JPH0899016A - Method for denitrification of exhaust gas - Google Patents

Method for denitrification of exhaust gas

Info

Publication number
JPH0899016A
JPH0899016A JP7232411A JP23241195A JPH0899016A JP H0899016 A JPH0899016 A JP H0899016A JP 7232411 A JP7232411 A JP 7232411A JP 23241195 A JP23241195 A JP 23241195A JP H0899016 A JPH0899016 A JP H0899016A
Authority
JP
Japan
Prior art keywords
nox
gas
exhaust gas
reactor
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7232411A
Other languages
Japanese (ja)
Inventor
Takafuru Kobayashi
敬古 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7232411A priority Critical patent/JPH0899016A/en
Publication of JPH0899016A publication Critical patent/JPH0899016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE: To decrease NOx in an exhaust gas and to solve thereby a problem of unreacted ammonia by mixing NH3 in the exhaust gas contg. NOx and irradiating this mixed gas with an ultraviolet ray with a specified wavelength. CONSTITUTION: Test gases such as NO, N2 , CO2 , O2 and NH3 controlled into an arbitrary flow rate by means of a gas flow rate controller 4 are mixed uniformly by means of a gas mixer 5 and are introduced into a reactor 2 with irradiation windows 3 made of a synthetic quartz on its both ends. H2 O in the test gases is fed by means of a humidifier 6. The test gases coming out of the reactor 2 pass through a filter for collecting reaction products and are guided into an NH3 analyzer 9 equipped with a recorder 10 and are then exhausted into the atmosphere. The gas mixer 5 and the reactor 2 are stored in a thermostat bath which kept at 350 deg.C by imaging the outlet of a denitrification apparatus. As the light source of ultraviolet rays, an excimer laser 1 is used and the ultraviolet rays with wavelength of 170-230nm are used for irradiation. As the result, NH3 is decomposed into (NH2 +H), which is reacted with NOx to decrease NOx.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアンモニアを還元剤
とする排ガスの脱硝方法に関する。
TECHNICAL FIELD The present invention relates to a method for denitration of exhaust gas using ammonia as a reducing agent.

【0002】[0002]

【従来の技術】最近,環境規制上各種の燃焼装置より排
出される排ガス中の窒素酸化物をアンモニアの存在下で
接触還元除去する乾式排煙脱硝装置は,湿式脱硝装置に
比べて多くの利点を有するので近時多く使用されるよう
になった。
2. Description of the Related Art Recently, a dry flue gas denitration device that catalytically reduces nitrogen oxides in exhaust gas discharged from various combustion devices in the presence of ammonia in view of environmental regulations has many advantages over a wet denitration device. Since it has, it has come to be used frequently in recent years.

【0003】中でもハニカム状,格子状,板状構造体よ
りなる窒素酸化物除去用触媒を用いた脱硝装置は,構造
が簡単で圧力損失が少なく,かつ排ガス中に含まれるダ
ストによる触媒の目詰りが少ない等の優れた利点を数多
く有するため,最も多く実用化されている。
Above all, a denitration apparatus using a catalyst for removing nitrogen oxides having a honeycomb-shaped, lattice-shaped or plate-shaped structure has a simple structure and a small pressure loss, and the catalyst is clogged by dust contained in exhaust gas. It is most practically used because it has many excellent advantages such as low number.

【0004】しかしながら,上記方法は触媒の存在下で
NOxとアンモニアを反応させ,NOxを除去する際ア
ンモニアとNOxが完全に反応することは非常に難し
い。又脱硝に用いられる触媒は,一般に使用しているう
ちに性能が低下して行くが,性能が低下すると脱硝装置
出口の未反応アンモニア濃度が増加することになる。又
重油焚及び石炭焚の排ガスのようにSOx,特にSO3
が存在する場合,未反応アンモニアと反応し酸性硫安と
なり,空気予熱器等の熱交換器の閉塞等の問題が生じる
為,未反応アンモニア濃度が一定以上(5mmp〜10
ppm)になった時触媒の寿命とされている。
However, in the above method, it is very difficult for NOx and ammonia to react in the presence of a catalyst, and for NOx to be completely reacted with ammonia and NOx. Moreover, the performance of the catalyst used for denitration generally deteriorates during use, but if the performance deteriorates, the unreacted ammonia concentration at the outlet of the denitration device increases. Also, like exhaust gas from heavy oil burning and coal burning, SOx, especially SO 3
When present, the unreacted ammonia concentration reacts with unreacted ammonia to form ammonium ammonium sulfate, which causes problems such as clogging of a heat exchanger such as an air preheater.
It is considered to be the life of the catalyst when it reaches (ppm).

【0005】[0005]

【発明が解決しようとする課題】以上に示す通り,未反
応アンモニアを低減する為には,必要触媒量を増加する
か,追加又は取替えを行う必要が生じ,脱硝触媒の充填
量が増加するとともに,触媒の追加又は取替が頻繁に必
要となり,作業が煩雑になるという問題点があった。
As described above, in order to reduce unreacted ammonia, it is necessary to increase the required amount of catalyst, or to add or replace it, and the filling amount of the NOx removal catalyst increases. However, there is a problem in that the addition or replacement of the catalyst is frequently required and the work becomes complicated.

【0006】本発明はアンモニアを(NH2 +H)に分
解し,(NH2 +H)をNOxと反応させることにより
排ガス中のNOxを低減し,これにより未反応アンモニ
アの問題を解消した排ガス脱硝方法を提供するものであ
る。
The present invention is an exhaust gas denitration method in which NOx in exhaust gas is reduced by decomposing ammonia into (NH 2 + H) and reacting (NH 2 + H) with NOx, thereby eliminating the problem of unreacted ammonia. Is provided.

【0007】[0007]

【課題を解決するための手段】本発明は,NOxを含む
排ガスにNH3 を混合させたのちこの混合ガスに波長1
70nmから230nmの紫外光を照射し,紫外光によ
りNH3 を(NH2 +H)に分解し,(NH2 +H)を
NOxと反応させることを特徴とする。
According to the present invention, an exhaust gas containing NOx is mixed with NH 3, and then the mixed gas is irradiated with a wavelength 1
It is characterized by irradiating UV light of 70 nm to 230 nm, decomposing NH 3 into (NH 2 + H) by the UV light, and reacting (NH 2 + H) with NOx.

【0008】すなわち,本発明はアンモニアを還元剤と
する脱硝装置では注入するアンモニア量(一般にはNH
3 /NOxモル比)を増加させることにより容易に脱硝
効率を一定に保持することは可能である。
That is, in the present invention, the amount of ammonia to be injected (generally NH
It is possible to easily keep the denitration efficiency constant by increasing the 3 / NOx molar ratio).

【0009】しかし第1図に示す通りモル比を上昇させ
る為,未反応アンモニアが増加することになる。未反応
アンモニアは脱硝装置の後流に設置される空気予熱器等
の熱交換器の酸性硫安による閉塞問題及び排出基準によ
り制限されており,これが触媒の寿命を決定している。
又脱硝触媒は一般的に排ガス中に含まれる被毒成分によ
って性能が低下する。この場合も未反応アンモニアが増
加することとなり,この対策として触媒の追加及び取替
が必要となる。
However, since the molar ratio is increased as shown in FIG. 1, unreacted ammonia is increased. The unreacted ammonia is limited by the problem of clogging of heat exchangers such as air preheaters installed downstream of the denitration equipment due to ammonium ammonium sulfate and the emission standard, which determines the life of the catalyst.
In addition, the performance of the denitration catalyst generally deteriorates due to poisoning components contained in the exhaust gas. In this case as well, the amount of unreacted ammonia increases, and as a countermeasure against this, addition and replacement of the catalyst are required.

【0010】以上からアンモニアを分解しNOxと反応
させることにより経済的な排ガスの脱硝装置が設置可能
となる。
From the above, by decomposing ammonia and reacting with NOx, an economical exhaust gas denitration device can be installed.

【0011】アンモニアを分解し,NOxと反応させる
方法として光化学反応を利用し,170nmから230
nmの紫外光にてNH3 を効率よく分解することが可能
である。
As a method of decomposing ammonia and reacting it with NOx, a photochemical reaction is used.
It is possible to decompose NH 3 efficiently with UV light of nm.

【0012】アンモニアは第2図に示す通り170nm
〜230nmの紫外光を吸収し,下記式で示す反応で分
解する。 NH3 +Hν → NH2 +H
Ammonia is 170 nm as shown in FIG.
It absorbs ultraviolet light of ˜230 nm and decomposes by the reaction shown by the following formula. NH 3 + Hν → NH 2 + H

【0013】上記式で分解したアンモニアは,排ガス中
のNOxと反応し最終的には窒素と水に分解される。反
応式は次の通りである。 NO + NH2 → N2 + H2
Ammonia decomposed by the above formula reacts with NOx in the exhaust gas and is finally decomposed into nitrogen and water. The reaction formula is as follows. NO + NH 2 → N 2 + H 2 O

【0014】以上により未反応アンモニアを出さずに脱
硝を行わせることができる。
As described above, denitration can be performed without producing unreacted ammonia.

【0015】[0015]

【発明の実施の形態】第3図は本発明方法を実施するた
めに用いた実験装置の全体構造図を示し,ガス流量調節
器4にて任意な流量に調節されたNO,N2 ,CO2
2 ,NH3などの試験ガスはガス混合器5で均一に混
合され,両端に合成石英材質の照射窓3をもった反応器
2に入る。試験ガス中のH2 Oは加湿器6によって供給
される。反応器2から出た試験ガスは反応生成物の補集
を目的としたフィルター7を通過し,記録計10を装備
したNH3 分析計9へと導かれ大気へ放出される。ガス
混合器5,反応器2などは恒温槽に収納されており,脱
硝装置出口を想定して350℃とした。紫外線の光源と
しては低圧水銀ランプ又はエシキマレーザーが使用でき
るが,本装置ではエキシマ・レーザー1を使用し,19
3nmの紫外光を照射した。又実験に用いた供給ガス組
成は次の通りである。 NO:50ppm NH3 :6.5ppm O2 :5%
CO2 :10% H2 O:10% N2 :残
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 shows the overall structure of an experimental apparatus used for carrying out the method of the present invention, in which NO, N 2 and CO adjusted to arbitrary flow rates by a gas flow rate controller 4. 2 ,
Test gases such as O 2 and NH 3 are uniformly mixed by a gas mixer 5, and enter a reactor 2 having irradiation windows 3 made of synthetic quartz material at both ends. H 2 O in the test gas is supplied by the humidifier 6. The test gas discharged from the reactor 2 passes through a filter 7 for the purpose of collecting reaction products, is guided to an NH 3 analyzer 9 equipped with a recorder 10, and is discharged to the atmosphere. The gas mixer 5, the reactor 2 and the like are housed in a constant temperature bath, and the temperature is set to 350 ° C assuming the outlet of the denitration device. A low-pressure mercury lamp or an excimer laser can be used as a light source of ultraviolet rays, but in this device, an excimer laser 1 is used.
Irradiation with UV light of 3 nm. The feed gas composition used in the experiment is as follows. NO: 50ppm NH 3: 6.5ppm O 2: 5%
CO 2 : 10% H 2 O 10% N 2 : remaining

【0016】紫外光によるNH3 の分析除去を確認する
為に上記供給ガスを反応器2に空間速度3,000h-1
で流通させ,193nmのエキシマ・レーザー光を照射
した。その結果を第4図に示すが,レーザを照射するこ
とにより,完全にNH3 は分解されており,当量のNO
xが除去されていることが分かる。
In order to confirm the analysis and removal of NH 3 by ultraviolet light, the feed gas was fed into the reactor 2 at a space velocity of 3,000 h -1.
And was irradiated with 193 nm excimer laser light. The results are shown in Fig. 4, which shows that NH 3 was completely decomposed by irradiating the laser, and an equivalent amount of NO 3 was generated.
It can be seen that x has been removed.

【0017】[0017]

【発明の効果】以上詳述したように本発明ではNOxを
含む排ガスにNH3 を混合させたのち,この混合ガスに
波長170nm〜230nmの紫外光を照射することに
より,未反応アンモニアの問題を解消した脱硝方法を得
ることが出来る。
As described above in detail, according to the present invention, the exhaust gas containing NOx is mixed with NH 3, and then the mixed gas is irradiated with ultraviolet light having a wavelength of 170 nm to 230 nm, thereby eliminating the problem of unreacted ammonia. A denitration method that has been resolved can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱硝率,未反応アンモニア濃度とアンモニア注
入量との関係を示す線図である。
FIG. 1 is a diagram showing a relationship between a denitration rate, an unreacted ammonia concentration, and an ammonia injection amount.

【図2】NH3 の紫外吸収スペクトルを示す線図であ
る。
FIG. 2 is a diagram showing an ultraviolet absorption spectrum of NH 3 .

【図3】本発明の実験装置を示す断面説明図である。FIG. 3 is a cross-sectional explanatory view showing an experimental device of the present invention.

【図4】193nmの紫外光におけるアンモニアの分解
結果を示す線図である。
FIG. 4 is a diagram showing the result of decomposition of ammonia in ultraviolet light of 193 nm.

【符号の説明】[Explanation of symbols]

1 エキシマ・レーザ発信器 2 反応器 3 石英照射窓 4 ガス流量調節器 5 ガス混合器 6 加湿器 7 フィルター 8 恒温槽 9 NH3 分析計 10 記録計1 Excimer Laser Transmitter 2 Reactor 3 Quartz Irradiation Window 4 Gas Flow Controller 5 Gas Mixer 6 Humidifier 7 Filter 8 Constant Temperature Bath 9 NH 3 Analyzer 10 Recorder

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/34 129 B Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location B01D 53/34 129 B

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 NOxを含む排ガスに,NH3 を混合さ
せてのち、この混合ガスに波長が170〜230nmの
紫外光を照射することを特徴とする排ガスの脱硝方法。
1. A method for denitrifying exhaust gas, which comprises mixing NH 3 with exhaust gas containing NOx and irradiating the mixed gas with ultraviolet light having a wavelength of 170 to 230 nm.
JP7232411A 1995-09-11 1995-09-11 Method for denitrification of exhaust gas Pending JPH0899016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7232411A JPH0899016A (en) 1995-09-11 1995-09-11 Method for denitrification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7232411A JPH0899016A (en) 1995-09-11 1995-09-11 Method for denitrification of exhaust gas

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63227735A Division JP2607639B2 (en) 1988-09-12 1988-09-12 DeNOx method

Publications (1)

Publication Number Publication Date
JPH0899016A true JPH0899016A (en) 1996-04-16

Family

ID=16938836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7232411A Pending JPH0899016A (en) 1995-09-11 1995-09-11 Method for denitrification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH0899016A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125265A (en) * 1977-04-08 1978-11-01 Saburo Yanagisawa Removing method for nitrogen oxides
JPS5515637A (en) * 1978-07-19 1980-02-02 Mitsubishi Electric Corp Cleaning method of mixed air containing exhaust gas of automobile
JPS5750529A (en) * 1980-09-09 1982-03-25 Tsutomu Kagitani Method for purification of gas containing nitrogen oxide
JPS6071028A (en) * 1983-09-27 1985-04-22 コンコ−ド サイエンテイフイツク コ−ポレ−シヨン Removal of so2 and nox in exhaust gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125265A (en) * 1977-04-08 1978-11-01 Saburo Yanagisawa Removing method for nitrogen oxides
JPS5515637A (en) * 1978-07-19 1980-02-02 Mitsubishi Electric Corp Cleaning method of mixed air containing exhaust gas of automobile
JPS5750529A (en) * 1980-09-09 1982-03-25 Tsutomu Kagitani Method for purification of gas containing nitrogen oxide
JPS6071028A (en) * 1983-09-27 1985-04-22 コンコ−ド サイエンテイフイツク コ−ポレ−シヨン Removal of so2 and nox in exhaust gas

Similar Documents

Publication Publication Date Title
US6197268B1 (en) Reduction of toxic substances in waste gas emissions
US4119702A (en) Process for abating concentration of nitrogen oxides in combustion flue gas
EP0802825B1 (en) Regeneration of catalyst/absorber
EP0716873A1 (en) Method and apparatus for treating waste gases by exposure to electron beams
US4416748A (en) Process for reduction of the content of SO2 and/or NOx in flue gas
US4146450A (en) Method for removing nitrogen oxides from nitrogen oxide-containing gases
JP2607639B2 (en) DeNOx method
JPH0899016A (en) Method for denitrification of exhaust gas
KR100550603B1 (en) NOx REMOVAL APPARATUS and METHOD USING DRY SCRUBBER
KR100406510B1 (en) Method and system for removing nitrogen oxide using oxidation catalyst
JPH0714462B2 (en) Decomposition method of nitrous oxide in gas mixture
JPH0815532B2 (en) Exhaust gas treatment method
JPH09108537A (en) Reducing agent for removing nitrogen oxide and removing method for nitrogen oxide
JPH08257363A (en) Exhaust gas treatment method
KR102474635B1 (en) Exhaust gas treatment liquid for simultaneous reduction sulfur oxide and nitrogen oxide in exhaust gas, and exhaust gas treatment method using same
JPH07256052A (en) Simultaneous desulfurization and denitration of exhaust gas
JPH0442054B2 (en)
CA1213851A (en) Process for the reduction of the content of so.sub.2 and/or no.sub.x in flue gas
JPH0651097B2 (en) Method for decomposing and removing nitrous oxide in gas mixture
JPH0751536A (en) Denitration of combustion exhaust gas
JP3795114B2 (en) Waste incinerator exhaust gas treatment method and apparatus
Stevens et al. Process for reduction of the content of SO 2 and/or NO x in flue gas
JPS63267423A (en) Decomposition method for nitrogen oxide in gas mixture containing nitrogen oxide
JP2578131B2 (en) SOx removal method
JPS5855803B2 (en) Denitration method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980113