブロア等の温度調節器付き熱風発生機18から
熱風を送り込み、ゴム支承体4を加熱する。この加熱の
際の加熱条件は、50〜90℃で24〜400時間加熱
し、好適には、60〜80℃で48〜200時間加熱す
ることである。この実施の形態では、70℃で96時間
程度加熱している。このような加熱により、ゴム支承体
4のゴムが強制的にクリープさせされて、ゴム内部に生
じた内部応力が除去され、橋脚への反力を軽減できる。
When a bridge is produced using such a supporter device 1, for example, the fixing plate 10 of the upper shoe 2 is fitted into the recess 14 of the lower shoe 3 in advance so that the upper shoe 2 is lowered. Place it on the top and temporarily fix it with a temporary fixing tool such as a string or wire in that state,
Bring it to the work site. After this loading, the lower shoe 3 fixed temporarily by the above-mentioned temporary fixture is temporarily installed by a temporary means such as a plate material in the lower shoe fixing portion 21 formed by being surrounded by a frame material or the like on the upper portion of the pier formed in advance. (See Figure 9). Then, a concrete material is poured into the lower shoe fixing portion 21 to produce the lower shoe fixing portion 21. At this time, at the same time, the lower shoe fixing portion 21
The lower shoe 3 is fixed by embedding the bolt 13 in the concrete portion of the lower shoe fixing portion 21 on the upper surface of the. Next, the upper shoe 2 is temporarily provided with a plate material or the like in a state of facing the lower shoe 3 to the upper shoe fixing portion 20 formed by being surrounded by the frame material or the like on the lower surface of the bridge girder formed in advance. Prior to this, the temporary fixing of the temporary fixing device is released, but the mutual positional relationship between the lower shoe 3 and the upper shoe 2 is maintained as it is (that is, the fixing plate 10 is fixed to the lower shoe 3). It remains fitted in the recess 14). Next, a concrete material is cast into the upper shoe fixing portion 20 to integrally produce the upper shoe fixing portion 20 on the bridge girder, and the upper shoe 2 and the bolt 6 of the upper shoe fixing portion 20 are fixed to the upper shoe fixing portion 20. It is embedded and fixed in the concrete part of the part 20. In this way, the bridge can be completed by sequentially attaching the bridge girders to the piers. In the bridge manufactured in this way, the bridge girder moves toward the right side (the direction of the arrow in FIG. 9) due to the drying shrinkage of the concrete material, etc., during a period of 1 or 2 years from the latter half of this construction. Along with this movement, the rubber support 4 shifts from the illustrated vertical state to the inclined state (see FIG. 10). After this transition,
As shown in FIG. 2, the belt-shaped heat insulating material 17 is arranged in an annular shape with a predetermined space left between the rubber bearing 4 and the rubber bearing 4, so that the heat insulating material 17 surrounds the rubber bearing 4. After that, hot air is blown into the space from a hot air generator 18 with a temperature controller such as a blower to heat the rubber support 4. The heating conditions for this heating are heating at 50 to 90 ° C. for 24 to 400 hours, and preferably at 60 to 80 ° C. for 48 to 200 hours. In this embodiment, heating is performed at 70 ° C. for about 96 hours. By such heating, the rubber of the rubber support 4 is forced to creep, the internal stress generated inside the rubber is removed, and the reaction force to the pier can be reduced.

【0014】このように上記支承体装置1は、ゴム支承
体4を構成するゴム板4a自体のクリープ(永久歪み)
を積極的に利用しており、このゴム板4aのゴム材料と
して高減衰性の材料(この高減衰性の材料は、一般的に
クリープが大きい)を選択使用している。このようなゴ
ム支承体4を、橋桁のコンクリート材料の乾燥収縮後に
加熱することにより、このゴム支承体4に生じた内部応
力を充分に除去することができる。この場合に、上記加
熱時の加熱条件等の設定および作業内容が簡単であり、
狭い場所でも簡単に行える。しかも、このものでは、ゴ
ム支承体4に作用する剪断変形が徐々に発生するため、
この期間にゴム支承体4に亀裂等が生じることがなく、
また、加熱作業時にもゴム支承体4に亀裂が生じること
がない。
As described above, in the bearing device 1, the creep (permanent distortion) of the rubber plate 4a itself constituting the rubber bearing 4 is carried out.
Is used positively, and a highly damping material (this highly damping material generally has large creep) is selectively used as the rubber material of the rubber plate 4a. By heating such a rubber bearing 4 after drying and shrinking the concrete material of the bridge girder, internal stress generated in the rubber bearing 4 can be sufficiently removed. In this case, it is easy to set the heating conditions and the work details for the above heating,
It can be done easily even in a narrow space. Moreover, in this case, since the shear deformation acting on the rubber bearing 4 gradually occurs,
During this period, the rubber bearing 4 is not cracked,
Further, the rubber bearing 4 is not cracked during the heating operation.

【0015】図12は本発明の変形例を示している。こ
の例では、ゴム支承体4を加熱する方法として、電気毛
布19をゴム支承体4の外周に巻回し加熱することが行
われる。この場合の加熱条件も、上記熱風による加熱条
件と同じである。
FIG. 12 shows a modification of the present invention. In this example, as a method of heating the rubber bearing 4, the electric blanket 19 is wound around the outer circumference of the rubber bearing 4 and heated. The heating conditions in this case are the same as the heating conditions with the hot air.

【0016】図13はゴム支承体4の変形例を示してい
る。この例では、上記ゴム支承体4は、図14に示すよ
うに、略直方体形状のものを垂直方向に対して傾斜させ
て形成されており(この傾斜方向は、上記橋桁がこれを
構成するコンクリート材料の乾燥収縮により収縮する方
向〔図示の矢印方向〕とは逆の方向であり、傾斜角度は
予め計算により算出された角度に設定されている)、こ
のゴム支承体4の上面に接着等により長方形板状の鉄製
の上側固定プレート8が固定されているとともに、下面
に接着等により長方形板状の鉄製の下側固定プレート9
が固定されている。上記ゴム支承体4は、上記橋桁の収
縮方向(すなわち橋桁の長手方向、図中矢印で示す)に
直交する側面4c(図面では、左右の側面になる)を図
示のように傾斜形成することによって上面が下面に対し
て上記収縮方向とは逆の方向(図中矢印とは逆の方向)
にずれた状態で形成された6枚の長方形平板状の天然ゴ
ム製(またはクロロプレンゴム製等の剪断応力を大きく
緩和しうる弾性材料製)ゴム板4aと、5枚の長方形平
板状のステンレス製平板4b(左右および前後の4側面
が垂直面に形成されている)とを交互に積層接着して構
成されている。このものでは、橋桁の乾燥収縮後に、上
記橋桁の収縮方向に直交する側面4cが垂直面となるよ
うにしている。このものでは、橋桁の乾燥収縮後は、実
質的にゴム部の受圧面積が増加する(図13のLと図7
のL′とでは、L′の方がLよりも長く、これにより乾
燥収縮後に上記有効受圧面積が増加していることがわか
る)ことになり、実使用時の荷重等による圧縮応力が低
下する。
FIG. 13 shows a modified example of the rubber bearing 4. In this example, as shown in FIG. 14, the rubber bearing 4 is formed by inclining a substantially rectangular parallelepiped shape with respect to the vertical direction (in the direction of inclination, the bridge girder constitutes the concrete). The direction in which the material shrinks due to the drying shrinkage [the direction of the arrow in the figure] is the opposite direction, and the inclination angle is set to the angle calculated in advance), and is attached to the upper surface of this rubber bearing 4 by adhesion or the like. A rectangular plate-shaped iron upper fixing plate 8 is fixed, and a rectangular plate-shaped iron lower fixing plate 9 is adhered to the lower surface.
Has been fixed. The rubber bearing 4 is formed by forming side surfaces 4c (left and right side surfaces in the drawing) orthogonal to the contraction direction of the bridge girder (that is, the longitudinal direction of the bridge girder, indicated by an arrow in the drawing) as shown in the drawing. The upper surface is opposite to the lower surface in the direction opposite to the above contraction direction (direction opposite to the arrow in the figure)
6 rectangular flat plate made of natural rubber (or made of elastic material such as chloroprene rubber that can greatly relieve shear stress) rubber plate 4a and 5 rectangular flat plate made of stainless steel It is configured by alternately laminating and adhering flat plates 4b (the left and right and front and rear four side surfaces are formed as vertical surfaces). In this structure, after the bridge girder is dried and contracted, the side surface 4c orthogonal to the contraction direction of the bridge girder becomes a vertical surface. In this case, after the bridge girder is dried and contracted, the pressure receiving area of the rubber portion is substantially increased (L in FIG. 13 and FIG.
L'is longer than L, which means that the effective pressure receiving area increases after drying and shrinking), and the compressive stress due to the load during actual use decreases. .

【0017】図15は本発明の他の実施の形態を示して
いる。この形態では、ゴム支承体4の下側固定プレート
9に固定板10を取付ける代わりに、下沓3の上面に形
成される凹部14を、上記下側固定プレート9を嵌合し
うる大きさに形成し、上記下側固定プレート9を凹部1
4に嵌合させることでゴム支承体4を下沓3に固定する
ようにしている。これ以外の部分は上記実施の形態と同
様であり、同様の部分には同じ符号を付している。この
ものでは、上記実施の形態より、さらに簡単構造にな
る。
FIG. 15 shows another embodiment of the present invention. In this embodiment, instead of attaching the fixing plate 10 to the lower fixing plate 9 of the rubber bearing 4, the recess 14 formed on the upper surface of the lower shoe 3 is made large enough to fit the lower fixing plate 9. The lower fixing plate 9 is formed in the recess 1
The rubber bearing 4 is fixed to the lower shoe 3 by fitting the rubber bearing 4 to the lower shoe 3. The other parts are the same as those in the above embodiment, and the same parts are denoted by the same reference numerals. This structure has a simpler structure than the above embodiment.

【0018】なお、上記各実施の形態では、上沓2にゴ
ム支承体4を固定し、下沓3に凹部14を形成している
が、これに限定するものではなく、上沓2に凹部14を
形成し、下沓3にゴム支承体4を固定するようにしても
よい。
In each of the above-mentioned embodiments, the rubber bearing 4 is fixed to the upper shoe 2 and the recess 14 is formed in the lower shoe 3. However, the present invention is not limited to this, and the recess is provided in the upper shoe 2. 14 may be formed, and the rubber bearing 4 may be fixed to the lower shoe 3.

【0019】また、上記各実施の形態では、ゴム支承体
4を構成する6層のゴム板4aをそれぞれ同じ材料で構
成しているが、これに限定するものではなく、別々の材
料で構成するようにしてもよい。この場合には、各ゴム
板4aのゴム材料として、剪断方向のばね定数が同じも
のを使用し、各ゴム板4aの歪みを一定にすることが好
ましい。また、上記ゴム支承体4の構成材料としては、
天然ゴム(NR),合成ゴム(SBR,BR,IR,C
R,IIR,NBR,EPDM等)並びにウレタン樹脂
等の弾性合成樹脂が含まれる。また、上記ゴム支承体4
を1種類のゴム単体で構成してもよい。
Further, in each of the above-mentioned embodiments, the six layers of rubber plates 4a constituting the rubber support 4 are made of the same material, but the present invention is not limited to this, and they are made of different materials. You may do it. In this case, it is preferable that the rubber material of each rubber plate 4a has the same spring constant in the shearing direction and that the strain of each rubber plate 4a is constant. Further, as the constituent material of the rubber bearing 4,
Natural rubber (NR), synthetic rubber (SBR, BR, IR, C
R, IIR, NBR, EPDM, etc.) and elastic synthetic resins such as urethane resins. Also, the above-mentioned rubber bearing 4
May be composed of one type of rubber alone.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる支承体装置の一実施の形態の説
明図である。
FIG. 1 is an explanatory diagram of an embodiment of a bearing device used in the present invention.

【図2】ゴム支承体を取付けた上沓を下から見た図であ
る。
FIG. 2 is a view of an upper shoe with a rubber bearing as viewed from below.

【図3】上記上沓の側面図である。FIG. 3 is a side view of the upper shoe.

【図4】上記ゴム支承体の側面図である。FIG. 4 is a side view of the rubber bearing.

【図5】上記ゴム支承体の本体の構造説明図である。FIG. 5 is a structural explanatory view of the main body of the rubber bearing.

【図6】下沓の平面図である。FIG. 6 is a plan view of a lower shoe.

【図7】上記支承体装置の作用を示す要部断面図であ
る。
FIG. 7 is a cross-sectional view of the main parts showing the operation of the above-mentioned support device.

【図8】上記支承体装置の作用を示す要部断面図であ
る。
FIG. 8 is a cross-sectional view of an essential part showing the operation of the bearing device.

【図9】上記支承体装置を用いた橋梁の要部の説明図で
ある。
FIG. 9 is an explanatory diagram of a main part of a bridge using the support device.

【図10】上記支承体装置を用いた橋梁の要部の説明図
である。
FIG. 10 is an explanatory diagram of a main part of a bridge using the support device.

【図11】上記ゴム支承体の加熱手段の説明図である。FIG. 11 is an explanatory diagram of a heating means of the rubber bearing.

【図12】上記加熱手段の変形例を示す説明図である。FIG. 12 is an explanatory diagram showing a modified example of the heating means.

【図13】上記ゴム支承体の変形例を示す側面図であ
る。
FIG. 13 is a side view showing a modified example of the rubber bearing.

【図14】上記変形例のゴム支承体の本体を示す断面図
である。
FIG. 14 is a cross-sectional view showing a main body of a rubber bearing of the modified example.

【図15】本発明の他の実施の形態を示す説明図であ
る。
FIG. 15 is an explanatory diagram showing another embodiment of the present invention.

【図16】従来例の説明図である。FIG. 16 is an explanatory diagram of a conventional example.

【図17】上記従来例の作用を示す図である。FIG. 17 is a diagram showing an operation of the conventional example.

【図18】他の従来例の説明図である。FIG. 18 is an explanatory diagram of another conventional example.

【図19】上記他の従来例の施工方法を示す説明図であ
る。
FIG. 19 is an explanatory diagram showing a construction method of another conventional example.

【符号の説明】[Explanation of symbols]

1 支承体装置 2 上沓 3 下沓 4 ゴム支承体 17 断熱材 18 熱風発生機 19 電気毛布 21 下沓固定部 DESCRIPTION OF SYMBOLS 1 support device 2 upper shoe 3 lower shoe 4 rubber bearing 17 heat insulating material 18 hot air generator 19 electric blanket 21 lower shoe fixing part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊岡 禎二 東京都新宿区荒木町13番地の4 住友建設 株式会社内 (72)発明者 熊谷 紳一郎 東京都新宿区荒木町13番地の4 住友建設 株式会社内 (72)発明者 佐々木 和道 東京都新宿区荒木町13番地の4 住友建設 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sadaji Kumaoka 4 13 Arakicho Shinjuku-ku, Tokyo Sumitomo Construction Co., Ltd. (72) Inventor Shinichiro Kumagai 13 13 Arakicho Shinjuku-ku Tokyo Sumitomo Construction Co., Ltd. (72) Inventor Kazumichi Sasaki 4 13-Araki-cho, Shinjuku-ku, Tokyo Sumitomo Construction Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 橋脚の上部にゴム支承体を固定する工程
と、上記ゴム支承体上に橋桁を載置して固定する工程
と、所定期間経過後に上記ゴム支承体を加熱してその内
部応力を除去する工程とを備えたことを特徴とする橋梁
の施工方法。
1. A step of fixing a rubber bearing to an upper part of a bridge pier, a step of placing and fixing a bridge girder on the rubber bearing, and heating the rubber bearing after a predetermined period of time to internal stress thereof. And a bridge removing method.
【請求項2】 ゴム支承体の橋桁の長手方向の側面が垂
直方向に対して所定角度に傾斜して形成され、その状態
で初期の取付け状態とされ、橋桁の乾燥収縮後に上記側
面が略垂直面となる請求項1記載の橋梁の施工方法。
2. The side surface of the rubber girder in the longitudinal direction of the bridge girder is formed so as to be inclined at a predetermined angle with respect to the vertical direction, and in that state, the initial mounting state is achieved, and the side surface is substantially vertical after the bridge is dried and contracted. The method for constructing a bridge according to claim 1, which is a surface.
【請求項3】 請求項1または請求項2に記載された橋
梁の施工方法に用いるゴム支承体であって、ゴム本体内
部に少なくとも一層の中間プレートが埋設されているこ
とを特徴とするゴム支承体。
3. A rubber bearing used in the bridge construction method according to claim 1 or 2, wherein at least one intermediate plate is embedded inside the rubber body. body.
JP26153995A 1995-10-09 1995-10-09 Construction method of bridge and rubber bearing body used in this method Pending JPH09100510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26153995A JPH09100510A (en) 1995-10-09 1995-10-09 Construction method of bridge and rubber bearing body used in this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26153995A JPH09100510A (en) 1995-10-09 1995-10-09 Construction method of bridge and rubber bearing body used in this method

Publications (1)

Publication Number Publication Date
JPH09100510A true JPH09100510A (en) 1997-04-15

Family

ID=17363309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26153995A Pending JPH09100510A (en) 1995-10-09 1995-10-09 Construction method of bridge and rubber bearing body used in this method

Country Status (1)

Country Link
JP (1) JPH09100510A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100513852B1 (en) * 2002-08-07 2005-09-09 (주)엠피기술산업 A bearing apparatus for structure
CN103161123A (en) * 2013-03-11 2013-06-19 浙江海天建设集团有限公司 Installation structures of piled layer rubber support and flat plate sliding support
CN106149549A (en) * 2016-08-16 2016-11-23 苏州海德新材料科技股份有限公司 A kind of insulated leg
CN114930625A (en) * 2020-03-31 2022-08-19 三洋电机株式会社 Battery pack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100513852B1 (en) * 2002-08-07 2005-09-09 (주)엠피기술산업 A bearing apparatus for structure
CN103161123A (en) * 2013-03-11 2013-06-19 浙江海天建设集团有限公司 Installation structures of piled layer rubber support and flat plate sliding support
CN106149549A (en) * 2016-08-16 2016-11-23 苏州海德新材料科技股份有限公司 A kind of insulated leg
CN114930625A (en) * 2020-03-31 2022-08-19 三洋电机株式会社 Battery pack

Similar Documents

Publication Publication Date Title
US6775952B2 (en) System of protecting the edges of cast-in-place concrete slab on ground, construction joints
US4324037A (en) Structural units and arrays therefrom
JPH09100510A (en) Construction method of bridge and rubber bearing body used in this method
CN111206687B (en) Large-span assembled opening type building bottom plate I-beam mounting support
JP3014088B2 (en) Bearing member and structure for steel bridge precast concrete floor slab
JPH09100511A (en) Rubber bearing body and bearing structure of bridge using this bearing body
US4846401A (en) Tie-down system for railroad grade crossing
US4357784A (en) Structural units and arrays therefrom
JP4036752B2 (en) Double prestressed composite roof ceiling structure with flat bottom plate structure
JPH0347304A (en) Expasible joint device for bridge
JPH01299963A (en) Method of re-clamping or repairing and reinforcing or load-reducing deformed existing structure
JP3888259B2 (en) Functionally separated bridge support structure and rubber buffer for bridge
JPH11117227A (en) Fitting method of slide-type bridge girder supporting body and device thereof
JP2929922B2 (en) Correction method of shear deformation of base-isolated bearing
JP2751827B2 (en) Joining method between steel columns and reinforced concrete foundation beams
JPH11270183A (en) Integrated type base isolation construction with slip friction
JPH0323003Y2 (en)
JP7049961B2 (en) How to add equipment mount
JPH08246417A (en) Bearing structure of bridge and bearing body device used for bearing structure of bridge and execution method thereof
JP3602994B2 (en) Bridge expansion and contraction device and bridge connection
JP6839493B2 (en) How to install a viscoelastic damper
JP3907281B2 (en) Temporary fixing block of rubber-like elastic bearing body and method of attaching and removing the temporary fixing block
JP2003049487A (en) Connection structure between steel member and concrete member
JP3238673B2 (en) Installation method of pre-shear type elastic bearing device
JPH07189215A (en) Correcting structure against shearing deformation of vibratory isolation support