JPH0897020A - Manufacture of rare earth-iron-nitrogen permanent magnet - Google Patents

Manufacture of rare earth-iron-nitrogen permanent magnet

Info

Publication number
JPH0897020A
JPH0897020A JP6231445A JP23144594A JPH0897020A JP H0897020 A JPH0897020 A JP H0897020A JP 6231445 A JP6231445 A JP 6231445A JP 23144594 A JP23144594 A JP 23144594A JP H0897020 A JPH0897020 A JP H0897020A
Authority
JP
Japan
Prior art keywords
nitrogen
hydrogen
rare earth
iron
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6231445A
Other languages
Japanese (ja)
Inventor
Yoshimasa Shirai
芳昌 白井
Atsushi Satou
佐藤  惇司
庸介 ▲榊▼原
Yasusuke Sakakibara
Hiroshi Ikeda
浩 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP6231445A priority Critical patent/JPH0897020A/en
Publication of JPH0897020A publication Critical patent/JPH0897020A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE: To suppress the deposition of αFe and to enhance magnetic characteristics by limiting the nitriding temperature, gas pressure, hydrogen concentration and grain diameter in the nitrification using the mixed gas of nitrogen and hydrogen. CONSTITUTION: In the manufacture of a rare earth-iron-nitrogen magnet which is obtained by nitridizing the alloy indicated by Ke2 TM17 (Re indicates rate-earth metal mainly composed of Sm, TM indicates one or more kinds of transition metals mainly composed of Fe) by the mixed gas of nitrogen and hydrogen, the grain diameter of Re2 TM17 alloy powder to be nitrided is 75μm or smaller, the mixture ratio of hydrogen against nitrogen of the mixture gas to be used is 5 to 30%, Re2 TM17 alloy powder is heated up to 350 to 430 deg.C in the mixture gas pressure of 20atm or higher and nitrided in the rare earth-iron-nitrogen permanent magnet manufacturing method. As a result, an anisotropic rare-earth magnet, having high magnetic characteristics, can be produced at low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類ボンド磁石の原料
粉となる希土類−鉄−窒素系永久磁石の製造方法であ
り、特に希土類−鉄系の合金を窒化する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth-iron-nitrogen permanent magnet which is a raw material powder for a rare earth bonded magnet, and more particularly to a method for nitriding a rare earth-iron alloy.

【0002】[0002]

【従来の技術】近年、希土類−鉄系永久磁石はその合金
に窒素を含有させる事により優れた磁気特性を生ずる事
が知られている。その窒化方法としては主に特開平2−
57663号公報にみられるようなアンモニアと水素の
混合ガス、特開平4−325652号公報にみられるよ
うな高圧純窒素ガス、特開平5−275219号公報で
の実施例にみられるような窒素と水素の混合ガスなど固
相−気相反応によって行われている。
2. Description of the Related Art Recently, it has been known that rare earth-iron based permanent magnets produce excellent magnetic properties by containing nitrogen in their alloys. The nitriding method is mainly disclosed in JP-A-2-
Mixed gas of ammonia and hydrogen as seen in Japanese Patent No. 57663, high-pressure pure nitrogen gas as seen in Japanese Patent Laid-Open No. 4-325652, and nitrogen as seen in Examples of Japanese Laid-Open Patent Publication No. 5-275219. It is performed by a solid phase-gas phase reaction such as a mixed gas of hydrogen.

【0003】[0003]

【発明が解決しようとする課題】しかるにアンモニアと
水素の混合ガスを用いた場合は、比較的早く窒化出来る
ものの、ガス自体の単価が高く、かつ使用量も多いので
製造にコストがかかり、さらに高濃度の水素を用いるの
で安全性に問題がある。また高圧純窒素ガスを用いた場
合には上記の問題はクリアされるが、反応時間が長いこ
と、粉体表面や電気炉内にある残留酸素または水分によ
る酸化によってαFeが生じやすいなどが問題であっ
た。その他の窒化方法としては窒素と水素の混合ガスが
用いられているが、この方法では反応系を常圧にすると
窒素ガスによる希土類−鉄系合金の分解が起こったり、
水素の還元力が弱いため、合金が酸化されαFeが生じ
たり、また還元力を高めるために水素濃度を高くする
と、窒素が十分に導入されなくなる等、問題点を含んで
いた。
However, when a mixed gas of ammonia and hydrogen is used, nitriding can be performed relatively quickly, but the unit cost of the gas itself is high and the amount of use is large, so the production cost is high and Since hydrogen is used at a concentration, there is a problem in safety. Further, when high-pressure pure nitrogen gas is used, the above problems are cleared, but there are problems such as long reaction time and easy generation of αFe due to oxidation due to residual oxygen or moisture on the powder surface or in the electric furnace. there were. As another nitriding method, a mixed gas of nitrogen and hydrogen is used, but in this method, when the reaction system is at normal pressure, the rare earth-iron-based alloy is decomposed by nitrogen gas,
Since the reducing power of hydrogen is weak, the alloy is oxidized to generate αFe, and when the hydrogen concentration is increased to increase the reducing power, nitrogen is not sufficiently introduced, which causes problems.

【0004】そこで本発明は上記の問題点を踏まえて、
窒素と水素の混合ガスを用いた場合でも酸化物や分解物
を生じさせない温度と圧力、そして水素を混合しても窒
素を十分に導入できる水素濃度と合金粉の粒径を限定す
ることによって、高い磁気特性を有する異方性希土類磁
石が得られる製造方法を提供することを目的としてい
る。
Therefore, the present invention has been made in view of the above problems.
Even if a mixed gas of nitrogen and hydrogen is used, the temperature and pressure at which oxides and decomposition products are not produced, and by limiting the hydrogen concentration and the particle size of the alloy powder that can sufficiently introduce nitrogen even if hydrogen is mixed, It is an object of the present invention to provide a manufacturing method by which an anisotropic rare earth magnet having high magnetic properties can be obtained.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、化学式Re2 TM17(Reは希土類金
属、TMは遷移金属)で示される原料合金を溶体化した
ものを粗粉砕し、350℃以上430℃以下の間で高純
度の窒素に対し高純度の水素の割合を5%〜30%の混
合ガス、しかも20atm以上の高圧をかけることによ
って窒化を行う。またこの時、Re2 TM17合金粉末を
75μm以下に選別した後に窒化する、あるいは窒化後
に選別する工程を含んでいる。
In order to achieve the above object, in the present invention, a solution of a raw material alloy represented by the chemical formula Re 2 TM 17 (Re is a rare earth metal, TM is a transition metal) is coarsely crushed. Then, nitriding is performed by applying a mixed gas in which the ratio of high-purity hydrogen is 5% to 30% with respect to high-purity nitrogen between 350 ° C. and 430 ° C., and high pressure of 20 atm or higher. In addition, at this time, a step of nitriding the Re 2 TM 17 alloy powder to 75 μm or less and then nitriding or selecting after nitriding is included.

【0006】ここで窒化温度を350℃以上430℃以
下に限定したのは、430℃以上の温度で窒化を行う
と、残留酸素による酸化のため希土類−鉄系合金中のα
Feの析出が多くなり、350℃以下では窒素が十分に
導入されないためである。また、窒化反応における混合
ガス圧を20atm以上の高圧にしたのは、原料粉の希
土類−鉄系合金が窒素と反応し、希土類窒化物とαFe
に分解するのを防ぐのと、水素の還元力を有効に働かせ
る為である。また水素濃度を5%以上30%以下に限定
したのは30%以上の水素が炉内に存在すると、たとえ
高温、長時間窒化したとしても粒子内部に未窒化相が残
って磁気特性を悪くし、5%以下では還元力が不十分で
αFeが生じてしまう為である。よって先の条件の範囲
内で窒化を行ったときにのみ粒径75μm以下(望まし
くは53μm以下)において良好な磁気特性を持つ磁石
が得られる。
Here, the nitriding temperature is limited to 350 ° C. or higher and 430 ° C. or lower, because when nitriding is performed at a temperature of 430 ° C. or higher, α in the rare earth-iron alloy due to oxidation due to residual oxygen.
This is because precipitation of Fe increases and nitrogen is not sufficiently introduced at 350 ° C or lower. Further, the mixed gas pressure in the nitriding reaction was set to a high pressure of 20 atm or more because the rare earth-iron alloy of the raw material powder reacts with nitrogen, and the rare earth nitride and αFe
This is to prevent decomposition into hydrogen and to effectively use the reducing power of hydrogen. Further, the hydrogen concentration is limited to 5% or more and 30% or less because if 30% or more of hydrogen is present in the furnace, an unnitrided phase remains inside the particles even if it is nitrided at a high temperature for a long time to deteriorate the magnetic properties. This is because if it is 5% or less, the reducing power is insufficient and αFe is generated. Therefore, only when nitriding is performed within the range of the above conditions, a magnet having good magnetic characteristics can be obtained with a particle size of 75 μm or less (desirably 53 μm or less).

【0007】[0007]

【実施例】以下本発明を実施例により詳細に説明する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0008】純度99.9%Smおよび純度99.9%
Fe金属を重量比において24.5:75.5になるよ
うにアルゴン雰囲気中、高周波溶解炉で溶解混合し、次
いで溶湯を鋳型中に流し込んで冷却した。さらにアルゴ
ン雰囲気中電気炉において1250℃、3時間焼鈍する
ことにより、Sm2 Fe17系合金が得られた。得られた
合金をアルゴン雰囲気中1250℃、30時間溶体化処
理をし、冷却後ジョークラッシャーにて粒径106μm
以下に粉砕し、原料粉となるSm2 Fe17系合金粉末を
得た。
Purity 99.9% Sm and purity 99.9%
Fe metal was melt-mixed in a high-frequency melting furnace in an argon atmosphere so that the weight ratio was 24.5: 75.5, and then the molten metal was poured into a mold and cooled. Further, by annealing at 1250 ° C. for 3 hours in an electric furnace in an argon atmosphere, a Sm 2 Fe 17 system alloy was obtained. The obtained alloy is subjected to solution treatment at 1250 ° C. for 30 hours in an argon atmosphere, and after cooling, has a particle size of 106 μm with a jaw crusher.
The powder was pulverized to obtain Sm 2 Fe 17 based alloy powder as a raw material powder.

【0009】(実施例)このSm2 Fe17系合金粉末を
電気炉中で400℃において、50atmの純度99.
9999%窒素ガス90%、および純度99.9999
%水素ガス10%である混合ガス内で100時間、窒化
を行ったのち、そのまま室温まで冷却した。この106
μm以下の窒化粉を32μm以下、32〜53μm、5
3〜75μm、75〜106μm、106μm以上の5
段階に分級した。
(Example) This Sm 2 Fe 17 alloy powder was heated to 400 ° C. in an electric furnace at a purity of 99 at 50 atm.
9999% nitrogen gas 90%, and purity 99.9999
After nitriding for 100 hours in a mixed gas containing 10% of hydrogen gas, the mixture was cooled to room temperature. This 106
32 μm or less, 32-53 μm,
3 to 75 μm, 75 to 106 μm, 5 of 106 μm or more
Classified into stages.

【0010】(比較例1)実施例で使用したSm2 Fe
17系合金粉末の原料粉を用いて、混合ガスに代えて純度
99.9999%窒素ガス100%を使用し、他の条件
は実施例と同一条件で窒化を行った。得られた106μ
m以下の窒化粉末を32μm以下、32〜53μm、5
3〜75μm、75〜106μm、106μm以上の5
段階に分級した。
(Comparative Example 1) Sm 2 Fe used in Examples
Nitriding was performed under the same conditions as in the example except that the raw material powder of the 17 series alloy powder was used, the purity of 99.9999% and the nitrogen gas of 100% were used instead of the mixed gas. Obtained 106μ
m or less nitride powder 32 μm or less, 32-53 μm, 5
3 to 75 μm, 75 to 106 μm, 5 of 106 μm or more
Classified into stages.

【0011】(比較例2)実施例で使用したSm2 Fe
17系合金粉末の原料粉を用いて、純度99.9999%
窒素ガス50%、および水素ガス50%である混合ガス
を使用し、他の条件は実施例および比較例1と同一条件
で窒化を行った。得られた106μm以下の窒化粉末を
32μm以下、32〜53μm、53〜75μm、75
〜106μm、106μm以上の5段階に分級した。
Comparative Example 2 Sm 2 Fe used in the examples
Purity 99.9999% using the raw material powder of 17 series alloy powder
Nitrogen gas was used under the same conditions as in Example and Comparative Example 1 except that a mixed gas of 50% nitrogen gas and 50% hydrogen gas was used. The obtained nitriding powder of 106 μm or less is 32 μm or less, 32-53 μm, 53-75 μm, 75
It was classified into 5 stages of ˜106 μm and 106 μm or more.

【0012】実施例、比較例1および2で得られた窒化
粉をX線回折装置により、窒化とαFeの析出の様子を
分析した。実施例で得られた窒化粉の分析結果を図1、
比較例1の結果を図2、比較例3の結果は図3に示す。
図2より水素0%で窒化を行った比較例1では酸化によ
るαFeの析出が多く、水素50%で窒化を行った比較
例2では図3を見ると未窒化層であるSm2 Fe17が残
っているのが分かる。図1の本発明における実施例では
αFeもSm2 Fe17もほとんど見られず、未窒化層も
酸化による分解も起きていない。また実施例、比較例
1、および比較例2で得られた32〜53μm、53〜
75μm、75〜106μmの窒化粉の窒素および酸素
の含有量を窒素・酸素分析装置で分析した。希土類−鉄
−窒素系磁石として窒素の含有量は多く、酸素の含有量
はなるべく少ない方が望ましい。その結果を表1に示
す。本発明によって得られる窒化粉は比較例1よりも酸
素量が少なく、また比較例2よりも窒素量が多く、本発
明における実施例は両者の値を満足するものであった。
The state of nitriding and precipitation of αFe was analyzed by an X-ray diffractometer for the nitride powders obtained in Examples and Comparative Examples 1 and 2. The analysis result of the nitride powder obtained in the example is shown in FIG.
The results of Comparative Example 1 are shown in FIG. 2, and the results of Comparative Example 3 are shown in FIG.
As can be seen from FIG. 2, in Comparative Example 1 where nitriding was performed with 0% hydrogen, αFe was often precipitated due to oxidation, and in Comparative Example 2 where nitriding was performed with 50% hydrogen, Sm 2 Fe 17 which is an unnitrided layer was observed in FIG. You can see it remains. In the embodiment of the present invention shown in FIG. 1, almost no αFe or Sm 2 Fe 17 was observed, and neither the unnitrided layer nor the decomposition due to oxidation occurred. In addition, 32-53 μm, 53-, obtained in Examples, Comparative Examples 1 and 2,
The nitrogen and oxygen contents of 75 μm and 75 to 106 μm nitride powder were analyzed by a nitrogen / oxygen analyzer. As a rare earth-iron-nitrogen based magnet, it is desirable that the content of nitrogen is large and the content of oxygen is as small as possible. The results are shown in Table 1. The nitride powder obtained according to the present invention had a smaller amount of oxygen than Comparative Example 1 and a larger amount of nitrogen than Comparative Example 2, and the examples of the present invention satisfied both values.

【0013】[0013]

【表1】 [Table 1]

【0014】実施例、比較例1および比較例2で得られ
た32〜53μm、53〜75μm、75〜106μm
の窒化粉をそれぞれジェットミルで平均粒径3μm以下
に微粉砕した。得られた微粉にエポキシ樹脂を3wt%
混合し、20kOeの磁場中10t/cm2 で外形4m
m×4mm×2mmの大きさに成形、150℃、2時間
キュアして異方性希土類磁石を製造した。製造した磁石
は、振動試料型磁気測定装置(VSM)で残留磁気(B
r)、保磁力(iHc)、および最大エネルギー積(B
H)maxなどの磁気特性を測定した。この結果を表2
に示す。本発明における実施例は特に75μm以下にお
いて(BH)max等の磁気特性が比較例よりも大きく
勝っていた。
32-53 μm, 53-75 μm, 75-106 μm obtained in Examples, Comparative Example 1 and Comparative Example 2
Each of the nitriding powders of No. 1 was finely pulverized with a jet mill to an average particle size of 3 μm or less. 3 wt% of epoxy resin in the obtained fine powder
Mix and outline 4m at 10t / cm 2 in 20kOe magnetic field.
An anisotropic rare earth magnet was manufactured by molding into a size of m × 4 mm × 2 mm and curing at 150 ° C. for 2 hours. The manufactured magnet was used to measure the residual magnetism (B
r), coercive force (iHc), and maximum energy product (B
H) magnetic properties such as max were measured. The results are shown in Table 2.
Shown in. In the examples of the present invention, the magnetic properties such as (BH) max were significantly higher than those of the comparative examples especially at 75 μm or less.

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】上記のごとく本発明によれば、窒素と水
素の混合ガスでの窒化における窒化温度、ガス圧、水素
濃度、粒径を限定することにより、従来の高圧純窒素ガ
スにより製造される磁石と同等の窒素量を確保しつつ
も、さらにαFeの析出を抑えられることにより磁気特
性が大幅に向上し、アンモニアと水素の混合ガスによっ
て製造される磁石よりも安全に、低コストで生産するこ
とができる。
As described above, according to the present invention, the nitriding temperature, the gas pressure, the hydrogen concentration, and the particle size in the nitriding with the mixed gas of nitrogen and hydrogen are limited, so that the conventional high-pressure pure nitrogen gas is used. While maintaining the same amount of nitrogen as a magnet, the precipitation of αFe can be further suppressed, resulting in significantly improved magnetic properties, which is safer and cheaper to manufacture than a magnet manufactured using a mixed gas of ammonia and hydrogen. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で窒化された窒化粉をX線回折
装置で分析した結果を示すグラフである。
FIG. 1 is a graph showing a result of analyzing a nitride powder nitrided in an example of the present invention with an X-ray diffractometer.

【図2】比較例1で窒化された窒化粉をX線回折装置で
分析した結果を示すグラフである。
FIG. 2 is a graph showing a result of analysis of a nitride powder nitrided in Comparative Example 1 with an X-ray diffractometer.

【図3】比較例2で窒化された窒化粉をX線回折装置で
分析した結果を示すグラフである。
FIG. 3 is a graph showing a result of analyzing the nitride powder nitrided in Comparative Example 2 with an X-ray diffractometer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 303 D H01F 1/04 (72)発明者 池田 浩 東京都田無市本町6丁目1番12号 シチズ ン時計株式会社田無製造所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication C22C 38/00 303 D H01F 1/04 (72) Inventor Hiroshi Ikeda 6-1, Honmachi, Tanashi, Tokyo No. 12 Citizen Watch Co., Ltd. Tanashi Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Re2 TM17(但しReはSmを主とす
る希土類金属、TMはFeを主とする遷移金属1種以
上)で表される合金を窒素と水素の混合ガスにより窒化
して得られる希土類−鉄−窒素系磁石の製造方法におい
て、窒化されるRe2 TM17合金粉の粒径は75μm以
下であり、使用する混合ガスは窒素に対する水素の混合
比が5%〜30%であり、前記Re2 TM17合金粉を2
0atm以上の前記混合ガス圧力内で、350℃〜43
0℃の温度に加熱し窒化することを特徴とする希土類−
鉄−窒素系永久磁石の製造方法。
1. An alloy represented by Re 2 TM 17 (wherein Re is a rare earth metal mainly composed of Sm and TM is one or more transition metals mainly composed of Fe) is nitrided with a mixed gas of nitrogen and hydrogen. In the method for producing the obtained rare earth-iron-nitrogen based magnet, the particle size of the Re 2 TM 17 alloy powder to be nitrided is 75 μm or less, and the mixed gas used has a hydrogen to nitrogen mixing ratio of 5% to 30%. Yes, the Re 2 TM 17 alloy powder
Within the mixed gas pressure of 0 atm or higher, 350 ° C to 43 ° C.
Rare earths characterized by heating to a temperature of 0 ° C and nitriding
Method for manufacturing iron-nitrogen permanent magnet.
JP6231445A 1994-09-27 1994-09-27 Manufacture of rare earth-iron-nitrogen permanent magnet Pending JPH0897020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6231445A JPH0897020A (en) 1994-09-27 1994-09-27 Manufacture of rare earth-iron-nitrogen permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6231445A JPH0897020A (en) 1994-09-27 1994-09-27 Manufacture of rare earth-iron-nitrogen permanent magnet

Publications (1)

Publication Number Publication Date
JPH0897020A true JPH0897020A (en) 1996-04-12

Family

ID=16923650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6231445A Pending JPH0897020A (en) 1994-09-27 1994-09-27 Manufacture of rare earth-iron-nitrogen permanent magnet

Country Status (1)

Country Link
JP (1) JPH0897020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033844A (en) * 2003-05-15 2005-02-03 Aichi Steel Works Ltd Motor and its casing
JP2005290563A (en) * 2005-05-30 2005-10-20 Nichia Chem Ind Ltd Rare earth metal-iron-nitrogen-based magnetic material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033844A (en) * 2003-05-15 2005-02-03 Aichi Steel Works Ltd Motor and its casing
JP2005290563A (en) * 2005-05-30 2005-10-20 Nichia Chem Ind Ltd Rare earth metal-iron-nitrogen-based magnetic material
JP4506565B2 (en) * 2005-05-30 2010-07-21 日亜化学工業株式会社 Rare earth metal-iron-nitrogen based magnetic material

Similar Documents

Publication Publication Date Title
US9378876B2 (en) Ferromagnetic particles and process for producing the same, and anisotropic magnet, bonded magnet and compacted magnet
EP1160805B1 (en) Isotropic powdery magnet material, process for preparing and resin-bonded magnet
JP2005223263A (en) Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet
JP2007119909A (en) Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same
JP2013001985A (en) Rare-earth transition metal-based alloy powder and method for producing the same
JP4241461B2 (en) Rare earth-transition metal-nitrogen based magnet alloy powder, method for producing the same, and rare earth bonded magnet using the same
CN112863798A (en) Samarium-iron-nitrogen magnetic powder and preparation method thereof
JPH08203715A (en) Raw material for permanent magnet and manufacture thereof
JP2023067693A (en) Rare earth magnet and production method thereof
CN116168940A (en) Rare earth magnet and method for producing same
JPH0897020A (en) Manufacture of rare earth-iron-nitrogen permanent magnet
KR20200045182A (en) Method for preparing sintered magnet and sintered magnet
US6352597B1 (en) Method for producing a magnetic alloy powder
JP2007327101A (en) Method for producing rare earth-iron-nitrogen based magnet fine powder
JP3336028B2 (en) Method for producing rare earth-transition metal-nitrogen alloy powder
JP5088277B2 (en) Method for producing rare earth-iron-nitrogen alloy powder
JP3109637B2 (en) Anisotropic needle-like magnetic powder and bonded magnet using the same
JPH0617535B2 (en) Method of manufacturing permanent magnet material
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same
JP3209291B2 (en) Magnetic material and its manufacturing method
JPH06112019A (en) Nitride magnetic material
JP3295674B2 (en) Method for producing rare earth-iron-cobalt-nitrogen based magnetic material
JP3209292B2 (en) Magnetic material and its manufacturing method
JP3222919B2 (en) Method for producing nitride-based magnetic material
CN115274243A (en) Y2Fe17N2.7 type permanent magnetic material and preparation method thereof