JPH0897142A - Semiconductor substrate and its manufacture - Google Patents

Semiconductor substrate and its manufacture

Info

Publication number
JPH0897142A
JPH0897142A JP22944494A JP22944494A JPH0897142A JP H0897142 A JPH0897142 A JP H0897142A JP 22944494 A JP22944494 A JP 22944494A JP 22944494 A JP22944494 A JP 22944494A JP H0897142 A JPH0897142 A JP H0897142A
Authority
JP
Japan
Prior art keywords
substrate
sic
intermediate layer
semiconductor substrate
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22944494A
Other languages
Japanese (ja)
Inventor
Satoru Yatagai
悟 谷田貝
Yasuyoshi Tomiyama
能省 富山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Mitsubishi Materials Corp
Original Assignee
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIKYU KANKYO SANGYO GIJUTSU, CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO, Mitsubishi Materials Corp filed Critical CHIKYU KANKYO SANGYO GIJUTSU
Priority to JP22944494A priority Critical patent/JPH0897142A/en
Publication of JPH0897142A publication Critical patent/JPH0897142A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide a semiconductor substrate where an SiC film excellent in crystallinity and surface smoothness is made on an Si substrate. CONSTITUTION: Concerning a semiconductor substrate 10, where an SiC film 12 is made by heteroepitaxially growing an SiC single crystal on an Si substrate 11, a middle layer 13 made of SiC including one or more kinds dopant selected from a group of N, B, and Al is provided between the Si substrate 11 and the SiC film 12, and this middle layer 13 is not less than 20Å and not more than 500Å in thickness, and the concentration of the dopant is in the range not less than 1×10<20> /CM<3> and not ore than 1×10<22> /cm<3> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Si基板上にSiC単
結晶をヘテロエピタキシャル成長させることによりSi
C膜が形成された半導体基板及びその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Si epitaxial growth by growing a SiC single crystal on a Si substrate.
The present invention relates to a semiconductor substrate on which a C film is formed and a manufacturing method thereof.

【0002】[0002]

【従来の技術】SiCからなる半導体は、シリコン(S
i)或いはGaAs等の半導体と比べて禁制帯幅が大き
いことから波長の短い青色、緑色の発光素子への応用が
期待され、また機械的強度が高く耐熱性及び耐放射線性
にも優れることから、高温環境で動作するトランジスタ
や宇宙環境等で動作する耐環境トランジスタへの応用が
期待されている。このSiCには立方晶(以下、3Cと
いう)、六方晶(以下、6H及び4Hという)及び菱面
体晶(以下、15Rという)等の多形が存在する。その
中で3C−SiCは単結晶の育成が現在の技術では不可
能であるため、ヘテロエピタキシャル成長で作製せざる
を得ない。この3C−SiC用の基板材料としては6H
−SiC、Si等が用いられてきたが、6H−SiC基
板は高価でありしかも大口径のものが得られないという
欠点をもつため、Si基板上に3C−SiCを作製する
技術が模索されてきた(例えば、吉田貞史ら「SiC耐
環境光素子の研究」、電総研彙報, p404-p419, Vol.48,
1984)。この従来の技術は縦型気相成膜装置を用い
て、アセチレンガス(C22)をC源とし、シラン(S
iH4)をSi源としてSi基板上にSiC膜を成長さ
せるものである。
2. Description of the Related Art A semiconductor made of SiC is silicon (S
i) or because it has a larger forbidden band width than semiconductors such as GaAs, it is expected to be applied to blue and green light emitting devices with short wavelengths, and also has high mechanical strength and excellent heat resistance and radiation resistance. It is expected to be applied to transistors that operate in high temperature environments and environment-resistant transistors that operate in space environments. This SiC has polymorphs such as cubic crystal (hereinafter referred to as 3C), hexagonal crystal (hereinafter referred to as 6H and 4H), and rhombohedral crystal (hereinafter referred to as 15R). Among them, 3C-SiC cannot be grown by the current technology because it is impossible to grow a single crystal, so that 3C-SiC must be produced by heteroepitaxial growth. As a substrate material for this 3C-SiC, 6H
-SiC, Si, etc. have been used, but since the 6H-SiC substrate has the drawback that it is expensive and a large-diameter one cannot be obtained, a technique for producing 3C-SiC on the Si substrate has been sought. (For example, Sadafumi Yoshida et al. “Study of SiC environment-resistant optical devices”, IEICE Vocabulary Report, p404-p419, Vol.48,
1984). In this conventional technique, a vertical vapor deposition apparatus is used, acetylene gas (C 2 H 2 ) is used as a C source, and silane (S
iH 4 ) is used as a Si source to grow a SiC film on a Si substrate.

【0003】[0003]

【発明が解決しようとする課題】しかし、Siの格子定
数の方が3C−SiCの格子定数より約20%大きいた
めに、上記従来の技術により、Si基板上に直接3C−
SiC単結晶をエピタキシャル成長させると、SiC/
Si界面に原子レベルでの結晶格子のミスマッチが生じ
て、不整合な転位や、積層欠陥等の結晶欠陥が発生す
る。この結晶欠陥に起因して、SiC成長初期において
SiC膜が3次元成長し易く、膜表面の平坦性が著しく
悪化するとともに、形成されたSiC膜の結晶性が劣化
する等の問題を抱えていた。これらの問題は上記半導体
基板から半導体素子を作製する上で大きな障害となって
いた。本発明の目的は、Si基板上に結晶性及び表面平
滑性に優れたSiC膜が形成された半導体基板及びその
製造方法を提供することにある。
However, since the lattice constant of Si is about 20% larger than that of 3C-SiC, the above-mentioned conventional technique allows the 3C-layer to be directly deposited on the Si substrate.
When a SiC single crystal is epitaxially grown, SiC /
A mismatch of crystal lattices at the atomic level occurs at the Si interface, resulting in mismatched dislocations and crystal defects such as stacking faults. Due to this crystal defect, the SiC film is likely to grow three-dimensionally in the initial stage of SiC growth, the flatness of the film surface is significantly deteriorated, and the crystallinity of the formed SiC film is deteriorated. . These problems have been great obstacles in manufacturing a semiconductor device from the semiconductor substrate. An object of the present invention is to provide a semiconductor substrate in which a SiC film having excellent crystallinity and surface smoothness is formed on a Si substrate, and a manufacturing method thereof.

【0004】[0004]

【課題を解決するための手段】図1に示すように、本発
明はSi基板11上にSiC単結晶をヘテロエピタキシ
ャル成長させることによりSiC膜12が形成された半
導体基板10の改良である。その特徴ある構成は、Si
基板11とSiC膜12の間にN,B及びAlからなる
群より選ばれた1種又は2種以上のドーパントを含むS
iCよりなる中間層13が設けられ、この中間層13は
厚さが20オングストローム以上500オングストロー
ム以下であって、上記ドーパントの濃度が1×1020
cm3以上1×1022/cm3以下の範囲にあることにあ
る。ここで、中間層の厚さが20オングストローム未満
及びドーパントの濃度が1×1020/cm3未満では、
形成されたSiC膜の結晶性の劣化がそれぞれ見られ中
間層を設けた効果が乏しい。中間層の厚さが500オン
グストロームを越えると、形成されたSiC膜の表面平
滑性に劣り中間層としての緩衝機能がなくなる。またド
ーパントの濃度が1×1022/cm3を越えると、例え
ばN濃度が多すぎるとSi34相が生じるようになり、
多結晶化が起こり、SiC膜の結晶性の劣化が見られ
る。中間層の好ましい厚さは50オングストローム以上
200オングストローム以下であり、ドーパントの好ま
しい濃度は5×1020/cm3以上1×1021/cm3
下である。中間層上のSiC膜の厚さは用途に応じて1
μm以上5μm程度に形成される。
As shown in FIG. 1, the present invention is an improvement of a semiconductor substrate 10 having a SiC film 12 formed by heteroepitaxially growing a SiC single crystal on a Si substrate 11. Its characteristic structure is Si
S containing one or more dopants selected from the group consisting of N, B and Al between the substrate 11 and the SiC film 12.
An intermediate layer 13 made of iC is provided, and the intermediate layer 13 has a thickness of 20 angstroms or more and 500 angstroms or less, and the dopant concentration is 1 × 10 20 /
It is in the range of not less than cm 3 and not more than 1 × 10 22 / cm 3 . Here, when the thickness of the intermediate layer is less than 20 Å and the concentration of the dopant is less than 1 × 10 20 / cm 3 ,
Deterioration of crystallinity of the formed SiC film was observed, and the effect of providing the intermediate layer was poor. When the thickness of the intermediate layer exceeds 500 angstroms, the surface smoothness of the formed SiC film is poor and the buffer function as the intermediate layer is lost. Further, if the dopant concentration exceeds 1 × 10 22 / cm 3 , for example, if the N concentration is too high, the Si 3 N 4 phase will be generated,
Polycrystallization occurs and the crystallinity of the SiC film is deteriorated. The preferable thickness of the intermediate layer is 50 angstroms or more and 200 angstroms or less, and the preferable concentration of the dopant is 5 × 10 20 / cm 3 or more and 1 × 10 21 / cm 3 or less. The thickness of the SiC film on the intermediate layer is 1 depending on the application.
It is formed to have a thickness of at least 5 μm.

【0005】本発明の半導体基板の製造方法は、図2に
示すようにSiC単結晶の初期成長時に分子線成膜装置
を用いてSi基板11を850℃以上1200℃以下に
加熱しながらメタンガス(CH4)と同時にドーパント
としてN,B及びAlからなる群より選ばれた1種又は
2種以上の分子線をSi基板11に供給することにより
Si基板11を炭化してSi基板11上に中間層13を
形成し、この中間層13の上に上記分子線成膜装置20
又は気相成長装置を用いてSiC単結晶をヘテロエピタ
キシャル成長させることを特徴とする。ここで、中間層
を形成するときの基板温度が1200℃を越えると、そ
れぞれドーパントを高濃度にドープすることが困難とな
る。また基板温度が850℃未満ではSiC膜の結晶性
が劣化する。ドーパントとしてのN源にはアンモニア
(NH3)、B源にはジボラン(B26)、Al源には
金属Al等をそれぞれ用いることができる。また窒化ホ
ウ素(BN)をN源とB源の共通のドーパント材料とし
てもよい。
In the method of manufacturing a semiconductor substrate of the present invention, as shown in FIG. 2, a methane gas (while heating the Si substrate 11 to 850 ° C. or more and 1200 ° C. or less) using a molecular beam deposition apparatus at the initial growth of a SiC single crystal. CH 4 ) and at the same time one or more molecular beams selected from the group consisting of N, B and Al as a dopant are supplied to the Si substrate 11 to carbonize the Si substrate 11 and form an intermediate layer on the Si substrate 11. A layer 13 is formed, and the molecular beam deposition apparatus 20 is formed on the intermediate layer 13.
Alternatively, it is characterized in that a SiC single crystal is heteroepitaxially grown using a vapor phase growth apparatus. Here, if the substrate temperature at the time of forming the intermediate layer exceeds 1200 ° C., it becomes difficult to dope each of the dopants at a high concentration. When the substrate temperature is lower than 850 ° C, the crystallinity of the SiC film deteriorates. Ammonia (NH 3 ) can be used as the N source as the dopant, diborane (B 2 H 6 ) can be used as the B source, and metallic Al or the like can be used as the Al source. Further, boron nitride (BN) may be used as a common dopant material for the N source and the B source.

【0006】中間層上のSiC層は、分子線成膜装置又
は気相成膜装置により形成する。分子線成膜装置によれ
ば、中間層もSiC層も同一装置で成膜できるため、基
板の搬出入の作業を省略でき、効率的である。気相成膜
装置により形成する場合、成膜速度に優れ、量産性が高
いという利点がある。これらの成膜装置では、Si源に
Si粉、シリコンウェーハ、SiH4等が用いられ、C
源にCH4、C22、C38等が用いられる。
The SiC layer on the intermediate layer is formed by a molecular beam film forming apparatus or a vapor phase film forming apparatus. According to the molecular beam deposition apparatus, since the intermediate layer and the SiC layer can be deposited by the same apparatus, the work of loading and unloading the substrate can be omitted, which is efficient. When formed by a vapor phase film forming apparatus, there are advantages that the film forming rate is excellent and mass productivity is high. In these film forming apparatuses, Si powder, silicon wafer, SiH 4, etc. are used as the Si source, and C
CH 4 , C 2 H 2 , C 3 H 8 or the like is used as the source.

【0007】[0007]

【作用】Si基板に直接SiC膜を形成したときにそれ
ぞれの格子定数の差からSiC/Si界面に原子レベル
での結晶格子のミスマッチが生じて、不整合な転位や、
積層欠陥等の結晶欠陥が発生していたものが、本発明で
はSi基板11とSiC膜12の間にN,B,Al等の
ドーパントを1×1020/cm3以上1×1022/cm3
以下の濃度で含むSiCの中間層を設けることにより、
上記ドーパント原子が転位の生成や、この転位がSiC
膜に伝播するのを阻害し、その後に成長する単結晶の結
晶性を良好にする。またC源としてCH4を用いると、
従来のC22、C38等を用いたときと異なり、ドーパ
ントを高濃度にドープできる。またC22をC源に用い
ると、SiC結晶が三次元的に成長し易く、形成された
SiC膜の表面平滑性が劣るものが、C源としてCH4
を用いると、SiC結晶が二次元的に成長し、SiC膜
の表面平滑性が向上する。この理由は現段階では未だ十
分に解明していないが、C源としてC22を用いると、
Si基板表面の格子端の2つのSi原子にC22が結合
するのに対して、C源としてCH4を用いると、Si基
板表面の格子端のSi原子毎にCH4がCH3基の形態で
格子端に結合するためと推定される。
When the SiC film is directly formed on the Si substrate, a crystal lattice mismatch at the atomic level occurs at the SiC / Si interface due to the difference in the respective lattice constants.
Although crystal defects such as stacking faults have occurred, in the present invention, a dopant such as N, B, or Al is added between the Si substrate 11 and the SiC film 12 at 1 × 10 20 / cm 3 or more and 1 × 10 22 / cm. 3
By providing an intermediate layer of SiC containing at the following concentrations,
The above-mentioned dopant atoms generate dislocations, and these dislocations are SiC.
It inhibits the propagation to the film and improves the crystallinity of the single crystal grown thereafter. If CH 4 is used as the C source,
Unlike the case of using conventional C 2 H 2 , C 3 H 8, etc., the dopant can be doped at a high concentration. Also the use of C 2 H 2 to C source, easily SiC crystals grow in three dimensions, those surface smoothness of the formed SiC film is poor, CH 4 as C source
When used, the SiC crystal grows two-dimensionally and the surface smoothness of the SiC film is improved. The reason for this is not yet fully understood at this stage, but when C 2 H 2 is used as the C source,
While C 2 H 2 is bonded to two Si atoms on the lattice edge of the Si substrate surface, when CH 4 is used as the C source, CH 4 is a CH 3 group for each Si atom on the lattice edge of the Si substrate surface. It is presumed that it is due to coupling to the lattice edge in the form of.

【0008】[0008]

【実施例】次に、本発明の実施例を図面に基づいて詳し
く説明する。 <実施例1>図2に示す分子線成膜装置20により、図
1に示すようにSi基板11上に中間層13及びSiC
膜12をそれぞれ形成した。先ず直径2インチで厚さ5
00μmのSi基板を装置20の基板ホルダ21に装着
し、分子線源セル22にC源としてCH4を供給し、分
子線源セル23にN源としてNH3を供給し、分子線源
セル24にSi源としてSi粉を供給した。真空容器2
5を超高真空にして、Si基板11を980℃まで加熱
した。その後同じ基板温度で、セルシャッタ22aを開
いて分子線源セル22からクラッキング温度1100
℃、分子線強度5.0×10-5Torrで、CH4の分
子線22bをSi基板11に照射し、同時にセルシャッ
タ23aを開いて分子線源セル23からクラッキング温
度800℃、分子線強度5.0×10-7Torrで、N
3の分子線をSi基板11に照射した。CH4とNH3
の照射時間は30分間であった。これにより厚さ200
オングストロームのSiCの中間層13がSi基板11
上に形成された(図1)。次いで、Si基板11の温度
を950℃にして、セルシャッタ22aを開いたまま、
セルシャッタ23aを閉じ、代わりに閉じていた分子線
源セル24のセルシャッタ24aを開いた。これにより
CH4の分子線22bとSiの分子線24bが同時に中
間層13の上に照射され、厚さ1μmのSiC膜12が
形成された半導体基板10を得た(図1)。照射時間は
4時間であった。分子線源セル22及び24の加熱温度
はそれぞれ1100℃及び1600℃、分子線強度はそ
れぞれ1×10-5Torr及び1×10-7Torrであ
った。図2において、26は四重極型質量分析装置、2
7は分子線モニタイオンゲージ、28は基板位置調整回
転マニピュレータ、29は反射型電子線回折装置(以
下、RHEEDという)、30はRHEED蛍光スクリ
ーン、31はゲートバルブ、32は液体窒素シュラウド
である。
Embodiments of the present invention will now be described in detail with reference to the drawings. <Example 1> By the molecular beam film forming apparatus 20 shown in FIG. 2, the intermediate layer 13 and the SiC on the Si substrate 11 as shown in FIG.
Each of the films 12 was formed. First, the diameter is 2 inches and the thickness is 5
A 00 μm Si substrate is mounted on the substrate holder 21 of the apparatus 20, CH 4 is supplied to the molecular beam source cell 22 as the C source, NH 3 is supplied to the molecular beam source cell 23 as the N source, and the molecular beam source cell 24 Si powder was supplied as a Si source. Vacuum container 2
5 was made into an ultrahigh vacuum, and the Si substrate 11 was heated to 980 degreeC. After that, at the same substrate temperature, the cell shutter 22a is opened to remove the cracking temperature 1100 from the molecular beam source cell 22.
The molecular beam 22b of CH 4 is irradiated on the Si substrate 11 at a temperature of 5.0 ° C. and a molecular beam intensity of 5.0 × 10 −5 Torr. 5.0 × 10 -7 Torr, N
The Si substrate 11 was irradiated with a molecular beam of H 3 . CH 4 and NH 3
The irradiation time was 30 minutes. This gives a thickness of 200
Angstrom SiC intermediate layer 13 is Si substrate 11
Formed on top (FIG. 1). Then, the temperature of the Si substrate 11 is set to 950 ° C., and the cell shutter 22a is opened.
The cell shutter 23a was closed and, instead, the cell shutter 24a of the closed molecular beam source cell 24 was opened. As a result, the CH 4 molecular beam 22b and the Si molecular beam 24b were simultaneously irradiated onto the intermediate layer 13 to obtain the semiconductor substrate 10 on which the SiC film 12 having a thickness of 1 μm was formed (FIG. 1). The irradiation time was 4 hours. The heating temperatures of the molecular beam source cells 22 and 24 were 1100 ° C. and 1600 ° C., respectively, and the molecular beam intensities were 1 × 10 −5 Torr and 1 × 10 −7 Torr, respectively. In FIG. 2, 26 is a quadrupole mass spectrometer, 2
Reference numeral 7 is a molecular beam monitor ion gauge, 28 is a substrate position adjusting rotary manipulator, 29 is a reflection electron beam diffractometer (hereinafter referred to as RHEED), 30 is a RHEED fluorescent screen, 31 is a gate valve, and 32 is a liquid nitrogen shroud.

【0009】<実施例2>実施例1と同様に分子線成膜
装置20により、厚さ200オングストロームのSiC
の中間層13をSi基板11上に形成した後、装置20
の真空容器25からSi基板を取出し、これを図示しな
い縦型気相成膜装置に搬入し、SiH4をSi源とし、
22をC源として用い、1470℃で2時間中間層の
上にSiC膜を形成して半導体基板を得た。
<Embodiment 2> As in Embodiment 1, the molecular beam deposition apparatus 20 is used to form SiC having a thickness of 200 angstroms.
After forming the intermediate layer 13 of Si on the Si substrate 11, the device 20
The Si substrate is taken out of the vacuum container 25, and is loaded into a vertical vapor deposition apparatus (not shown), and SiH 4 is used as the Si source.
Using C 2 H 2 as a C source, a SiC film was formed on the intermediate layer at 1470 ° C. for 2 hours to obtain a semiconductor substrate.

【0010】<比較例1>中間層を形成するときに、C
源としてC22を用いた以外は、実施例2と同様にし
て、Si基板上に中間層及びSiC膜を形成した半導体
基板を得た。
<Comparative Example 1> When the intermediate layer is formed, C
A semiconductor substrate in which an intermediate layer and a SiC film were formed on a Si substrate was obtained in the same manner as in Example 2 except that C 2 H 2 was used as the source.

【0011】<比較例2>中間層を形成するときに、ド
ーパントとしてのNH3を用いない以外は、実施例2と
同様にして、Si基板上に中間層及びSiC膜を形成し
た半導体基板を得た。
Comparative Example 2 A semiconductor substrate having an intermediate layer and a SiC film formed on a Si substrate was prepared in the same manner as in Example 2 except that NH 3 was not used as a dopant when forming the intermediate layer. Obtained.

【0012】<評価>実施例2及び比較例1の半導体基
板の表面を微分干渉顕微鏡を用いて観察し、それぞれの
表面平滑性について調べた。実施例2については図3
(a)に、比較例1については図3(b)にそれぞれ示
す。図3(b)に示すように比較例1のSiC膜は突起
である黒い点が密集していることから、表面平滑性に劣
っているのに対して、図3(a)に示すように実施例2
のSiC膜は突起である黒い点の密度が減っており、表
面平滑性に優れていることが判った。また実施例1及び
比較例1について、それぞれ中間層を形成したところで
各表面をRHEEDにより観察した。実施例1について
は図4(a)に、比較例1については図4(b)にそれ
ぞれ示す。図4(b)から明らかなように、比較例1の
回折パターンがスポット状に広い分野にわたって現れた
ことから、SiCの中間層はSiCの島状結晶が成長し
て、その結晶面が平滑でないことが伺えたのに対して、
図4(a)から明らかなように、実施例1の回折パター
ンは筋状(streaky)に狭い分野に現れたことからSi
Cの中間層の結晶面は平滑であることが伺えた。
<Evaluation> The surfaces of the semiconductor substrates of Example 2 and Comparative Example 1 were observed with a differential interference microscope to examine the surface smoothness of each. FIG. 3 for the second embodiment.
3 (a) and FIG. 3 (b) show Comparative Example 1, respectively. As shown in FIG. 3 (b), the SiC film of Comparative Example 1 is inferior in surface smoothness because the black spots, which are projections, are dense, whereas as shown in FIG. 3 (a). Example 2
It was found that the SiC film of No. 2 had a reduced density of black dots as protrusions and was excellent in surface smoothness. In addition, in Example 1 and Comparative Example 1, each surface was observed by RHEED when the intermediate layer was formed. Example 1 is shown in FIG. 4A, and Comparative Example 1 is shown in FIG. 4B. As is apparent from FIG. 4B, since the diffraction pattern of Comparative Example 1 appeared in a spot-like shape over a wide field, SiC intermediate crystals grew in the SiC intermediate layer and the crystal plane was not smooth. I heard that,
As is clear from FIG. 4A, the diffraction pattern of Example 1 appeared in a narrow field in a streaky manner, and thus Si
It was found that the crystal plane of the intermediate layer of C was smooth.

【0013】[0013]

【発明の効果】以上述べたように、従来、Si基板に直
接SiC膜を形成したときにそれぞれの格子定数の差か
らSiC/Si界面に原子レベルでの結晶格子のミスマ
ッチが生じて、不整合な転位や、積層欠陥等の結晶欠陥
が発生していたものが、本発明によれば、Si基板とS
iC膜の間にN,B,Al等のドーパントを所定の濃度
で含むSiCの中間層を設けたので、上記ドーパント原
子が転位の生成や、この転位がSiC膜に伝播するのを
阻害することができ、その後に成長する単結晶の結晶性
を良好にする。また従来のC22、C38等を用いたと
きと異なり、本発明の方法によりC源としてCH4を用
いると、ドーパントを高濃度にドープできるとともに、
SiC結晶が二次元的に成長し、従来の三次元的な成長
が解消され、SiC膜の表面平滑性が向上する。結果と
して、本発明の方法によれば結晶性と表面平滑性に優れ
た高品質なSiC膜をSi基板上に制御よく形成するこ
とができる。
As described above, when a SiC film is directly formed on a Si substrate, a crystal lattice mismatch at the atomic level occurs at the SiC / Si interface due to the difference in the respective lattice constants. According to the present invention, the Si substrate and the S
Since an SiC intermediate layer containing a dopant such as N, B, or Al at a predetermined concentration is provided between the iC films, the dopant atoms inhibit the generation of dislocations and the propagation of these dislocations into the SiC film. Can be obtained, and the crystallinity of the single crystal grown thereafter is improved. Further, unlike the case of using conventional C 2 H 2 , C 3 H 8, etc., when CH 4 is used as the C source by the method of the present invention, the dopant can be doped at a high concentration, and
The SiC crystal grows two-dimensionally, the conventional three-dimensional growth is eliminated, and the surface smoothness of the SiC film is improved. As a result, according to the method of the present invention, a high-quality SiC film having excellent crystallinity and surface smoothness can be formed on a Si substrate with good control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の半導体基板の部分断面図。FIG. 1 is a partial sectional view of a semiconductor substrate according to an embodiment of the present invention.

【図2】本発明実施例の分子線成膜装置の構成図。FIG. 2 is a configuration diagram of a molecular beam deposition apparatus according to an embodiment of the present invention.

【図3】(a)実施例のSiC基板表面の結晶構造を示
す微分干渉顕微鏡写真図。 (b)比較例のSiC基板表面の結晶構造を示す微分干
渉顕微鏡写真図。
FIG. 3 (a) is a differential interference microscope photograph showing the crystal structure of the surface of the SiC substrate of the example. (B) A differential interference microscope photograph showing the crystal structure of the SiC substrate surface of the comparative example.

【図4】(a)実施例のSiC中間層の結晶構造を示す
反射型電子線回折写真図。 (b)比較例のSiC中間層の結晶構造を示す反射型電
子線回折写真図。
FIG. 4 (a) is a reflection electron diffraction photograph showing the crystal structure of the SiC intermediate layer of the example. (B) A reflection electron diffraction photograph showing the crystal structure of the SiC intermediate layer of the comparative example.

【符号の説明】[Explanation of symbols]

10 半導体基板 11 Si基板 12 SiC膜 13 中間層 20 分子線成膜装置 10 semiconductor substrate 11 Si substrate 12 SiC film 13 intermediate layer 20 molecular beam deposition apparatus

【手続補正書】[Procedure amendment]

【提出日】平成6年9月27日[Submission date] September 27, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Si基板(11)上にSiC単結晶をヘテロ
エピタキシャル成長させることによりSiC膜(12)が形
成された半導体基板において、 前記Si基板(11)と前記SiC膜(12)の間にN,B及び
Alからなる群より選ばれた1種又は2種以上のドーパ
ントを含むSiCよりなる中間層(13)が設けられ、 前記中間層(13)は厚さが20オングストローム以上50
0オングストローム以下であって、前記ドーパントの濃
度が1×1020/cm3以上1×1022/cm3以下の範
囲にあることを特徴とする半導体基板。
1. A semiconductor substrate having a SiC film (12) formed by heteroepitaxially growing a SiC single crystal on a Si substrate (11), wherein the SiC film (12) is provided between the Si substrate (11) and the SiC film (12). An intermediate layer (13) made of SiC containing one or more dopants selected from the group consisting of N, B and Al is provided, and the intermediate layer (13) has a thickness of 20 angstroms or more.
A semiconductor substrate having a thickness of 0 Å or less and a concentration of the dopant of 1 × 10 20 / cm 3 or more and 1 × 10 22 / cm 3 or less.
【請求項2】 Si基板(11)上にSiC単結晶をヘテロ
エピタキシャル成長させることによりSiC膜(12)を形
成する半導体基板の製造方法において、 前記SiC単結晶の初期成長時に分子線成膜装置(20)を
用いて前記Si基板(11)を850℃以上1200℃以下
に加熱しながらCH4と同時にドーパントとしてN,B
及びAlからなる群より選ばれた1種又は2種以上の分
子線を前記Si基板(11)に供給することにより前記Si
基板(11)を炭化して前記Si基板(11)上に中間層(13)を
形成し、 前記中間層(13)の上に前記分子線成膜装置(20)を用いて
SiC単結晶をヘテロエピタキシャル成長させることを
特徴とする半導体基板の製造方法。
2. A method of manufacturing a semiconductor substrate, wherein a SiC film (12) is formed by heteroepitaxially growing a SiC single crystal on a Si substrate (11), comprising a molecular beam deposition apparatus (at the time of initial growth of the SiC single crystal). 20) is used to heat the Si substrate (11) to 850 ° C. or higher and 1200 ° C. or lower while simultaneously CH 4 and N and B as dopants.
And Si by supplying one or more kinds of molecular beams selected from the group consisting of Al and Al to the Si substrate (11).
The substrate (11) is carbonized to form an intermediate layer (13) on the Si substrate (11), and a SiC single crystal is formed on the intermediate layer (13) by using the molecular beam deposition apparatus (20). A method for manufacturing a semiconductor substrate, which comprises heteroepitaxial growth.
【請求項3】 CH4をC源とし、Si粉又はSiH4
Si源として中間層(13)の上にSiC単結晶をヘテロエ
ピタキシャル成長させる請求項2記載の半導体基板の製
造方法。
3. The method for producing a semiconductor substrate according to claim 2, wherein a single crystal of SiC is heteroepitaxially grown on the intermediate layer (13) by using CH 4 as a C source and Si powder or SiH 4 as a Si source.
【請求項4】 Si基板(11)上にSiC単結晶をヘテロ
エピタキシャル成長させることによりSiC膜(12)を形
成する半導体基板の製造方法において、 前記SiC単結晶の初期成長時に分子線成膜装置(20)を
用いて前記Si基板(11)を850℃以上1200℃以下
に加熱しながらCH4と同時にドーパントとしてN,B
及びAlからなる群より選ばれた1種又は2種以上の分
子線を前記Si基板(11)に供給することにより前記Si
基板(11)を炭化して前記Si基板(11)上に中間層(13)を
形成し、 前記中間層(13)の上に気相成長装置を用いてSiC単結
晶をヘテロエピタキシャル成長させることを特徴とする
半導体基板の製造方法。
4. A method for manufacturing a semiconductor substrate, wherein a SiC film (12) is formed by heteroepitaxially growing a SiC single crystal on a Si substrate (11), comprising: a molecular beam deposition apparatus (at the time of initial growth of the SiC single crystal; 20) is used to heat the Si substrate (11) to 850 ° C. or higher and 1200 ° C. or lower while simultaneously CH 4 and N and B as dopants.
And Si by supplying one or more kinds of molecular beams selected from the group consisting of Al and Al to the Si substrate (11).
Carbonizing the substrate (11) to form an intermediate layer (13) on the Si substrate (11), and heteroepitaxially growing a SiC single crystal on the intermediate layer (13) using a vapor phase growth apparatus. A method for manufacturing a characteristic semiconductor substrate.
【請求項5】 C22をC源とし、SiH4をSi源と
して中間層(13)の上にSiC単結晶をヘテロエピタキシ
ャル成長させる請求項4記載の半導体基板の製造方法。
5. The method for producing a semiconductor substrate according to claim 4, wherein a SiC single crystal is heteroepitaxially grown on the intermediate layer (13) using C 2 H 2 as a C source and SiH 4 as a Si source.
JP22944494A 1994-09-26 1994-09-26 Semiconductor substrate and its manufacture Withdrawn JPH0897142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22944494A JPH0897142A (en) 1994-09-26 1994-09-26 Semiconductor substrate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22944494A JPH0897142A (en) 1994-09-26 1994-09-26 Semiconductor substrate and its manufacture

Publications (1)

Publication Number Publication Date
JPH0897142A true JPH0897142A (en) 1996-04-12

Family

ID=16892312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22944494A Withdrawn JPH0897142A (en) 1994-09-26 1994-09-26 Semiconductor substrate and its manufacture

Country Status (1)

Country Link
JP (1) JPH0897142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103727009A (en) * 2014-01-22 2014-04-16 上海理工大学 Air dehumidification and compression system
CN108140541A (en) * 2015-09-15 2018-06-08 信越化学工业株式会社 The manufacturing method of SiC composite substrates

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103727009A (en) * 2014-01-22 2014-04-16 上海理工大学 Air dehumidification and compression system
CN108140541A (en) * 2015-09-15 2018-06-08 信越化学工业株式会社 The manufacturing method of SiC composite substrates
CN108140541B (en) * 2015-09-15 2022-11-11 信越化学工业株式会社 Method for producing SiC composite substrate

Similar Documents

Publication Publication Date Title
JP4964672B2 (en) Low resistivity silicon carbide single crystal substrate
KR101372698B1 (en) Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy
US20070138505A1 (en) Low defect group III nitride films useful for electronic and optoelectronic devices and methods for making the same
JP4818754B2 (en) Method for producing silicon carbide single crystal ingot
EP0865088A2 (en) Epitaxial wafer having a gallium nitride epitaxial layer deposited on semiconductor substrate and method for preparing the same
JP7290135B2 (en) Semiconductor substrate manufacturing method and SOI wafer manufacturing method
US11551929B2 (en) Method of growing crystalline layers on amorphous substrates using two-dimensional and atomic layer seeds
JP3750622B2 (en) SiC wafer with epitaxial film, manufacturing method thereof, and SiC electronic device
US20210384336A1 (en) Gan crystal and substrate
JP3776374B2 (en) Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film
US20080206121A1 (en) Solid solution wide bandgap semiconductor materials
JP4301592B2 (en) Manufacturing method of substrate with nitride semiconductor layer
JP4664464B2 (en) Silicon carbide single crystal wafer with small mosaic
JP3353527B2 (en) Manufacturing method of gallium nitride based semiconductor
JP3628079B2 (en) Silicon carbide thin film manufacturing method, silicon carbide thin film, and laminated substrate
US20230203711A1 (en) Gan crystal and gan substrate
JPH0513342A (en) Semiconductur diamond
JP2023096845A (en) Template for producing nitride semiconductor film and method for manufacturing the same
JPH0897142A (en) Semiconductor substrate and its manufacture
KR101041659B1 (en) A Method Of Manfacturing GaN Epitaxial Layer Using ZnO Buffer Layer
US5438951A (en) Method of growing compound semiconductor on silicon wafer
JP7120598B2 (en) Aluminum nitride single crystal film and method for manufacturing semiconductor device
Koukitu et al. Hydride vapor phase epitaxy of GaN
KR20040063171A (en) Group ⅲ nitride semicondoctor substrate and its manufacturing method
Arslan et al. The effect of SixNy interlayer on the quality of GaN epitaxial layers grown on Si (1 1 1) substrates by MOCVD

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115