JP2720489B2 - Precursors for thermoplastic composites - Google Patents

Precursors for thermoplastic composites

Info

Publication number
JP2720489B2
JP2720489B2 JP63333003A JP33300388A JP2720489B2 JP 2720489 B2 JP2720489 B2 JP 2720489B2 JP 63333003 A JP63333003 A JP 63333003A JP 33300388 A JP33300388 A JP 33300388A JP 2720489 B2 JP2720489 B2 JP 2720489B2
Authority
JP
Japan
Prior art keywords
fiber
continuous
fibers
heat shrinkage
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63333003A
Other languages
Japanese (ja)
Other versions
JPH02173122A (en
Inventor
俊明 北洞
良誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP63333003A priority Critical patent/JP2720489B2/en
Priority to US07/424,402 priority patent/US5989710A/en
Priority to CA002001142A priority patent/CA2001142C/en
Priority to DE3935264A priority patent/DE3935264B4/en
Publication of JPH02173122A publication Critical patent/JPH02173122A/en
Application granted granted Critical
Publication of JP2720489B2 publication Critical patent/JP2720489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、補強用連続繊維と熱可塑性有機連続繊維
とを混繊した糸条体から構成される、熱可塑性コンポジ
ットの成形用の前駆体に関するものである。
Description: TECHNICAL FIELD The present invention relates to a precursor for molding a thermoplastic composite, which comprises a filament obtained by mixing continuous reinforcing fibers and continuous thermoplastic organic fibers. It is about.

[従来の技術および発明が解決しようとする課題] 補強用連続繊維と熱可塑性有機連続繊維とを混合した
熱可塑性コンポジット用前駆体は、特開昭60−209034号
公報および特開昭61−130345号公報などに開示されてい
るように、通常熱可塑性有機連続繊維として、いわゆる
延伸糸が使用されており、これらの従来の前駆体は、十
分な糸強力および適度な伸度を有している。
[Problems to be Solved by the Prior Art and the Invention] A thermoplastic composite precursor obtained by mixing a continuous reinforcing fiber and a thermoplastic organic continuous fiber is disclosed in JP-A-60-209034 and JP-A-61-130345. As disclosed in, for example, Japanese Unexamined Patent Application Publication No. H10-157, a so-called drawn yarn is usually used as a thermoplastic organic continuous fiber, and these conventional precursors have a sufficient yarn strength and an appropriate elongation. .

しかしながら、これらの従来の前駆体を用いて成形し
た場合、長手方向のマトリックス量の斑、含浸不足およ
び含浸斑などの欠点を生じ、得られた成形体は強靭性に
欠けるという問題があった。また、表面状態の優れた成
形体を得ることができないという問題もあった。
However, when molding is performed using these conventional precursors, defects such as unevenness of the matrix amount in the longitudinal direction, insufficient impregnation and impregnation are caused, and there is a problem that the obtained molded body lacks toughness. In addition, there is a problem that a molded body having an excellent surface state cannot be obtained.

この発明の目的は、軽量かつ強靭で、表面平滑性にも
優れた熱可塑性コンポジットの成形に有用な熱可塑性コ
ンポジット用前駆体を提供することにある。
An object of the present invention is to provide a thermoplastic composite precursor useful for molding a thermoplastic composite that is lightweight, tough, and excellent in surface smoothness.

[課題を解決するための手段] 本発明者らは、上記問題を解決するため鋭意研究を重
ねた結果、上記問題は成形時における補強用連続繊維と
熱可塑性有機連続繊維との熱収縮挙動の差が起因するこ
とを見出し、この発明をなすに至ったものである。
[Means for Solving the Problems] The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, the above-mentioned problems are caused by the heat shrinkage behavior between the reinforcing continuous fibers and the thermoplastic organic continuous fibers during molding. The inventors have found that a difference is caused, and have accomplished the present invention.

すなわち、この発明は、補強用連続繊維と、熱可塑性
有機連続繊維とを混繊し、以下の式で定義される混繊度
を10%以上とし、JIS−L−1013の乾熱収縮率B法によ
り測定される昇温最高熱収縮率を15%以下とした糸条体
から構成されていることを特徴としている。
That is, the present invention relates to a method in which a continuous fiber for reinforcement and a continuous thermoplastic organic fiber are blended, and the degree of blending defined by the following formula is set to 10% or more, and the dry heat shrinkage B method of JIS-L-1013 It is characterized by comprising a filament having a maximum temperature rising thermal shrinkage of 15% or less as measured by the following method.

N:補強用連続繊維の総本数 NcX:補強用連続繊維がいくつかの群(グループ)に分割
されているときのそのグループの個数 X:群の中における特定な1個の群内のフィラメント数 [発明の作用効果] 補強用連続繊維と熱可塑性有機連続繊維とが混繊され
た熱可塑性コンポジット用前駆体は、ヒートプレス成形
等を施すことにより、複雑な曲面の成形品を製造するこ
とができる。また、プルトルージョン法、フィラメント
ワインディング法などにも用いられている。
N: Total number of continuous reinforcing fibers NcX: Number of groups when reinforcing continuous fibers are divided into groups (groups) X: Number of filaments in one specific group in group [Effects of the Invention] A thermoplastic composite precursor in which continuous reinforcing fibers and thermoplastic organic continuous fibers are mixed can be subjected to heat press molding or the like to produce a molded article having a complicated curved surface. it can. It is also used in a pultrusion method, a filament winding method and the like.

いずれの製造工程においても、熱可塑性コンポジット
前駆体を加熱し、熱可塑性有機連続繊維を溶融させて補
強用連続繊維に十分含浸させる必要がある。その際、補
強用連続繊維と熱可塑性有機連続繊維との熱挙動、特に
熱収縮挙動に差がある場合、溶融直前または溶融時に、
両繊維が分離あるいは切断(溶断)を生じ、良好な含浸
を得ることができない。
In any of the production steps, it is necessary to heat the thermoplastic composite precursor to melt the thermoplastic organic continuous fibers and sufficiently impregnate the reinforcing continuous fibers. At that time, when there is a difference in the thermal behavior of the continuous fiber for reinforcement and the thermoplastic organic continuous fiber, especially when there is a difference in heat shrinkage behavior, immediately before or at the time of melting,
Both fibers are separated or cut (fused), and good impregnation cannot be obtained.

この発明では、昇温最高熱収縮率が15%以下の糸条体
から構成されるため、補強用連続繊維と熱可塑性有機連
続繊維との混繊の状態が乱れることなく溶融でき、その
結果補強用連続繊維に良好な状態で樹脂を含浸すること
ができる。また、補強用連続繊維自体の昇温最高熱収縮
率と熱可塑性有機連続繊維自体の昇温最高熱収縮率との
差は小さいことが望ましい。補強用連続繊維として、ガ
ラス繊維やカーボン繊維などの昇温最高熱収縮率が小さ
い繊維を用いた場合には、熱可塑性有機連続繊維の昇温
最高熱収縮率を15%以下にすることが必要になる。
According to the present invention, since the yarn is constituted by a filament having a maximum temperature rising thermal shrinkage of 15% or less, it is possible to melt the continuous fiber for reinforcement and the thermoplastic organic continuous fiber without disturbing the state. The continuous fiber for use can be impregnated with a resin in a favorable state. Further, it is desirable that the difference between the maximum heat shrinkage of the continuous reinforcing fiber itself and the maximum heat shrinkage of the thermoplastic organic continuous fiber itself is small. In the case of using a fiber with a low maximum temperature rise of heat shrinkage, such as glass fiber or carbon fiber, as the continuous fiber for reinforcement, it is necessary to set the maximum heat rise of the thermoplastic organic continuous fiber to 15% or less. become.

この明細書で、昇温最高熱収縮率とは、JIS−L−101
3の乾熱収縮率B法により測定される値である。すなわ
ち、試料を加熱する温度を変化させて、加熱温度に対し
て乾熱収縮率をプロットし、最高値を昇温最高熱収縮率
とする。JIS−L−1013に規定されている乾熱収縮率B
法は、以下のような方法である。なお、加熱温度は±1
℃の範囲内に制御する。
In this specification, the maximum temperature-rising heat shrinkage is defined as JIS-L-101.
This is a value measured by the dry heat shrinkage B method of 3. That is, the temperature at which the sample is heated is changed, the dry heat shrinkage rate is plotted against the heating temperature, and the highest value is taken as the temperature-rise maximum heat shrinkage rate. Dry heat shrinkage rate B specified in JIS-L-1013
The method is as follows. The heating temperature is ± 1
Control within ° C.

試料に初荷重をかけ、正しく500mmを計って2点を打
ち、初荷重をとり、これを所定の加熱温度の乾燥機中に
吊下げ、30分間放置後取出し、室温まで冷却した後、再
び初荷重をかけ、2点間の長さを計り、次の式により算
出する。試験回数は5回とし、その平均値で表わす。
Apply an initial load to the sample, measure 500 mm correctly, hit two points, take the initial load, suspend it in a dryer at a predetermined heating temperature, leave it for 30 minutes, remove it, cool it to room temperature, A load is applied, the length between the two points is measured, and calculated by the following equation. The number of tests is five, and the average value is shown.

ここでlは2点間の長さ(mm)を示す。 Here, 1 indicates the length (mm) between two points.

一般に、結晶化度が15%以下の熱可塑性有機連続繊
維、たとえばポリエチレンテレフタレート繊維の場合に
は、約100℃付近に昇温最高熱収縮率を有する場合が多
い。一方、結晶化度が15%を越える場合には、繊維の融
点付近に昇温最高熱収縮率を有する場合が多い。
Generally, in the case of a thermoplastic organic continuous fiber having a crystallinity of 15% or less, for example, a polyethylene terephthalate fiber, the temperature rise maximum heat shrinkage rate is often around 100 ° C. in many cases. On the other hand, when the degree of crystallinity exceeds 15%, the fiber often has a maximum temperature-rise heat shrinkage near the melting point of the fiber.

昇温最高熱収縮率が15%を越えると、加熱、溶融時
に、補強用連続繊維と熱可塑性有機連続繊維との間にた
るみなどを生じ、両繊維の混合状態が悪くなり、含浸性
の低い、含浸斑のある成形品しか得られない。
If the maximum temperature rise heat shrinkage exceeds 15%, during heating and melting, slack will occur between the reinforcing continuous fiber and the thermoplastic organic continuous fiber, and the mixing state of both fibers will deteriorate, resulting in low impregnation. However, only molded articles having impregnation spots can be obtained.

補強用連続繊維と熱可塑性有機連続繊維とを混繊する
手段としては、気体を吹付ける方法、電気開繊法、ラッ
ピング法など、いずれの手段でもよいが、その混繊度は
10%以上であることが好ましい。この明細書でいう混繊
度は、次式で定義されるものである。
As a means for blending the continuous fiber for reinforcement and the thermoplastic organic continuous fiber, any method such as a method of blowing gas, an electric fiber opening method, and a lapping method may be used.
It is preferably at least 10%. The degree of fineness referred to in this specification is defined by the following equation.

ここでNは補強用連続繊維の総本数を示し、NcXは補
強用連続繊維がいくつかの群(グループ)に分割されて
いるときのそのグループの個数を示し、Xは群の中にお
ける特定な1個の群内のフィラメント数を示している。
上記の式において、100×(N−X)/(N−1)は、
混繊状態を意味し、Xが小さいほど混繊状態が良好であ
る。また、NcX/N/Xは、重みである。
Here, N indicates the total number of reinforcing continuous fibers, NcX indicates the number of groups when the reinforcing continuous fibers are divided into several groups, and X indicates a specific number in the group. The number of filaments in one group is shown.
In the above equation, 100 × (N−X) / (N−1) is
The mixed state means that the smaller X is, the better the mixed state is. NcX / N / X is a weight.

混繊度が10%以上であれば、溶融時の補強用連続繊維
中への含浸が短時間に行なわれる。これに対して、混繊
度が10%未満になると、含浸に時間がかかり不経済であ
り、また含浸が不十分になるため、成形品における機械
的特性が低下する。
When the degree of fiber mixture is 10% or more, impregnation into the continuous reinforcing fibers during melting is performed in a short time. On the other hand, when the degree of fiber mixture is less than 10%, the impregnation takes time and is uneconomical, and the impregnation becomes insufficient.

この発明の熱可塑性コンポジット用前駆体は、糸条体
そのものであってもよいし、糸条体から構成した帯状、
編物、織物、積層体などの形態であってもよい。特に好
ましくは、多軸に積層一体化した布帛状の前駆体であ
る。多軸に積層一体化とは、互いに異なった角度に1軸
配向して引き揃えられた糸の複数層を積層し一体化する
ことであり、たとえば2軸に直交した糸の層を積層した
ものや、0゜/45゜/90゜/−45゜の4つの配向した糸の
層を積層したものなどが挙げられる。多軸に積層一体化
した布帛状の前駆体を用いれば、種々の曲面を有する成
形品を成形する場合にも変形が容易となる。
The precursor for the thermoplastic composite of the present invention may be a filament itself, or a belt-shaped filament,
It may be in the form of a knit, a woven fabric, a laminate, or the like. Particularly preferably, it is a cloth-like precursor that is multiaxially laminated and integrated. Multiaxially laminating means laminating and unifying a plurality of layers of yarn that are uniaxially oriented and aligned at different angles from each other, for example, laminating yarn layers orthogonal to two axes. And a stack of four oriented yarn layers of 0 ° / 45 ° / 90 ° / −45 °. The use of a fabric-like precursor that is multiaxially laminated and integrated facilitates deformation even when molding molded products having various curved surfaces.

この明細書において、糸条体とは、多数本の連続した
単糸から構成された糸を意味する。多軸に積層一体化し
た布帛状のものとしては、編物、あるいは1軸配向糸状
層が多軸をなすように積層一体化された編布などが挙げ
られる。布帛状の前駆体は、糸が直線的に配列している
ため、平織物等に比べてそれだけ有効に補強効果を発揮
することができる。また前駆体に深絞り加工等を行なう
場合、層間の糸軸が容易に変角したり、層内の糸間隔を
拡げる自由度があるため、賦形加工が容易であるという
長所を有する。
In this specification, a thread means a yarn composed of a large number of continuous single yarns. Examples of the multiaxially laminated fabric include a knitted fabric and a knitted fabric laminated and integrated so that the uniaxially oriented thread-like layer forms a multiaxial structure. Since the fabric-like precursor has the yarns arranged linearly, the reinforcing effect can be more effectively exhibited as compared with a plain fabric or the like. Further, when deep drawing is performed on the precursor, there is an advantage that shaping is easy because the yarn axis between the layers is easily deflected or the interval between the yarns in the layer is increased.

この発明で用いられる補強用連続繊維の典型例として
は、カーボン繊維、ガラス繊維、およびアラミド繊維な
どが挙げられる。
Typical examples of continuous reinforcing fibers used in the present invention include carbon fibers, glass fibers, and aramid fibers.

この発明で用いられる熱可塑性有機連続繊維として
は、ポリエチレンやポリプロピレンなどのポリオレフィ
ン系繊維、ポリエチレンテレフタレートやポリブチレン
テレフタレートなどのポリエステル繊維、ナイロン6や
ナイロン66などのポリアミド繊維、ポリフェニレンサル
ファイド繊維、ポリエーテルエーテルケトン繊維、ポリ
エーテルケトン繊維、ポリエーテルケトンケトン繊維な
どが挙げられる。しかしながら、この発明で用いられる
熱可塑性有機連続繊維は上記の繊維に限定されるわけで
はない。
The thermoplastic organic continuous fibers used in the present invention include polyolefin fibers such as polyethylene and polypropylene, polyester fibers such as polyethylene terephthalate and polybutylene terephthalate, polyamide fibers such as nylon 6 and nylon 66, polyphenylene sulfide fibers, and polyether ether. Ketone fibers, polyetherketone fibers, polyetherketoneketone fibers, and the like are included. However, the thermoplastic organic continuous fibers used in the present invention are not limited to the above fibers.

この発明において、補強用連続繊維と熱可塑性有機連
続繊維との混繊比率は、特に限定されるわけではない
が、補強用連続繊維の体積分率(Vf)で20%〜80%の範
囲が好ましい。
In the present invention, the blending ratio of the continuous reinforcing fiber and the thermoplastic organic continuous fiber is not particularly limited, but the volume fraction (Vf) of the continuous reinforcing fiber is in the range of 20% to 80%. preferable.

また、熱可塑性有機連続繊維としては、結晶化度が10
%以下である結晶高分子が望ましい。ここで結晶化度
は、たとえば浮沈法で密度を測定し、既知の結晶部密度
および非晶部密度から算出することができる。ポリエチ
レンテレフタレート繊維の場合、CCl4−C6H4(CH2
を用いて浮沈法で密度を測定し、結晶部の密度を1.445g
/cm3とし、非晶部の密度を1.335g/cm3として、体積分率
を算出して用いる。熱可塑性有機連続繊維の結晶化度が
10%を越えると、溶融時の溶融エネルギが大きくなり、
熱量を多く与える必要が生じるので不経済となる。
Further, as a thermoplastic organic continuous fiber, the degree of crystallinity is 10
% Or less is desirable. Here, the degree of crystallinity can be calculated from the known crystal part density and amorphous part density by measuring the density by, for example, a floating and sedimentation method. In the case of polyethylene terephthalate fiber, CCl 4 -C 6 H 4 (CH 2 ) 2
Measure the density by floatation method using
/ cm 3 and the density of the amorphous part is 1.335 g / cm 3 , and the volume fraction is calculated and used. Crystallinity of thermoplastic organic continuous fiber
If it exceeds 10%, the melting energy during melting increases,
It becomes uneconomical because a large amount of heat needs to be given.

[実施例] 実施例1 単糸の直径12μmの表面処理がなされているEガラス
繊維の5250デニールの連続糸1本と、単糸の直径18μm
のポリエチレンテレフタレート繊維の2270デニールの連
続糸1本とをタスラン法で混繊し、混繊糸とした。な
お、Eガラス繊維の体積分率(Vf)は60%であった。混
繊条件は、ポリエチレンテレフタレート繊維をガラス繊
維に対して0.3%のオーバフィードで供給し、流体圧力
は5kg/cm2、混繊加工速度は100m/minであった。得られ
た混繊糸を引き揃えて束ね金型に入れ、265℃に加熱
し、265℃、55kg/cm2で、2分間加圧し、加圧状態で5
分後に40℃になるように急冷した。得られた成形体は、
幅15mm、長さ120mm、厚さ3mmの一方向強化された平板で
あった。得られた平板について曲げ特性、層間剥離強
度、アイゾット衝撃強度および溶融エネルギを測定し、
表1に示した。曲げ特性、アイゾット衝撃強度および層
間剥離強度は、それぞれJIS−K−7055、JIS−K−7110
およびJIS−K−7057に準拠して測定した。溶融エネル
ギは、示差走査熱量計(理学電機製DSC−10A)を用い、
昇温速度20℃/分、試料量10mgでアルゴン気流下に測定
したΔH(cal/g)の値を用いた。
EXAMPLES Example 1 One 5250-denier continuous yarn of E glass fiber having a surface treatment of a single yarn having a diameter of 12 μm and a single yarn having a diameter of 18 μm
And a continuous yarn of 2270 denier of polyethylene terephthalate fiber was mixed by the Taslan method to obtain a mixed fiber. The volume fraction (Vf) of the E glass fiber was 60%. As for the fiber mixing conditions, polyethylene terephthalate fiber was supplied with 0.3% overfeed to the glass fiber, the fluid pressure was 5 kg / cm 2 , and the fiber mixing speed was 100 m / min. The obtained mixed fiber yarns are aligned and put into a bundling mold, heated to 265 ° C., and pressurized at 265 ° C. and 55 kg / cm 2 for 2 minutes.
After a minute, the mixture was rapidly cooled to 40 ° C. The obtained molded body is
It was a unidirectionally reinforced flat plate having a width of 15 mm, a length of 120 mm, and a thickness of 3 mm. The bending properties, delamination strength, Izod impact strength and melting energy of the obtained flat plate were measured,
The results are shown in Table 1. Bending characteristics, Izod impact strength and delamination strength are JIS-K-7555 and JIS-K-7110, respectively.
And JIS-K-7057. Melting energy was measured using a differential scanning calorimeter (DSC-10A manufactured by Rigaku Denki).
The value of ΔH (cal / g) measured under a stream of argon at a temperature rising rate of 20 ° C./min and a sample amount of 10 mg was used.

実施例2 ポリエチレンテレフタレート繊維の昇温最高熱収縮率
が15%である以外は、実施例1と同様にして一方向強化
の平板を作製し、特性を測定した。結果を表1に併せて
示す。
Example 2 A one-way reinforced flat plate was prepared in the same manner as in Example 1 except that the maximum temperature-rise heat shrinkage of the polyethylene terephthalate fiber was 15%, and the characteristics were measured. The results are shown in Table 1.

比較例1 ポリエチレンテレフタレート繊維の昇温最高熱収縮率
が25%である以外は、実施例1と同様の方法で、一方向
強化の平板を作製し、特性を測定した。結果を表1に併
せて示す。
Comparative Example 1 A one-way reinforced flat plate was prepared in the same manner as in Example 1 except that the polyethylene terephthalate fiber had a maximum temperature-rise heat shrinkage of 25%, and the properties were measured. The results are shown in Table 1.

比較例2 前駆体の混繊度が5%である以外は、実施例1と同様
にして一方向強化の平板を作製し、特性を測定した。結
果を表1に併せて示す。
Comparative Example 2 One-way reinforced flat plates were prepared in the same manner as in Example 1 except that the degree of fiber mixture of the precursor was 5%, and the characteristics were measured. The results are shown in Table 1.

実施例3 ポリエチレンテレフタレート繊維の結晶化度が15%で
ある以外は、実施例1と同様にして一方向強化の平板を
作製し、特性を測定した。結果を表1に併せて示す。
Example 3 Except that the degree of crystallinity of the polyethylene terephthalate fiber was 15%, a unidirectionally reinforced flat plate was produced in the same manner as in Example 1, and the characteristics were measured. The results are shown in Table 1.

実施例4 実施例1と同様の方法で得られた混繊糸を1層に引き
揃えて、250℃、30kg/cm2で2分間プレスし、一方向プ
リプレグを作製した。この一方向プリプレグを0゜,90
゜の方向に交互に26枚積層して、100mm×100mmの大きさ
に切り(目付6g/m2)、100mm×100mmの金型の中で265℃
で55kg/cm2で2分間加圧を行ない、加圧状態で5分後に
40℃になるように急冷し、幅100mm、長さ100mm、厚さ3m
mの2軸方向強化積層板を作製した。この積層板の特性
を測定し、表1に併せて示す。なお、実施例4〜6にお
いて曲げ特性は0゜方向について測定した。
Example 4 The mixed fiber obtained in the same manner as in Example 1 was aligned in one layer and pressed at 250 ° C. and 30 kg / cm 2 for 2 minutes to produce a unidirectional prepreg. This one-way prepreg is 0 ゜, 90
In ° direction by laminating 26 sheets alternately, cut to a size of 100 mm × 100 mm (basis weight 6g / m 2), 265 ℃ in mold 100 mm × 100 mm
And pressurize at 55kg / cm 2 for 2 minutes, and after 5 minutes
Rapidly cooled to 40 ° C, width 100mm, length 100mm, thickness 3m
m was prepared. The properties of this laminate were measured and are shown in Table 1. In Examples 4 to 6, the bending characteristics were measured in the 0 ° direction.

実施例5 実施例4で得られた一方向プリプレグを0゜/45゜/90
゜/−45゜の4軸に交互に26枚積層して成形した4軸強
化積層板を作製した。この4軸強化積層板の特性を測定
し、表1に併せて示した。
Example 5 The unidirectional prepreg obtained in Example 4 was subjected to 0 ° / 45 ° / 90
A four-axis reinforced laminated board was formed by alternately laminating 26 sheets on four axes of {/ -45}. The properties of the four-axis reinforced laminate were measured and are shown in Table 1.

実施例6 実施例1と同様の方法で得られた混繊糸を平織物にし
(目付230.8g/m2)、その織物を26層重ねて実施例4と
同様の方法で織物強化平板を得た。得られた平板の特性
を測定し、表1に併せて示した。
Example 6 The mixed fiber obtained in the same manner as in Example 1 was made into a plain woven fabric (basis weight: 230.8 g / m 2 ), and the woven fabric was laminated in 26 layers to obtain a reinforced slab in the same manner as in Example 4. Was. The properties of the obtained flat plate were measured and are shown in Table 1.

表1から明らかなように、この発明に従う実施例1お
よび2は、比較例1および2に比べ、いずれも優れた機
械的強度を示し、強靭性において優れていることが明ら
かとなった。また、成形品の表面の平滑性においても、
実施例1および2は比較例1および2に比べ優れてい
た。
As is clear from Table 1, Examples 1 and 2 according to the present invention exhibited superior mechanical strength and superior toughness as compared with Comparative Examples 1 and 2. In addition, in terms of the smoothness of the surface of the molded product,
Examples 1 and 2 were superior to Comparative Examples 1 and 2.

結晶化度が15%と高い熱可塑性有機連続繊維を用いた
実施例3では、溶融エネルギが実施例1および2に比べ
高くなることが確認された。
In Example 3 using a thermoplastic organic continuous fiber having a high crystallinity of 15%, it was confirmed that the melting energy was higher than in Examples 1 and 2.

実施例4〜6について、シート状物を270℃、5分間
予熱し、3cmの半径を持つ球面金型で、265℃、55kg/cm2
で2分間加圧を行ない、加圧状態で5分後に40℃になる
よう急冷し成形加工を試みた。この結果、実施例4およ
び5は実施例6に比べて半径3cmの球面がきれいに成形
された。このことから、平織物の前駆体よりも、多軸に
積層一体化した布帛状の前駆体を用いた方が、複雑な形
状の成形性においては優れていることが確認された。
For Examples 4 to 6, the sheet was preheated at 270 ° C. for 5 minutes, and heated in a spherical mold having a radius of 3 cm at 265 ° C. and 55 kg / cm 2.
And pressurized to 40 ° C. after 5 minutes in a pressurized state to attempt molding. As a result, in Examples 4 and 5, a spherical surface having a radius of 3 cm was formed more clearly than in Example 6. From this, it was confirmed that the use of the precursor in the form of a fabric laminated and integrated multiaxially was superior to the precursor of the plain fabric in the formability of a complicated shape.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】補強用連続繊維と熱可塑性有機連続繊維と
を混繊し、以下の式で定義される混繊度を10%以上と
し、 N:補強用連続繊維の総本数 NcX:補強用連続繊維がいくつかの群(グループ)に分割
されているときのそのグループの個数 X:群の中における特定な1個の群内のフィラメント数 JIS−L−1013の乾熱収縮率B法により測定される昇温
最高熱収縮率を15%以下とした糸条体から構成されてい
ることを特徴とする、熱可塑性コンポジット用前駆体。
Claims: 1. A continuous fiber for reinforcement and a continuous organic thermoplastic fiber are blended, and the degree of blending defined by the following formula is 10% or more; N: Total number of continuous reinforcing fibers NcX: Number of groups when reinforcing continuous fibers are divided into groups (groups) X: Number of filaments in one specific group in group A thermoplastic composite precursor characterized by comprising a filament having a maximum temperature-rise heat shrinkage of 15% or less as measured by a dry heat shrinkage B method of JIS-L-1013.
JP63333003A 1988-10-21 1988-12-27 Precursors for thermoplastic composites Expired - Fee Related JP2720489B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63333003A JP2720489B2 (en) 1988-12-27 1988-12-27 Precursors for thermoplastic composites
US07/424,402 US5989710A (en) 1988-10-21 1989-10-20 Molding material for thermoplastic composites
CA002001142A CA2001142C (en) 1988-10-21 1989-10-20 Molding material for thermoplastic composites
DE3935264A DE3935264B4 (en) 1988-10-21 1989-10-23 Molding composition for thermoplastic composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63333003A JP2720489B2 (en) 1988-12-27 1988-12-27 Precursors for thermoplastic composites

Publications (2)

Publication Number Publication Date
JPH02173122A JPH02173122A (en) 1990-07-04
JP2720489B2 true JP2720489B2 (en) 1998-03-04

Family

ID=18261202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63333003A Expired - Fee Related JP2720489B2 (en) 1988-10-21 1988-12-27 Precursors for thermoplastic composites

Country Status (1)

Country Link
JP (1) JP2720489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067926A (en) * 2013-09-30 2015-04-13 旭化成ケミカルズ株式会社 Composite yarn

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6297310B2 (en) * 2013-11-20 2018-03-20 旭化成株式会社 braid
JP6372996B2 (en) * 2013-11-20 2018-08-15 旭化成株式会社 Method for manufacturing composite material molded body
JP6297311B2 (en) * 2013-11-20 2018-03-20 旭化成株式会社 Cloth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067926A (en) * 2013-09-30 2015-04-13 旭化成ケミカルズ株式会社 Composite yarn

Also Published As

Publication number Publication date
JPH02173122A (en) 1990-07-04

Similar Documents

Publication Publication Date Title
US5085928A (en) Fiber reinforced composites comprising uni-directional fiber layers and aramid spunlaced fabric layers
US4770926A (en) Hybrid fiber-reinforced plastic composite material
US4741873A (en) Method for forming rigid composite preforms
EP1145841B1 (en) Method of fabrication of a multi-directional reinforcing fiber base for composite materials
US5364686A (en) Manufacture of a three-dimensionally shaped textile material and use thereof
US5688594A (en) Hybrid yarn
US3691000A (en) Glass fiber reinforced composite article exhibiting enhanced longitudinal tensile and compressive moduli
KR100570229B1 (en) Carbon fiber fabrics, fiber-reinforced plastic molded articles using the fabrics, and methods of making the molded articles
KR100230025B1 (en) Fiber reinforced porous sheets
JPH0130934B2 (en)
JP2720489B2 (en) Precursors for thermoplastic composites
JP2007092232A (en) Preform and method for producing preform
JPH09500840A (en) High thermal conductivity non-metallic honeycomb with laminated cell walls
JPH04353525A (en) Blended yarn for composite and formed product thereof
JP2876028B2 (en) Unidirectional preform sheet and method of manufacturing the same
JPH02308824A (en) Material for thermoplastic composite
JP2697008B2 (en) Molding method of fiber reinforced thermoplastic composite
JP3328736B2 (en) Three-dimensional integrated reinforced structural member
KR960005469B1 (en) Conjugated for strand molding
JP6783882B2 (en) Manufacturing method of fiber reinforced resin molded body
JP6783883B2 (en) Base plate for obtaining fiber reinforced plastic molded body
JP2926736B2 (en) Multi-layer thermoplastic composite molding
JPH03199235A (en) Fiber reinforced resin molded article
JPH0569504A (en) Thermoplastic fiber reinforced composite formed body
JP2605384B2 (en) Thermoplastic composite sheet for molding and molded article thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees