JPH0888941A - Determining device of quality of storage battery for uninterruptible power supply unit - Google Patents

Determining device of quality of storage battery for uninterruptible power supply unit

Info

Publication number
JPH0888941A
JPH0888941A JP6221185A JP22118594A JPH0888941A JP H0888941 A JPH0888941 A JP H0888941A JP 6221185 A JP6221185 A JP 6221185A JP 22118594 A JP22118594 A JP 22118594A JP H0888941 A JPH0888941 A JP H0888941A
Authority
JP
Japan
Prior art keywords
storage battery
circuit
power
power supply
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6221185A
Other languages
Japanese (ja)
Inventor
Jun Hirose
順 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6221185A priority Critical patent/JPH0888941A/en
Publication of JPH0888941A publication Critical patent/JPH0888941A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To continue the operation of an uninterruptible power supply unit even when a defective cell exists mixedly in a series storage battery for backup and to detect the defective cell without interrupting power supply to a load. CONSTITUTION: An alternating current IAC flowing through a series storage battery 6 during a floating charge is extracted through the intermediary of an alternating current detector 30 and a band-pass type filter 33, while an AC voltage VAC impressed on the series storage battery 6 is extracted through the intermediary of a series capacitor 31, an AC voltage detector 32 and a band-pass type filter 34, and an impedance computation circuit 35 determines an internal impedance by the computation of VAC÷IAC. An alarm is issued when the value of this impedance exceeds a prescribed value. In another way, the voltage of each cell constituting the series storage battery 6 is detected with the cells switched over and a discrete impedance computation circuit calculates the internal impedance of each cell. In still another way, the cells constituting the series storage battery 6 are divided into a plurality of cell groups and a group impedance computation circuit calculates the internal impedance of each cell group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、無停電電源装置を構
成している蓄電池の良否を、この無停電電源装置を運転
しながら判定することができる無停電電源装置用蓄電池
の良否判定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a storage battery quality determination device for an uninterruptible power supply, which can determine the quality of a storage battery constituting the uninterruptible power supply while operating the uninterruptible power supply. .

【0002】[0002]

【従来の技術】コンピュータ等の電子機器は24時間連
続して運転し、僅かの時間でも電力の供給が中断するこ
とは許されない。そこで無停電電源装置を介して電力を
供給する。図4は無停電電源装置の従来例を示した回路
図である。図4の従来例回路において、第1電力変換器
としての充電器3,第2電力変換器としてのインバータ
4,充電器3の直流側とインバータ4の直流側とを結合
する直流中間回路5,及びこの直流中間回路5に接続し
ている直列蓄電池6とで無停電電源装置を構成し、交流
電源2と負荷7との間に、遮断器8を介してこの無停電
電源装置を設置する。充電器3はインバータ4へ直流電
力を供給すると共に直列蓄電池6を浮動充電し、当該直
列蓄電池6を常に充電完了状態にしておく。よって交流
電源2が事故などで突然停電しても、この直列蓄電池6
が前記交流電源2の代わりにインバータ4へ直流電力を
供給するので、このインバータ4に接続している負荷7
は停電することなく運転を継続することができる。
2. Description of the Related Art Electronic devices such as computers operate continuously for 24 hours, and it is not allowed to stop the supply of electric power even for a short time. Therefore, power is supplied through the uninterruptible power supply. FIG. 4 is a circuit diagram showing a conventional example of an uninterruptible power supply. In the conventional circuit of FIG. 4, a charger as a first power converter 3, an inverter as a second power converter 4, a DC intermediate circuit 5, which connects the DC side of the charger 3 and the DC side of the inverter 4, Further, the series storage battery 6 connected to the DC intermediate circuit 5 constitutes an uninterruptible power supply device, and the uninterruptible power supply device is installed between the AC power supply 2 and the load 7 via the circuit breaker 8. The charger 3 supplies direct-current power to the inverter 4 and floatingly charges the series storage battery 6 so that the series storage battery 6 is always in a charging completed state. Therefore, even if the AC power supply 2 suddenly loses power due to an accident, etc., this series storage battery 6
Supplies DC power to the inverter 4 instead of the AC power source 2, so that the load 7 connected to the inverter 4
Can continue to operate without a power failure.

【0003】ところで無停電電源装置の直流中間回路電
圧は一般に 300V〜 400Vであるから、この直流中間回
路5に接続する直列蓄電池6は 150個〜 200個のセルを
直列に接続した構成となる。この直列蓄電池6として陰
極吸収式鉛シール蓄電池を使用すれば保守点検の手間を
省略できるので多用されているが、長期間の使用により
内部抵抗が増加する特性を有する。内部抵抗が増大すれ
ば放電能力に悪影響を及ぼすことになるから、直列蓄電
池6の中のセルの1個にでも異常(前述したように内部
抵抗が増大する不良が異常の大部分である)を生じてい
ると、交流電源2の停電時に当該直列蓄電池6から負荷
7への電力供給ができなくなる。或いは短時間で電力の
供給が終了してしまう。そこで無停電電源装置が直列蓄
電池6を浮動充電しながら運転中に、不良のセルを検出
しようとするのであるが、浮動充電時の充電電流は僅か
であるために、充電中の各セルの電圧から内部抵抗の増
大を検出するのは極めて困難である。大電流を流せば各
セルの電圧から不良セルを検出できるが、大電流を流す
ためには蓄電池容量に見合った負荷抵抗を用意しなけれ
ばならないし、この負荷抵抗へ直列蓄電池6が電流を流
しているときに交流電源2が停電すれば、この停電をバ
ックアップできない不都合がある。
Since the DC intermediate circuit voltage of the uninterruptible power supply is generally 300V to 400V, the series storage battery 6 connected to the DC intermediate circuit 5 has a structure in which 150 to 200 cells are connected in series. If a cathode absorption lead-sealed storage battery is used as the series storage battery 6, it is frequently used because it can save the trouble of maintenance and inspection, but it has a characteristic that the internal resistance increases due to long-term use. If the internal resistance increases, the discharge capacity will be adversely affected. Therefore, even one of the cells in the series storage battery 6 may be abnormal (the defect in which the internal resistance increases as described above is the majority of the abnormality). If it occurs, the power cannot be supplied from the series storage battery 6 to the load 7 when the AC power supply 2 fails. Alternatively, the power supply ends in a short time. Therefore, the uninterruptible power supply device tries to detect a defective cell during operation while floating charging the series storage battery 6, but since the charging current during floating charging is small, the voltage of each cell during charging is small. Therefore, it is extremely difficult to detect the increase in internal resistance. If a large current is passed, a defective cell can be detected from the voltage of each cell, but in order to pass a large current, a load resistor commensurate with the storage battery capacity must be prepared, and the series storage battery 6 sends a current to this load resistor. If the AC power supply 2 fails during this time, there is the inconvenience that this power failure cannot be backed up.

【0004】しかしながら無停電電源装置を構成する直
列蓄電池6に不良があれば、当該無停電電源装置はその
機能を発揮できないばかりでなく、負荷7の停電が重大
な影響を及ぼすので、無停電電源装置の運転を継続しな
がら、直列蓄電池6の良否を点検できることが必要であ
る。そこで図4の従来例回路は、無停電電源装置を運転
しながら直列蓄電池6の良否を判定できる回路を備えて
いる。即ち、点検指令信号に対応して蓄電池点検指令回
路11は遮断器8へ遮断信号を与えてこれをオフにする
ので、直列蓄電池6は交流電源2の代わりにインバータ
4を介して負荷7へ電力を供給する。このときの直列蓄
電池6の放電電流は浮動充電時の充電電流に比べて遙か
に大きい。直流中間回路5には電圧検出器(図示せず)
が備えてあり、直列蓄電池6の電圧を監視しており、そ
の値が放電終止電圧に達すれば遮断器8をオンにして元
の状態(即ち交流電源2が電力を供給する状態)へ戻す
が、それまでの放電期間中に蓄電池点検指令回路11は
セル切換えスイッチ12へ切換え指令を与えて、直列蓄
電池6を構成している個々のセルの電圧を検出する。不
良セル検出回路13は各セル電圧を相互に比較すること
と、各セル電圧を基準値とを比較することで、不良セル
を検出する。
However, if the series storage battery 6 constituting the uninterruptible power supply unit has a defect, not only the uninterruptible power supply unit cannot perform its function but also the blackout of the load 7 has a serious influence. It is necessary to be able to check the quality of the series storage battery 6 while continuing the operation of the device. Therefore, the conventional example circuit of FIG. 4 is provided with a circuit that can determine the quality of the series storage battery 6 while operating the uninterruptible power supply. That is, in response to the inspection command signal, the storage battery inspection command circuit 11 gives a cutoff signal to the circuit breaker 8 to turn it off, so that the series storage battery 6 supplies power to the load 7 via the inverter 4 instead of the AC power supply 2. To supply. The discharging current of the series storage battery 6 at this time is much larger than the charging current during floating charging. A voltage detector (not shown) is provided in the DC intermediate circuit 5.
, And monitors the voltage of the series storage battery 6, and when the value reaches the discharge end voltage, the circuit breaker 8 is turned on to return to the original state (that is, the state in which the AC power supply 2 supplies power). During the discharging period until then, the storage battery check command circuit 11 gives a switching command to the cell changeover switch 12 to detect the voltage of each cell constituting the series storage battery 6. The defective cell detection circuit 13 detects defective cells by comparing the cell voltages with each other and by comparing the cell voltages with a reference value.

【0005】[0005]

【発明が解決しようとする課題】図4の従来例回路で
は、直列蓄電池6の放電電流が大であることから、各セ
ルの電圧をチェックすることで不良セルの検出が容易に
なる。しかしながら、不良セルが存在している場合は当
該直列蓄電池6は停電をバックアップできない状態にな
っているので、蓄電池点検指令回路11の指令に従って
遮断器8をオフすると負荷6が停電になってしまう不都
合がある。。
In the conventional circuit of FIG. 4, since the series storage battery 6 has a large discharge current, it is easy to detect a defective cell by checking the voltage of each cell. However, if there is a defective cell, the series storage battery 6 is in a state in which it cannot back up the power failure, so if the circuit breaker 8 is turned off in accordance with the command of the storage battery inspection command circuit 11, the load 6 will be in a power failure. There is. .

【0006】そこでこの発明の目的は、バックアップ用
の直列蓄電池に不良セルが混在している場合でも、無停
電電源装置の運転を継続して負荷を停電させずに不良セ
ルをを検出てきるようにすることにある。
Therefore, an object of the present invention is to detect a defective cell without interrupting the load by continuing the operation of the uninterruptible power supply even if the series battery for backup contains defective cells. Is to

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
めにこの発明の無停電電源装置用蓄電池の良否判定装置
は、交流電力を直流電力に変換して直流中間回路へ出力
する第1電力変換器と、この直流中間回路に接続して直
流電力を交流電力に変換する第2電力変換器と、前記直
流中間回路に接続した蓄電池とを備えている無停電電源
装置において、前記蓄電池へ流れる充電電流の交流電流
成分を検出する交流電流検出回路と、前記蓄電池に印加
される充電電圧の交流電圧成分を検出する交流電圧検出
回路と、これら交流電流検出値と交流電圧検出値から前
記蓄電池の内部インピーダンスを算出するインピーダン
ス演算回路と、前記内部インピーダンス演算値が設定値
を越えたときに警報を発する良否判定回路と、を備える
ものとする。
In order to achieve the above-mentioned object, a quality determining device for a storage battery for an uninterruptible power supply according to the present invention is a first power for converting AC power into DC power and outputting the DC power to a DC intermediate circuit. In the uninterruptible power supply device including a converter, a second power converter connected to the DC intermediate circuit to convert DC power into AC power, and a storage battery connected to the DC intermediate circuit, the power flows to the storage battery. An alternating current detection circuit that detects an alternating current component of a charging current, an alternating voltage detection circuit that detects an alternating voltage component of a charging voltage applied to the storage battery, and an ac current detection value and an alternating voltage detection value of the storage battery An impedance calculation circuit for calculating internal impedance and a pass / fail judgment circuit for issuing an alarm when the calculated internal impedance value exceeds a set value are provided.

【0008】又は、交流電力を直流電力に変換して直流
中間回路へ出力する第1電力変換器と、この直流中間回
路に接続して直流電力を交流電力に変換する第2電力変
換器と、複数のセルの直列接続でなる直列蓄電池を前記
直流中間回路に接続した構成の無停電電源装置におい
て、前記直列蓄電池へ流れる充電電流の交流電流成分を
検出する交流電流検出回路と、前記直列蓄電池に印加さ
れる充電電圧の交流電圧成分を個々のセルごとに検出す
る個別交流電圧検出回路と、これら交流電流検出値と個
別交流電圧検出値から前記各セルの内部インピーダンス
を算出する個別インピーダンス演算回路と、前記個別内
部インピーダンス演算値が設定値を越えたときに警報を
発する良否判定回路と、を備えるものとする。
Alternatively, a first power converter that converts AC power into DC power and outputs the DC power to a DC intermediate circuit, and a second power converter that is connected to the DC intermediate circuit and converts DC power into AC power. In an uninterruptible power supply having a configuration in which a series storage battery composed of a plurality of cells connected in series is connected to the DC intermediate circuit, an AC current detection circuit that detects an AC current component of a charging current flowing to the series storage battery, and the series storage battery. An individual AC voltage detection circuit that detects the AC voltage component of the applied charging voltage for each individual cell, and an individual impedance calculation circuit that calculates the internal impedance of each cell from these AC current detection values and individual AC voltage detection values. And a pass / fail judgment circuit that issues an alarm when the calculated individual internal impedance value exceeds a set value.

【0009】又は、前記直列蓄電池へ流れる充電電流の
交流電流成分を検出する交流電流検出回路と、前記直列
蓄電池を複数のセル群に分割し、当該直列蓄電池に印加
される充電電圧の交流電圧成分を各セル群ごとに検出す
る群交流電圧検出回路と、これら交流電流検出値と群交
流電圧検出値から前記各セル群の内部インピーダンスを
算出する群インピーダンス演算回路と、前記群内部イン
ピーダンス演算値が設定値を越えたときに警報を発する
良否判定回路と、を備えるものとする。
Alternatively, an alternating current detection circuit for detecting an alternating current component of a charging current flowing to the series storage battery, and the series storage battery are divided into a plurality of cell groups, and an alternating voltage component of a charging voltage applied to the series storage battery. A group AC voltage detection circuit for detecting each cell group, a group impedance calculation circuit for calculating the internal impedance of each cell group from the AC current detection value and the group AC voltage detection value, and the group internal impedance calculation value is And a pass / fail judgment circuit for issuing an alarm when the set value is exceeded.

【0010】[0010]

【作用】無停電電源装置の直流中間回路5に接続してい
る直列蓄電池6を浮動充電しているときには、充電器3
の入力電流或いはインバータ4の出力電流の影響で、当
該直列蓄電池6には僅かではあるが交流電流が流れ、交
流電圧が印加される状態となる。
When the series storage battery 6 connected to the DC intermediate circuit 5 of the uninterruptible power supply is floating-charged, the charger 3
Due to the influence of the input current of 1 or the output current of the inverter 4, a small amount of AC current flows through the series storage battery 6 and an AC voltage is applied.

【0011】図5は無停電電源装置の直流回路部分をモ
デル化して表したモデル回路図であって、直流電源21
と交流電源22との直列回路に直列蓄電池6が接続され
ている。よって直列蓄電池6へは直流電流IDCに交流電
流IACが重畳された電流が流れることに着目したもので
あって、直列蓄電池6に流れる交流電流IACとこれに印
加される交流電圧VACとから直列蓄電池6の内部インピ
ーダンス、或いは直列蓄電池6を構成する各セルごとの
個別インピーダンス、或いは直列蓄電池6を構成するセ
ルを複数のセル群に分割し、各セル群ごとの群インピー
ダンスを算出し、この算出値から良否を判定するもので
ある。
FIG. 5 is a model circuit diagram showing the DC circuit portion of the uninterruptible power supply as a model.
The series storage battery 6 is connected to a series circuit of the AC power supply 22 and the AC power supply 22. Therefore, attention is paid to the fact that a current in which the alternating current I AC is superimposed on the direct current I DC flows to the series storage battery 6, and the alternating current I AC flowing to the series storage battery 6 and the alternating voltage V AC applied thereto. From the above, the internal impedance of the series storage battery 6 or the individual impedance of each cell forming the series storage battery 6 or the cells forming the series storage battery 6 is divided into a plurality of cell groups, and the group impedance of each cell group is calculated. The quality is judged from this calculated value.

【0012】[0012]

【実施例】図1は本発明の第1実施例を表したモデル回
路図であって、無停電電源装置の直流回路部分をモデル
化して表しているが、直列蓄電池6,直流電源21,及
び交流電源22の名称・用途・機能は図5で記述済みで
あるから、これらの説明は省略する。
FIG. 1 is a model circuit diagram showing a first embodiment of the present invention, in which a DC circuit portion of an uninterruptible power supply is modeled, and a series storage battery 6, a DC power supply 21, and Since the name, application, and function of the AC power supply 22 have been described in FIG. 5, their description will be omitted.

【0013】図1の第1実施例回路では、直列蓄電池6
へ流れる交流電流IACを交流電流検出器30とフィルタ
33とで検出してインピーダンス演算回路35へ送る
が、このフィルタ33は検出精度を向上させるために、
最も多く存在する周波数成分を抽出する帯域透過型フィ
ルタとする。一方、直列コンデンサ31と交流電圧検出
器32との直列接続回路と、この交流電圧検出器32の
1次側とを直列接続して直列蓄電池6の正負極間に接続
すると、交流電圧検出器32の励磁インダクタンスと直
列コンデンサ31のキャパシタンスとで高域透過型フィ
ルタが構成されるので、直流電圧成分は直列コンデンサ
31に印加されるので、当該交流電圧検出器32の2次
側には交流電圧成分のみが現れる。そこで帯域透過型フ
ィルタであるフィルタ34を介して検出した交流電圧V
ACをインピーダンス演算回路35へ送る。
In the first embodiment circuit of FIG. 1, the series storage battery 6
An alternating current I AC flowing to the impedance detection circuit 35 is detected by the alternating current detector 30 and the filter 33 and sent to the impedance calculation circuit 35.
It is a band-pass filter that extracts the most existing frequency components. On the other hand, when the series connection circuit of the series capacitor 31 and the AC voltage detector 32 and the primary side of the AC voltage detector 32 are connected in series and connected between the positive and negative electrodes of the series storage battery 6, the AC voltage detector 32 Since the high-pass transmission type filter is constituted by the exciting inductance of the above and the capacitance of the series capacitor 31, the DC voltage component is applied to the series capacitor 31, so that the AC voltage component is present on the secondary side of the AC voltage detector 32. Only appears. Therefore, the AC voltage V detected through the filter 34, which is a bandpass filter.
AC is sent to the impedance calculation circuit 35.

【0014】インピーダンス演算回路35は交流電圧V
ACを交流電流IACで除算する演算により内部インピーダ
ンスを算出し、この値が所定値を越えたときに良否判定
回路36は警報を発する。図2は本発明の第2実施例を
表したモデル回路図であるが、この第2実施例回路に図
示の直列蓄電池6,直流電源21,交流電源22,交流
電流検出器30,直列コンデンサ31,交流電圧検出器
32,フィルタ33,フィルタ34,インピーダンス演
算回路35,及び良否判定回路36の名称・用途・機能
は図1で既述の第1実施例回路の場合と同じであるか
ら、これらの説明は省略する。尚直列コンデンサ31と
交流電圧検出器32とは単線で表しているがその接続は
図1の第1実施例回路と同じである。
The impedance calculation circuit 35 uses an AC voltage V
The internal impedance is calculated by dividing AC by the AC current I AC , and when this value exceeds a predetermined value, the quality determination circuit 36 issues an alarm. FIG. 2 is a model circuit diagram showing a second embodiment of the present invention. The series storage battery 6, the DC power supply 21, the AC power supply 22, the AC current detector 30, the series capacitor 31 shown in the second embodiment circuit are shown. The names, applications, and functions of the AC voltage detector 32, the filter 33, the filter 34, the impedance calculation circuit 35, and the pass / fail judgment circuit 36 are the same as those in the first embodiment circuit described above with reference to FIG. Is omitted. The series capacitor 31 and the AC voltage detector 32 are shown as a single line, but their connections are the same as in the first embodiment circuit of FIG.

【0015】この第2実施例回路は、直列蓄電池6を構
成している各セルの交流電圧VACを個別に検出できるよ
うにセル切換えスイッチ41を設けていることと、イン
ピーダンス演算回路35の代わりに個別インピーダンス
演算回路42としている点が図1で既述の第1実施例回
路と異なっているが、それ以外は全く同じであるから、
当該第2実施例回路の説明は省略する。
The circuit of the second embodiment is provided with a cell changeover switch 41 so that the AC voltage V AC of each cell constituting the series storage battery 6 can be individually detected, and instead of the impedance calculation circuit 35. 1 is different from the circuit of the first embodiment described above in FIG. 1 in that the individual impedance calculation circuit 42 is used.
The description of the circuit of the second embodiment is omitted.

【0016】図3は本発明の第3実施例を表したモデル
回路図であるが、この第3実施例回路に図示の直列蓄電
池6,直流電源21,交流電源22,交流電流検出器3
0,直列コンデンサ31,交流電圧検出器32,フィル
タ33,フィルタ34,インピーダンス演算回路35,
及び良否判定回路36の名称・用途・機能は図1で既述
の第1実施例回路の場合と同じであるから、これらの説
明は省略する。尚直列コンデンサ31と交流電圧検出器
32とは単線で表しているがその接続は図1の第1実施
例回路と同じである。
FIG. 3 is a model circuit diagram showing a third embodiment of the present invention. The series storage battery 6, DC power source 21, AC power source 22, AC current detector 3 shown in the third embodiment circuit are shown.
0, series capacitor 31, AC voltage detector 32, filter 33, filter 34, impedance calculation circuit 35,
The names, uses, and functions of the pass / fail judgment circuit 36 are the same as those in the case of the circuit of the first embodiment described above with reference to FIG. The series capacitor 31 and the AC voltage detector 32 are shown as a single line, but their connections are the same as in the first embodiment circuit of FIG.

【0017】この第3実施例回路では、直列蓄電池6を
構成している各セルを複数のセル群に分割し、各セル群
の交流電圧VACを別個に検出できるようにセル群切換え
スイッチ51を設けていることと、インピーダンス演算
回路35の代わりに群インピーダンス演算回路52を設
置している点が図1で既述の第1実施例回路と異なって
いるが、それ以外は全く同じであるから、当該第3実施
例回路の説明は省略する。
In the circuit of the third embodiment, each cell constituting the series storage battery 6 is divided into a plurality of cell groups, and the cell group changeover switch 51 is provided so that the AC voltage V AC of each cell group can be detected separately. 1 and the point that a group impedance calculation circuit 52 is provided instead of the impedance calculation circuit 35, which is the same as the circuit of the first embodiment described above with reference to FIG. Therefore, the description of the third embodiment circuit will be omitted.

【0018】[0018]

【発明の効果】この発明によれば、無停電電源装置用の
蓄電池を浮動充電中に当該蓄電池に流れる交流電流分と
交流電圧分を適切なフィルタを介して取り出し、交流電
圧を交流電流で除算することで蓄電池の内部インピーダ
ンスを算出しこの算出値が所定値を越えれば蓄電池不良
と判定する。このような構成にすれば、無停電電源装置
が運転中であっても蓄電池の良否を判定できるので、負
荷を停電させずに蓄電池の不良を確実に検出できる効果
が得られる。更に多数のセルを直列接続した直列蓄電池
の場合でも、浮動充電しながら各セルの良否を順次判定
できるので、時間の制約を受けずに不良セルの検出がで
きる。
According to the present invention, an AC current component and an AC voltage component flowing through the storage battery for an uninterruptible power supply during floating charging are taken out through an appropriate filter and the AC voltage is divided by the AC current. By doing so, the internal impedance of the storage battery is calculated, and if this calculated value exceeds a predetermined value, it is determined that the storage battery is defective. With such a configuration, it is possible to determine the quality of the storage battery even when the uninterruptible power supply is in operation, and thus it is possible to reliably detect a defect in the storage battery without power failure of the load. Even in the case of a series storage battery in which a large number of cells are connected in series, the quality of each cell can be sequentially determined while floating charging, so that defective cells can be detected without being restricted by time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を表したモデル回路図FIG. 1 is a model circuit diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施例を表したモデル回路図FIG. 2 is a model circuit diagram showing a second embodiment of the present invention.

【図3】本発明の第3実施例を表したモデル回路図FIG. 3 is a model circuit diagram showing a third embodiment of the present invention.

【図4】無停電電源装置の従来例を示した回路図FIG. 4 is a circuit diagram showing a conventional example of an uninterruptible power supply.

【図5】無停電電源装置の直流回路部分をモデル化して
表したモデル回路図
FIG. 5 is a model circuit diagram in which a DC circuit portion of the uninterruptible power supply is modeled and represented.

【符号の説明】[Explanation of symbols]

2,22 交流電源 3 第1電力変換器としての充電器 4 第2電力変換器としてのインバータ 5 直流中間回路 6 直列蓄電池 7 負荷 8 遮断器 11 蓄電池点検指令回路 12 セル切換えスイッチ 13 不良セル検出回路 21 直流電源 30 交流電流検出器 31 直列コンデンサ 32 交流電圧検出器 33,34 フィルタ 35 インピーダンス演算回路 36 良否判定回路 41 セル切換えスイッチ 42 個別インピーダンス演算回路 51 セル群切換えスイッチ 52 群インピーダンス演算回路 2, 22 AC power supply 3 Charger as first power converter 4 Inverter as second power converter 5 DC intermediate circuit 6 Series storage battery 7 Load 8 Circuit breaker 11 Storage battery inspection command circuit 12 Cell changeover switch 13 Defective cell detection circuit 21 DC power supply 30 AC current detector 31 Series capacitor 32 AC voltage detector 33, 34 Filter 35 Impedance calculation circuit 36 Good / bad judgment circuit 41 Cell changeover switch 42 Individual impedance calculation circuit 51 Cell group changeover switch 52 Group impedance calculation circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02J 9/02 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H02J 9/02 B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】交流電力を直流電力に変換して直流中間回
路へ出力する第1電力変換器と、この直流中間回路に接
続して直流電力を交流電力に変換する第2電力変換器
と、前記直流中間回路に接続した蓄電池とを備えている
無停電電源装置において、 前記蓄電池へ流れる充電電流の交流電流成分を検出する
交流電流検出回路と、前記蓄電池に印加される充電電圧
の交流電圧成分を検出する交流電圧検出回路と、これら
交流電流検出値と交流電圧検出値から前記蓄電池の内部
インピーダンスを算出するインピーダンス演算回路と、
前記内部インピーダンス演算値が設定値を越えたときに
警報を発する良否判定回路と、を備えていることを特徴
とする無停電電源装置用蓄電池の良否判定装置。
1. A first power converter that converts AC power into DC power and outputs the DC power to a DC intermediate circuit, and a second power converter that is connected to the DC intermediate circuit and converts DC power into AC power. In an uninterruptible power supply device comprising a storage battery connected to the DC intermediate circuit, an AC current detection circuit for detecting an AC current component of a charging current flowing to the storage battery, and an AC voltage component of a charging voltage applied to the storage battery. An AC voltage detection circuit for detecting, an impedance calculation circuit for calculating the internal impedance of the storage battery from the AC current detection value and the AC voltage detection value,
A pass / fail determination device for a storage battery for an uninterruptible power supply, comprising: a pass / fail determination circuit that issues an alarm when the calculated internal impedance value exceeds a set value.
【請求項2】交流電力を直流電力に変換して直流中間回
路へ出力する第1電力変換器と、この直流中間回路に接
続して直流電力を交流電力に変換する第2電力変換器
と、複数のセルの直列接続でなる直列蓄電池を前記直流
中間回路に接続した構成の無停電電源装置において、 前記直列蓄電池へ流れる充電電流の交流電流成分を検出
する交流電流検出回路と、前記直列蓄電池に印加される
充電電圧の交流電圧成分を個々のセルごとに検出する個
別交流電圧検出回路と、これら交流電流検出値と個別交
流電圧検出値から前記各セルの内部インピーダンスを算
出する個別インピーダンス演算回路と、前記個別内部イ
ンピーダンス演算値が設定値を越えたときに警報を発す
る良否判定回路と、を備えていることを特徴とする無停
電電源装置用蓄電池の良否判定装置。
2. A first power converter that converts AC power into DC power and outputs the DC power to a DC intermediate circuit, and a second power converter that is connected to the DC intermediate circuit and converts DC power into AC power. In an uninterruptible power supply having a configuration in which a series storage battery composed of a series connection of a plurality of cells is connected to the DC intermediate circuit, an AC current detection circuit for detecting an AC current component of a charging current flowing to the series storage battery, and the series storage battery. An individual AC voltage detection circuit that detects the AC voltage component of the applied charging voltage for each individual cell, and an individual impedance calculation circuit that calculates the internal impedance of each cell from these AC current detection values and individual AC voltage detection values. A storage battery for an uninterruptible power supply, comprising: a pass / fail judgment circuit that issues an alarm when the calculated individual internal impedance value exceeds a set value. Pass / fail judgment device.
【請求項3】交流電力を直流電力に変換して直流中間回
路へ出力する第1電力変換器と、この直流中間回路に接
続して直流電力を交流電力に変換する第2電力変換器
と、複数のセルの直列接続でなる直列蓄電池を前記直流
中間回路に接続した構成の無停電電源装置において、 前記直列蓄電池へ流れる充電電流の交流電流成分を検出
する交流電流検出回路と、前記直列蓄電池を複数のセル
群に分割し、当該直列蓄電池に印加される充電電圧の交
流電圧成分を各セル群ごとに検出する群交流電圧検出回
路と、これら交流電流検出値と群交流電圧検出値から前
記各セル群の内部インピーダンスを算出する群インピー
ダンス演算回路と、前記群内部インピーダンス演算値が
設定値を越えたときに警報を発する良否判定回路と、を
備えていることを特徴とする無停電電源装置用蓄電池の
良否判定装置。
3. A first power converter that converts AC power into DC power and outputs the DC power to a DC intermediate circuit, and a second power converter that is connected to the DC intermediate circuit and converts DC power into AC power. In an uninterruptible power supply having a configuration in which a series storage battery composed of a plurality of cells connected in series is connected to the DC intermediate circuit, an AC current detection circuit that detects an AC current component of a charging current flowing to the series storage battery, and the series storage battery. A group AC voltage detection circuit that divides into a plurality of cell groups and detects the AC voltage component of the charging voltage applied to the series storage battery for each cell group, and the AC current detection value and the group AC voltage detection value from each of the above. A group impedance calculation circuit for calculating the internal impedance of the cell group and a pass / fail judgment circuit for issuing an alarm when the calculated value of the group internal impedance exceeds a set value. A storage battery quality judgment device for an uninterruptible power supply.
JP6221185A 1994-09-16 1994-09-16 Determining device of quality of storage battery for uninterruptible power supply unit Pending JPH0888941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6221185A JPH0888941A (en) 1994-09-16 1994-09-16 Determining device of quality of storage battery for uninterruptible power supply unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6221185A JPH0888941A (en) 1994-09-16 1994-09-16 Determining device of quality of storage battery for uninterruptible power supply unit

Publications (1)

Publication Number Publication Date
JPH0888941A true JPH0888941A (en) 1996-04-02

Family

ID=16762815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6221185A Pending JPH0888941A (en) 1994-09-16 1994-09-16 Determining device of quality of storage battery for uninterruptible power supply unit

Country Status (1)

Country Link
JP (1) JPH0888941A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267704A (en) * 2001-03-14 2002-09-18 Hioki Ee Corp Method and instrument for measuring internal resistance of layer built cell
JP2003066074A (en) * 2001-08-24 2003-03-05 Hioki Ee Corp Resistance measuring method and resistance measuring device
JP2004119227A (en) * 2002-09-27 2004-04-15 Furukawa Battery Co Ltd:The Internal impedance measuring method of storage battery
KR100442148B1 (en) * 2002-08-09 2004-07-27 동부전자 주식회사 Apparatus for detecting an electric leakage in semiconductor device
JP2010104158A (en) * 2008-10-23 2010-05-06 Tdk-Lambda Corp Uninterruptible power supply unit and method for selectively interrupting uninterruptible power supply unit
WO2014057868A1 (en) * 2012-10-09 2014-04-17 日産自動車株式会社 Device for measuring impedance of laminated battery
JP2014232001A (en) * 2013-05-28 2014-12-11 矢崎総業株式会社 Battery state detecting apparatus
CN105277893A (en) * 2014-07-17 2016-01-27 福特全球技术公司 Real-time battery estimation
JP2016081748A (en) * 2014-10-17 2016-05-16 日産自動車株式会社 Battery assembly, and diagnosis device for connection state of battery assembly
WO2017145949A1 (en) * 2016-02-24 2017-08-31 Ntn株式会社 Secondary battery deterioration assessment device
JP2021522486A (en) * 2018-04-26 2021-08-30 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト Diagnostic methods and systems for electrochemical energy storage cells
WO2022259973A1 (en) * 2021-06-07 2022-12-15 ヌヴォトンテクノロジージャパン株式会社 Battery abnormality detecting device, and battery abnormality detecting method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267704A (en) * 2001-03-14 2002-09-18 Hioki Ee Corp Method and instrument for measuring internal resistance of layer built cell
JP2003066074A (en) * 2001-08-24 2003-03-05 Hioki Ee Corp Resistance measuring method and resistance measuring device
KR100442148B1 (en) * 2002-08-09 2004-07-27 동부전자 주식회사 Apparatus for detecting an electric leakage in semiconductor device
JP2004119227A (en) * 2002-09-27 2004-04-15 Furukawa Battery Co Ltd:The Internal impedance measuring method of storage battery
JP2010104158A (en) * 2008-10-23 2010-05-06 Tdk-Lambda Corp Uninterruptible power supply unit and method for selectively interrupting uninterruptible power supply unit
JP5867615B2 (en) * 2012-10-09 2016-02-24 日産自動車株式会社 Multilayer battery impedance measurement device
WO2014057868A1 (en) * 2012-10-09 2014-04-17 日産自動車株式会社 Device for measuring impedance of laminated battery
US9529055B2 (en) 2012-10-09 2016-12-27 Nissan Motor Co., Ltd. Impedance measuring device for laminated battery
JP2014232001A (en) * 2013-05-28 2014-12-11 矢崎総業株式会社 Battery state detecting apparatus
CN105277893A (en) * 2014-07-17 2016-01-27 福特全球技术公司 Real-time battery estimation
US10308129B2 (en) 2014-07-17 2019-06-04 Ford Global Technologies, Llc Real-time battery estimation
JP2016081748A (en) * 2014-10-17 2016-05-16 日産自動車株式会社 Battery assembly, and diagnosis device for connection state of battery assembly
WO2017145949A1 (en) * 2016-02-24 2017-08-31 Ntn株式会社 Secondary battery deterioration assessment device
JP2017150926A (en) * 2016-02-24 2017-08-31 Ntn株式会社 Secondary battery deterioration determination device
JP2021522486A (en) * 2018-04-26 2021-08-30 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト Diagnostic methods and systems for electrochemical energy storage cells
WO2022259973A1 (en) * 2021-06-07 2022-12-15 ヌヴォトンテクノロジージャパン株式会社 Battery abnormality detecting device, and battery abnormality detecting method

Similar Documents

Publication Publication Date Title
US5457377A (en) Method of monitoring the internal impedance of an accumulator battery in an uninterruptible power supply, and an uninterruptible power supply
EP2278686B1 (en) Method and apparatus for providing uninterruptible power
JP2001309563A (en) Building power supply system and battery device
JPH0888941A (en) Determining device of quality of storage battery for uninterruptible power supply unit
KR100256732B1 (en) Battery diagnose method of electric vehicle
JP2003274566A (en) Method of detecting abnormality of electric double-layer capacitor, and charging and discharging circuit using it
JPH11252826A (en) Uninterruptive power supply
JPH0638360A (en) Deterioration and failure diagnosis system for capacitor
JPH08140257A (en) Protective device for dc capacitor
JP2013074715A (en) Charging device
JP2659758B2 (en) Parallel operation control method
JPH0356043A (en) Power supply device
JP2900124B2 (en) Uninterruptible power system
JP3433469B2 (en) Uninterruptible power system
JP2534792B2 (en) Uninterruptible power system
CN110739765A (en) DC power supply system
JP3474787B2 (en) Charge / discharge system
CA1157098A (en) Circuit for monitoring the voltage stress of a capacitor
JP2001186688A (en) Connection detection circuit of backup current, and backup power supply device therewith
JPH06249893A (en) Voltage detecting device
JPH03139132A (en) Power source
JPH03289574A (en) Detecting circuit for abnormality of battery of uninteruptible power supply
JP2019221092A (en) Power supply
JP4318393B2 (en) Independent operation detection system for private power generation facilities
JPH08228440A (en) Method for inspecting battery of uninterruptible power supply