JPH089164B2 - Composite sheet for fiber reinforced material and method for producing the same - Google Patents

Composite sheet for fiber reinforced material and method for producing the same

Info

Publication number
JPH089164B2
JPH089164B2 JP1324078A JP32407889A JPH089164B2 JP H089164 B2 JPH089164 B2 JP H089164B2 JP 1324078 A JP1324078 A JP 1324078A JP 32407889 A JP32407889 A JP 32407889A JP H089164 B2 JPH089164 B2 JP H089164B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
composite sheet
fiber assembly
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1324078A
Other languages
Japanese (ja)
Other versions
JPH0347713A (en
Inventor
慶一 原口
文悟 後藤
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP1324078A priority Critical patent/JPH089164B2/en
Priority claimed from CA002010559A external-priority patent/CA2010559C/en
Publication of JPH0347713A publication Critical patent/JPH0347713A/en
Publication of JPH089164B2 publication Critical patent/JPH089164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、繊維強化材料用複合シートとその製造方法
に関する。さらに詳しくは、本発明は、強化用長繊維か
ら成る平面状繊維集合体(A)と、その繊維集合体
(A)の少くとも片面に配置された、単繊維状の熱可塑
性繊維から成る平面状繊維集合体(B)から成る、成形
性および加工性に優れた繊維強化材料用複合シートとそ
の製造方法に関する。
TECHNICAL FIELD The present invention relates to a composite sheet for fiber reinforced material and a method for producing the same. More specifically, the present invention relates to a planar fiber assembly (A) composed of reinforcing long fibers, and a planar surface composed of single fiber thermoplastic fibers arranged on at least one side of the fiber assembly (A). TECHNICAL FIELD The present invention relates to a composite sheet for fiber reinforced material, which is composed of the fiber aggregate (B) and is excellent in moldability and processability, and a method for producing the same.

〔従来の技術〕[Conventional technology]

近年、強化用繊維を各種マトリックス樹脂により結合
してなる繊維強化材料は、その優れた特性、例えば、高
強度、高剛性、低比重、高耐疲労性などを有しているこ
とから、幅広い用途が期待され、工業的に重要な材料と
して注目されている。
In recent years, fiber-reinforced materials obtained by binding reinforcing fibers with various matrix resins have excellent properties such as high strength, high rigidity, low specific gravity, and high fatigue resistance, and therefore have a wide range of applications. Is expected and is attracting attention as an industrially important material.

一般に、これらの強化用繊維をマトリックス樹脂で結
合した繊維強化材料を得る場合、樹脂が繊維中に均一に
分散し易く、柔軟で賦形性に優れていること等が必要な
ため、未硬化の状態で流動性に優れた熱硬化性樹脂が多
く使用されている。
Generally, when a fiber-reinforced material obtained by binding these reinforcing fibers with a matrix resin is obtained, the resin is easily dispersed uniformly in the fiber, and it is necessary that the resin is flexible and has excellent shapeability. A thermosetting resin, which has excellent fluidity in the state, is often used.

しかしながら、これら熱硬化性樹脂の硬化反応には、
一般的に長時間(通常一時間以上)の高温加圧条件が必
要であり、生産性に問題があり、そのため繊維強化材料
の一般的な普及に制限があった。
However, in the curing reaction of these thermosetting resins,
Generally, a high temperature pressure condition for a long time (usually one hour or more) is required, and there is a problem in productivity, so that there has been a limitation on the general spread of fiber reinforced materials.

熱硬化性樹脂のかわりに、熱可塑性重合体を用いる試
みがなされている(例えば、特開昭58−29651号公
報)。この場合、重合体溶液を強化用繊維集合体に含浸
後脱溶媒する方法、またはシート状フィルムを熱溶融さ
せて強化用繊維間中に圧入分散させる方法が採られてい
る。しかしながら、上記の方法で得られるプリプレグ
は、室温の状態で剛性が高く、賦形性に乏しく、無理に
曲げたりすると繊維が切断するため、その使用に制限が
あった。
Attempts have been made to use a thermoplastic polymer instead of a thermosetting resin (for example, JP-A-58-29651). In this case, a method of removing the solvent after impregnating the polymer solution into the reinforcing fiber aggregate, or a method of heat-melting the sheet-like film and press-dispersing it between the reinforcing fibers is adopted. However, the prepreg obtained by the above method has high rigidity at room temperature, poor formability, and the fiber is cut when it is forcibly bent. Therefore, its use is limited.

そこで、賦形性に優れた熱可塑性重合体をマトリック
スとした強化材料用のプリプレグの開発が近年盛んに行
われている。例えば、熱可塑性重合体を繊維状にして、
強化用繊維と混ぜることが、特開昭60−56545号公報お
よび特開昭60−209033号公報に開示されている。
Therefore, in recent years, prepregs for reinforcing materials using a thermoplastic polymer excellent in shape forming as a matrix have been actively developed. For example, making a thermoplastic polymer into a fibrous shape,
Mixing with reinforcing fibers is disclosed in JP-A-60-56545 and JP-A-60-209033.

特開昭60−56545号公報において、熱可塑性繊維と強
化用長繊維は単に繊維を束単位で合糸しただけであり、
両者の繊維は均一に混繊していない。この混合物は、強
化用長繊維の単糸切れ等が少なく、後工程における取扱
い性に優れてはいるものの、熱溶融成形時に重合体が均
一に強化用長繊維に含浸し難いという欠点がある。
In Japanese Patent Laid-Open No. 60-56545, the thermoplastic fiber and the reinforcing long fiber are simply obtained by combining fibers in a bundle unit,
Both fibers are not uniformly mixed. Although this mixture has few single filament breaks of the reinforcing long fibers and is excellent in handleability in the subsequent step, it has a drawback that it is difficult to uniformly impregnate the reinforcing long fibers with the polymer during hot melt molding.

特開昭60−209033号公報においては、溶融された熱可
塑性重合体の含浸を容易にするために、強化用長繊維と
熱可塑性長繊維を単繊維同士のレベルで混繊しようと試
みている。しかるに、得られた混繊糸から成形品を作る
ためには、混繊糸からシート状物、すなわち織編物を作
る必要があり、そのための工程中に強化用長繊維の損傷
を生ずるという問題を有する。
In JP-A-60-209033, in order to facilitate the impregnation of a molten thermoplastic polymer, an attempt is made to mix filaments for reinforcement and thermoplastic filaments at the level of single fibers. . However, in order to make a molded product from the obtained mixed fiber, it is necessary to make a sheet-like material, that is, a woven or knitted product, from the mixed fiber, and the problem of causing damage to the reinforcing long fibers during the process Have.

強化用長繊維と熱可塑性繊維(長繊維)を引き揃えて
経糸とし、熱可塑性繊維(長繊維)を緯糸として平織物
にする方法が特開昭60−28543号公報および特開昭60−4
5632号公報で提案されている。しかしながら、これらの
平織物および編物では、熱可塑性繊維と強化用長繊維と
が均一に混じり合っておらず、得られるコンポジットは
機械的強度、特に強化用長繊維束に直交する方向の引張
強度に劣る。
A method in which reinforcing long fibers and thermoplastic fibers (long fibers) are aligned and used as warp yarns and thermoplastic fibers (long fibers) as weft yarns to form a plain woven fabric are disclosed in JP-A-60-28543 and JP-A-60-4.
Proposed in Japanese Patent No. 5632. However, in these plain woven fabrics and knits, the thermoplastic fibers and the reinforcing long fibers are not uniformly mixed, and the resulting composite has a mechanical strength, particularly a tensile strength in a direction orthogonal to the reinforcing long fiber bundle. Inferior.

さらに、強化用短繊維と熱可塑性短繊維を混合してシ
ート状にした製品も提案されている(特公昭62−1969号
公報)。これは、強化用繊維が短繊維で、しかも繊維の
方向がランダムに配置されていて、強化用長繊維からな
るシートと比較して強化用繊維同士が交差する割合が非
常に多く、この交差部に多量の空間が生じ、そのために
強化用繊維の充填量に限界があること、および短繊維で
は強化効果が劣るという問題点があり、高性能を要求さ
れる用途での使用に著しい制限があった。また、上記シ
ート状製品においては、繊維は混合されてはいるが交絡
一体化されていないことから、特に乾燥すると強化用繊
維が非常に分離し易く、取扱中に作業者に付着して刺さ
ること、またたとえ熱融着や接着剤での接着を試みて
も、柔軟性のコントロールが困難で、接着しすぎると柔
軟性がなくなるという欠点があった。加えて、上記シー
ト状製品は、乾燥後の嵩密度が非常に低く、プレス金型
に挿入する際、ストロークを長くとらなければならない
とか、オートクレーブ成形をする際バギングフィルムが
シワになり、成形品表面にそのシワの跡が残るといった
欠点もあり、一般的な普及には至っていない。
Furthermore, a product in which a reinforcing short fiber and a thermoplastic short fiber are mixed to form a sheet has also been proposed (Japanese Patent Publication No. 62-1969). This is because the reinforcing fibers are short fibers, the directions of the fibers are randomly arranged, and the ratio of reinforcing fibers crossing each other is very large compared to a sheet made of reinforcing long fibers. However, there is a problem that the filling amount of reinforcing fibers is limited and that the reinforcing effect is poor with short fibers, and there is a significant limitation in use in applications requiring high performance. It was Further, in the above-mentioned sheet-like product, the fibers are mixed but not entangled and integrated, so that the reinforcing fibers are very easily separated particularly when dried, and stick to the worker during handling. Further, even if an attempt is made to perform heat fusion or adhesion with an adhesive, it is difficult to control the flexibility, and there is a drawback that the flexibility is lost if the adhesion is excessive. In addition, the above-mentioned sheet-shaped product has a very low bulk density after drying, and it requires a long stroke when it is inserted into the press die, or the bagging film becomes wrinkled during autoclave molding, resulting in a molded product. It also has the drawback of leaving traces of wrinkles on the surface, so it has not reached widespread use.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明の目的は、上記のような問題点を解決し、強化
用長繊維と熱可塑性繊維が交絡一体化している成形性及
び加工性に優れた繊維強化材料用複合シート及びその製
造方法を提供することにある。
An object of the present invention is to solve the above problems and provide a composite sheet for fiber-reinforced material excellent in moldability and processability in which reinforcing long fibers and thermoplastic fibers are entangled and integrated with each other, and a method for producing the same. To do.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の目的は、強化用長繊維から成る平面状繊維集
合体Aと該繊維集合体Aの少くとも片面に配置された、
熱可塑性繊維から成る平面状繊維集合体Bから成る複合
シートであって、該複合シート中の強化用長繊維の容量
比率が5〜80%であり、繊維集合体B中の熱可塑性繊維
の単繊維が繊維集合体Aを構成する長繊維間に入り込で
交絡一体化されていることを特徴とする繊維強化材料用
複合シートによって達成される。
An object of the present invention is to dispose a planar fiber assembly A composed of reinforcing long fibers and arranged on at least one side of the fiber assembly A,
A composite sheet composed of a planar fiber assembly B composed of thermoplastic fibers, wherein the volume ratio of the reinforcing long fibers in the composite sheet is 5 to 80%, and the thermoplastic fiber in the fiber assembly B is a single fiber. This is achieved by a composite sheet for fiber-reinforced material in which fibers are interlaced and integrated between the long fibers constituting the fiber assembly A.

本発明の繊維材料用複合シートを製造するための方法
は、強化用長繊維から成る平面状繊維集合体Aの少くと
も片面に熱可塑性繊維から成るシート状繊維集合体B
を、繊維集合体Aと繊維集合体Bの合計容量に対する強
化用長繊維の容量比率が5〜80%になるように積層し、
該積層体に対して繊維集合体Bの面から流体噴射流を当
てることによって、繊維集合体(B)中の熱可塑性繊維
を繊維集合体(A)を構成する長繊維間に入り込ませ、
交絡一体化させることを特徴とする。
The method for producing a composite sheet for a fiber material of the present invention comprises a sheet-like fiber assembly B made of thermoplastic fibers on at least one side of a planar fiber assembly A made of reinforcing long fibers.
Are laminated so that the volume ratio of the reinforcing long fibers to the total volume of the fiber assembly A and the fiber assembly B is 5 to 80%,
By applying a fluid jet from the surface of the fiber assembly B to the laminate, the thermoplastic fibers in the fiber assembly (B) are allowed to enter between the long fibers constituting the fiber assembly (A),
It is characterized by making it entangled and integrated.

本発明でいう強化用長繊維から成る平面状繊維集合体
Aとしては、繊維集合体としての形状保持力の有無に関
係なく、強化用長繊維を一方向に引き揃えた繊維集合体
(以下UD集合体と称す)、平織、朱子織などの織物等が
用いられる。織物としては、例えば、PAN系炭素繊維3f
(1800デニール、単繊維数3000本)を経糸及び緯糸に用
いた場合には、織密度を15本/cm以下、より好ましくは
8本/cm以下にするとよい。
The planar fiber assembly A composed of the reinforcing long fibers referred to in the present invention is a fiber assembly in which the reinforcing long fibers are aligned in one direction regardless of the presence or absence of the shape-retaining force of the fiber assembly (hereinafter referred to as UD Fabrics such as plain weave and satin weave are used. As the woven fabric, for example, PAN-based carbon fiber 3f
When (1800 denier, 3000 single fibers) is used for the warp and the weft, the weaving density is preferably 15 yarns / cm or less, more preferably 8 yarns / cm or less.

成型品の状態で特定方向の強度および剛性が要求され
る場合には繊維集合体AとしてUD集合体を用いるとよ
く、一方湾曲部を有する成型品の場合は繊維集合体Aと
して織物を用いるとよい。後者の場合、各方向における
強度及び剛性の要求レベルに対応して経密度及び緯密度
を適切に選定すればよい。
When strength and rigidity in a specific direction are required in a molded product, a UD aggregate may be used as the fiber assembly A, while a woven fabric may be used as the fiber assembly A in a molded product having a curved portion. Good. In the latter case, the warp density and the weft density may be appropriately selected according to the required level of strength and rigidity in each direction.

通常、強化用繊維は、500本〜20,000本のシングルフ
ィラメントの集束体、すなわち束として供給される。本
発明において強化用繊維をUD集合体として用いる場合に
は、前記強化用繊維の束の複数本を一方向に配列して用
いる。また、織物にする場合には、通常、前記強化用繊
維の束を無撚状態で経糸や緯糸として用いる。
Usually, the reinforcing fibers are supplied as a bundle, that is, a bundle of 500 to 20,000 single filaments. When the reinforcing fibers are used as the UD aggregate in the present invention, a plurality of the reinforcing fiber bundles are arranged in one direction and used. In the case of forming a woven fabric, the bundle of reinforcing fibers is usually used as a warp or a weft in an untwisted state.

本発明でいう「強化用長繊維」としては、炭素繊維、
ガラス繊維、アラミド繊維、炭化ケイ素繊維、ボロン繊
維および金属繊維から選ばれる高強度・高弾性繊維が挙
げられる。
The “reinforcing long fibers” referred to in the present invention include carbon fibers,
Examples include high-strength and high-elasticity fibers selected from glass fibers, aramid fibers, silicon carbide fibers, boron fibers and metal fibers.

これらの強化用長繊維の中では、弾性率が3000kg/mm2
以上、特に5000kg/mm2以上で、かつ、引張強度が100kg/
mm2以上の繊維、例えば、炭素繊維、ガラス繊維および
アラミド繊維が好ましく用いられる。
Among these reinforcing filaments, the elastic modulus is 3000 kg / mm 2
Above, especially 5000kg / mm 2 or more, and tensile strength 100kg /
Fibers of mm 2 or more, for example, carbon fibers, glass fibers and aramid fibers are preferably used.

これらの強化用長繊維は、コンポジットにするための
加熱溶融時に熱可塑性繊維溶融体の含浸を容易にするた
め、柔軟性を失わない程度に繊維表面を熱可塑性重合体
でコーティングすると好ましい。
In order to facilitate impregnation of the thermoplastic fiber melt during heating and melting to form a composite, these reinforcing long fibers are preferably coated with a thermoplastic polymer on the fiber surface to the extent that they do not lose flexibility.

本発明でいう繊維集合体Aは、強化用長繊維以外に熱
可塑性重合体繊維や熱可塑性重合体粒子を含んでいても
よい。
The fiber assembly A according to the present invention may include thermoplastic polymer fibers or thermoplastic polymer particles in addition to the reinforcing long fibers.

複合シート中の強化用長繊維の容量比率は、5〜80容
量%、好ましくは30〜80容量%、より好ましくは45〜70
容量%である。強化用長繊維の量が5容量%未満では強
度その他の物性に劣り、また強化用長繊維の量が80容量
%を超えるとボイド率が高くなって、やはり強度その他
の物性に劣る。
The volume ratio of the reinforcing long fibers in the composite sheet is 5 to 80% by volume, preferably 30 to 80% by volume, more preferably 45 to 70%.
The capacity is%. When the amount of the reinforcing long fibers is less than 5% by volume, the strength and other physical properties are poor, and when the amount of the reinforcing long fibers exceeds 80% by volume, the void ratio becomes high and the strength and other physical properties are also poor.

ここでいう容量比率とは、複合シート中の強化用繊維
の重量%(X)と熱可塑性繊維の重量%(Y)とそれぞ
れの比重を(ρ),(ρ)とした時に下記式によっ
て表される。
The volume ratio here means the following formula when the weight% (X) of the reinforcing fiber in the composite sheet and the weight% (Y) of the thermoplastic fiber and the respective specific gravities are (ρ X ) and (ρ Y ). Represented by

シート状繊維集合体Bとして用いられる熱可塑性繊維
の原料重合体としては、例えば、ポリオレフィン、ポリ
エステル、ポリアミド、アクリル樹脂、ポリオキシメチ
レン、ポリカーボネート、ポリフェニレンエーテル、ポ
リスチレン、ポリフェニレンサルファイド、ポリエーテ
ルエーテルケトン、ポリエーテルケトン、ポリエーテル
イミド、ポリエーテルサルフォン、ポリアミドイミド、
フッ素樹脂類などのポリマー類またはこれらのコポリマ
ー類を用いることができる。これらは繊維中でアロイに
なっていてもよい。なお、物性を損なわない限り2種以
上の熱可塑性繊維を混用してもよい。
Examples of the raw material polymer of the thermoplastic fiber used as the sheet-shaped fiber aggregate B include polyolefin, polyester, polyamide, acrylic resin, polyoxymethylene, polycarbonate, polyphenylene ether, polystyrene, polyphenylene sulfide, polyether ether ketone, poly Ether ketone, polyether imide, polyether sulfone, polyamide imide,
Polymers such as fluororesins or copolymers thereof can be used. These may be alloyed in the fiber. Two or more types of thermoplastic fibers may be mixed as long as the physical properties are not impaired.

本発明での平面状繊維集合体Bとしては、繊維が織ら
れたり編まれて布状になっているものではなく、熱可塑
性短繊維をランダム又は一方向にルーズに配置すること
によって形成したものか、熱可塑性長繊維を蛇行又はス
ワール状等に配置したものの何れかを用いることができ
る。
The planar fiber assembly B according to the present invention is not one in which fibers are woven or knitted into a cloth form, but is formed by arranging thermoplastic short fibers randomly or loosely in one direction. Alternatively, any of thermoplastic long fibers arranged in a meandering or swirl shape can be used.

平面状繊維集合体Bを構成する熱可塑性繊維(以下TP
繊維という)に対して、着色性、粘着性、耐酸化性、平
滑性や含浸性を付与するために各種添加剤を用いること
ができる。
Thermoplastic fibers that compose the planar fiber assembly B (hereinafter TP
Various additives can be used for imparting coloring property, tackiness, oxidation resistance, smoothness and impregnation property to (fiber).

TP繊維の断面径は、強化用繊維の断面径と比べて極端
に太くなく、柔軟性があり、自由に屈曲できる程度の太
さであればよい。好ましくは、強化用繊維の断面径の10
倍以下であり、さらに好ましくは5倍以下である。混合
性と形態保持性を調整するために、太さの異なる2種以
上のTP繊維を使ってもよい。
The cross-sectional diameter of the TP fiber is not extremely thick as compared with the cross-sectional diameter of the reinforcing fiber, and may be such that it is flexible and can be bent freely. Preferably, the reinforcing fiber has a cross-sectional diameter of 10
It is less than or equal to double, and more preferably less than or equal to five. Two or more kinds of TP fibers having different thicknesses may be used in order to adjust the mixing property and the shape retention property.

前記繊維集合体BがTP繊維の長繊維から成る場合に
は、その長繊維が繊維集合体B中で1.2以上の自由度を
有することが好ましい。ここでいう長繊維の自由度と
は、機械的作用を受けた時、TP長繊維が切断しないで強
化用長繊維の中に潜り込める「ゆとり」を意味する。よ
り具体的には、繊維集合体Bを構成している任意の1本
の連続TP単繊維のある1点(A点とする)を中心とし、
半径5cmの円を作成する。この円とA点を有する連続TP
単繊維との交点をB1、B2、B3、…とする。この連続TP単
繊維をA点を中心に直線に伸ばした時、A点の両側にお
いて最も離れた2点間(例えば、点B1と点B4)の長さ
を、円の直径10cmで除した時の値を自由度と定義する。
When the fiber assembly B is composed of long fibers of TP fibers, it is preferable that the long fibers have a degree of freedom of 1.2 or more in the fiber assembly B. The degree of freedom of the long fibers referred to here means "clearance" in which the TP long fibers can burrow into the reinforcing long fibers without being cut when subjected to a mechanical action. More specifically, centering on one point (referred to as A) of any one continuous TP single fiber constituting the fiber assembly B,
Create a circle with a radius of 5 cm. Continuous TP with this circle and point A
The points of intersection with the monofilaments are designated as B 1 , B 2 , B 3 , .... When this continuous TP monofilament is stretched in a straight line around the point A, the length between the two points most distant on both sides of the point A (for example, point B 1 and point B 4 ) is divided by a circle diameter of 10 cm. The value at that time is defined as the degree of freedom.

ここにいう自由度の値が大きい程熱可塑性長繊維の強
化用繊維への交絡がしやすくなり、本発明では自由度が
1.2以上、好ましくは1.5以上、より好ましくは3.0以上
である。
The larger the value of the degree of freedom here, the easier the entanglement of the thermoplastic long fibers to the reinforcing fibers, and the degree of freedom in the present invention is
It is 1.2 or more, preferably 1.5 or more, and more preferably 3.0 or more.

繊維集合体Bとして、熱可塑性短繊維を用いる場合に
は、その繊維の長さが100cm以下で、L/D(繊維の長さL
を、繊維の径Dで除した値)が1000万以下、好ましくは
長さが10cm以下で、L/Dが100万以下であるとよい。30mm
以下の長さの繊維を用いると交絡しやすいので特に好ま
しい。また、L/Dの下限としては、5以上、好ましくは5
0以上、さらに好ましくは100以上である。なお、強化繊
維の径を基準としたTP短繊維の長さとしては50倍以上で
あることが好ましい。
When a thermoplastic short fiber is used as the fiber assembly B, the length of the fiber is 100 cm or less, and L / D (fiber length L
Value divided by the diameter D of the fiber) is 10 million or less, preferably 10 cm or less in length, and L / D is 1 million or less. 30 mm
Fibers having the following lengths are particularly preferable because they tend to be entangled. The lower limit of L / D is 5 or more, preferably 5
It is 0 or more, more preferably 100 or more. The length of the TP short fiber based on the diameter of the reinforcing fiber is preferably 50 times or more.

本発明でいう「交絡」とは、TP繊維が強化用長繊維の
間に入り込んで、両者が立体的に混合した状態を指す。
その場合に、強化用長繊維間の全域にわたってTP繊維の
一本一本が侵入する形で交絡していると好ましい。ま
た、「一体化している」とは、TP繊維の単繊維が相互に
および強化用長繊維に絡んで、自重で脱離しないような
束ばく状態にあることを指す。さらに具体的に説明する
と、シート全体を取り扱うに際し、シートから内径10c
m、外径11cmのドーナツ状試料を切り出し、その一カ所
を指2本で挟んで持ち上げたとき、ドーナツの形状がく
ずれずに保持できていることを一体化しているという。
一体化のためには、TP繊維は、少なくとも強化用長繊維
の配列方向と異なる方向に配置されていることが好まし
い。
The “entanglement” in the present invention refers to a state in which the TP fibers are inserted between the reinforcing long fibers and the two are three-dimensionally mixed.
In that case, it is preferable that the TP fibers are entangled in such a manner that they penetrate into the entire area between the reinforcing long fibers. In addition, “integrated” means that the single fibers of the TP fibers are in a bundled state in which they are entangled with each other and with the reinforcing long fibers and are not detached by their own weight. More specifically, when handling the entire sheet, the inner diameter of 10c
It is said that when a doughnut-shaped sample with an outer diameter of 11 cm and an outer diameter of 11 cm is cut out and lifted by pinching one place with two fingers, the shape of the donut can be retained without breaking.
For integration, the TP fibers are preferably arranged at least in a direction different from the arrangement direction of the reinforcing long fibers.

UD集合体の場合には、前述のドーナツ状試料の評価以
外に、シートの一端をつかんで全体の複合シートを持上
げることができるかどうかによって一体化を評価しても
よい。さらに、強化用繊維方向に対して直角方向での引
張強度で評価してもよく、その値は8g/cm2以上、好まし
くは50g/cm2以上、さらに好ましくは200g/cm2以上であ
るのがよい。
In the case of the UD aggregate, in addition to the evaluation of the donut-shaped sample described above, the integration may be evaluated by whether one end of the sheet can be grasped and the whole composite sheet can be lifted. Further, it may be evaluated by the tensile strength in the direction perpendicular to the direction of the reinforcing fiber, the value is 8 g / cm 2 or more, preferably 50 g / cm 2 or more, more preferably 200 g / cm 2 or more. Is good.

この一体化がなされていると、細かくて複雑な形状に
切断してもバラバラにならず、積層作業、金型などへの
セット作業などが容易にできる。
When this is integrated, even if it is cut into a fine and complicated shape, it does not fall apart, and it is possible to easily perform a stacking work, a setting work in a mold or the like.

剛直な強化用長繊維を密に揃えることによって、複合
シートの嵩密度が上り、引き抜き成型法で成型体を成形
する場合に引き抜きダイスへの挿入が簡単になるとか、
プレス成型の場合に金型への充填が容易になるとか、オ
ートクレーブ成形時における加工前後の体積変化が小さ
くなることから、バギングフィルムの縮みによるシワが
少なくなるという効果が発揮される。複合シートの嵩密
度は、好ましくは0.1g/cm2以上、特に好ましくは0.3g/c
m3以上である。
By densely aligning the rigid reinforcing long fibers, the bulk density of the composite sheet increases, and it becomes easier to insert it into the drawing die when molding the molded body by the pultrusion method.
In the case of press molding, it is easy to fill the mold, and since the volume change before and after processing during autoclave molding is small, the effect of reducing wrinkles due to shrinkage of the bagging film is exhibited. The bulk density of the composite sheet is preferably 0.1 g / cm 2 or more, particularly preferably 0.3 g / c.
m 3 or more.

本発明の複合シートにおいては、剛性、流動性、着色
性、耐酸化性、潤滑性、層間接着強度やその他の性能を
向上するために、強化用繊維及び熱可塑性繊維に加え
て、無機、有機フィラー、ウィスカー、顔料、可塑剤等
の1種以上を必要に応じて含有させてもよい。特に、強
化用長繊維と直交する方向の強度及び弾性率を向上させ
るために、気相法炭素短繊維、チタン酸カリウムウィス
カー、炭化珪素ウィスカー等のウィスカーを複合シート
に対して0.1〜20容量%含有させたものは有用である。
In the composite sheet of the present invention, in order to improve rigidity, fluidity, colorability, oxidation resistance, lubricity, interlayer adhesive strength and other properties, in addition to reinforcing fibers and thermoplastic fibers, inorganic, organic One or more kinds of fillers, whiskers, pigments, plasticizers and the like may be contained as necessary. In particular, in order to improve the strength and elastic modulus in the direction orthogonal to the reinforcing long fibers, whiskers such as vapor grown carbon short fibers, potassium titanate whiskers, and silicon carbide whiskers are added to the composite sheet in an amount of 0.1 to 20% by volume. Those included are useful.

本発明の複合シートの製造方法について以下に説明す
る。
The method for producing the composite sheet of the present invention will be described below.

短繊維の熱可塑性繊維を使用する場合には、例えば、
短繊維を液中に分散せしめ、分散体を抄紙して繊維がラ
ンダムに配向されたTP短繊維平面状繊維集合体Bを製造
する。一方、強化用長繊維を一方向に多数本引き揃えて
平面状繊維集合体Aを製造し、この繊維集合体Aと繊維
集合体Bとを積層する。この積層作業では、あらかじめ
抄紙せずに、上記分散体を直接平面状繊維集合体Aの上
に積層し、平面状繊維集合体Bとしてもよい。長繊維の
熱可塑性繊維を使用する場合には、例えば、複数本の強
化用長繊維がクリルから連続的に引き出されて移動する
平面状繊維集合体A上に、熱可塑性重合体を加熱溶融し
て製造したスパンボンド不織布を連続的に積層する。
When using thermoplastic fibers of short fibers, for example,
Short fibers are dispersed in a liquid, and the dispersion is paper-made to produce a TP short fiber planar fiber aggregate B in which the fibers are randomly oriented. On the other hand, a plurality of reinforcing long fibers are aligned in one direction to manufacture a planar fiber assembly A, and the fiber assembly A and the fiber assembly B are laminated. In this laminating operation, the above-mentioned dispersion may be laminated directly on the planar fiber assembly A to form the planar fiber assembly B without performing papermaking in advance. When a thermoplastic fiber of long fiber is used, for example, a plurality of reinforcing long fibers are continuously drawn out from the krill and moved on a planar fiber assembly A which is continuously melted by heating and melting the thermoplastic polymer. The spunbonded nonwoven fabric produced by the above is continuously laminated.

さらに、積層集合体Aの両面に繊維集合体Bを積層し
てもよい。必要に応じて、積層集合体Aと繊維集合体B
の組合せを2層以上にしてもよい。
Further, the fiber aggregate B may be laminated on both sides of the laminated aggregate A. If necessary, the laminated assembly A and the fiber assembly B
The combination may be two or more layers.

次いで、このようにして得られた積層体に流体噴流に
よる機械的作用力をあたえる。すなわち、このシートの
面に対して直角方向から貫くように流体噴流の作用力を
働かせて、TP繊維を強化用長繊維の繊維集合体Aに入り
込ませ、個々の強化用繊維に絡み合うようにして、一体
化した複合シートを得る。流体噴流を作用させて絡ませ
る方法を採用するので、強化用長繊維が切れにくく、か
つ、剛直な強化長繊維同士が絡み合いにくくなり、その
結果嵩密度が高い複合シートが得られる。
Then, the laminated body thus obtained is given a mechanical action force by a fluid jet. That is, the action force of the fluid jet is exerted so as to penetrate from the direction perpendicular to the surface of this sheet to cause the TP fibers to enter the fiber aggregate A of the reinforcing long fibers so that they are entangled with the individual reinforcing fibers. , To obtain an integrated composite sheet. Since the method of entanglement by applying a fluid jet is adopted, the reinforcing long fibers are less likely to break and the rigid reinforcing long fibers are less likely to be entangled with each other, and as a result, a composite sheet having a high bulk density can be obtained.

ここで用いる流体噴流は、高圧にした流体を孔状もし
くはスリット状のオリフィスをもつノズルを介して大気
圧に放出することにより得られる。流体の圧力やノズル
のオリフィスの大きさは、ノズルの位置及び方向等に依
存して変るが、一般には圧力として3kg/cm2〜400kg/cm2
のものが好適に使用され、ノズルとしては孔径が0.05〜
2mmのものが好適に使用される。
The fluid jet used here is obtained by discharging a high-pressure fluid to atmospheric pressure through a nozzle having a hole-shaped or slit-shaped orifice. The fluid pressure and the size of the nozzle orifice vary depending on the nozzle position and direction, but generally the pressure is 3 kg / cm 2 to 400 kg / cm 2
Nozzle with a hole diameter of 0.05 ~
A 2 mm one is preferably used.

使用される流体としては、液体、気体、液体混合気体
等を用いることができる。繊維に大きな機械的混合作用
を与える必要があるために、密度の高いものが好まし
い。具体的には、密度0.1g/cm3以上のものが好ましい。
入手のし易さ及び安全性から、一般的には水が用いられ
る。流体噴流で処理しているときは、運動エネルギーを
失った流体を真空吸引等の手段で速やかに取り去ること
が好ましい。
The fluid used may be liquid, gas, liquid mixed gas, or the like. Higher densities are preferred because of the need to impart a large mechanical mixing action to the fibers. Specifically, those having a density of 0.1 g / cm 3 or more are preferable.
Water is generally used because it is easily available and safe. When processing with a fluid jet, it is preferable to quickly remove the fluid that has lost kinetic energy by means such as vacuum suction.

なお、強化用長繊維束の中にはTP短繊維をあらかじめ
含有させて繊維集合体Aを作ってもよい。
The fiber aggregate A may be made by previously containing TP short fibers in the reinforcing long fiber bundle.

上記の複合シートに、熱可塑性重合体エマルジョンを
含浸後、最低造膜温度以下で乾燥させたり、重合体粒子
を吹き付けて含有させたりすることにより、複合シート
の柔軟性を損なうことなく成型時の熱可塑性重合体の強
化繊維間への含浸性を向上させることができる。また、
流体噴流による機械的作用で混合させる後、TP繊維が熱
変形を起こす温度以上で、かつ融着しない温度以下の条
件で加熱し、TP繊維を変形させたり、強化用長繊維が破
断しない程度に押圧して、嵩密度を上げたりして、一体
化したシートを得てもよい。
The above composite sheet, after being impregnated with a thermoplastic polymer emulsion, is dried at a minimum film-forming temperature or less, or by containing polymer particles by spraying, to prevent the flexibility of the composite sheet from being impaired during molding. The impregnation property between the reinforcing fibers of the thermoplastic polymer can be improved. Also,
After mixing by the mechanical action of the fluid jet, heat at a temperature above the temperature at which the TP fibers cause thermal deformation and below the temperature at which they do not fuse to deform the TP fibers or break the reinforcing long fibers. The sheet may be pressed to increase the bulk density to obtain an integrated sheet.

以下、実施例により本発明をさらに詳細に説明する。
但し、本発明はこれら実施例によって何ら限定されるも
のではない。
Hereinafter, the present invention will be described in more detail with reference to Examples.
However, the present invention is not limited to these examples.

実施例1 ナイロン66重合体(旭化成工業製、レオナ重合体)を
溶融紡糸して、770デニール/770フィラメントの長繊維
束を得た。この長繊維束を開織しやすいよう無撚り状態
で巻取り、その際サイジング剤として水溶性のPVA(ポ
リビニルアルコール)を付与した。この長繊維束を多数
本集め、ギロチン式カッターにて5mmの長さに切断し
て、TP短繊維を得た。
Example 1 A nylon 66 polymer (Leona polymer manufactured by Asahi Kasei Corporation) was melt-spun to obtain a long fiber bundle of 770 denier / 770 filaments. This long fiber bundle was wound in a non-twisted state so that it could be easily opened, and water-soluble PVA (polyvinyl alcohol) was added as a sizing agent. A large number of this long fiber bundle was collected and cut into a length of 5 mm with a guillotine cutter to obtain TP short fibers.

このナイロン66短繊維は、顕微鏡で観察すると、直径
が11μmの円柱であり、L/Dは455であった。
When observed with a microscope, the nylon 66 short fibers were cylinders having a diameter of 11 μm, and the L / D was 455.

次いで、この短繊維を水に投入し、ポリアクリルアマ
イドを加え、100cpの粘度を有するスラリー液とした。
幅50cm、長さ100cmの矩形で、底に200メッシュの金網を
張った水槽の底に均一になるように前記スラリー液を注
入し、抄造法で目付64g/m2の繊維集合体Bを得た。
Next, this short fiber was put into water and polyacrylic amide was added thereto to obtain a slurry liquid having a viscosity of 100 cp.
A 50 cm wide and 100 cm long rectangle, the slurry liquid was poured evenly into the bottom of a water tank with a 200 mesh wire mesh on the bottom, and a fiber assembly B having a basis weight of 64 g / m 2 was obtained by a papermaking method. It was

上記繊維集合体Bの中のナイロン66短繊維の方向は、
ほぼ完全なランダムであった。
The direction of the nylon 66 short fibers in the fiber assembly B is
It was almost completely random.

次に、PAN系炭素繊維(新旭化成カーボンファイバー
製、ハイカーボロン6Kf糸、単繊維数6000本、3600デニ
ール、引張強度400kg/mm2、引張弾性率23ton/mm2、直径
7μm)の強化用長繊維束を375本引き揃えて、目付300
g/m2になるように50cmの幅にすきまなく並べた平面状繊
維集合体Aを、上記のナイロン66短繊維から成る繊維集
合体Bの上に置いた。次に、同じタイプの繊維集合体B
(目付64g/m2)を繊維集合体Aの上にサンドイッチ状に
置いた。これを、200メッシュの金網に乗せたまま、1mm
の等間隔で直線状に配置した径0.2mmのノズル500個を用
い、ノズルとの距離を30mmにして、全面に隅なく、10kg
/cm2の圧力の水を上から垂直にあて流体噴射流による処
理を行った。この流体噴射流処理を表裏1回ずつ行っ
た。さらに、水圧を40kg/cm2に変えて表裏3回ずつ処理
し、最後に乾燥して複合シートを得た。この複合シート
は、ナイロン66繊維が炭素長繊維間に入り込み、ナイロ
ン66繊維同志及びナイロン66繊維と炭素長繊維とが交絡
して一体となった構造になっていた。この複合シート中
の繊維集合体Aの容量比率は60%であった。シートの端
部を人差し指と親指でつまんで持ち上げても、50cm×10
0cmのシートがバラバラにならずに交絡一体化してお
り、かつ柔軟性に富んでいた。この複合シートから外径
11cm、内径10cm、幅5mmのドーナツ形状の試料を裁断し
たところ、試料の1カ所を指でつまんで持ち上げてもバ
ラバラにならず、しかも端部から繊維が解けることもな
く、1枚の紙のように扱える作業性の優れた複合シート
であることが判った。
Next, PAN-based carbon fiber (made by Shin-Asahi Kasei Carbon Fiber, hiker boron 6Kf yarn, 6000 single fibers, 3600 denier, tensile strength 400 kg / mm 2 , tensile elastic modulus 23 ton / mm 2 , diameter 7 μm) for reinforcement Aligned 375 fiber bundles and weighed 300
The planar fiber assembly A, which was arranged so as to have a width of 50 cm so as to have a width of g / m 2 , was placed on the fiber assembly B made of the above nylon 66 short fibers. Next, the same type of fiber assembly B
(Unit weight of 64 g / m 2 ) was placed on the fiber assembly A in a sandwich form. With this placed on a 200 mesh wire mesh, 1 mm
Using 500 nozzles with a diameter of 0.2 mm, which are linearly arranged at equal intervals, the distance from the nozzle is 30 mm, there is no corner on the entire surface, and 10 kg
Water with a pressure of / cm 2 was applied vertically from above to perform treatment with a fluid jet flow. This fluid jet flow treatment was performed once on the front and back. Further, the water pressure was changed to 40 kg / cm 2 , the front and back sides were treated three times, and finally dried to obtain a composite sheet. This composite sheet had a structure in which nylon 66 fibers entered between carbon long fibers, and nylon 66 fibers were entangled with each other and nylon 66 fibers and carbon long fibers were entangled with each other. The volume ratio of the fiber assembly A in this composite sheet was 60%. Even if you pick up the edge of the sheet with your index finger and thumb,
The 0 cm sheet was not entangled but was entangled and integrated, and it was very flexible. Outer diameter from this composite sheet
When a doughnut-shaped sample of 11 cm, inner diameter 10 cm, and width 5 mm was cut, even if one sample was picked up with a finger and lifted, it did not fall apart, and the fibers did not come loose from the edge, It was found to be a composite sheet with excellent workability that can be handled like the above.

上記複合シートから、炭素長繊維の配列方向に直交す
る方向に、幅2.5cm、長さ15cmのテープを切り出して、
引張強度を測定したところ、3310g/cm2であった。
From the above composite sheet, in a direction orthogonal to the carbon long fiber array direction, a tape having a width of 2.5 cm and a length of 15 cm is cut out,
The tensile strength was measured and found to be 3310 g / cm 2 .

次に、上記複合シートを10cm角に切出し、平らな面に
置き、厚み3mmの鉄板を上に載せて厚みを測定し、さら
にシートの重量を測定して、嵩密度を求めたところ0.36
g/cm3であった。
Next, the composite sheet was cut into 10 cm square pieces, placed on a flat surface, the thickness was measured by placing an iron plate with a thickness of 3 mm on the sheet, and the weight of the sheet was further measured to obtain a bulk density of 0.36.
It was g / cm 3 .

上記複合シートを濃硫酸で処理して、ナイロン66繊維
だけを静かに溶解させて、炭素繊維だけのシートにし
て、炭素繊維に直交する方向の強度を測定しようとした
が、テープに切り出して持ち上げようとしただけでバラ
バラになり、したがってその引張強度は1g/cm2以下と推
定される。
I treated the above composite sheet with concentrated sulfuric acid and gently dissolved only nylon 66 fiber to make a sheet of carbon fiber only, and tried to measure the strength in the direction orthogonal to the carbon fiber, but cut it out to tape and lift it up. The tensile strength is estimated to be 1 g / cm 2 or less.

上記複合シートから10cm角のシートを切り出して、直
径7cmの半円筒に軸方向に対して0度方向に1層、90度
方向に2層、さらに0度方向に1層重ねて巻き付け、テ
フロン(デュポンt社商標)フィルムで覆った後、周囲
をテフロンゴムでシールし、フィルム内を真空にしなが
ら、オートクレーブにセットして300℃×20kg/cm2×30
分の処理をして、冷却固化後取り出し、フィルムを外
し、半円筒形の成形品を得た。この成形品の一部を切り
出して、密度を測定したところ、計算密度と同じで、ボ
イド率は0.1%以下であった。確認のため断面を200倍の
光学顕微鏡で観察したところボイドは認められなかっ
た。
A sheet of 10 cm square is cut out from the above composite sheet, and is wrapped around a semi-cylindrical 7 cm in diameter with one layer in the 0 ° direction, two layers in the 90 ° direction, and one layer in the 0 ° direction. After being covered with a film of DuPont t Co., Ltd.), the periphery was sealed with Teflon rubber, and while the inside of the film was evacuated, it was set in an autoclave and set at 300 ° C × 20 kg / cm 2 × 30
After processing for minutes, the film was removed after cooling and solidification, and the film was removed to obtain a semi-cylindrical molded product. When a part of this molded product was cut out and the density was measured, it was the same as the calculated density, and the void ratio was 0.1% or less. No void was observed when the cross section was observed with a 200 × optical microscope for confirmation.

実施例2 実施例1と同様な方法で用意したナイロン66長繊維束
をY字型のパイプの上部の一方の口から挿入し、もう片
方の口から水を注ぎ込み、水流にフィラメントが引き込
まれて下に流れるようにし、下部からフィラメントを水
と共に吐出させた。パイプを振幅が2cmになるように毎
分30回搖動させながら往復移動させることにより、ナイ
ロン66長繊維束を200メッシュの金網を張った水槽の底
に均一になるように振り落とし、幅50cm、長さ100cm、
目付64g/m2を有する繊維集合体Bを得た。
Example 2 A nylon 66 long fiber bundle prepared in the same manner as in Example 1 was inserted through one mouth of the upper portion of a Y-shaped pipe, water was poured through the other mouth, and the filament was drawn into the water stream. The filament was made to flow downward, and the filament was discharged from the bottom together with water. By swinging the pipe 30 times per minute while swinging so that the amplitude becomes 2 cm, the nylon 66 long fiber bundle is shaken off evenly on the bottom of the aquarium with a 200 mesh wire mesh, width 50 cm, Length 100 cm,
A fiber assembly B having a basis weight of 64 g / m 2 was obtained.

この繊維集合体B中の単繊維の自由度を測定したとこ
ろ4.7であった。
The degree of freedom of the single fiber in this fiber assembly B was measured and found to be 4.7.

次に、この繊維集合体Bの上に実施例1で用いたPAN
系炭素繊維集合体Aを置いた。次に、同じタイプの繊維
集合体Bを繊維集合体Aの上にサンドイッチ状に置い
た。これを実施例1と同様に処理して複合シートを得
た。この複合シートは、ナイロン66繊維が炭素繊維間に
入り込んで、ナイロン66繊維同志及びナイロン66繊維と
炭素長維とが交絡して一体となった構造になっていた。
この複合シート中の繊維集合体Aの容量比率は60%であ
った。複合シートの端部を人差し指と親指でつまんで持
ち上げても、50cm×100cmの複合シートがバラバラにな
らずに一体性を保持し、かつ柔軟性に富んでいた。
Then, the PAN used in Example 1 was placed on the fiber assembly B.
The carbon-based carbon fiber assembly A was placed. Next, the same type of fiber assembly B was placed on the fiber assembly A in a sandwich form. This was processed in the same manner as in Example 1 to obtain a composite sheet. This composite sheet had a structure in which nylon 66 fibers entered between carbon fibers, and nylon 66 fibers were entangled with each other and nylon 66 fibers and carbon fibers were entangled with each other.
The volume ratio of the fiber assembly A in this composite sheet was 60%. Even if the edge of the composite sheet was picked up with the index finger and thumb and lifted, the 50 cm x 100 cm composite sheet did not fall apart, but maintained its integrity and was highly flexible.

実施例1と同様にして上記複合シートの引張強度を測
定したところ、1930g/cm2であった。さらに、この複合
シートを10cm角に切りだし、平らな面に置き、厚み3mm
の鉄板を上に載せて厚みを測定し、さらにシートの重量
を測定して、嵩密度を求めたところ0.38g/cm3であっ
た。
When the tensile strength of the above composite sheet was measured in the same manner as in Example 1, it was 1930 g / cm 2 . Furthermore, this composite sheet is cut into 10 cm square pieces, placed on a flat surface, and the thickness is 3 mm.
The thickness of the iron plate was placed on the sheet, the weight of the sheet was measured, and the bulk density was determined to be 0.38 g / cm 3 .

比較例1 実施例2において、パイプを搖動させないで、炭素繊
維の方向に対してほぼ90度に往復移動させながら目付64
g/m2の繊維集合体Bを得た。
Comparative Example 1 In Example 2, while the pipe was not rocked, the fabric weight was increased while reciprocating about 90 degrees with respect to the direction of the carbon fiber.
A fiber assembly B having g / m 2 was obtained.

実施例2と同様にしてこの繊維集合体Bの中の単繊維
の自由度を測定したところ1.1であった。
When the degree of freedom of the single fiber in this fiber assembly B was measured in the same manner as in Example 2, it was 1.1.

上記繊維集合体Bから実施例1と同じようにして複合
シートを得た。しかし、この複合シートは、ナイロン66
長繊維が交絡しておらず、シートの端部をつまんで持ち
上げるとバラバラになり、極めて取扱性に劣っていた。
A composite sheet was obtained from the fiber assembly B in the same manner as in Example 1. However, this composite sheet is nylon 66
The long fibers were not entangled, and when the ends of the sheet were picked up and lifted, they fell apart, resulting in extremely poor handleability.

実施例3 実施例1において、繊維集合体Bの目付を42.5g/m2
変更し、かつ、一方向の炭素繊維から成る平面状繊維集
合体AをPAN系炭素繊維ハイカーボロン3Kf糸(単繊維数
3000本1800デニール)使いで、織り密度が経、緯ともに
5本/cmの平織物(目付198g/m2)に変更した以外は、同
様の条件で複合シートを得た。この複合シート中の繊維
集合体Aの容量比率は60%であった。この複合シートか
ら外径11cm、内径10cm、幅5mmのドーナツ状試料を裁断
したところ、試料の1カ所を指でつまんで持ち上げても
バラバラにならず、しかも端部から糸が解けることもな
く、1枚の紙のように扱える作業性の優れた複合シート
であることが判った。嵩密度を測定した結果、0.33g/cm
3であった。
Example 3 In Example 1, the basis weight of the fiber assembly B was changed to 42.5 g / m 2 , and the planar fiber assembly A composed of unidirectional carbon fibers was used as the PAN-based carbon fiber hiker boron 3Kf yarn (single fiber). Number of fibers
3000 sheets, 1800 denier) were used, and a composite sheet was obtained under the same conditions, except that the plain weave (weight per unit area: 198 g / m 2 ) having a weaving density of 5 threads / cm was used. The volume ratio of the fiber assembly A in this composite sheet was 60%. When a donut-shaped sample with an outer diameter of 11 cm, an inner diameter of 10 cm, and a width of 5 mm was cut from this composite sheet, it did not fall apart even if it was picked up with one finger of the sample, and the thread did not unravel from the end. It has been found that the composite sheet has excellent workability and can be handled like one sheet of paper. As a result of measuring the bulk density, 0.33 g / cm
Was 3 .

比較のために、上記と同様にして、この実施例に使用
した炭素繊維平織物からドーナツ状試料を裁断したとこ
ろ、端面から糸が解けて、非常に扱いにくいものであ
り、指でつまんで持ち上げたら、バラバラになり、非常
に注意しないと取り扱えなかった。
For comparison, when a doughnut-shaped sample was cut from the carbon fiber plain woven fabric used in this example in the same manner as described above, the yarn was unraveled from the end face and it was very difficult to handle, and it was picked up with fingers. It fell apart and couldn't be handled without great care.

実施例4 実施例1で用いたナイロン66長繊維束の代わりに、78
0デニール/390フィラメントのポリエーテルエーテルケ
トン重合体(インペリアル・ケミカル・インダストリー
社製、商品名ビクトレックス)の長繊維束から実施例1
と同様にして長さ10mmと5mmの2種の短繊維を得た。次
に、これらの長さの違う短繊維を別々の容器にいれ、ス
ラリー状とした。5mm長の短繊維のスラリー液に連続的
に実施例1で用いた強化用の炭素繊維長繊維束を開繊し
ながら投入し、液中で4mm間隔で針を植え込んだ針布を
炭素繊維束に突き刺しては離す操作を繰り返して液中で
も充分開繊するようにして、静かに引き上げたところ、
炭素長繊維100gに対し、36gのナイロン66短繊維が含ま
れた短繊維混合長繊維束を得た。この繊維束を実施例1
と同様にして引き揃え、目付408g/m2の繊維集合体Aを
得た。この集合体A中でナイロン66短繊維は炭素長繊維
に絡んでおらず、手で持ち上げるとバラバラになるもの
であった。
Example 4 Instead of the nylon 66 long fiber bundle used in Example 1, 78
Example 1 From a long fiber bundle of 0 denier / 390 filament polyetheretherketone polymer (manufactured by Imperial Chemical Industry, trade name Victrex)
In the same manner as above, two kinds of short fibers having lengths of 10 mm and 5 mm were obtained. Next, these short fibers having different lengths were put in separate containers to form a slurry. Carbon fiber long fiber bundles for reinforcement used in Example 1 were continuously introduced into a slurry liquid of short fibers having a length of 5 mm while opening, and a needle cloth in which needles were implanted at intervals of 4 mm in the liquid was a carbon fiber bundle. Repeat the operation of piercing and releasing it so that it will be opened sufficiently even in the liquid, and gently pulled up,
A short fiber mixed long fiber bundle containing 36 g of nylon 66 short fibers per 100 g of carbon long fibers was obtained. This fiber bundle was used in Example 1.
The fiber assembly A having a basis weight of 408 g / m 2 was obtained in the same manner as above. In this aggregate A, the nylon 66 short fibers were not entangled with the carbon long fibers, and they fell apart when lifted by hand.

上記繊維集合体Aを注意深く、4mm間隔で平行に張っ
たピアノ線の上に置き、別に10mm長のナイロン66短繊維
を使った目付10g/m2の繊維集合体Bを2枚作成し、上記
の繊維集合体Aを挟む形で積層した。この積層操作はピ
アノ線を介して行い、積層後ピアノ線を一本一本静かに
抜いて言った。次に、高圧水流による処理を実施例1と
同じ条件で行ったところ、手で端部を持ってもバラバラ
にならない交絡一体化した複合シートが得られた。この
複合シート中の繊維集合体Aの容量比率は63%であっ
た。この断面を切断して観察してみると、実施例1のも
のより更に炭素長繊維とナイロン66の短繊維が均一に混
合していることが判った。この複合シートの炭素長繊維
の配列方向と直交する方向の引張強度は3510g/cm2であ
り、嵩密度は0.38g/cm3であった。
The above fiber assembly A was carefully placed on a piano wire stretched in parallel at intervals of 4 mm, and two fiber assembly B having a basis weight of 10 g / m 2 using 10 mm long nylon 66 short fibers were separately prepared. The fiber assembly A was laminated so as to sandwich it. This laminating operation was performed via piano wires, and after laminating, the piano wires were gently pulled out one by one. Next, when the treatment with a high-pressure water stream was performed under the same conditions as in Example 1, a entangled and integrated composite sheet was obtained that did not fall apart even if the end portions were held by hand. The volume ratio of the fiber assembly A in this composite sheet was 63%. When this cross section was cut and observed, it was found that the carbon long fibers and the nylon 66 short fibers were more uniformly mixed than those of Example 1. The tensile strength of the composite sheet in the direction orthogonal to the carbon long fiber array direction was 3510 g / cm 2 , and the bulk density was 0.38 g / cm 3 .

比較例2 実施例1で用いたナイロン66を8mmにカットした短繊
維と、8mmカットの炭素繊維を、重量比で炭素繊維が
7、ナイロン66繊維が3の割合で混合して、抄造した。
この繊維集合体を乾燥して、実施例1と同様に嵩密度を
測定したところ0.037g/cm3と非常に嵩高であった。しか
も乾燥させてから手でつかむと、すぐにバラバラにな
り、手に炭素繊維が付着して刺さるなど非常に扱い難い
シートであった。
Comparative Example 2 The short fiber obtained by cutting nylon 66 into 8 mm used in Example 1 and the carbon fiber cut with 8 mm were mixed at a weight ratio of 7 carbon fibers and 3 nylon 66 fibers to produce a paper.
When this fiber assembly was dried and the bulk density was measured in the same manner as in Example 1, it was very bulky at 0.037 g / cm 3 . In addition, when it was dried and then grabbed by hand, it immediately fell apart, and the carbon fiber adhered to the hand and stabbed it.

実施例5〜10、比較例3〜9 実施例1において、ナイロン66短繊維の使用量を調節
して、繊維集合体Bの目付を調整し、炭素繊維の容量比
率が表1に示すように異なる複合シートを作成した。各
複合シートを30cm×30cmの正方形に切出し、同じ大きさ
のマッチドダイを使い、300℃×30分×20kg/cm2の条件
でコンポジット板を作り、曲げ強度を測定した。
Examples 5 to 10 and Comparative Examples 3 to 9 In Example 1, the amount of nylon 66 short fibers used was adjusted to adjust the basis weight of the fiber assembly B, and the volume ratio of carbon fibers was as shown in Table 1. Different composite sheets were created. Each composite sheet was cut into a 30 cm × 30 cm square, and a matched die of the same size was used to make a composite plate under the conditions of 300 ° C. × 30 minutes × 20 kg / cm 2 , and the bending strength was measured.

比較のために、比較例2におけるナイロン66短繊維の
量を調整し、炭素繊維の長さを25mmにし、炭素繊維の配
合比を調整して、全く同様の条件でコンポジット板を作
り、曲げ強度を測定した結果を表2に比較例5〜9とし
て示す。なお、嵩密度の低い比較例の繊維集合体は、3m
mの厚みのコンポジット板を得るためには、厚みが10cm
を越えてしまって金型に収まらなかったため、2回以上
に分割してコンポジット板を得た。
For comparison, the amount of nylon 66 short fibers in Comparative Example 2 was adjusted, the length of carbon fibers was adjusted to 25 mm, the compounding ratio of carbon fibers was adjusted, and a composite plate was prepared under exactly the same conditions, and the bending strength was adjusted. The results of the measurement are shown in Table 2 as Comparative Examples 5 to 9. In addition, the fiber aggregate of the comparative example having a low bulk density is 3 m
To obtain a composite board with a thickness of m, the thickness is 10 cm
Since it did not fit in the mold because it exceeded the limit, it was divided into two or more times to obtain a composite plate.

表1から判るように、炭素長繊維の容量比率が5%未
満では、比較例2のものと比較して大きな差はないが、
5%以上では物性の差が大きい。特に、炭素繊維の容量
比率が30%を越えると、比較例のものはボイド率が高く
なって強度その他の物性が落ちるため両者の差は一層拡
大する。しかしながら、炭素繊維の容量比率が80%を越
えると、ボイド率が高くなって、強度その他の物性が落
ちてくることが判る。
As can be seen from Table 1, when the volume ratio of the carbon long fibers is less than 5%, there is no great difference as compared with that of Comparative Example 2,
If it is 5% or more, the difference in physical properties is large. In particular, when the volume ratio of the carbon fibers exceeds 30%, the void ratio of the comparative example becomes high and the strength and other physical properties deteriorate, so that the difference between the two further expands. However, it is understood that when the volume ratio of carbon fiber exceeds 80%, the void ratio becomes high and the strength and other physical properties deteriorate.

表2に示すように、繊維集合体Aおよび繊維集合体B
を共に短繊維で構成したものは嵩密度が小さすぎると共
に強度も弱いものしか得られなかった。
As shown in Table 2, the fiber assembly A and the fiber assembly B
In the case where both are made of short fibers, only bulk density is low and strength is weak.

実施例11 実施例1のナイロン66繊維の代わりに、900デニール/
300フィラメントのポリエーテルエーテルケトン(以
下、「PEEK」と略する。)長繊維を用い、実施例1と同
様にして長さ15mmと2.5mmの短繊維を得た。2種の短繊
維を重量比1:1で水に投入し、ポリアクリルアマイドを
加え、100cpの粘度を有するスラリー液とし、次いで幅
が50cm、80メッシュの金網を有する傾斜型抄造機で抄造
し、目付73g/m2のPEEK短繊維の繊維集合体Bを得た。
Example 11 Instead of the nylon 66 fiber of Example 1, 900 denier /
Using 300 filaments of polyether ether ketone (hereinafter abbreviated as "PEEK") long fibers, short fibers with lengths of 15 mm and 2.5 mm were obtained in the same manner as in Example 1. Two kinds of short fibers were poured into water at a weight ratio of 1: 1 and polyacrylic amide was added to make a slurry liquid having a viscosity of 100 cp, and then papermaking was carried out by an inclined papermaking machine having a width of 50 cm and a wire mesh of 80 mesh. A fiber assembly B of PEEK short fibers having a basis weight of 73 g / m 2 was obtained.

次に、実施例1と同じ長繊維状炭素繊維の平面状繊維
集合体Aを、その幅広がりを防止するために、幅50cm、
長さ60cmの枠に固定し緊張状態にした。その上に上記PE
EK短繊維の繊維集合体Bを重ねた。そして、この積層繊
維集合体を80メッシュの金網の上に置き、5mm間隔で直
線に配置された0.2mmの径のノズル100個を用い、繊維集
合体全面に隅なく20kg/cm2の圧力で連続的に噴出する高
圧水流を繊維集合体面の上から垂直に2回当て、次に50
kg/cm2の圧力で4回当てた。さらに、繊維集合体を裏返
しにして、枠に固定して炭素繊維に緊張を付与し、PEEK
短繊維の繊維集合体Bを重ねて、上記と同じ様に高圧水
流処理し、長繊維状炭素繊維の繊維集合体Aの両面にPE
EK短繊維の繊維集合体Bを交絡一体化した複合シートを
得た。
Next, in order to prevent the widening of the planar fiber assembly A of the same long fibrous carbon fibers as in Example 1, a width of 50 cm,
It was fixed in a frame with a length of 60 cm and in a tense state. PE above it
The fiber assembly B of EK short fibers was overlaid. Then, this laminated fiber assembly was placed on a wire mesh of 80 mesh, using 100 nozzles with a diameter of 0.2 mm arranged linearly at 5 mm intervals, with a pressure of 20 kg / cm 2 on the entire surface of the fiber assembly without corners. A continuous high-pressure water stream is applied twice vertically from above the fiber assembly surface, then 50
It was applied 4 times at a pressure of kg / cm 2 . Then, turn the fiber assembly inside out and fix it to the frame to apply tension to the carbon fiber.
The short fiber assembly B is overlaid and subjected to high-pressure water flow treatment in the same manner as described above to form PE on both surfaces of the long carbon fiber assembly A.
A composite sheet in which the fiber aggregate B of EK short fibers was entangled and integrated was obtained.

複合シートの炭素長繊維の配列方向と直交する方向の
引張強度は3120g/cm2であり、嵩密度は0.34g/cm3であ
り、実施例1と同じ様に細かく切断しても、紙のように
扱える作業性の優れた複合シートであった。
The tensile strength of the composite sheet in the direction orthogonal to the arrangement direction of the carbon long fibers was 3120 g / cm 2 , and the bulk density was 0.34 g / cm 3 , and even if it was cut into fine pieces in the same manner as in Example 1, It was a composite sheet with excellent workability.

炭素繊維の方向を揃えて上記複合シートを7枚重ね、
実施例6で用いた金型を使い、360℃×10kg/cm2×5分
の条件で溶融含浸冷却固化させて、板状コンポジット
(C1)を得た。濃硫酸を使って板中の炭素繊維の容量比
率を測定したところ60%であった。この板は、均一な黒
色状のコンポジットであった。板の断面を顕微鏡で拡大
観察してみると、炭素繊維は均一に分散していた(第1
図参照)。板の0度方向の強度は168.5kg/mm2で、弾性
率は10.7ton/mm2であり、90度方向のそれらはそれぞれ
8.2kg/mm2及び0.9ton/mm2であった。
Align the direction of the carbon fibers and stack the above 7 composite sheets,
Using the mold used in Example 6, the plate-like composite (C1) was obtained by melt impregnation cooling and solidification under the conditions of 360 ° C. × 10 kg / cm 2 × 5 minutes. When the volume ratio of carbon fiber in the plate was measured using concentrated sulfuric acid, it was 60%. The plate was a uniform blackish composite. When observing the cross section of the plate with a microscope, the carbon fibers were uniformly dispersed (first
See figure). The strength of the plate in the 0 degree direction is 168.5kg / mm 2 , the elastic modulus is 10.7ton / mm 2 , and those in the 90 degree direction are respectively
The values were 8.2 kg / mm 2 and 0.9 ton / mm 2 .

別の板状コンポジットを製造するために、炭素繊維の
方向を揃えて上記複合シートを11枚重ね、実施例6で用
いた金型を使い、空気が侵入しないようにして、420℃
×100kg/cm2×10分の条件で溶融含浸冷却固化させて板
状コンポジット(C2)を得た。板中の炭素繊維の容量比
率は60%であった。この板は均一な黒色状のコンポジッ
トであり、板の断面を顕微鏡で拡大観察してみると、炭
素繊維が均一に分散しており、上記のコンポジット(C
1)(第1図に示す)と見掛上同じであった。板の0度
方向の強度は192kg/mm2で、弾性率は11.2ton/mm2であ
り、90度方向のそれらはそれぞれ12.1kg/mm2及び0.9ton
/mm2であった。
In order to manufacture another plate-shaped composite, the carbon fibers were aligned in the same direction and 11 of the above composite sheets were stacked, and the mold used in Example 6 was used to prevent air from entering and 420 ° C.
A plate-like composite (C2) was obtained by melt-impregnation cooling and solidifying under conditions of × 100 kg / cm 2 × 10 minutes. The volume ratio of carbon fiber in the plate was 60%. This plate is a uniform black composite, and when observing the cross section of the plate with a microscope, the carbon fibers are uniformly dispersed.
It was apparently the same as 1) (shown in Fig. 1). The strength of the plate in the 0 degree direction is 192kg / mm 2 , the elastic modulus is 11.2ton / mm 2 , and those in the 90 degree direction are 12.1kg / mm 2 and 0.9ton respectively.
It was / mm 2 .

比較例10 実施例1で用いた強化用の炭素長繊維束と、実施例11
で用いたPEEK繊維束を合糸し、計4500デニールの繊維束
とした。この合糸繊維束を経糸として4本/cmの織密度
で、またPEEK繊維束のみを緯糸として用いて3.8本/cmの
繰り密度で平織物とした。
Comparative Example 10 A carbon long fiber bundle for reinforcement used in Example 1 and Example 11
The PEEK fiber bundle used in step 2 was combined into a total fiber bundle of 4500 denier. A plain weave fabric was obtained by using this bundle of fiber bundles as a warp at a woven density of 4 yarns / cm, and using only the PEEK fiber bundle as a weft yarn at a reeling density of 3.8 yarns / cm.

上記平織物においては、炭素長繊維が一方向に引き揃
えられた繊維集合体Aになっている。しかしながら、こ
の繊維集合体Aは、端面から糸が解けて取扱いに注意し
ないと形状が変わり、取扱いが困難であった。この繊維
集合体から外径11cm、内径10cmのドーナツ状試料を切り
出して、指でつまんで持ち上げようとしたら、バラバラ
になり、無断して扱うことは、非常に困難であった。
In the plain woven fabric, the carbon filaments are aligned in one direction to form a fiber assembly A. However, this fiber assembly A was difficult to handle because the thread was loosened from the end face and the shape changed unless care was taken in handling. When a doughnut-shaped sample with an outer diameter of 11 cm and an inner diameter of 10 cm was cut out from this fiber assembly, and was tried to be picked up with fingers, the pieces fell apart and it was very difficult to handle without permission.

炭素繊維の方向を揃えて上記シートを13枚重ね、実施
例5で用いた金型を使い、360℃×10kg/cm2×5分の条
件で溶融含浸冷却固化させて板を得た。濃硫酸を使って
板中の炭素繊維の容量比率を測定したところ、実施例11
のものと同様に60%であったが、外観は明らかに違って
おり、実施例12の板(C1)は均一な黒色状のコンポジッ
トであるのに対し、本比較例の板は重合体が不均一にな
っており、所々に白い縞模様が観察された。板の断面を
顕微鏡で拡大観察してみると、炭素繊維が固まって存在
していることが判った(第2図参照)。板の0度方向の
強度は102kg/mm2で、弾性率は8.7ton/mm2であり、90度
方向のそれらはそれぞれ4.1kg/mm2及び0.4ton/mm2であ
り、物性的に非常に劣っていた。
Thirteen sheets were stacked with the carbon fibers aligned, and the mold used in Example 5 was used to melt, impregnate, and cool and solidify under the conditions of 360 ° C. × 10 kg / cm 2 × 5 minutes to obtain a plate. When the volume ratio of carbon fibers in the plate was measured using concentrated sulfuric acid, Example 11
Although it was 60% like that of Example 1, the appearance was obviously different, and the plate (C1) of Example 12 was a uniform black composite, while the plate of this Comparative Example had a polymer It was uneven and white stripes were observed in places. When observing the cross section of the plate with a microscope, it was found that the carbon fibers were solidified (see FIG. 2). The strength of the plate in the 0 degree direction is 102 kg / mm 2 , the elastic modulus is 8.7 ton / mm 2 , and those in the 90 degree direction are 4.1 kg / mm 2 and 0.4 ton / mm 2 , respectively. Was inferior to

比較例11 実施例1で用いた強化用の炭素長繊維束(3600デニー
ル/600本)と、実施例11で用いたPEEK重合体の1500デニ
ール/500フィラメントの連続長繊維束とを水中に同じ速
度で漬け込み、対抗するノズルを使って攪拌し、繊維同
士を混ぜて引き上げ、乾燥し、混練繊維束とした。この
繊維束を引き揃えて、シートにしようとしたが、手で持
ち上げるとバラバラになり、普通の方法では扱えなかっ
た。そこで、目付20g/m2の薄いPEEK繊維で織った布でサ
ンドイッチ状に挟み、PEEKの糸で縫って、シート化し
た。しかしながら、ドーナツ状に細断して持ち上げた
ら、バラバラになってしまった。
Comparative Example 11 The reinforcing carbon long fiber bundle (3600 denier / 600) used in Example 1 and the PEEK polymer 1500 denier / 500 filament continuous long fiber bundle used in Example 11 were the same in water. The mixture was dipped at a speed, stirred using a nozzle that was opposed, the fibers were mixed and pulled up, and dried to obtain a kneaded fiber bundle. I tried to align these fiber bundles into a sheet, but when I lifted them by hand, they fell apart and I couldn't handle them in the usual way. Therefore, it was sandwiched with a cloth woven of thin PEEK fibers having a basis weight of 20 g / m 2 and sewn with PEEK thread to form a sheet. However, when it was cut into donuts and lifted, they fell apart.

炭素繊維の方向を揃えて上記複合シートを16枚重ね、
実施例5で用いた金型を使い、空気が侵入しないように
して、420℃×100kg/cm2×10分の条件で溶融含浸冷却固
化させて、板状コンポジットを得た。板中の炭素繊維の
容量比率は60%であった。この板は均一な黒色状のコン
ポジットであり、板の断面を顕微鏡で拡大観察してみる
と、炭素繊維が均一に分散しており、実施例6のコンポ
ジット(C1,C2)と、見掛上同じであった。板の0度方
向の強度は193kg/mm2で、弾性率は11.7ton/mm2であり、
実施例11のコンポジット(C2)と大差ないものであった
が、90度方向の強度は9.2kg/mm2で、弾性率は0.8ton/mm
2であり、90度方向の物性は劣っていた。
Align the direction of the carbon fibers and stack 16 of the above composite sheets,
Using the mold used in Example 5, it was melt impregnated, cooled, and solidified under the conditions of 420 ° C. × 100 kg / cm 2 × 10 minutes while preventing air from entering, to obtain a plate-shaped composite. The volume ratio of carbon fiber in the plate was 60%. This plate was a uniform black composite, and when the cross section of the plate was observed with a microscope, it was found that the carbon fibers were evenly dispersed and that the composite (C1, C2) of Example 6 was apparent. It was the same. The strength of the plate in the 0 degree direction is 193 kg / mm 2 , and the elastic modulus is 11.7 ton / mm 2 ,
Although it was not much different from the composite (C2) of Example 11, the strength in the 90 ° direction was 9.2 kg / mm 2 , and the elastic modulus was 0.8 ton / mm.
2, 90-degree directional physical properties were inferior.

実施例12 実施例11のPEEK繊維の代わりに、200デニール/72フィ
ラメントのポリフェニレンサルファイド長繊維を用いる
以外は、全く同様にして高圧水流処理し、炭素繊維の平
面状繊維集合体Aの両面にポリフェニレンサルファイド
短繊維の繊維集合体Bを交絡一体化した複合シートを得
た。この複合シート中の炭素繊維の容量比率は60%であ
った。複合シートの炭素繊維の配列方向と直交する方向
の引張強度は3350g/cm2であり、嵩密度は0.34g/cm3であ
った。
Example 12 In place of the PEEK fiber of Example 11, polyphenylene sulfide filaments of 200 denier / 72 filaments were used, and high-pressure water treatment was performed in exactly the same manner, and polyphenylene was formed on both surfaces of the planar fiber assembly A of carbon fibers. A composite sheet in which the fiber aggregate B of sulfide short fibers was entangled and integrated was obtained. The volume ratio of carbon fibers in this composite sheet was 60%. The tensile strength of the composite sheet in the direction orthogonal to the carbon fiber array direction was 3350 g / cm 2 , and the bulk density was 0.34 g / cm 3 .

実施例13 特開昭54−77691号公報の実施例に準じてP−アセト
キシ安息香酸と6−アセトキシ−2−ナフトエ酸(モル
比が75:25)を脱酢酸溶融重合し、熱溶融状態において
光学的に異方性を示す高重合体を得た。
Example 13 P-acetoxybenzoic acid and 6-acetoxy-2-naphthoic acid (molar ratio 75:25) were subjected to deacetic acid melt-polymerization in the same manner as in JP-A-54-77691 and then in a heat-melted state. A high polymer having optical anisotropy was obtained.

この重合体を320℃で0.1mmの孔を56個備えた紡糸口金
より押出し、空冷した後巻取り、単糸3デニールの長繊
維束を得た。この長繊維束を実施例1と同様にして20mm
と5mmの長さに切って短繊維とし、両者を重量比が1:1に
なるように、水中で分散混合した後、抄造し、繊維集合
体Bを得た。次いで、実施例1で用いた炭素長繊維の繊
維集合体Aと重ね、高圧水流処理することによって取扱
いの容易な複合シートを得た。この複合シートの炭素繊
維の配列方向と直交する方向の引張強度は3250g/cm2
あり、嵩密度は0.34g/cm3であった。
This polymer was extruded at 320 ° C. from a spinneret having 56 0.1 mm holes, air-cooled and wound to obtain a filament bundle of 3 denier single yarn. This long fiber bundle is 20 mm in the same manner as in Example 1.
And 5 mm were cut into short fibers, both were dispersed and mixed in water so that the weight ratio was 1: 1, and papermaking was performed to obtain a fiber assembly B. Then, the composite sheet of the long carbon fibers used in Example 1 was overlaid and subjected to high-pressure water flow treatment to obtain a composite sheet that was easy to handle. The tensile strength of the composite sheet in the direction orthogonal to the carbon fiber array direction was 3250 g / cm 2 , and the bulk density was 0.34 g / cm 3 .

実施例14 内容積500mlのガラス製フラスコに4,4−ジフルオロベ
ンゾフェノン50g(0.23モル)、微粉砕した炭酸カリウ
ム69g(0.5モル)及び溶媒としてベンゾフェノン50gを
入れ、フラスコ内を窒素置換した後、攪拌しながら1時
間かけて300℃に昇温し、この状態を保って12時間反応
させた。
Example 14 4,4-difluorobenzophenone 50 g (0.23 mol) in a glass flask having an internal volume of 500 ml, finely ground potassium carbonate 69 g (0.5 mol) and benzophenone 50 g as a solvent were placed, and the inside of the flask was replaced with nitrogen, followed by stirring. Meanwhile, the temperature was raised to 300 ° C. over 1 hour, and the reaction was performed for 12 hours while keeping this state.

得られた反応生成物を粉砕し、温アセトン及び熱水で
洗浄し、43gの白色粉末としてηSP/C(濃硫酸、0.1重量
%、25℃にて測定)が、0.56dl/gのポリエーテルケトン を得た。
The obtained reaction product was crushed and washed with warm acetone and hot water to give 43 g of white powder with η SP / C (concentrated sulfuric acid, 0.1 wt%, measured at 25 ° C) of 0.56 dl / g. Ether ketone I got

このようにして得られるポリエーテルケトンを用い
て、紡糸ヘッド温度を420℃して、紡孔径0.3mmφ、孔数
8個の紡孔を通して押し出し、単糸3.0デニールのポリ
エーテルケトン繊維を得た。この繊維を集めて実施例1
と同様にギロチン式カッターにて10mmの長さに切断し、
ポリエーテルケトン短繊維とした。
Using the polyetherketone thus obtained, the spinning head temperature was 420 ° C., and extrusion was carried out through a spinning hole having a diameter of 0.3 mmφ and 8 holes to obtain a polyetherketone fiber having 3.0 denier single yarn. Collecting this fiber, Example 1
Cut to a length of 10 mm with a guillotine cutter in the same way as
Polyetherketone short fibers were used.

上記ポリエーテルケトン短繊維を、実施例1と全く同
じ方法で抄造し、目付64g/m2の繊維集合体Bとし、次い
で実施例1で用いた炭素長繊維の繊維集合体Aと重ね、
高圧水流処理することによって取扱いの容易な複合シー
トを得た。この複合シート中の炭素繊維の容量比率は63
%であった。複合シートの炭素繊維の配列方向と直交す
る方向の引張強度は3440g/cm2であり、嵩密度は0.36g/c
m3であった。
The above polyetherketone short fibers were formed into a fiber assembly B having a basis weight of 64 g / m 2 by the same method as in Example 1, and then laminated with the fiber assembly A of carbon long fibers used in Example 1,
A composite sheet that was easy to handle was obtained by high-pressure water stream treatment. The volume ratio of carbon fiber in this composite sheet is 63.
%Met. The tensile strength in the direction orthogonal to the carbon fiber array direction of the composite sheet is 3440 g / cm 2 , and the bulk density is 0.36 g / c.
It was m 3 .

この複合シートを96mmφの円形に打ち抜き、内径が10
0mmφの金型内に、炭素繊維の長繊維方向が同一となる
ように6層に重ね、44℃×10分×100kg/cm2の条件で加
熱加圧成形した。冷却固化後取り出した円形成形板は、
ポリエーテルケトン短繊維が溶融含浸固化した極めて強
靭な成形板であった。
This composite sheet is punched out into a circle with a diameter of 96 mm, and the inner diameter is 10
Six layers were laminated in a 0 mmφ mold so that the long fiber directions of the carbon fibers were the same, and heat and pressure molding was performed under the conditions of 44 ° C. × 10 minutes × 100 kg / cm 2 . The circular molded plate taken out after cooling and solidification is
It was an extremely tough molded plate in which polyetherketone short fibers were melt-impregnated and solidified.

実施例15 内容積100mlのフラスコに43.9g(0.201モル)の4,4−
ジフルオロベンゾフェノ、64.9g(0.201モル)の4,4−
ジフルオロテレフタロフェノン、72.5g(0.684モル)の
炭酸ナトリウム、20gのシリカ(アエロジル300:日本ア
エロジル社製)及び40gのジフェニルスルフォンを入
れ、フラスコ内を窒素置換した後、攪拌しながら30分か
けて280℃に昇温し、この温度で1.5時間反応を行った
後、さらに30分かけて325℃に昇温したのち、この温度
で4.5時間反応を行った。このようにして得られたポリ
マーは、ηSP/Cが0.85dl/g(濃硫酸、0.1重量%、25
℃)ポリエーテルケトン (m=n)であった。
Example 15 43.9 g (0.201 mol) of 4,4-in a flask having an internal volume of 100 ml
Difluorobenzopheno, 64.9 g (0.201 mol) of 4,4-
Difluoroterephthalophenone, 72.5 g (0.684 mol) of sodium carbonate, 20 g of silica (Aerosil 300: manufactured by Nippon Aerosil Co., Ltd.) and 40 g of diphenylsulfone were added, and the inside of the flask was replaced with nitrogen, followed by stirring for 30 minutes. The temperature was raised to 280 ° C., the reaction was carried out at this temperature for 1.5 hours, the temperature was further raised to 325 ° C. over 30 minutes, and then the reaction was carried out at this temperature for 4.5 hours. The polymer thus obtained has an η SP / C of 0.85 dl / g (concentrated sulfuric acid, 0.1% by weight, 25%
℃) Polyether ketone (M = n).

実施例14のポリエーテルケトンを上記のポリエーテル
ケトンに代えた以外は実施例14と同じ方法を用いて、炭
素繊維の容量比率が63%の複合シートを得た。この複合
シートは、ポリエーテルケトン短繊維がバラけることも
なく、炭素繊維集合体とよく交絡一体化されたシートで
あり、極めて賦形性に富むものであった。複合シートの
炭素繊維の配列方向と直交する方向の引張強度は3050g/
cm2であり、嵩密度は0.34g/cm3であった。
Using the same method as in Example 14 except that the polyether ketone in Example 14 was replaced with the above polyether ketone, a composite sheet having a carbon fiber volume ratio of 63% was obtained. This composite sheet was a sheet that was well entangled and integrated with the carbon fiber aggregate without the polyetherketone short fibers coming apart, and thus was extremely rich in shapeability. The tensile strength in the direction orthogonal to the carbon fiber array direction of the composite sheet is 3050 g /
cm 2 , and the bulk density was 0.34 g / cm 3 .

実施例15 炭素繊維の代わりに、アラミド繊維(デュポン社製ケ
ブラー49 T−965、引張強度370kg/mm2、引張弾性率13to
n/mm2、直径12μm)を用いた以外は実施例1と同様に
して、アラミド繊維の容積比率が60%の複合シートを作
った。この複合シートのアラミド繊維の配列方向に直交
する方向の引張強度は3110g/cm2であり、シートは手で
持ち上げてもバラバラにならず、柔軟性のあるものであ
った。複合シートを用いて、実施例5と同様にして作成
したコンポジット板は、62.8kg/mm2の曲げ強度および7.
6ton/mm2の曲げ弾性率を有していた。
Example 15 Instead of carbon fiber, aramid fiber (Kevlar 49 T-965 manufactured by DuPont, tensile strength 370 kg / mm 2 , tensile modulus 13 to
A composite sheet having an aramid fiber volume ratio of 60% was prepared in the same manner as in Example 1 except that n / mm 2 and a diameter of 12 μm) were used. The tensile strength of this composite sheet in the direction orthogonal to the aramid fiber array direction was 3110 g / cm 2 , and the sheet was flexible and did not fall apart even if it was lifted by hand. The composite plate prepared by using the composite sheet in the same manner as in Example 5 had a bending strength of 62.8 kg / mm 2 and 7.
It had a flexural modulus of 6 ton / mm 2 .

実施例17 炭素繊維の代わりにガラス繊維(引張強度300kg/m
m2、引張弾性率7.4ton/mm2、直径13μm)を用いた以外
は実施例1と同様にして、ガラス繊維の容量比率が60%
の複合シートを作った。この複合シートのガラス繊維の
配列方向に直交する方向の引張強度は3410g/cm2であ
り、シートは手で持ち上げてもバラバラにならず、柔軟
性のあるものであった。この複合シートを用いて、実施
例5と同様にして作成したコンポジット板は、81kg/mm2
の曲げ強度および4.1ton/mm2の曲げ弾性率を有してい
た。
Example 17 Instead of carbon fiber, glass fiber (tensile strength 300 kg / m
The volume ratio of the glass fiber was 60% in the same manner as in Example 1 except that m 2 , tensile elastic modulus of 7.4 ton / mm 2 and diameter of 13 μm) were used.
I made a composite sheet of. The tensile strength of the composite sheet in the direction orthogonal to the glass fiber array direction was 3410 g / cm 2 , and the sheet was flexible and did not fall apart when lifted by hand. A composite plate prepared by using this composite sheet in the same manner as in Example 5 had a weight of 81 kg / mm 2.
It had a bending strength of 4.1 ton / mm 2 .

実施例18 繊維長32mmのナイロン66重合体繊維の短繊維をエアー
レイ法で堆積して繊維集合体Bを得た。次に、炭素繊維
の平面状集合体Aに繊維集合体Bを配置して、高圧水流
処理をして炭素繊維の容積比率が60%の複合シートを得
た。この複合シートの炭素繊維の配列方向に直交する方
向の引張強度は2550g/cm2であり、嵩密度は0.38g/cm3
あった。
Example 18 A short fiber of a nylon 66 polymer fiber having a fiber length of 32 mm was deposited by the air ray method to obtain a fiber assembly B. Next, the fiber assembly B was placed on the planar assembly A of carbon fibers and subjected to high-pressure water flow treatment to obtain a composite sheet having a carbon fiber volume ratio of 60%. The tensile strength of the composite sheet in the direction orthogonal to the carbon fiber array direction was 2550 g / cm 2 , and the bulk density was 0.38 g / cm 3 .

この複合シートを用いて、実施例5と同様にして、作
成したコンポジット板は曲げ強度が151kg/mm2であり、
曲げ弾性率が12.8ton/mm2であった。
A composite plate prepared by using this composite sheet in the same manner as in Example 5 has a bending strength of 151 kg / mm 2 ,
The flexural modulus was 12.8 ton / mm 2 .

実施例19 ポリフェニレンサルファイド重合体(フィリィプス・
ペトロリウム社製、ライトン重合体)を、350℃に過熱
された水蒸気を紡孔に吹き付けて、メルトブロー法によ
って紡糸し、紡出された連続繊維を200メッシュの金網
の上にオーバーフィードして堆積し、繊維集合体Bを作
成した。
Example 19 Polyphenylene sulfide polymer (Phillips
(Petrolium, Ryton polymer) was sprayed with steam superheated at 350 ° C to the spinning holes and spun by the melt blow method, and the spun continuous fibers were over-fed and deposited on a 200-mesh wire mesh. A fiber assembly B was prepared.

この繊維集合体B中のポリフェニレンサルファイド繊
維は、非常に細くて、顕微鏡で観察すると直径が2μm
であった。自由度を測定しようとしたが、細くて、直径
10cmの円の中から特定の単繊維を抜き出すのが困難だっ
たので、直径1mmの円の中の特定の繊維を顕微鏡写真で
撮り、屈曲している長さを測定して自由度を求めたとこ
ろ2.5であった。
The polyphenylene sulfide fiber in this fiber assembly B is very thin and has a diameter of 2 μm when observed with a microscope.
Met. I tried to measure the degree of freedom, but it was thin and the diameter
Since it was difficult to extract a specific single fiber from a circle of 10 cm, we took a specific photograph of a specific fiber in a circle of 1 mm in diameter and measured the bending length to determine the degree of freedom. It was 2.5.

上記の繊維集合体Bを使って、実施例2と同様にし
て、炭素繊維の容量比率が64%の複合シートを得た。こ
の複合シートの炭素長繊維の配列方向と直交する方向で
の引張強度は1850g/cm2であり、嵩密度は0.39g/cm3であ
った。この複合シートは外径11cm、内径10cmのドーナツ
状に裁断し、指で摘んで持ち上げてもバラバラになら
ず、取扱い性に優れていた。
Using the above fiber assembly B, a composite sheet with a carbon fiber volume ratio of 64% was obtained in the same manner as in Example 2. The tensile strength of the composite sheet in the direction orthogonal to the carbon long fiber array direction was 1850 g / cm 2 , and the bulk density was 0.39 g / cm 3 . This composite sheet was cut into a donut shape with an outer diameter of 11 cm and an inner diameter of 10 cm, and did not fall apart when picked up with fingers and was excellent in handleability.

実施例20 PEEK繊維を1740デニール/580フィラメントに変更した
以外は、比較例11と同様にして炭素長繊維との混繊繊維
束を得た。この混繊維束を引き揃え、一方向繊維集合体
を作成した。この繊維集合体の中のPEEK繊維の自由度は
1.05であった。PEEK繊維を実施例1と同様にしてギロチ
ン式カッターにて10mmの短繊維に切断し、薄いスラリー
液を作成した。このスラリー液を用い、PEEK繊維の目付
が0.4g/m2になるように、上記混繊繊維束の一方向繊維
集合体の上にPEEK繊維を抄造した。次いで、実施例1と
同様にして抄造したPEEK繊維側から高圧水流処理をし、
更にこの繊維集合体を裏返しにし、その上に同様に0.4g
/m2のPEEK繊維を抄造(表裏の抄造シートの容積比率の
合計は複合シート全体に対し0.2%)し、同様にして高
圧水流処理を行った。このようにして得られた複合シー
トは、柔軟性に富み、手で持ち上げてもバラバラになら
ず、複合シートの炭素繊維の配列方向と直交する方向の
引張強度は21g/cm2であり、嵩密度は0.45g/cm3であっ
た。この複合シート中の炭素繊維の容量比率は40%であ
った。
Example 20 A mixed fiber bundle with carbon long fibers was obtained in the same manner as in Comparative Example 11 except that the PEEK fiber was changed to 1740 denier / 580 filament. The mixed fiber bundles were drawn together to form a unidirectional fiber aggregate. The degree of freedom of PEEK fibers in this fiber assembly
It was 1.05. The PEEK fiber was cut into 10 mm short fibers with a guillotine cutter in the same manner as in Example 1 to prepare a thin slurry liquid. Using this slurry liquid, PEEK fibers were formed on the unidirectional fiber aggregate of the mixed fiber bundle so that the basis weight of PEEK fibers was 0.4 g / m 2 . Then, high-pressure water stream treatment is performed from the PEEK fiber side produced in the same manner as in Example 1,
In addition, turn this fiber assembly inside out and add 0.4g on it.
The / m 2 PEEK fiber was made into paper (the total volume ratio of the front and back paper making sheets was 0.2% with respect to the whole composite sheet), and the high-pressure water stream treatment was performed in the same manner. The composite sheet thus obtained is highly flexible and does not fall apart when lifted by hand, and the tensile strength in the direction orthogonal to the carbon fiber array direction of the composite sheet is 21 g / cm 2 , The density was 0.45 g / cm 3 . The volume ratio of carbon fibers in this composite sheet was 40%.

実施例21 ポリエーテルイミド(ジェネラル・エレクトリック社
製ウルテム1000)を用いて、単糸5デニールの繊維束を
得た。この繊維束を比較例11と同様の方法で炭素繊維束
と混合して混合繊維束を得、次いでこれを引き揃えて、
一方向繊維集合体を得た。次に、実施例20と同様にし
て、繊維長が10mmのポリエーテルイミド短繊維の水スラ
リーを、ポリエーテルイミド短繊維の目付が1.2g/m2
なるように、上記の一方向繊維集合体の表裏に抄造し、
高圧水流処理を施して複合シートを得た。
Example 21 A polyether imide (Ultem 1000 manufactured by General Electric Co.) was used to obtain a fiber bundle of 5 denier single yarn. This fiber bundle was mixed with a carbon fiber bundle in the same manner as in Comparative Example 11 to obtain a mixed fiber bundle, which was then aligned.
A unidirectional fiber aggregate was obtained. Then, in the same manner as in Example 20, an aqueous slurry of polyetherimide short fibers having a fiber length of 10 mm, so that the basis weight of the polyetherimide short fibers would be 1.2 g / m 2 , the above unidirectional fiber aggregate. Papermaking on the front and back of the body,
A high-pressure water stream treatment was applied to obtain a composite sheet.

同じポリエーテルイミドの粒子を使い、特開平1−09
2271号公報の実施例1に従い、ポリエーテルイミドサス
ペンジョンを得た。このサスペンジョンを上記で得られ
た複合シートに注いで含浸させ、室温で乾燥させて、炭
素繊維の容積比率が60%、ポリエーテルイミド繊維の容
積比率が1%、ポリエーテルイミド粒子の容積比率が39
%の組成を持つ複合シートを得た。この複合シートは、
炭素繊維間にほぼ均一な状態でポリエーテルイミド粒子
が分散しているものであった。この複合シートは、他の
実施例の複合シートより若干硬いものの、直径1cmの円
柱に巻いても炭素繊維が切断されない程度の柔軟性を有
し、手で持ち上げてもバラバラにならなかった。この複
合シートの炭素繊維の配列方向に直交する方向の引張強
度は74g/cm2で、嵩密度は0.51g/cm3であった。
Using the same polyetherimide particles, the method disclosed in JP-A-1-09
According to Example 1 of 2271, a polyetherimide suspension was obtained. This suspension is poured into the composite sheet obtained above to be impregnated and dried at room temperature to obtain a carbon fiber volume ratio of 60%, a polyetherimide fiber volume ratio of 1%, and a polyetherimide particle volume ratio of 39
A composite sheet with a composition of 10% was obtained. This composite sheet
The polyetherimide particles were dispersed in a substantially uniform state between the carbon fibers. Although this composite sheet was slightly harder than the composite sheets of the other examples, it had such flexibility that the carbon fibers were not cut even when it was wound into a cylinder having a diameter of 1 cm, and it did not fall apart when lifted by hand. The tensile strength of the composite sheet in the direction orthogonal to the carbon fiber array direction was 74 g / cm 2 , and the bulk density was 0.51 g / cm 3 .

比較のために、ポリエーテルイミドの短繊維を混繊繊
維束の一方向集合体に抄造せずに、他は上記と同様にし
て複合シートを作成した。この複合シートは炭素繊維の
配列方向と平行な方向に少し曲げるとすぐに目割れをお
こし、扱い性が悪く、複合シートの炭素繊維の配列方向
と直交する方向の引張強度は4g/cm2と低く、交絡一体化
しないものであった。
For comparison, a composite sheet was prepared in the same manner as described above, except that short fibers of polyetherimide were not formed into a unidirectional aggregate of mixed fiber bundles. When this composite sheet was bent a little in a direction parallel to the carbon fiber array direction, it cracked immediately and was poor in handleability, and the tensile strength in the direction orthogonal to the carbon fiber array direction of the composite sheet was 4 g / cm 2 . It was low and was not confounded.

この複合シートを用いて、実施例11と同様にして作成
したコンポジット板は、曲げ強度171kg/mm2、曲げ弾性
率11.1ton/mm2を有しており、ボイドのないものであっ
た。
A composite plate produced using this composite sheet in the same manner as in Example 11 had a bending strength of 171 kg / mm 2 and a bending elastic modulus of 11.1 ton / mm 2 , and was void-free.

〔発明の効果〕〔The invention's effect〕

本発明の複合シートは、従来の同種のシートに比べ、
成形品への加工に際し、作業性に優れ、しかも同じ成形
条件で成形した場合にも、高強度な成形品を与える。換
言すれば、より広い成形条件で高強度な成形品(板等)
とすることができ、この成形品は広い用途で用いること
ができる。代表的な用途としては、コンポジットとし
て、航空機や人工衛生の駆体や部品、ボート、サーフボ
ード等が挙げられる。
The composite sheet of the present invention, compared to conventional sheets of the same type,
When processed into a molded product, it has excellent workability and, even when molded under the same molding conditions, gives a molded product with high strength. In other words, high strength molded products (plates etc.) under wider molding conditions.
The molded article can be used in a wide variety of applications. Typical applications include composites for aircraft and artificial hygiene vehicles and parts, boats, surfboards, and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の複合シートから得られるコンポジット
の断面図であり、第2図は従来の複合シートから得られ
るコンポジットの断面図である。
FIG. 1 is a sectional view of a composite obtained from the composite sheet of the present invention, and FIG. 2 is a sectional view of a composite obtained from a conventional composite sheet.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維、ガラス繊維、アラミド繊維、炭
化ケイ素繊維、ボロン繊維および金属繊維から選ばれる
強化用長繊維から成る平面状繊維集合体(A)と該繊維
集合体(A)の少くとも片面に配置された、熱可塑性繊
維から成る平面状繊維集合体(B)から成る複合シート
であって、該複合シート中の強化用長繊維の容量比率が
5〜80%であり、繊維集合体(B)中の熱可塑性繊維の
単繊維が繊維集合体(A)を構成する長繊維間に入り込
んで交絡一体化されていることを特徴とする繊維強化材
料用複合シート。
1. A planar fiber assembly (A) comprising reinforcing long fibers selected from carbon fiber, glass fiber, aramid fiber, silicon carbide fiber, boron fiber and metal fiber, and at least the fiber assembly (A). A composite sheet comprising flat fiber aggregates (B) composed of thermoplastic fibers, arranged on one side, wherein the volume ratio of the reinforcing long fibers in the composite sheet is 5 to 80%. A composite sheet for a fiber-reinforced material, characterized in that a single fiber of the thermoplastic fiber in the body (B) is interlaced and integrated between the long fibers constituting the fiber assembly (A).
【請求項2】前記繊維集合体(A)が強化用長繊維を実
質的に一方向に引き揃えることによって形成されている
請求項1記載の複合シート。
2. The composite sheet according to claim 1, wherein the fiber assembly (A) is formed by aligning reinforcing reinforcing fibers substantially in one direction.
【請求項3】前記繊維集合体(A)が強化用長繊維製織
物である請求項1記載の複合シート。
3. The composite sheet according to claim 1, wherein the fiber aggregate (A) is a reinforcing fiber woven fabric.
【請求項4】前記繊維集合体(B)が熱可塑性短繊維か
ら成る請求項1記載の複合シート。
4. The composite sheet according to claim 1, wherein the fiber assembly (B) is composed of thermoplastic short fibers.
【請求項5】前記繊維集合体(B)が1.2以上の自由度
を有する熱可塑性長繊維から成る、請求項1記載の複合
シート。
5. The composite sheet according to claim 1, wherein the fiber assembly (B) is composed of thermoplastic continuous fibers having a degree of freedom of 1.2 or more.
【請求項6】強化用長繊維から成る平面状繊維集合体
(A)の少くとも片面に1.2以上の自由度を有する熱可
塑性長繊維から成る平面状繊維集合体(B)を、繊維集
合体(A)と繊維集合体(B)の合計容量に対する強化
用長繊維の容量比率が5〜80%になるように積層し、該
積層体に対して繊維集合体(B)の面から流体噴射流を
当てて、平面状繊維集合体(A)を構成する長繊維間に
該熱可塑性繊維を入り込ませ、交絡一体化させることを
特徴とする繊維強化材料用複合シートの製造方法。
6. A planar fiber assembly (B) comprising thermoplastic long fibers having a degree of freedom of 1.2 or more on at least one side of a planar fiber assembly (A) comprising reinforcing long fibers, and (A) and the fiber assembly (B) are laminated so that the volume ratio of the reinforcing long fibers to the total capacity is 5 to 80%, and the fluid is ejected from the surface of the fiber assembly (B) to the laminate. A method for producing a composite sheet for a fiber-reinforced material, which comprises applying a flow to cause the thermoplastic fibers to enter between the long fibers constituting the planar fiber assembly (A) to be entangled and integrated.
【請求項7】強化用長繊維から成る平面状繊維集合体
(A)の少くとも片面に熱可塑性短繊維から成る平面状
繊維集合体(B)を、繊維集合体(A)と繊維集合体
(B)の合計容量に対する強化用長繊維の容量比率が5
〜80%になるように積層し、該積層体に対して繊維集合
体(B)の面から流体噴射流を当てて、平面状繊維集合
体(A)を構成する長繊維間に該熱可塑性繊維を入り込
ませ、交絡一体化させることを特徴とする繊維強化材料
用複合シートの製造方法。
7. A planar fiber assembly (A) composed of long reinforcing fibers, a planar fiber assembly (B) composed of thermoplastic short fibers on at least one side, a fiber assembly (A) and a fiber assembly. The volume ratio of the reinforcing long fibers to the total volume of (B) is 5
To 80%, and a fluid jet flow is applied to the laminated body from the surface of the fiber assembly (B) to form the thermoplastic resin between the long fibers constituting the planar fiber assembly (A). A method for producing a composite sheet for a fiber-reinforced material, which comprises incorporating fibers to be entangled and integrated.
JP1324078A 1988-12-15 1989-12-15 Composite sheet for fiber reinforced material and method for producing the same Expired - Lifetime JPH089164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1324078A JPH089164B2 (en) 1988-12-15 1989-12-15 Composite sheet for fiber reinforced material and method for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP31509188 1988-12-15
JP63-315091 1988-12-15
JP1-85756 1989-04-06
JP8575689 1989-04-06
JP1324078A JPH089164B2 (en) 1988-12-15 1989-12-15 Composite sheet for fiber reinforced material and method for producing the same
CA002010559A CA2010559C (en) 1988-12-15 1990-02-21 Composite sheet for fibrous reinforcing material

Publications (2)

Publication Number Publication Date
JPH0347713A JPH0347713A (en) 1991-02-28
JPH089164B2 true JPH089164B2 (en) 1996-01-31

Family

ID=27426803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1324078A Expired - Lifetime JPH089164B2 (en) 1988-12-15 1989-12-15 Composite sheet for fiber reinforced material and method for producing the same

Country Status (1)

Country Link
JP (1) JPH089164B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170114943A (en) * 2016-04-05 2017-10-16 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Steam turbine plant

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126902A (en) * 1992-10-19 1994-05-10 Toyobo Co Ltd Fiber reinforced composite material
JPH08224412A (en) * 1995-02-20 1996-09-03 Toray Ind Inc Nonwoven fabric, filter medium made from the same and these production
KR100402207B1 (en) * 1996-08-20 2004-03-26 도레이 가부시끼가이샤 Nonwoven fabrics and filter media consisting of them and methods for their preparation
JP2002046695A (en) * 2000-08-02 2002-02-12 Taiyo Kogyo Corp Resin finished fiber sheet for airship, manufacturing method therefor, and bonding method thereof
JP4324649B2 (en) * 2001-11-28 2009-09-02 福井県 Fiber reinforced thermoplastic resin sheet, structural material using the same, and method for producing fiber reinforced thermoplastic resin sheet
CN100344443C (en) * 2002-04-23 2007-10-24 东丽株式会社 Prepreg, process for producing the same, and molded article
AU2007100389A4 (en) * 2007-05-15 2007-06-07 Hayden Cox Pty Limited Parabolic Carbon Rail Surfboard
US20090309260A1 (en) 2008-06-12 2009-12-17 Kenneth Herbert Keuchel Method of delivering a thermoplastic and/or crosslinking resin to a composite laminate structure
EP2501544B1 (en) * 2009-11-16 2020-02-12 The LYCRA Company UK Limited Elastic fabric with adhesive
US9238347B2 (en) * 2010-06-11 2016-01-19 Ticona Llc Structural member formed from a solid lineal profile
JP6131779B2 (en) * 2013-08-27 2017-05-24 王子ホールディングス株式会社 Thermoplastic prepreg and method for producing thermoplastic prepreg
JP6461490B2 (en) * 2014-06-02 2019-01-30 株式会社Aikiリオテック Apparatus for producing a prepreg containing a thermoplastic resin
US10632718B2 (en) 2014-09-30 2020-04-28 The Boeing Company Filament network for a composite structure
WO2017094633A1 (en) 2015-12-01 2017-06-08 新日鉄住金マテリアルズ株式会社 In situ polymerization type thermoplastic prepreg, thermoplastic composite and method for producing same
JP6706743B2 (en) * 2016-01-29 2020-06-10 岡本株式会社 Method for producing carbon fiber reinforced plastic and carbon fiber reinforced plastic
JPWO2018021336A1 (en) * 2016-07-28 2018-08-02 住友ベークライト株式会社 COMPOSITE MOLDED ARTICLE, INTERMEDIATE FOR COMPOSITE MOLDED ARTICLE, METHOD FOR PRODUCING COMPOSITE MOLDED ARTICLE, AND INTERIOR MATERIAL FOR TRANSPORTATION EQUIPMENT
EP3508518B1 (en) 2016-08-31 2022-07-20 Teijin Limited Laminate and method for producing fiber-reinforced resin composite
JP7312548B2 (en) * 2017-12-19 2023-07-21 上野製薬株式会社 Thermoplastic prepregs and composites

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845678A (en) * 1971-10-14 1973-06-29
JPS52135670U (en) * 1976-03-31 1977-10-15
JPS56112575A (en) * 1980-02-07 1981-09-04 Dynic Corp Production of composite sheet like structure
JPS6485756A (en) * 1987-09-29 1989-03-30 Asahi Glass Co Ltd Manufacture of safety glass
JPH01111053A (en) * 1987-10-20 1989-04-27 Mitsubishi Uka Badische Co Ltd Production of fibrous laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170114943A (en) * 2016-04-05 2017-10-16 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Steam turbine plant

Also Published As

Publication number Publication date
JPH0347713A (en) 1991-02-28

Similar Documents

Publication Publication Date Title
US5286553A (en) Composite sheet for fibrous reinforcing material
JPH089164B2 (en) Composite sheet for fiber reinforced material and method for producing the same
CA2333151C (en) Complex fiber reinforced material, preform, and method of producing fiber reinforced plastic
US4892780A (en) Fiber reinforcement for resin composites
JP3991439B2 (en) Fiber reinforced plastic and method for molding fiber reinforced plastic
AU2008236152B2 (en) Polypropylene fiber, method of producing the same and utilization of the same
JPH0742049A (en) Preparation of knitted fabric and fiber-reinforced laminate for using preparation of fiber-reinforced composite material and laminate
JP2001064406A (en) Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
JP2011157524A (en) Fiber-reinforced thermoplastic plastic, and method for manufacturing the same
JP2002227067A (en) Reinforcing multiaxial stitched fabric and preform
JPH0130934B2 (en)
JP5096203B2 (en) Method for producing polypropylene fiber having excellent heat resistance and strength
JPH0135101B2 (en)
CA2010559C (en) Composite sheet for fibrous reinforcing material
JP4834688B2 (en) Polypropylene fiber with excellent heat resistance
JPH02255735A (en) Fiber reinforced composite sheet
JP2876028B2 (en) Unidirectional preform sheet and method of manufacturing the same
KR930011632B1 (en) Composite sheet for fiber-rein forced material and manufacturing process therefor
JPH03234851A (en) Reinforcing stable fiber sheet
JPH02308824A (en) Material for thermoplastic composite
JP2720489B2 (en) Precursors for thermoplastic composites
KO et al. 3-D braided commingled carbon fiber/PEEK composites
JP3314826B2 (en) Thermoplastic composite sheet
JPH0455436A (en) Polyester conjugate fiber material
JP2926736B2 (en) Multi-layer thermoplastic composite molding