JP4061391B2 - Electronic load device and power regeneration method thereof - Google Patents

Electronic load device and power regeneration method thereof Download PDF

Info

Publication number
JP4061391B2
JP4061391B2 JP2001370221A JP2001370221A JP4061391B2 JP 4061391 B2 JP4061391 B2 JP 4061391B2 JP 2001370221 A JP2001370221 A JP 2001370221A JP 2001370221 A JP2001370221 A JP 2001370221A JP 4061391 B2 JP4061391 B2 JP 4061391B2
Authority
JP
Japan
Prior art keywords
voltage
semiconductor element
electronic load
under test
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001370221A
Other languages
Japanese (ja)
Other versions
JP2003167015A (en
Inventor
信安 千本
浩史 森谷
純 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NF CORP
Original Assignee
NF CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NF CORP filed Critical NF CORP
Priority to JP2001370221A priority Critical patent/JP4061391B2/en
Publication of JP2003167015A publication Critical patent/JP2003167015A/en
Application granted granted Critical
Publication of JP4061391B2 publication Critical patent/JP4061391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【発明の属する技術分野】
【0001】
本発明は、電子負荷装置及びその電力回生方法に関し、特に電子負荷に流入する電力を商用電源や他の機器等へ回生可能な電子負荷装置及びその電力回生方法に関する。
【0002】
【従来の技術】
燃料電池、一次電池、二次電池、キャパシタ、超伝導応用機器等の被試験体の試験は、被試験体の種々の電気特性を測定するために被試験体から電流を流す負荷として電子負荷装置が用いられる。
【0003】
従来、電源装置や電池等の電気的特性を試験する際には、実際の負荷の代わりに負荷装置として抵抗器が使用されていたが、電子技術の進歩により最近は抵抗器の場合に比べて電流を制御し易く、且つ小型化が可能である等の利点を有しているトランジスタ等の半導体素子を負荷装置として用いて電力を消費する方法が多用されるようになった。
【0004】
図3には従来のこの種の負荷装置を用いた被試験体の試験装置の構成回路図が示されている。例えば、電池である被試験体3は、電子負荷20の端子3a、3bに接続され、被試験体3の出力電圧(Vo)や電子負荷20に流す電流の大きさIiを変化させて被試験体3の種々の電気特性が測定される。
【0005】
電子負荷20は、負荷電流設定器201、直流応答可能な電流検出器202、パワートランジスタ203及び誤差増幅器204を備える。電流検出器202は、電子負荷20に流れる電流値Iiに対応した電圧値を検出、出力し、この電流検出器202の出力と負荷電流設定器201の出力との差が誤差増幅器204で得られる。この誤差増幅器204の出力は、パワートランジスタ203のベースに入力され、これら2出力の差が小さくなるようパワートランジスタ203が駆動制御される。その結果、パワートランジスタ203のコレクタ・エミッタ間には負荷電流設定器201で設定された定電流が流れる。したがって、電子負荷20は定電流で動作するので、端子3a、3b間の電圧が変化しても電子負荷20に流れ込む電流の大きさは変化しない。電子負荷20に流れる電流、すなわちパワートランジスタ203に流れる電流は熱に変換されて消費される。
【0006】
ところで、図3に示すような電子負荷20を用いて一次電池や二次電池等の被試験体の試験を行うときには、パワートランジスタ203のコレクタ・エミッタ間には飽和電圧が存在するため、電子負荷の両端電圧Voを0V(ゼロボルト)にすることはできない。従って、例えば電池の放電特性試験を行うとき、その端子電圧が0Vになるまで放電させることは不可能であった。
【0007】
かかる問題を解決するため、図3の回路の改良タイプとして、図4に示すような回路が提案されている。図4において、図3と同一符号を付した回路要素は同一回路要素を示す。図4に示す回路では、図3に示す回路構成に加えて、パワートランジスタ203の飽和電圧を補償するために電流経路に端子電圧と同極性のバイアス電源205を追加して0Vまで測定できるようにしている。
【0008】
【発明が解決しようとする課題】
上述のように、従来の電子負荷では受容した電力をパワートランジスタ等で熱に変換し消費していたため、無駄に電力を消費することになり、特に大電力の負荷試験を行う時には放熱や冷却のコストが増大してしまうという問題がある。
【0009】
また、従来この種の電子負荷をスイッチング回路で構成した場合、制御値を与えてから負荷電流が変化するまでの応答時間が300μsec程度と遅く、10μsec程度の高速で負荷電流を変化させる用途には使えなかった。例えば、電子負荷を用いて電池の内部インピーダンスを測定するとき、通電電流に交流信号(100kHz)を重畳する方式がある。このような場合、スイッチング方式の電源では、出力に平滑用のLCフィルタが入っているため高速応答は困難になる。
【0010】
そこで、本発明の目的は、従来の電子負荷が熱として無駄に消費していた電力を商用電源や他の機器等に回生して電力の有効利用を図り、被試験体の端子電圧がゼロボルト又はその近傍でも動作するとともに高速応答をも可能とする電子負荷装置及びそれを使用した電力回生方法を提供することにある。
【0011】
【課題を解決するための手段】
前述の課題を解決するため、本発明による電子負荷装置及びその電力回生方法は、次のような特徴的な構成を採用している。
【0012】
(1)被試験体の負荷として動作し、前記被試験体に直列接続される半導体素子及びバイアス電源を有する電子負荷装置において、
前記半導体素子の制御電極を制御して前記半導体素子の出力電流である前記電子負荷装置の負荷電流を設定する負荷電流制御手段と、
前記半導体素子の端子電圧を所定範囲に抑えるように前記被試験体の出力電圧に応じて前記バイアス電源のバイアス電圧を設定するバイアス電圧決定手段と、
前記被試験体の出力電圧が前記半導体素子の前記端子電圧を超えるとき前記バイアス電源の電力を外部に回生する電力回生手段と、
を備え電子負荷装置。
【0013】
(2)前記バイアス電圧決定手段は、前記半導体素子の前記端子電圧を略前記半導体素子がリニア動作するのに必要な最小電圧に制御する上記(1)の電子負荷装置。
【0014】
(3)前記バイアス電圧決定手段は、前記半導体素子の前記端子電圧を検出する電圧検出器を含む上記(1)又は(2)の電子負荷装置。
【0015】
(4)前記バイアス電圧決定手段は、前記被試験体の電圧を検出する電圧検出器を含む上記(1)又は(2)の電子負荷装置。
【0016】
(5)出力電圧が所定電圧から略0ボルトまで変化する被試験体の負荷として動作し、該被試験体に直列接続された半導体素子及びバイアス電源を含む電子負荷装置の電力回生方法において、
前記電子負荷装置の負荷電流である前記半導体素子の出力電流を所定値に制御する負荷電流制御ステップと、
前記被試験体の出力電圧に応じて前記半導体素子の端子電圧が所定値になるように前記バイアス電源のバイアス電圧を設定するバイアス電源制御ステップと、
前記被試験体の出力電圧が前記半導体素子の前記端子電圧を超えるとき前記バイアス電源の電力を外部に回生する電力回生ステップと、
を備える電子負荷装置の電力回生方法。
【0017】
(6)前記バイアス電源制御ステップは、前記検出手段の出力を係数倍して用いる第1のモードと、前記半導体素子の端子電圧を略一定にする第2のモードと、前記半導体素子の消費電力を略一定にする第3のモードと、前記半導体素子の消費電力を略一定にすると共に前記半導体素子の端子電圧を予め定めた上限値を超えないようにする第4のモードを単独又は組み合わせることにより前記バイアス電源の電圧を決定する上記(5)の電子負荷装置の電力回生方法。
【0021】
【発明の実施の形態】
以下、本発明による電子負荷装置及びその電力回生方法の好適実施形態例を添付図を参照して詳細に説明する。
【0022】
図1は本発明の第1の実施形態による回路図であり、商用電源1、電子負荷2、被試験体3を備える。被試験体3の特性を測定するため、被試験体3に電子負荷2を接続し、電子負荷2に流す電流を変えて被試験体3の特性を測定する。また、電子負荷2の内部で消費した電力は商用電源1や図示しない他の機器など(外部)に回生される。
【0023】
電子負荷2は、電子負荷3に供給する電流を制御するための電流制御回路21、電子負荷に流れる電流を検出する直流応答可能な電流検出器22、電力素子23、電流制御回路21の出力電流検出器22の出力との差を出力する誤差増幅器24、電力素子23に直列接続されている両極性(バイポーラ)のバイアス電源25、電力回生回路26、電力素子23の両端電圧Vtを検出する電圧検出器27及び電圧検出器27と電圧設定部29からの出力に基づいてバイアス電源25の端子電圧Vbを制御する電圧制御回路28を備える。
【0024】
電流制御回路21は、電子負荷3に供給する電流を制御、設定するもので、その出力と、電流検出器22で検出した電子負荷に流れる電流が誤差増幅器24の入力側に入力される。誤差増幅器24は、2つの入力信号の差信号を電力素子23に供給し、電力素子23に流れる電流を一定化する。誤差増幅器24に直列接続されている両極性(バイポーラ)のバイアス電源25には、電圧検出器27で検出した電力素子23の両端電圧Vtに基づき生成される制御信号が電圧制御回路28に出力される。電圧制御回路28は、電圧検出器27と電圧設定部29からの制御信号に基づいてバイアス電源25の端子電圧Vbを以下に説明するような態様で制御する。
【0025】
ところで、図3に示す従来の電子負荷の場合には、被試験体3の電圧が低いとき、電力素子23に存在している飽和電圧のため被試験体3の端子電圧を0Vにすることができない。例えば、電力素子23に飽和電圧として0.5V存在していれば、被試験体3の出力電圧が0.1Vのとき、電子負荷2に電流を流すことはできない。すなわち、この場合には被試験体3の出力電圧が0.5V以上でなければ飽和電圧に打ち勝って電流を電子負荷2のに流すことはできなかった。
【0026】
そこで、電力素子23の飽和電圧を補償するためバイアス電源25が追加されている。このようにすれば上記条件のときバイアス電源25の電圧を−0.5Vにすれば、被試験体3の出力電圧を0.1Vは勿論のこと0Vまで変化させることができる。
【0027】
このバイアス電源205の向き(極性)は、被試験体3の電圧が0Vあるいは0V近傍の低い電圧の場合は、半導体素子23の飽和電圧等を補償するために図1に示す極性とは逆に設定する。他方、被試験体3の電圧が大きい場合、半導体素子の持ち電圧(動作領域範囲)を余り大きくしたくないときには図1に示す極性にして、被試験体3の電圧の大部分をバイアス電源25で受け持たせるようにしている。
【0028】
さて、上述の如く、電圧検出器27は、電力素子103のコレクタ・エミッタ間電圧(Vt)を検出して電圧制御回路28に入力し、電圧制御回路28は入力されたVtの大きさに基づいてバイアス電源25の端子電圧Vbを制御する。より具体的には、電圧制御回路28は、電圧検出器27の出力に基づいて電力素子23がリニア動作をするために必要となる最低限の持ち電圧(予め定められているもの)となるようにバイアス電源25の両端電圧Vbを調整している。ここで、“最低限の持ち電圧になるように”は、電子負荷2で消費する電力の大部分を回生機能を有する電力効率の良いスイッチング方式のバイアス電源25側で負担させ、回生の効果を最大限に引き出すためである。このように、電力素子23は最低限の持ち電圧(狭い動作範囲)で動作する構成となっているため、動作特性の安定や良好な動作特性(高速動作)が可能となる。
【0029】
今、電力素子23の最低限の持ち電圧をVtxとし、バイアス電源25の最初の端子電圧をVb1とする。この状態で、電子負荷2の端子に電圧が印加された場合を考えると、電圧検出器27で検出された電圧VtがVtxより小さい場合、即ちVt<Vtxのときは、Vb1を減少させてVtに印加される電圧を増加させ、Vt=Vtxとなるように電圧制御回路28は動作する。
【0030】
反対に、電圧検出器27で検出された電圧VtがVtxより大きい場合、即ちVt>Vtxのときは、Vb1を増加させてVtに印加される電圧を減少させ、この場合もVt=Vtxとなるよう電圧制御回路28は動作する。
【0031】
バイアス電源25の電圧を制御する電圧制御モードとしては以下の3つの制御モードがある。
【0032】
第1の制御モードは、電力素子23の両端電圧Vtを一定に制御するモードで、予めVtの値が定められており、バイアス電源25の端子電圧Vbが常にVb=Vo-Vtとなるように動作する。
【0033】
第2の制御モードは、電力素子23の損失(Vt・Ii)を一定にするモードで、その動作フローは次の通りである。
▲1▼ Vtが最初Vt1であり、そのときの電力素子23の損失Pt1=Vt1・Iiを求める。
▲2▼ 電力素子23の予め定めた損失をPaとし、Pa<Pt1であればバイアス電源25の端子電圧Vbを増加して電力素子23の端子電圧をVt2に減少させる。
▲3▼ この状態で再度電力素子23の損失Pt2=Vt2・Iiを求めて、この損失が前記Paと同じ値となるようにする。
【0034】
第3の制御モードは、電力素子23の損失を一定とし、且つこの素子の端子電圧(Vt)を制限(リミット)する制御を行うモードである。この場合は、第2の制御モードの上記▲1▼〜▲3▼のフロー動作に加えてVtのリミット動作が追加されている。
【0035】
ここで、電圧制御回路28は、オペアンプや乗算器を含むアナログ回路で構成されており高速に動作可能である。しかし、要求される応答速度がシビアでなければこの部分をデジタル制御で行うことも可能である。
【0036】
バイアス電源25には電力回生回路26が接続されており、このバイアス電源25で消費された電力(Vb・Ii)は商用電源1に電力を回生される。このように、バイアス電源25は、電力回生回路26と一体となって電力を回生しており、このバイアス電源25及び電力回生回路26は回生効率を上げるために電力効率の良いスイッチング回路で構成されることが好ましい。
【0037】
被試験体3が電子負荷2に供給する電力のうち、電力素子23の電力(=Vt・Ii)は熱として消費されるが、このVtは前述の通り最低限に抑えられているため、残りの大部分の電力(=Vb・Ii)は回生機能を有するバイアス電源25から電力回生回路26を経由して商用電源1に回生される。
【0038】
上述したように、バイアス電源25は両極性である。このため、被試験体3の出力電圧Voが電力素子23の持ち電圧Vtよりも小さい場合、すなわちVt>Voのときはバイアス電源25がマイナス電圧(即ち、図1とは逆極性の場合)を発生することにより電力素子23の最適動作に必要な持ち電圧Vtを確保できる。同様に、被試験体3と電子負荷2とを結線するときの配線の持つ抵抗による電圧降下の影響も除去できることを意味している。
【0039】
Vt≪Vbのようなケースではバイアス電源25での消費電力(Vb・Ii)の値は非常に大きくなり、結果として負荷全体の電力の大半が商用電源側に回生されるのでエネルギーを節約できる。
【0040】
ところで、前述のVt>Voのときは、バイアス電源25の極性はマイナスとなり、この場合はバイアス電源25の電力は商用電源1に回生する方向でなく、商用電源1からバイアス電源25へ電力を供給する方向である。例として、Vt=2Vの場合を考えると、補償電圧は−2V必要であり、このようにすれば被試験体3の端子電圧Voを0Vまで下げることができる。ところがこのとき被試験体3は0V出力、すなわち、電力を供給していないので、バイアス電源25の−2V電力は電子負荷2自身、即ち商用電源1から供給しなければならない。
【0041】
このため、回生による電力の節約は期待できないが、通常このような場合はVo自体が比較的小さい電圧であるため電力も少ない。従って、大部分の試験においては本発明の持つ回生機能のメリットを十分に享受できるため、たとえ上記のように回生できない場合があったとしても電子負荷装置に回生機能を付加したという本発明の有用性は損なわれるものではない。
【0042】
図2は本発明の第2の実施形態を示す回路図である。図2において図1と同一符号は同様な構成要素を示す。本実施形態においては、バイアス電源25の電圧制御を電圧検出器27で検出した被試験体3の端子電圧に基づいて行っている。これは、電圧検出を被試験体3側で行う方が、電力素子23側で行うよりも被試験体3の電圧変化に対して高速に応答できるからである。更に、電子負荷までの結線による電圧降下を防止できるというメリットもある。
【0043】
バイアス電源25の電圧を制御する電圧制御モードとしては以下の3つのモードがある。
【0044】
第1の制御モードは、電力素子23の両端電圧Vtを一定にする制御で、予めVtの値を定め、電圧検出器27の出力Voに基づいてバイアス電源25の端子電圧VbをVb=Vo−Vtに設定する動作を実行するものである。
【0045】
第2の制御モードは、電子負荷2の端子電圧(=被試験体3の端子電圧)が変化したとしても、電力素子23の損失(Vt・Ii)を一定に制御するもので、その動作フローは次の通りである。
▲1▼ Vtの初期値をVt1とし、電力素子23の損失Pt1=Vt1・Iiを求める。
▲2▼ 電力素子23の予め定めた損失をPaとし、Pa<Ptであればバイアス電源25の端子電圧Vbを増加して電力素子23の端子電圧をVt2に減少させる。
▲3▼ この状態で再度電力素子23の損失Pt2=Vt2・Iiを求めて、この損失が前記Paと同じ値となるようにする。
【0046】
第3の制御モードは、電力素子23の損失を一定とし、且つこの素子の端子電圧(Vt)を制限(リミット)する動作を実行するもので、第2の制御モードにおける上記▲1▼〜▲3▼のフローにVtのリミット動作を追加することにより実現できる。
【0047】
ここで、電圧制御回路28はオペアンプや乗算器を含むアナログ回路で構成されており高速に動作する。しかしながら、要求される応答速度がシビアでなければこの電圧制御部分をデジタル制御で行うことも可能である。
【0048】
上記第2の実施形態においては、結線による電圧降下に起因する誤差を防止することを可能とするため、被試験体3の電圧の検出を専用の端子を介して行う。
【0049】
図2において、電圧検出器27は、図2の実線のように電子負荷3の両端子3a、3bに接続され、これら端子電圧をもって被試験体3の端子電圧と見なして被試験体3の端子電圧を測定する。しかしながら、電子負荷2に流す試験電流が例えば800Aのような大電流で、且つ数V程度の低電圧になると、被試験体3と電子負荷2とを結線する導線の抵抗分による電圧降下が問題となり、このままでは被試験体3の正しい電圧は測定できない。例えば結線の抵抗がわずか0.1mΩであったとしても電圧降下は80mVになり、被試験体3の電圧が仮に5Vであれば1.6%もの電圧エラーとなる。
【0050】
そこで、本実施形態では、上記結線による電圧降下の問題を防ぐため、被試験体3の電圧検出を図2の点線のように専用の端子3A、3Bを介して行う。
【0051】
尚、被試験体3の特性を測定するに際して、いつも結線の抵抗が問題となるとは限らない。被試験体3が高電圧、例えば200Vであったとすれば、例え結線の抵抗が1Ωであったとしても100mAの電流を流したときで0.1V、1Aの電流で1Vの電圧降下であり、それぞれ0.05%、0.5%の誤差にしかならない。
【0052】
このように、電圧検出を常に別結線で行う構成では、結線の抵抗が無視できるレベルの測定のときでも、わざわざ電圧検出用に結線する必要があるため煩わしいといえる。
【0053】
そこで、スイッチ等の切換え手段(図示せず)を設けて図2における3aと3A及び3bと3Bを切り換えて電圧検出器27の入力信号を3a、3b又は3A、3Bから取ることにより、その測定のレベル(どの位の測定確度を求めるか)に応じた電圧検出方法を選択することも有用である。尚、前述した実施形態においては、商用電源に電力を回生していたが、これは他の機器であっても構わないことは勿論である。
【0054】
【発明の効果】
以上説明したように、本発明の電子負荷装置及びその電力回生方法によると、動作範囲を狭めることにより高速動作を確保した半導体素子と、回生機能付きのスイッチング電源を組み合わせたため従来よりも電子負荷としての応答速度が改善され、且つ従来は熱として無駄に消費されていた電力を商用電源や他の機器等に回生できるので電力を有効に利用することができ、高速応答と低損失を両立させることができた。
【図面の簡単な説明】
【図1】本発明の第1の実施形態による電子負荷回路を用いた被試験装置の試験回路図である。
【図2】本発明の第2の実施形態による電子負荷回路を用いた被試験装置の試験回路図である。
【図3】従来の電子負荷を用いた被試験装置の試験回路図である。
【図4】従来の他の電子負荷を用いた被試験装置の試験回路図である。
【符号の説明】
1 商用電源
2、20 電子負荷
3 被試験体
21 電流制御回路
22 電流検出器
23 電力素子
24 誤差増幅器
25 バイアス電源
26 電力回生回路
27 電圧検出器
28 電圧制御回路
29 電圧設定部
201 負荷電流設定器
202 電流検出器
203 パワートランジスタ
204 誤差増幅器
205 バイアス電源
3a、3b、3A、3B 端子
BACKGROUND OF THE INVENTION
[0001]
The present invention relates to an electronic load device and power regeneration method, an electronic load device and to a power regeneration method capable regenerative power to be particularly flowing into the electronic load to a commercial power source or other equipment.
[0002]
[Prior art]
An electronic load device is used as a load for passing a current from the DUT to measure various electrical characteristics of the DUT, such as a fuel cell, a primary battery, a secondary battery, a capacitor, and a superconducting application device. Is used.
[0003]
Conventionally, when testing the electrical characteristics of power supply devices and batteries, resistors were used as load devices instead of actual loads. A method of consuming power by using a semiconductor element such as a transistor as a load device, which has advantages such as easy control of current and miniaturization, has come to be frequently used.
[0004]
FIG. 3 shows a configuration circuit diagram of a test apparatus for a device under test using such a conventional load apparatus. For example, the device under test 3, which is a battery, is connected to the terminals 3 a and 3 b of the electronic load 20, and changes the output voltage (Vo) of the device under test 3 and the magnitude Ii of the current flowing through the electronic load 20. Various electrical properties of the body 3 are measured.
[0005]
The electronic load 20 includes a load current setting device 201, a current detector 202 capable of direct current response, a power transistor 203, and an error amplifier 204. The current detector 202 detects and outputs a voltage value corresponding to the current value Ii flowing through the electronic load 20, and a difference between the output of the current detector 202 and the output of the load current setting device 201 is obtained by the error amplifier 204. . The output of the error amplifier 204 is input to the base of the power transistor 203, and the power transistor 203 is driven and controlled so that the difference between the two outputs becomes small. As a result, a constant current set by the load current setting unit 201 flows between the collector and emitter of the power transistor 203. Therefore, since the electronic load 20 operates at a constant current, the magnitude of the current flowing into the electronic load 20 does not change even if the voltage between the terminals 3a and 3b changes. The current flowing through the electronic load 20, that is, the current flowing through the power transistor 203 is converted into heat and consumed.
[0006]
By the way, when testing an object to be tested such as a primary battery or a secondary battery using the electronic load 20 as shown in FIG. 3, a saturation voltage exists between the collector and the emitter of the power transistor 203. The voltage Vo between both ends cannot be 0 V (zero volts). Therefore, for example, when a discharge characteristic test of a battery is performed, it is impossible to discharge until the terminal voltage becomes 0V.
[0007]
In order to solve such a problem, a circuit as shown in FIG. 4 has been proposed as an improved type of the circuit of FIG. In FIG. 4, circuit elements denoted by the same reference numerals as those in FIG. 3 indicate the same circuit elements. In the circuit shown in FIG. 4, in addition to the circuit configuration shown in FIG. 3, a bias power supply 205 having the same polarity as the terminal voltage is added to the current path in order to compensate for the saturation voltage of the power transistor 203 so that the voltage can be measured up to 0V. ing.
[0008]
[Problems to be solved by the invention]
As described above, in conventional electronic loads, the received power is consumed by converting it into heat with a power transistor or the like, so that power is consumed wastefully, especially when performing a high power load test. There is a problem that the cost increases.
[0009]
Conventionally, when this type of electronic load is configured with a switching circuit, the response time from when a control value is given to when the load current changes is as slow as about 300 μsec. For applications where the load current is changed at a high speed of about 10 μsec. I couldn't use it. For example, when measuring the internal impedance of a battery using an electronic load, there is a method of superimposing an AC signal (100 kHz) on the energized current. In such a case, with a switching power supply, since a smoothing LC filter is included in the output, high-speed response becomes difficult.
[0010]
Therefore, an object of the present invention is to regenerate the electric power that the conventional electronic load wasted as heat to a commercial power supply or other equipment to effectively use the electric power, and the terminal voltage of the device under test is zero volts or It is an object of the present invention to provide an electronic load device that operates in the vicinity thereof and also enables high-speed response and a power regeneration method using the same.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problem, the electronic load device and the power regeneration method thereof according to the present invention employ the following characteristic configuration.
[0012]
(1) In an electronic load device that operates as a load of a device under test and has a semiconductor element and a bias power source connected in series to the device under test .
Load current control means for controlling a control electrode of the semiconductor element to set a load current of the electronic load device which is an output current of the semiconductor element;
Bias voltage determining means for setting a bias voltage of the bias power source according to an output voltage of the device under test so as to suppress a terminal voltage of the semiconductor element within a predetermined range;
Power regeneration means for regenerating the power of the bias power source to the outside when the output voltage of the device under test exceeds the terminal voltage of the semiconductor element ;
Ru equipped with an electronic load device.
[0013]
(2) The electronic load device according to (1), wherein the bias voltage determining means controls the terminal voltage of the semiconductor element to a minimum voltage necessary for the semiconductor element to perform a linear operation .
[0014]
(3) The electronic load device according to (1) or (2), wherein the bias voltage determining means includes a voltage detector that detects the terminal voltage of the semiconductor element .
[0015]
(4) The electronic load device according to (1) or (2), wherein the bias voltage determining means includes a voltage detector that detects a voltage of the device under test .
[0016]
(5) In a power regeneration method for an electronic load device that operates as a load of a device under test whose output voltage varies from a predetermined voltage to approximately 0 volts and includes a semiconductor element and a bias power source connected in series to the device under test,
A load current control step for controlling an output current of the semiconductor element, which is a load current of the electronic load device, to a predetermined value;
A bias power supply control step of setting a bias voltage of the bias power supply so that a terminal voltage of the semiconductor element becomes a predetermined value according to an output voltage of the device under test;
A power regeneration step for regenerating the power of the bias power source to the outside when the output voltage of the device under test exceeds the terminal voltage of the semiconductor element;
An electric load regeneration method for an electronic load device.
[0017]
(6) The bias power supply control step includes a first mode in which the output of the detection unit is multiplied by a coefficient, a second mode in which the terminal voltage of the semiconductor element is made substantially constant, and power consumption of the semiconductor element And a fourth mode for making the power consumption of the semiconductor element substantially constant and for preventing the terminal voltage of the semiconductor element from exceeding a predetermined upper limit value. (5) The power regeneration method for an electronic load device according to (5), wherein the voltage of the bias power supply is determined by
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of an electronic load device and a power regeneration method thereof according to the present invention will be described in detail with reference to the accompanying drawings.
[0022]
FIG. 1 is a circuit diagram according to a first embodiment of the present invention, which includes a commercial power source 1, an electronic load 2, and a device under test 3. In order to measure the characteristics of the device under test 3, the electronic load 2 is connected to the device under test 3, and the current flowing through the electronic load 2 is changed to measure the characteristics of the device under test 3. In addition, the power consumed inside the electronic load 2 is regenerated to the commercial power source 1 or other equipment (not shown) (not shown).
[0023]
The electronic load 2 includes a current control circuit 21 for controlling a current supplied to the electronic load 3, a current detector 22 capable of direct current response for detecting a current flowing through the electronic load 2 , a power element 23, and outputs of the current control circuit 21. an error amplifier 24 for outputting a difference between the output of the current detector 22 and a bias power source 25 of the bipolar which is serially connected to the power element 23 (bipolar), power regeneration circuit 26, detects a voltage across Vt of the electric power device 23 And a voltage control circuit 28 for controlling the terminal voltage Vb of the bias power supply 25 based on the output from the voltage detector 27 and the voltage detector 27 and the voltage setting unit 29.
[0024]
The current control circuit 21 controls and sets the current supplied to the electronic load 3. The output and the current flowing through the electronic load 2 detected by the current detector 22 are input to the input side of the error amplifier 24. The error amplifier 24 supplies a difference signal between the two input signals to the power element 23 to make the current flowing through the power element 23 constant. A control signal generated based on the voltage Vt across the power element 23 detected by the voltage detector 27 is output to the voltage control circuit 28 to the bipolar (bipolar) bias power supply 25 connected in series with the error amplifier 24. The The voltage control circuit 28 controls the terminal voltage Vb of the bias power supply 25 on the basis of the control signals from the voltage detector 27 and the voltage setting unit 29 in the manner described below.
[0025]
Incidentally, in the case of the conventional electronic load shown in FIG. 3, when the voltage of the device under test 3 is low, the terminal voltage of the device under test 3 may be set to 0 V because of the saturation voltage present in the power element 23. Can not. For example, if 0.5 V is present as the saturation voltage in the power element 23, no current can flow through the electronic load 2 when the output voltage of the device under test 3 is 0.1 V. That is, it was not possible to flow a current toward the electronic load 2 in this case overcomes the saturation voltage unless the output voltage of the test object 3 is 0.5V or more.
[0026]
Therefore, a bias power supply 25 is added to compensate for the saturation voltage of the power element 23. In this way, the output voltage of the device under test 3 can be changed from 0.1V to 0V by setting the voltage of the bias power supply 25 to -0.5V under the above conditions.
[0027]
The direction (polarity) of the bias power supply 205 is opposite to the polarity shown in FIG. 1 in order to compensate for the saturation voltage of the semiconductor element 23 when the voltage of the device under test 3 is 0V or a low voltage near 0V. Set. On the other hand, when the voltage of the device under test 3 is large, the polarity shown in FIG. 1 is used when the holding voltage (operating region range) of the semiconductor element is not too large, and most of the voltage of the device under test 3 is bias power supply 25. I am trying to take care of it.
[0028]
As described above, the voltage detector 27 detects the collector-emitter voltage (Vt) of the power element 103 and inputs it to the voltage control circuit 28. The voltage control circuit 28 is based on the magnitude of the input Vt. Thus, the terminal voltage Vb of the bias power supply 25 is controlled. More specifically, the voltage control circuit 28 is set to a minimum voltage (predetermined) necessary for the power element 23 to perform a linear operation based on the output of the voltage detector 27. The voltage Vb across the bias power supply 25 is adjusted. Here, “so as to have a minimum holding voltage” means that most of the power consumed by the electronic load 2 is borne by the bias power supply 25 of the power efficient switching system having a regeneration function, and the effect of regeneration is achieved. This is to bring out the maximum. As described above, since the power element 23 is configured to operate with the minimum holding voltage (narrow operating range), it is possible to stabilize the operating characteristics and to achieve favorable operating characteristics (high-speed operation).
[0029]
Now, the minimum voltage of the power element 23 is Vtx, and the first terminal voltage of the bias power supply 25 is Vb1. Considering the case where a voltage is applied to the terminal of the electronic load 2 in this state, when the voltage Vt detected by the voltage detector 27 is smaller than Vtx, that is, when Vt <Vtx, Vb1 is decreased to Vt1. The voltage control circuit 28 operates so that the voltage applied to is increased and Vt = Vtx.
[0030]
On the contrary, when the voltage Vt detected by the voltage detector 27 is larger than Vtx, that is, when Vt> Vtx, Vb1 is increased to decrease the voltage applied to Vt, and in this case, Vt = Vtx. The voltage control circuit 28 operates.
[0031]
There are the following three control modes as voltage control modes for controlling the voltage of the bias power supply 25.
[0032]
The first control mode is a mode in which the voltage Vt across the power element 23 is controlled to be constant. The value of Vt is determined in advance, and the terminal voltage Vb of the bias power supply 25 is always Vb = Vo−Vt. Operate.
[0033]
The second control mode is a mode in which the loss (Vt · Ii) of the power element 23 is made constant, and the operation flow is as follows.
(1) Vt is initially Vt1, and the loss Pt1 = Vt1 · Ii of the power element 23 at that time is obtained.
{Circle around (2)} A predetermined loss of the power element 23 is Pa, and if Pa <Pt1, the terminal voltage Vb of the bias power supply 25 is increased and the terminal voltage of the power element 23 is decreased to Vt2.
{Circle around (3)} In this state, the loss Pt2 = Vt2 · Ii of the power element 23 is obtained again so that this loss becomes the same value as Pa.
[0034]
The third control mode is a mode in which the loss of the power element 23 is made constant and the terminal voltage (Vt) of this element is controlled (limited). In this case, in addition to the flow operations (1) to (3) in the second control mode, a Vt limit operation is added.
[0035]
Here, the voltage control circuit 28 is composed of an analog circuit including an operational amplifier and a multiplier, and can operate at high speed. However, if the required response speed is not severe, it is possible to perform this part by digital control.
[0036]
A power regeneration circuit 26 is connected to the bias power source 25, and the power (Vb · Ii) consumed by the bias power source 25 is regenerated to the commercial power source 1. In this way, the bias power supply 25 regenerates power integrally with the power regeneration circuit 26, and the bias power supply 25 and the power regeneration circuit 26 are configured by a power efficient switching circuit in order to increase the regeneration efficiency. It is preferable.
[0037]
Of the power supplied by the device under test 3 to the electronic load 2, the power of the power element 23 (= Vt · Ii) is consumed as heat, but this Vt is kept to a minimum as described above. Most of the power (= Vb · Ii) is regenerated to the commercial power supply 1 via the power regeneration circuit 26 from the bias power supply 25 having a regeneration function.
[0038]
As described above, the bias power supply 25 is bipolar. For this reason, when the output voltage Vo of the device under test 3 is smaller than the holding voltage Vt of the power element 23, that is, when Vt> Vo, the bias power supply 25 has a negative voltage (that is, a polarity opposite to that in FIG. 1). As a result, the holding voltage Vt necessary for the optimum operation of the power element 23 can be secured. Similarly, it means that the influence of the voltage drop due to the resistance of the wiring when connecting the device under test 3 and the electronic load 2 can be eliminated.
[0039]
In the case of Vt << Vb, the value of power consumption (Vb · Ii) at the bias power supply 25 becomes very large. As a result, most of the power of the entire load is regenerated to the commercial power supply side, so that energy can be saved.
[0040]
By the way, when Vt> Vo described above, the polarity of the bias power supply 25 is negative. In this case, the power of the bias power supply 25 is not regenerated to the commercial power supply 1 but is supplied from the commercial power supply 1 to the bias power supply 25. Direction. As an example, considering the case of Vt = 2V, the compensation voltage is required to be −2V. In this way, the terminal voltage Vo of the device under test 3 can be lowered to 0V. However, since the device under test 3 does not supply 0 V output, that is, power at this time, −2 V power of the bias power source 25 must be supplied from the electronic load 2 itself, that is, the commercial power source 1.
[0041]
For this reason, power saving due to regeneration cannot be expected, but usually in such a case, since Vo is a relatively small voltage, the power is also low. Therefore, in most tests, the merit of the regenerative function of the present invention can be fully enjoyed. Therefore, even if the regenerative function cannot be regenerated as described above, the regenerative function is added to the electronic load device. Sex is not impaired.
[0042]
FIG. 2 is a circuit diagram showing a second embodiment of the present invention. 2, the same reference numerals as those in FIG. 1 denote the same components. In the present embodiment, voltage control of the bias power supply 25 is performed based on the terminal voltage of the device under test 3 detected by the voltage detector 27. This is because the voltage detection on the device under test 3 side can respond to the voltage change of the device under test 3 faster than the power detection on the power element 23 side. Furthermore, there is an advantage that a voltage drop due to connection to the electronic load can be prevented.
[0043]
There are the following three modes as voltage control modes for controlling the voltage of the bias power supply 25.
[0044]
In the first control mode, the voltage Vt across the power element 23 is controlled to be constant. The value of Vt is determined in advance, and the terminal voltage Vb of the bias power supply 25 is set to Vb = Vo− based on the output Vo of the voltage detector 27. The operation of setting to Vt is executed.
[0045]
In the second control mode, even if the terminal voltage of the electronic load 2 (= terminal voltage of the device under test 3) changes, the loss (Vt · Ii) of the power element 23 is controlled to be constant. Is as follows.
(1) The initial value of Vt is set to Vt1, and the loss Pt1 = Vt1 · Ii of the power element 23 is obtained.
{Circle around (2)} A predetermined loss of the power element 23 is Pa, and if Pa <Pt, the terminal voltage Vb of the bias power supply 25 is increased and the terminal voltage of the power element 23 is decreased to Vt2.
{Circle around (3)} In this state, the loss Pt2 = Vt2 · Ii of the power element 23 is obtained again so that the loss becomes the same value as Pa.
[0046]
In the third control mode, the loss of the power element 23 is made constant and the operation of limiting (limiting) the terminal voltage (Vt) of this element is executed. This can be realized by adding a Vt limit operation to the flow 3).
[0047]
Here, the voltage control circuit 28 is composed of an analog circuit including an operational amplifier and a multiplier and operates at high speed. However, if the required response speed is not severe, it is possible to perform this voltage control part by digital control.
[0048]
In the second embodiment, the voltage of the device under test 3 is detected via a dedicated terminal in order to prevent an error caused by a voltage drop due to connection.
[0049]
2, the voltage detector 27 is connected to both terminals 3a and 3b of the electronic load 3 as indicated by the solid line in FIG. 2, and these terminal voltages are regarded as the terminal voltage of the device under test 3 and the terminals of the device under test 3 are connected. Measure the voltage. However, when the test current flowing through the electronic load 2 is a large current such as 800 A and a low voltage of about several volts, the voltage drop due to the resistance of the conductive wire connecting the device under test 3 and the electronic load 2 is a problem. Thus, the correct voltage of the DUT 3 cannot be measured as it is. For example, even if the resistance of the connection is only 0.1 mΩ, the voltage drop is 80 mV, and if the voltage of the device under test 3 is 5 V, a voltage error of 1.6% occurs.
[0050]
Therefore, in this embodiment, in order to prevent the problem of voltage drop due to the connection, the voltage of the device under test 3 is detected via the dedicated terminals 3A and 3B as shown by the dotted lines in FIG.
[0051]
In measuring the characteristics of the device under test 3, connection resistance is not always a problem. If the device under test 3 has a high voltage, for example, 200V, even if the resistance of the connection is 1Ω, the voltage drop is 0.1V, 1V at a current of 0.1V when a current of 100mA is applied, The errors are only 0.05% and 0.5%, respectively.
[0052]
As described above, in the configuration in which voltage detection is always performed by separate connection, it can be said that it is troublesome because it is necessary to connect for voltage detection even when measuring at a level where the resistance of the connection can be ignored.
[0053]
Therefore, a switching means (not shown) such as a switch is provided to switch between 3a and 3A and 3b and 3B in FIG. 2 and take the input signal of the voltage detector 27 from 3a, 3b or 3A, 3B to measure the voltage. It is also useful to select a voltage detection method according to the level (how much measurement accuracy is obtained). In the above-described embodiment, power is regenerated to the commercial power supply, but it is needless to say that this may be another device.
[0054]
【The invention's effect】
As described above, according to the electronic load device and the power regeneration method thereof of the present invention, the combination of the semiconductor element that secures high-speed operation by narrowing the operation range and the switching power supply with the regeneration function is more effective than the conventional electronic load. Response speed is improved, and power that was previously wasted as heat can be regenerated to commercial power supplies or other equipment, so that power can be used effectively, and both high-speed response and low loss can be achieved. I was able to.
[Brief description of the drawings]
FIG. 1 is a test circuit diagram of a device under test using an electronic load circuit according to a first embodiment of the present invention.
FIG. 2 is a test circuit diagram of a device under test using an electronic load circuit according to a second embodiment of the present invention.
FIG. 3 is a test circuit diagram of a device under test using a conventional electronic load.
FIG. 4 is a test circuit diagram of a device under test using another conventional electronic load.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Commercial power supply 2, 20 Electronic load 3 Test object 21 Current control circuit 22 Current detector 23 Power element 24 Error amplifier 25 Bias power supply 26 Power regeneration circuit 27 Voltage detector 28 Voltage control circuit 29 Voltage setting part 201 Load current setting device 202 Current detector 203 Power transistor 204 Error amplifier 205 Bias power supply 3a, 3b, 3A, 3B terminal

Claims (6)

被試験体の負荷として動作し、前記被試験体に直列接続される半導体素子及びバイアス電源を有する電子負荷装置において、
前記半導体素子の制御電極を制御して前記半導体素子の出力電流である前記電子負荷装置の負荷電流を設定する負荷電流制御手段と、
前記半導体素子の端子電圧を所定範囲に抑えるように前記被試験体の出力電圧に応じて前記バイアス電源のバイアス電圧を設定するバイアス電圧決定手段と、
前記被試験体の出力電圧が前記半導体素子の前記端子電圧を超えるとき前記バイアス電源の電力を外部に回生する電力回生手段と、
を備えることを特徴とする電子負荷装置。
In an electronic load device that operates as a load of a device under test and has a semiconductor element and a bias power source connected in series to the device under test ,
Load current control means for controlling a control electrode of the semiconductor element to set a load current of the electronic load device which is an output current of the semiconductor element;
Bias voltage determining means for setting a bias voltage of the bias power source according to an output voltage of the device under test so as to suppress a terminal voltage of the semiconductor element within a predetermined range;
Power regeneration means for regenerating the power of the bias power source to the outside when the output voltage of the device under test exceeds the terminal voltage of the semiconductor element ;
Electronic load, characterized in that it comprises a.
前記バイアス電圧決定手段は、前記半導体素子の前記端子電圧を略前記半導体素子がリニア動作するのに必要な最小電圧に制御することを特徴とする請求項1に記載の電子負荷装置。 2. The electronic load device according to claim 1, wherein the bias voltage determining unit controls the terminal voltage of the semiconductor element to a minimum voltage necessary for the semiconductor element to perform a linear operation . 3. 前記バイアス電圧決定手段は、前記半導体素子の前記端子電圧を検出する電圧検出器を含むことを特徴とする請求項1又は2に記載の電子負荷装置。The electronic load device according to claim 1, wherein the bias voltage determination unit includes a voltage detector that detects the terminal voltage of the semiconductor element . 前記バイアス電圧決定手段は、前記被試験体の電圧を検出する電圧検出器を含むことを特徴とする請求項1又は2に記載の電子負荷装置。 The electronic load device according to claim 1, wherein the bias voltage determination unit includes a voltage detector that detects a voltage of the device under test . 出力電圧が所定電圧から略0ボルトまで変化する被試験体の負荷として動作し、該被試験体に直列接続された半導体素子及びバイアス電源を含む電子負荷装置の電力回生方法において、In a power regeneration method for an electronic load device that operates as a load of a device under test whose output voltage changes from a predetermined voltage to approximately 0 volts and includes a semiconductor element and a bias power source connected in series to the device under test,
前記電子負荷装置の負荷電流である前記半導体素子の出力電流を所定値に制御する負荷電流制御ステップと、A load current control step for controlling an output current of the semiconductor element, which is a load current of the electronic load device, to a predetermined value;
前記被試験体の出力電圧に応じて前記半導体素子の端子電圧が所定値になるように前記バイアス電源のバイアス電圧を設定するバイアス電源制御ステップと、A bias power supply control step of setting a bias voltage of the bias power supply so that a terminal voltage of the semiconductor element becomes a predetermined value according to an output voltage of the device under test;
前記被試験体の出力電圧が前記半導体素子の前記端子電圧を超えるとき前記バイアス電源の電力を外部に回生する電力回生ステップと、A power regeneration step for regenerating the power of the bias power source to the outside when the output voltage of the device under test exceeds the terminal voltage of the semiconductor element;
を備えることを特徴とする電子負荷装置の電力回生方法。A power regeneration method for an electronic load device, comprising:
前記バイアス電源制御ステップは、前記検出手段の出力を係数倍して用いる第1のモードと、前記半導体素子の端子電圧を略一定にする第2のモードと、前記半導体素子の消費電力を略一定にする第3のモードと、前記半導体素子の消費電力を略一定にすると共に前記半導体素子の端子電圧を予め定めた上限値を超えないようにする第4のモードを単独又は組み合わせることにより前記バイアス電源の電圧を決定することを特徴とする請求項5に記載の電子負荷装置の電力回生方法。The bias power supply control step includes a first mode in which the output of the detection means is multiplied by a coefficient, a second mode in which the terminal voltage of the semiconductor element is substantially constant, and power consumption of the semiconductor element is substantially constant. And the fourth mode in which the power consumption of the semiconductor element is made substantially constant and the terminal voltage of the semiconductor element does not exceed a predetermined upper limit value alone or in combination. The power regeneration method for an electronic load device according to claim 5, wherein the voltage of the power source is determined.
JP2001370221A 2001-12-04 2001-12-04 Electronic load device and power regeneration method thereof Expired - Lifetime JP4061391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001370221A JP4061391B2 (en) 2001-12-04 2001-12-04 Electronic load device and power regeneration method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001370221A JP4061391B2 (en) 2001-12-04 2001-12-04 Electronic load device and power regeneration method thereof

Publications (2)

Publication Number Publication Date
JP2003167015A JP2003167015A (en) 2003-06-13
JP4061391B2 true JP4061391B2 (en) 2008-03-19

Family

ID=19179478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001370221A Expired - Lifetime JP4061391B2 (en) 2001-12-04 2001-12-04 Electronic load device and power regeneration method thereof

Country Status (1)

Country Link
JP (1) JP4061391B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196650B2 (en) * 2008-10-14 2013-05-15 京都電機器株式会社 Battery charge / discharge test equipment
JP5411925B2 (en) * 2009-03-10 2014-02-12 株式会社アドバンテスト Test apparatus and test method
CN108267622A (en) * 2018-01-22 2018-07-10 常州同惠电子股份有限公司 A kind of electronic load device with electric voltage reverse-connection defencive function
JP2023032175A (en) * 2021-08-26 2023-03-09 菊水電子工業株式会社 Load test system and load test method

Also Published As

Publication number Publication date
JP2003167015A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
US8465859B2 (en) Current sensor
US5164659A (en) Switching circuit
CN109425776B (en) Battery current measurement
JPS6325300B2 (en)
KR940701546A (en) Method and device for charging and testing the battery
CN109061272B (en) Current detection circuit
CN103477234A (en) Current sensor
US6667652B2 (en) Stabilized power circuit
JP4061391B2 (en) Electronic load device and power regeneration method thereof
JP2001161025A (en) Current limiter
JP4936134B2 (en) Voltage applied current measurement circuit
KR100795718B1 (en) Control power circuit of impedance measuring equipment and it&#39;s power saving method
CN114746762A (en) Electric leakage detection device and power supply system for vehicle
CN208723823U (en) The protection circuit of driving circuit
JP3204091B2 (en) Charge / discharge current measuring device
JP5989171B1 (en) CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT
JP3575573B2 (en) Thermal air flow meter
JP4896173B2 (en) Test equipment
JP2004219158A (en) Current detection circuit
TW202110030A (en) Voltage-current conversion circuit and charge-discharge control device
JP3713828B2 (en) Charging method, charging device and charging control circuit
US6768309B2 (en) Electronic battery condition tester
US11041931B2 (en) Voltage measurement device with self-diagnosis function, and self-diagnosis method of voltage measurement device
CN113109724B (en) Battery capacity detection circuit
CN218584873U (en) 5G module current consumption test system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20071115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4061391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term