JP2004119227A - Internal impedance measuring method of storage battery - Google Patents

Internal impedance measuring method of storage battery Download PDF

Info

Publication number
JP2004119227A
JP2004119227A JP2002282109A JP2002282109A JP2004119227A JP 2004119227 A JP2004119227 A JP 2004119227A JP 2002282109 A JP2002282109 A JP 2002282109A JP 2002282109 A JP2002282109 A JP 2002282109A JP 2004119227 A JP2004119227 A JP 2004119227A
Authority
JP
Japan
Prior art keywords
storage battery
internal impedance
current
current supply
measuring method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002282109A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takahashi
高橋 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2002282109A priority Critical patent/JP2004119227A/en
Publication of JP2004119227A publication Critical patent/JP2004119227A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal impedance measuring method of a storage battery in which an instrumentation condition in the respective storage batteries constituting the storage battery group is not changed, and influence of external disturbances of noises or the like is little. <P>SOLUTION: In the internal impedance measuring method of the storage battery in which the internal impedances of the respective storage batteries of the storage battery group wherein a plurality of the storage batteries are connected in series are measured by using an alternating current supply means and an alternating voltage measuring means, as for the alternating current supply means, the wave form of a flowing discharge current when connected to the storage battery is substantially made to be sine wave form. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、蓄電池の内部インピーダンスを測定する方法に関する。
【0002】
【従来の技術】
多数の蓄電池が直列接続された蓄電池群の各蓄電池の内部インピーダンスを測定する方法として、いわゆる交流4端子法が知られている。
【0003】
交流4端子法とは、内部インピーダンス計測対象の蓄電池に交流電流を流し、その際の発生起電力を求めることにより蓄電池の内部インピーダンスを計測するものである。
【0004】
交流4端子法による蓄電池の内部インピーダンス測定の原理図を図3に示す。図3において、1は蓄電池、2は蓄電池群、3は交流電流供給手段、4は交流電圧計測手段であり、蓄電池1と並列に交流電流供給手段3および交流電圧計測手段4が接続されている。
【0005】
ところで、蓄電池の内部インピーダンスの値は、一般に10mΩ以下であることが多いが、特に容量の大きな蓄電池では1mΩ以下であり内部インピーダンスの計測精度を高めるためには大きな計測電流を流す必要がある。
【0006】
しかし、内部インピーダンスの計測精度を高めるために大きな計測電流を流そうとすると、交流電流供給手段3に大規模な電源を用意する必要が生じ、交流電流供給手段3が大型化する問題点がある。
【0007】
そこで、内部インピーダンスを計測しようとする蓄電池に、スイッチング等の手法により一時的に負荷を接続し、この負荷を接続した際の電圧変化により蓄電池の内部インピーダンスを計測する技術が、特許文献1および特許文献2などに示されている。この負荷が図3の交流電流供給手段3に相当する。
【0008】
【特許文献1】特開平9−232005号公報(4ページ5欄16行〜6ページ9欄27行、図1〜図4参照)
【特許文献2】特開平10−56744号公報(3ページ4欄23行〜5ページ8欄22行、図1〜図5参照)
【0009】
また、特許文献1および特許文献2に記載された技術は、いずれも負荷に流れる放電電流が矩形波であり、この放電電流が流れる際の電圧変化を計測するものである。この放電電流と電圧変化との関係を図4に示す。
【0010】
【発明が解決しようとする課題】
しかし、特許文献1および特許文献2に記載された技術は、いずれも負荷に流れる放電電流が矩形波であり、放電時の電圧変化を計測するために放電電流を大きくする必要があり、特許文献1および特許文献2では0.23c(1cは、電池容量xxxAhの電池についての充電電流または放電電流がxxxAである状態を意味する)となっている。具体的には、電池容量が200Ahの電池では、0.23cは46Aとなる。また、蓄電池は通常多数の蓄電池を直列接続した蓄電池群として使用されており、充電は定電圧で行われていることが一般的である。このため、計測中の蓄電池の電圧が低下してそれ以外の蓄電池の電圧が上昇する現象が発生し、各蓄電池における計測条件が変化するという問題点がある。
【0011】
そこで、本発明では、蓄電池群を構成する各蓄電池における計測条件が変化することがなく、ノイズ等の外乱の影響が少ない蓄電池の内部インピーダンス測定方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
請求項1の発明は、複数の蓄電池が直列接続された蓄電池群の各蓄電池の内部インピーダンスを、交流電流供給手段および交流電圧計側手段を用いて測定する蓄電池の内部インピーダンス測定方法において、前記交流電流供給手段は、蓄電池に接続した際に流れる放電電流の波形が実質的に正弦波状となるものであることを特徴とする。
【0013】
すなわち、請求項1の発明は、内部インピーダンス計測中の蓄電池からの放電電流を利用した交流電流供給手段を用いるため、交流電流供給手段に別途電源を設ける必要がなく、また放電電流の波形が正弦波状であるため、電流波形が矩形波である場合と比較して、電流を多く流すことなくノイズ等の外乱の影響が少ない内部インピーダンスの計測をすることができる。
【0014】
【発明の実施の形態】
本発明の実施の形態を、図面を用いて説明する。
【0015】
図1は、本発明の実施形態に用いられる蓄電池の内部インピーダンス測定回路の一例を示す概略説明図である。図1において、1は鉛蓄電池、2は蓄電池群、3は交流電流供給手段、4は交流電圧計測手段であり、鉛蓄電池1と並列に交流電流供給手段3および交流電圧計測手段4が接続されている点は、図3の原理図と同様である。
【0016】
また、図1において、交流電流供給手段3は、演算部31、D/Aコンバータ32、演算増幅器33、トランジスタ(FET)34、電流検出部35を含んで構成される。
【0017】
演算部31は鉛蓄電池1から所要の放電電流を得るためにD/Aコンバータ32に制御信号を送る。
【0018】
D/Aコンバータ32は演算部31から送られたディジタル制御信号をアナログ信号に変換し、演算増幅器33の+側入力に送る。ここで、D/Aコンバータ32の出力信号の波形は、実質的に正弦波となっている。なお、出力信号の周波数は、商用電源の周波数である50Hzまたは60Hzより低い周波数、例えば20Hz以下が望ましい。
【0019】
演算増幅器33の出力はトランジスタ(FET)34のゲートに送られる。また、演算増幅器33の−側入力とトランジスタ(FET)34のソースと電流検出部35とが接続され、トランジスタ(FET)34のドレイン側が測定対象の蓄電池1の+極側に、電流検出部35の片端が測定対象の蓄電池1の−極側に接続されている。電流検出部35は、例えば0.1Ω程度の抵抗器と電圧計などの電圧計測手段とを含むように構成することができる。
【0020】
測定対象の鉛蓄電池1と並列に接続されたトランジスタ(FET)34のドレイン〜ソース間を流れる電流の波形は、D/Aコンバータ32から演算増幅器33の+側入力に送られた波形と同様、実質的に正弦波状となる。これは、図1中のVと図1中のVとを逆位相の等しい電圧にしようとする演算増幅器33の作用によるものである。
【0021】
電流検出部35は、トランジスタ(FET)34のドレイン〜ソース間を流れる電流を検出し、その結果が演算部31に送られ、鉛蓄電池1から所要の放電電流を得るようにフィードバック制御される。
【0022】
次に、図1の蓄電池の内部インピーダンス測定回路による、蓄電池の内部インピーダンスの測定中に蓄電池から負荷に流れる放電電流と、この放電電流が流れる際の電圧変化との関係を図2に示す。
【0023】
本実施形態においては、放電電流の波形を実質的に正弦波状としたため、鉛蓄電池1の電池容量が200Ahの場合、図2の放電電流の値は、p−p値で1A程度、すなわち1/200c程度あれば、蓄電池1の内部インピーダンスを実用上差し支えない精度で測定できる。この電流値は、前述の特許文献1および特許文献2に記載された電流値のp−p値の約2.2%である。
【0024】
このように、上述の実施形態によれば、電流を多く流すことなくノイズ等の外乱の影響が少ない内部インピーダンスの計測をすることができるが、本発明の実施形態は上述のものに限らず、特許請求の範囲の欄に記載された範囲内で実施形態の変更が可能であることはいうまでもない。
【0025】
【発明の効果】
以上のとおり、本発明によれば、内部インピーダンス計測中の蓄電池からの放電電流を利用した交流電流供給手段を用いるため、交流電流供給手段に別途電源を設ける必要がなく、また放電電流の波形が正弦波状であるため、電流波形が矩形波である場合と比較して、電流を多く流すことなくノイズ等の外乱の影響が少ない内部インピーダンスの計測をすることができるという優れた効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に用いられる蓄電池の内部インピーダンス測定回路の一例を示す概略説明図である。
【図2】本発明の実施形態による、蓄電池の内部インピーダンスの測定中に蓄電池から負荷に流れる放電電流と、この放電電流が流れる際の電圧変化との関係を示す概略説明図である。
【図3】交流4端子法による蓄電池の内部インピーダンス測定の原理を示す概略説明図である。
【図4】従来技術による、蓄電池の内部インピーダンスの測定中に蓄電池から負荷に流れる放電電流と、この放電電流が流れる際の電圧変化との関係を示す概略説明図である。
【符号の説明】
1 蓄電池
2 蓄電池群
3 交流電流供給手段
4 交流電圧計測手段
31 演算部
32 D/Aコンバータ
33 演算増幅器
34 トランジスタ(FET)
35 電流検出部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring the internal impedance of a storage battery.
[0002]
[Prior art]
A so-called AC four-terminal method is known as a method for measuring the internal impedance of each storage battery in a storage battery group in which a large number of storage batteries are connected in series.
[0003]
The AC four-terminal method is to measure an internal impedance of a storage battery by flowing an AC current to a storage battery whose internal impedance is to be measured and calculating an electromotive force generated at that time.
[0004]
FIG. 3 shows a principle diagram of the internal impedance measurement of the storage battery by the AC four-terminal method. In FIG. 3, 1 is a storage battery, 2 is a storage battery group, 3 is an AC current supply unit, 4 is an AC voltage measurement unit, and the AC current supply unit 3 and the AC voltage measurement unit 4 are connected in parallel with the storage battery 1. .
[0005]
By the way, the value of the internal impedance of a storage battery is generally 10 mΩ or less in general, but is particularly 1 mΩ or less in a storage battery having a large capacity, and a large measurement current needs to flow in order to improve the measurement accuracy of the internal impedance.
[0006]
However, if a large measurement current is to be applied to increase the measurement accuracy of the internal impedance, it is necessary to prepare a large-scale power supply for the AC current supply means 3, and there is a problem that the AC current supply means 3 becomes large. .
[0007]
Therefore, a technique is proposed in which a load is temporarily connected to a storage battery whose internal impedance is to be measured by switching or the like, and the internal impedance of the storage battery is measured by a voltage change when the load is connected. It is shown in Reference 2. This load corresponds to the alternating current supply means 3 in FIG.
[0008]
[Patent Document 1] Japanese Patent Application Laid-Open No. 9-232005 (page 4, column 5, line 16 to page 6, column 9, line 27; see FIGS. 1 to 4)
[Patent Document 2] JP-A-10-56744 (page 3, column 23, line 5 to page 8, column 22, see FIGS. 1 to 5)
[0009]
In each of the techniques described in Patent Literature 1 and Patent Literature 2, a discharge current flowing to a load is a rectangular wave, and a voltage change when the discharge current flows is measured. FIG. 4 shows the relationship between the discharge current and the voltage change.
[0010]
[Problems to be solved by the invention]
However, in the techniques described in Patent Literature 1 and Patent Literature 2, the discharge current flowing to the load is a rectangular wave, and it is necessary to increase the discharge current in order to measure a voltage change during discharge. 1 and Patent Document 2, the value is 0.23c (1c means a state where the charging current or the discharging current of the battery having the battery capacity xxxAh is xxxA). Specifically, for a battery having a battery capacity of 200 Ah, 0.23c is 46 A. In addition, the storage batteries are usually used as a storage battery group in which a large number of storage batteries are connected in series, and charging is generally performed at a constant voltage. For this reason, a phenomenon occurs in which the voltage of the storage battery being measured decreases and the voltages of the other storage batteries increase, and the measurement condition of each storage battery changes.
[0011]
Therefore, an object of the present invention is to provide a method of measuring the internal impedance of a storage battery in which the measurement conditions of each storage battery constituting the storage battery group do not change and the influence of disturbance such as noise is small.
[0012]
[Means for Solving the Problems]
The invention according to claim 1 is a storage battery internal impedance measuring method for measuring the internal impedance of each storage battery in a storage battery group in which a plurality of storage batteries are connected in series by using an AC current supply unit and an AC voltmeter side unit. The current supply means is characterized in that the waveform of the discharge current flowing when connected to the storage battery is substantially sinusoidal.
[0013]
That is, the invention of claim 1 uses the AC current supply means using the discharge current from the storage battery during the measurement of the internal impedance, so that there is no need to provide a separate power supply for the AC current supply means, and the waveform of the discharge current is sinusoidal. Because of the waveform, the internal impedance can be measured without flowing much current and less affected by disturbance such as noise as compared with the case where the current waveform is a rectangular wave.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a schematic explanatory view showing an example of an internal impedance measuring circuit of a storage battery used in an embodiment of the present invention. In FIG. 1, 1 is a lead storage battery, 2 is a storage battery group, 3 is an AC current supply means, 4 is an AC voltage measurement means, and an AC current supply means 3 and an AC voltage measurement means 4 are connected in parallel with the lead storage battery 1. This is similar to the principle diagram of FIG.
[0016]
In FIG. 1, the AC current supply unit 3 includes an arithmetic unit 31, a D / A converter 32, an operational amplifier 33, a transistor (FET) 34, and a current detecting unit 35.
[0017]
The arithmetic unit 31 sends a control signal to the D / A converter 32 to obtain a required discharge current from the lead storage battery 1.
[0018]
The D / A converter 32 converts the digital control signal sent from the arithmetic unit 31 into an analog signal, and sends the analog signal to the + input of the operational amplifier 33. Here, the waveform of the output signal of the D / A converter 32 is substantially a sine wave. The frequency of the output signal is preferably lower than 50 Hz or 60 Hz which is the frequency of the commercial power supply, for example, 20 Hz or less.
[0019]
The output of the operational amplifier 33 is sent to the gate of a transistor (FET). Further, the negative input of the operational amplifier 33, the source of the transistor (FET) 34, and the current detection unit 35 are connected, and the drain side of the transistor (FET) 34 is connected to the positive electrode side of the storage battery 1 to be measured. Is connected to the negative electrode side of the storage battery 1 to be measured. The current detection unit 35 can be configured to include, for example, a resistor of about 0.1Ω and voltage measurement means such as a voltmeter.
[0020]
The waveform of the current flowing between the drain and source of the transistor (FET) 34 connected in parallel with the lead storage battery 1 to be measured is the same as the waveform sent from the D / A converter 32 to the + input of the operational amplifier 33. It becomes substantially sinusoidal. This is due to the action of the operational amplifier 33 to be equal to the voltage of opposite phase and V 2 in V 1 and Figure 1 in FIG.
[0021]
The current detection unit 35 detects a current flowing between the drain and the source of the transistor (FET) 34, and the result is sent to the calculation unit 31, which is feedback-controlled so as to obtain a required discharge current from the lead storage battery 1.
[0022]
Next, FIG. 2 shows the relationship between the discharge current flowing from the storage battery to the load during the measurement of the internal impedance of the storage battery by the storage battery internal impedance measurement circuit of FIG. 1 and the voltage change when the discharge current flows.
[0023]
In the present embodiment, since the waveform of the discharge current is substantially sinusoidal, when the battery capacity of the lead storage battery 1 is 200 Ah, the value of the discharge current in FIG. If it is about 200c, the internal impedance of the storage battery 1 can be measured with a precision that is practically acceptable. This current value is about 2.2% of the pp value of the current values described in Patent Documents 1 and 2.
[0024]
As described above, according to the above-described embodiment, it is possible to measure the internal impedance with little influence of disturbance such as noise without flowing a large amount of current. However, the embodiment of the present invention is not limited to the above-described one. It goes without saying that the embodiment can be changed within the scope described in the claims.
[0025]
【The invention's effect】
As described above, according to the present invention, since the AC current supply unit using the discharge current from the storage battery during the measurement of the internal impedance is used, it is not necessary to provide a separate power supply to the AC current supply unit, and the waveform of the discharge current is reduced. Because of the sinusoidal shape, it is possible to obtain an excellent effect that it is possible to measure the internal impedance with less influence of disturbance such as noise without flowing a large amount of current, as compared with the case where the current waveform is a rectangular wave. it can.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram showing an example of an internal impedance measuring circuit of a storage battery used in an embodiment of the present invention.
FIG. 2 is a schematic explanatory diagram showing a relationship between a discharge current flowing from a storage battery to a load during measurement of an internal impedance of the storage battery and a voltage change when the discharge current flows, according to an embodiment of the present invention.
FIG. 3 is a schematic explanatory view showing the principle of measuring the internal impedance of a storage battery by an AC four-terminal method.
FIG. 4 is a schematic diagram showing a relationship between a discharge current flowing from a storage battery to a load during measurement of an internal impedance of the storage battery and a voltage change when the discharge current flows, according to a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Storage battery 2 Storage battery group 3 AC current supply means 4 AC voltage measurement means 31 Operation part 32 D / A converter 33 Operational amplifier 34 Transistor (FET)
35 Current detector

Claims (1)

複数の蓄電池が直列接続された蓄電池群の各蓄電池の内部インピーダンスを、交流電流供給手段および交流電圧計側手段を用いて測定する蓄電池の内部インピーダンス測定方法において、
前記交流電流供給手段は、蓄電池に接続した際に流れる放電電流の波形が実質的に正弦波状となるものであることを特徴とする蓄電池の内部インピーダンス測定方法。
In the storage battery internal impedance measurement method of measuring the internal impedance of each storage battery of a storage battery group in which a plurality of storage batteries are connected in series using AC current supply means and AC voltmeter side means,
The method for measuring the internal impedance of a storage battery, wherein the alternating current supply means has a waveform of a discharge current flowing when connected to the storage battery having a substantially sinusoidal waveform.
JP2002282109A 2002-09-27 2002-09-27 Internal impedance measuring method of storage battery Pending JP2004119227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002282109A JP2004119227A (en) 2002-09-27 2002-09-27 Internal impedance measuring method of storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002282109A JP2004119227A (en) 2002-09-27 2002-09-27 Internal impedance measuring method of storage battery

Publications (1)

Publication Number Publication Date
JP2004119227A true JP2004119227A (en) 2004-04-15

Family

ID=32276342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002282109A Pending JP2004119227A (en) 2002-09-27 2002-09-27 Internal impedance measuring method of storage battery

Country Status (1)

Country Link
JP (1) JP2004119227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021522486A (en) * 2018-04-26 2021-08-30 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト Diagnostic methods and systems for electrochemical energy storage cells

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242178A (en) * 1989-03-15 1990-09-26 Fuji Electric Co Ltd Monitoring method for battery of uninterruptible power equipment
JPH03182063A (en) * 1989-12-11 1991-08-08 Shin Kobe Electric Mach Co Ltd Deteriorated condition sensing method for sealed lead-acid battery
JPH0888941A (en) * 1994-09-16 1996-04-02 Fuji Electric Co Ltd Determining device of quality of storage battery for uninterruptible power supply unit
JPH08179017A (en) * 1994-12-26 1996-07-12 Bridgestone Corp Monitor device for battery impedance
JPH09121472A (en) * 1995-10-27 1997-05-06 Japan Storage Battery Co Ltd Ac power supply apparatus
JPH09121473A (en) * 1995-10-27 1997-05-06 Japan Storage Battery Co Ltd Ac power supply device
JPH09232005A (en) * 1996-02-26 1997-09-05 Shin Kobe Electric Mach Co Ltd Judging method and device for deterioration of sealed lead-acid battery
JPH11194156A (en) * 1997-12-27 1999-07-21 Dokomo Engineering Hokkaido Kk Assembly battery automatic diagnostic device
JP2002525586A (en) * 1998-09-11 2002-08-13 チャンプリン,キース,エス. Method and apparatus for measuring complex impedance of cell and battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242178A (en) * 1989-03-15 1990-09-26 Fuji Electric Co Ltd Monitoring method for battery of uninterruptible power equipment
JPH03182063A (en) * 1989-12-11 1991-08-08 Shin Kobe Electric Mach Co Ltd Deteriorated condition sensing method for sealed lead-acid battery
JPH0888941A (en) * 1994-09-16 1996-04-02 Fuji Electric Co Ltd Determining device of quality of storage battery for uninterruptible power supply unit
JPH08179017A (en) * 1994-12-26 1996-07-12 Bridgestone Corp Monitor device for battery impedance
JPH09121472A (en) * 1995-10-27 1997-05-06 Japan Storage Battery Co Ltd Ac power supply apparatus
JPH09121473A (en) * 1995-10-27 1997-05-06 Japan Storage Battery Co Ltd Ac power supply device
JPH09232005A (en) * 1996-02-26 1997-09-05 Shin Kobe Electric Mach Co Ltd Judging method and device for deterioration of sealed lead-acid battery
JPH11194156A (en) * 1997-12-27 1999-07-21 Dokomo Engineering Hokkaido Kk Assembly battery automatic diagnostic device
JP2002525586A (en) * 1998-09-11 2002-08-13 チャンプリン,キース,エス. Method and apparatus for measuring complex impedance of cell and battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021522486A (en) * 2018-04-26 2021-08-30 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト Diagnostic methods and systems for electrochemical energy storage cells
JP7181311B2 (en) 2018-04-26 2022-11-30 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト Diagnostic method and diagnostic system for electrochemical energy storage cells

Similar Documents

Publication Publication Date Title
US8358136B2 (en) State of charge calculator for multi-cell energy storage system having cell balancing
US6335611B1 (en) Current monitoring circuit for secondary battery
JP5620297B2 (en) Impedance measuring device
TWI669521B (en) Battery residual prediction device and battery pack
JP2001281307A (en) Battery capacity detecting method
JP3170470U (en) Integrated value measurement circuit
JP2008175687A (en) Method and apparatus for measuring internal impedance of storage battery
JP4374729B2 (en) Current measurement circuit, current consumption measurement circuit, and charge / discharge current measurement circuit
JP2008064700A (en) Internal resistance measuring device for electric double layer capacitor
KR100372062B1 (en) Electronic device for converting electrical energy
JP2951196B2 (en) Current detector for detecting remaining battery level
JP2004119227A (en) Internal impedance measuring method of storage battery
JP2937796B2 (en) Method for measuring charge / discharge current of secondary battery for power storage, method for measuring remaining power, and measuring device
US20130093429A1 (en) Battery gauge estimation device
JP3204091B2 (en) Charge / discharge current measuring device
JP2001217094A (en) Control method of direct-current static eliminator and control device
CN105510670A (en) Detection circuit for detecting battery voltage in battery pack, and battery pack
JP2013050351A (en) Impedance measurement method for electric double-layer capacitor, impedance measurement device, and deterioration diagnostic method by impedance measured value and deterioration diagnostic device therefor
JP2013128716A (en) Bioelectric impedance measuring apparatus
KR20210026102A (en) Apparatus for predicting battery lifetime and operating method thereof
JP2004132788A (en) Apparatus and method for measuring internal impedance in storage battery
JP3402357B2 (en) Battery life diagnosis method for uninterruptible power supply
JP4061391B2 (en) Electronic load device and power regeneration method thereof
JP2751269B2 (en) Electromagnetic flow meter
JP2010185759A (en) Method for estimating electrostatic capacitance and internal resistance of capacitor and measurement apparatus of same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622