WO2017145949A1 - Secondary battery deterioration assessment device - Google Patents

Secondary battery deterioration assessment device Download PDF

Info

Publication number
WO2017145949A1
WO2017145949A1 PCT/JP2017/005984 JP2017005984W WO2017145949A1 WO 2017145949 A1 WO2017145949 A1 WO 2017145949A1 JP 2017005984 W JP2017005984 W JP 2017005984W WO 2017145949 A1 WO2017145949 A1 WO 2017145949A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current
voltage
secondary battery
internal resistance
Prior art date
Application number
PCT/JP2017/005984
Other languages
French (fr)
Japanese (ja)
Inventor
山田 裕之
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017145949A1 publication Critical patent/WO2017145949A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a deterioration determination device for determining deterioration of a secondary battery used for an emergency power source or the like in a data center, a mobile phone base station, or other various power supply devices that require stable power supply.
  • the charging method for the emergency power supply includes trickle charging, which uses a charging circuit to charge with a small amount of current in a steady state, and a load and a secondary battery connected in parallel to the rectifier, applying a constant current to the load.
  • trickle charging uses a charging circuit to charge with a small amount of current in a steady state, and a load and a secondary battery connected in parallel to the rectifier, applying a constant current to the load.
  • many types of trickle charging are employed for emergency power supplies.
  • the emergency power supply is required to have a voltage and current that can drive a load driven by a commercial power supply, and a single secondary battery (also referred to as a battery) has a low voltage and a small capacity.
  • a single secondary battery also referred to as a battery
  • a plurality of battery groups connected in series are connected in parallel.
  • Each battery is a lead storage battery, a lithium ion battery, or the like.
  • Patent Document 1 a proposal for measuring the whole battery collectively (for example, Patent Document 1), applying a pulsed voltage to the battery, and determining the battery from the input voltage and the response voltage Proposals for calculating the overall internal impedance (for example, Patent Document 2), methods for determining deterioration by measuring the internal resistance of individual cells connected in series in the battery (for example, Patent Document 3), and the like have been proposed.
  • the AC four-terminal method is used to measure the internal resistance of each cell.
  • an AC four-terminal battery tester has been commercialized as a handy checker that measures a very small resistance value such as the internal resistance of the battery (for example, Non-Patent Document 1).
  • Patent Documents 1 and 2 wireless data transmission is also proposed, cable management and manual work reduction, and computer data management are also proposed.
  • JP-A-10-170615 Japanese Patent Laid-Open No. 2005-1000096 JP 2010-164441 A
  • Non-Patent Document 1 The conventional handy checker (Non-Patent Document 1) is not feasible with an emergency power source connected with dozens or hundreds of batteries because there are too many measurement points.
  • the techniques of Patent Literatures 1 and 2 both measure the entire power source including a battery, and do not measure individual batteries, that is, individual cells. For this reason, the accuracy of deterioration determination is low, and individual batteries that have deteriorated cannot be specified.
  • Patent Document 3 leads to a technique of improving the accuracy of deterioration determination and identifying each deteriorated battery by measuring the internal resistance of each cell connected in series.
  • the configuration is complicated and it is difficult to put it to practical use in a large-scale emergency power supply having tens to hundreds of cells.
  • a relatively simple device that can accurately determine battery deterioration is to apply an alternating current component such as ripple current or pulse current to the battery, and measure the internal resistance of the battery from the alternating current component of the battery terminal voltage.
  • ripple current generating means has been proposed which has a simple structure and can be manufactured at low cost.
  • An object of the present invention is to accurately determine the deterioration of each battery in a power source in which a plurality of batteries each of which is a secondary battery are connected in series, and is simple and inexpensive. It is an object of the present invention to provide a secondary battery deterioration determination device that can be manufactured and that requires a simple structure for applying a measurement current including an alternating current component.
  • the secondary battery deterioration determining apparatus includes a power source 1 such as an emergency power source connected to a load, in which a plurality of battery groups 3 each having a plurality of secondary batteries 2 connected in series are connected in parallel.
  • a deterioration determination device for a secondary battery for determining deterioration of each of the batteries 2 in A plurality of voltage sensors 7 individually connected to each of the batteries 2;
  • An internal resistance calculator 13a that calculates the internal resistance of the battery 2 using the measured values of the voltage sensors 7,
  • a determination unit 13b for determining deterioration from the calculated internal resistance;
  • a measurement current applying means 9 for generating a measurement current including an AC component from an AC commercial power source 21 and applying the measurement current to each battery group 3 is provided.
  • the AC component referred to in this specification is a component in which the magnitude of the voltage repeatedly changes, and the direction of the voltage may be always constant, for example, a ripple current or a pulse current.
  • the “battery” may be a plurality of cells connected in series or a single cell.
  • a measurement current including an AC component is applied, the internal resistance of each battery 2 is calculated using the measured voltage value, and the deterioration of the battery 2 is determined from the internal resistance. For this reason, it is possible to accurately determine deterioration.
  • the internal resistance of the battery 2 is closely related to the capacity of the battery 2, that is, the degree of deterioration. If the internal resistance is known, the deterioration of the battery 2 can be accurately determined.
  • the deterioration of each battery 2 is determined instead of the entire power source 1 to be subjected to deterioration determination. However, the deterioration is determined by applying a measurement current including an AC component and measuring the internal resistance of the battery 2. Therefore, it is possible to measure with a relatively simple configuration.
  • the measurement current application means 9 is necessary, the measurement current application unit 21 is configured to generate a measurement current including an AC component from the AC commercial power source 21. Therefore, the measurement current applying means 9 can be simply configured. In this way, deterioration of each battery can be determined with high accuracy, and both the means for performing detection from voltage detection and the determination and the current applying means 9 for measurement are simple, and are manufactured simply and inexpensively as a whole. It becomes a possible secondary battery deterioration determination device.
  • a current sensor 8 is connected to each battery group 3, and the controller 11 determines the measured value of each voltage sensor 7 and, for example, the current for each battery group 3 provided with this voltage sensor 7.
  • An internal resistance calculation unit 13a that calculates the internal resistance of each battery 2 from the measurement value of the sensor 8 and a determination unit 13b that determines the deterioration of each battery 2 from the calculation result of the internal resistance calculation unit 13a. May be. Although it is possible to calculate the internal resistance by assuming the current to be constant even if only measuring the voltage, the current that actually flows through the battery 2 is measured to obtain both the voltage and the current. Thus, the internal resistance can be calculated with higher accuracy.
  • the number of current sensors 8 is one, and may be interposed between the parallel circuit of the battery group 3 and the charging circuit 6, for example.
  • the measurement current applying means 9 performs voltage conversion so that the voltage of the AC commercial power supply 21 matches the voltage of the emergency power supply 1, and the current converted by the transformer 22
  • condenser 23 which isolate
  • the transformer 22 since the transformer 22 is provided, the commercial power source 21 can be used regardless of the voltage of the emergency power source 1.
  • the current limiting unit 24 is, for example, a current limiting resistor. By using a resistor, an excessive current can be prevented with a simple configuration.
  • each voltage sensor 7 has a conversion unit 7bc for converting the measured voltage into an effective value or an average value, and the internal resistance calculation unit 13a calculates the internal value of the battery 2 from the effective value or the average value.
  • the structure which measures resistance may be sufficient.
  • the transmission data is dramatically higher than when a voltage waveform signal is transmitted. The amount is small. Calculation of the internal resistance of the battery 2 can be performed with an effective value or an average value with high accuracy.
  • each voltage sensor 7 may include a sensor-by-sensor wireless communication means 10 that wirelessly transmits a measurement value of the voltage sensor.
  • a reference potential ground level
  • the measurement values of a plurality of individual voltage sensors 7 are transmitted wirelessly, there is no need for complicated wiring. By these, it can be set as a simple and cheap structure.
  • FIG. 1 is a circuit diagram of a secondary battery deterioration determination device according to a first embodiment of the present invention.
  • FIG. It is a block diagram which shows the conceptual structure of the voltage sensor and controller in the degradation determination apparatus of the same secondary battery. It is a flowchart which shows the operation example of the deterioration determination apparatus of the secondary battery. It is a circuit diagram of the deterioration determination apparatus of the secondary battery which concerns on other embodiment of this invention.
  • a power source 1 subject to deterioration determination is an emergency power source in a data center, a mobile phone base station, or other various power sources that require stable power supply.
  • the power source 1 has a plurality of battery groups 3 in which a plurality of batteries 2 as secondary batteries are connected in series, and these battery groups 3 are connected in parallel and connected to a load 4.
  • Each battery 2 may be a single cell or a battery in which a plurality of cells are connected in series.
  • the emergency power source 1 is connected to the positive terminal 5A through the charging circuit 6 and the diode 15 among the positive and negative terminals 5A and 5B of the main power source 5 connected to the positive and negative terminals of the load 4.
  • the negative terminal 5B is directly connected.
  • the diode 15 is connected in parallel with the charging circuit 6 in such a direction that current flows from the emergency power source 1 to the load 4.
  • the main power source 5 is composed of, for example, a DC power source that is connected to an AC commercial power source via a rectifier circuit and a smoothing circuit (both not shown) and converts to DC power.
  • the positive potential of the emergency power source 1 is lower than the positive potential of the main power source 5 and normally does not flow to the load 4. However, when the main power source 5 stops or the function is lowered, the potential on the main power source 5 side decreases. Then, the electric charge stored in the emergency power supply 1 is fed to the load 4 via the diode 15. In addition, the charge form which connected the charging circuit 6 as mentioned above is called a trickle charge form.
  • This deterioration determination device for a secondary battery is a device for determining the deterioration of each battery 2 in such a power source 1.
  • the secondary battery deterioration determination device includes a plurality of voltage sensors 7 individually connected to each battery 2, a plurality of current sensors 8 connected to each battery group 3, and a measurement current including an AC component.
  • Current application means 9 for applying a voltage to the battery group 3, wireless sensor-by-sensor communication means 10 for wirelessly transmitting a measured value of the AC component voltage provided in each voltage sensor 7, and each voltage sensor
  • a controller 11 that receives the measurement value transmitted by the wireless communication means 10, calculates the internal resistance of each battery 2 using the received measurement value, and determines deterioration of the battery 2 from the internal resistance;
  • the measurement current applying means 9 generates a measurement current including an AC component from the AC commercial power source 21 and applies it to each battery group 3.
  • the measurement current applying means 9 is connected to the positive and negative terminal ends of the battery group 3 and supplies the power source 1 with a current having an alternating current component that changes in a pulse shape or a sine wave shape, for example, a ripple current.
  • the measurement current applying means 9 is converted by the transformer 22 for voltage conversion so that the voltage of the AC commercial power supply 21 is suitable for the voltage of the emergency power supply 1, and the transformer 22 converts the voltage. It includes a capacitor 23 that separates only the AC component from the current and applies it to each battery group 3, and a current limiting unit 24 that limits the current applied to each battery group 3 (secondary side).
  • the primary circuit of the transformer 22 is provided with an open / close switch 25 that opens and closes the commercial power supply 21. Opening / closing of the open / close switch 25 is controlled by the current application controller 11e (see FIG. 2) in the main controller 11A of the controller 11.
  • the current limiting unit 24 may be a resistor, that is, a current limiting resistor as shown in FIG.
  • the voltage sensor 7 is a sensor that detects an AC component and a DC component of the voltage, and includes a sensor function unit 7a and an arithmetic processing unit 7b as shown in FIG.
  • the sensor function unit 7a includes a voltage detection element and the like.
  • the arithmetic processing unit 7b includes a control unit 7ba that executes a given command (command), a delay unit 7bb that delays the start of measurement of the sensor function unit 7a with respect to the command by a predetermined time, and the sensor function A conversion unit 7bc is provided that converts the analog detection value of the AC voltage detected by the unit 7a into an effective value or an average value by a digital signal.
  • the voltage sensor 7 has a DC detection unit 7c for detecting a DC voltage, and the detected value of the DC component detected by the DC detection unit 7c is also transmitted from the sensor-by-sensor wireless communication means 10.
  • the DC detection unit 7c may also serve as the sensor function unit 7a.
  • each voltage sensor 7 has a transmission order set in advance as a transmission delay time by the delay unit 7bb or by other means, and the measurement value is transmitted from each voltage sensor 7 in a time multiplexed manner. The transmission is sequentially performed after the transmission delay time in the set order.
  • a temperature sensor 18 for measuring the ambient temperature of the battery 2 and the temperature of the battery is provided, and at least the voltage sensor 7 and the temperature sensor 18 constitute a sensor unit 17.
  • the temperature detected by the temperature sensor 18 is transmitted to the controller 11 by the sensor-based wireless communication means 10 together with the voltage measurement value based on the effective value or the average value of the voltage sensor 7.
  • the controller 11 is formed by connecting a data server 13 and a monitor 14 to the main controller 11A via the communication network 12.
  • the communication network 12 is composed of a LAN and has a hub 12a.
  • the communication network 12 may be a wide area communication network.
  • the data server 13 can communicate with a remote personal computer (not shown) or the like via the communication network 12 or another communication network, and can monitor data from anywhere.
  • the main controller 11A includes a receiving unit 11a that receives the detection value of the voltage sensor 7 transmitted from each sensor wireless communication unit 10, and a transfer unit 11b that transfers the measurement value received by the receiving unit 11a to the communication network 12.
  • Each voltage sensor 7 includes a command transmission unit 11c that wirelessly transmits a command such as a transmission start to the sensor-by-sensor wireless communication unit 10, a standby unit 11d described later, and a current application control unit 11e.
  • the current application control unit 11e controls the measurement current application unit 9 (FIG. 1). In FIG. 2, wireless transmission / reception of the command transmission unit 11 c and the reception unit 11 a is performed via the antenna 19.
  • each current sensor 8 is connected to the main controller 11A by wiring, and the measured value of the current is transferred together with the measured voltage value from the transfer unit 11b of FIG.
  • the command transmission unit 11c of the main controller 11A may generate a command by itself, but in this embodiment, in response to a measurement start command transmitted from the data server 13, each sensor of each voltage sensor 7 is wireless.
  • the measurement start command is transferred to the communication means 10.
  • the main controller 11A or the current sensor 8 is provided with a conversion unit (not shown) that converts the measured value of the current sensor 8 into an effective value or an average value.
  • the controller 11 has a function of transmitting the command to the wireless communication unit 10 for each sensor.
  • the wireless communication unit 10 for each sensor receives the command, the calculation provided in the voltage sensor 7 is performed. It has a function of giving a command corresponding to this command to the processing unit 7b.
  • the data server 13 includes an internal resistance calculation unit 13a and a determination unit 13b.
  • the internal resistance calculation unit 13a receives the AC voltage value (execution value or average value), DC voltage value (cell voltage), detected temperature, and current value (execution value or average value) transmitted from the main controller 11A. And the internal resistance of the battery 2 is calculated according to a predetermined calculation formula. The detected temperature is used for temperature correction.
  • the determination unit 13b determines that the threshold is set and the calculated internal resistance is greater than or equal to the threshold.
  • a plurality of threshold values are provided (for example, for two to three stages), deterioration determination of a plurality of stages is performed, and an alarm corresponding to the plurality of stages is output as will be described later.
  • the determination unit 13b has a function of displaying the determination result on the monitor 14 via the communication network 12 or via a dedicated wiring.
  • the data server 13 includes a command transmission unit 13c that transmits a measurement start command to the main controller 11A, and a data storage unit 13d that stores data such as a voltage measurement value transmitted from the main controller 11A. Yes.
  • the main controller 11A and the measurement current applying unit 9 may be configured as an integrated controller in the same case.
  • the controller 11 is configured by the main controller 11A and the data server 13 in this embodiment, but the main controller 11A and the data server 13 may be configured as one controller 11 in the same case.
  • one information processing apparatus configured by one substrate or the like may be configured without distinction between the main controller 11A and the data server 13.
  • FIG. 3 is a flowchart of an example of the operation.
  • the data server 13 transmits a measurement start command from the command transmitter 13c (step S1).
  • the main controller 11A receives a measurement start command from the data server 13 (step S2), and transmits a measurement start command to each sensor wireless communication means 10 of each voltage sensor 7 and each current sensor 8 (step S3).
  • the standby unit 11d determines the end of the standby time (step S20) and counts the standby time (step S22). When the set standby time is finished, current is applied by the measurement current applying means 9 (step S21).
  • the measurement start command transmitted in step S3 is received by all the voltage sensors 7 (step S4).
  • Each voltage sensor 7 waits for the end of its own measurement delay time (step S5), and then the DC voltage of the battery 2 is received. (Inter-terminal voltage) is measured (step S6). Thereafter, the voltage sensor 7 waits for the end of the standby time (step S7), and measures the AC voltage of the battery 2 (step S8).
  • the direct measurement value is converted into an effective voltage or an average voltage, and the converted value is output as a measurement value.
  • the measured DC voltage and AC voltage wait for their own transmission delay time and are transmitted wirelessly by the wireless communication means 10 for each sensor (step S9), and the main controller 11A of the controller 11 receives wirelessly (step S10).
  • the main controller 11A transmits the received DC voltage and AC voltage together with the detection values of the current sensor 8 and the temperature sensor 18 (FIG. 2) to the data server 13 via the communication network 12 such as a LAN (step S11).
  • the data server 13 receives the data of the sensors such as the voltage sensors 7 transmitted in order and stores them in the data storage unit 13d (step S12). From the wireless transmission step S9 to the data storage by the data server 13 is performed until the reception and storage of the data of all the voltage sensors 7 is completed (NO in step S12).
  • the measurement current applying means 9 is transmitted by transmitting the end signal from the data server 13 to the main controller 11A and outputting the current application control signal of the main controller 11A. Is turned off (step S16), and the data server 13 calculates the internal resistance of each battery 2 by the internal resistance calculator 13a (step S13).
  • the determination unit 13b of the data server 13 compares the calculated internal resistance with an appropriately determined first threshold value (step S14), and the battery 2 is normal if it is smaller than the first threshold value. Is determined (step S15). If it is not smaller than the first threshold value, it is further compared with the second threshold value (step S17), and if it is smaller than the second threshold value, a warning that is a warning alert is output (step S18). . If it is not smaller than the second threshold value, an alarm that is stronger than the warning is output (step S19). The alarm and warning are displayed on the monitor 14 (FIG. 1). If the above is normal, the monitor 14 may indicate that it is normal, or may not be displayed in particular.
  • the alarm and warning display by the monitor 14 may be performed by, for example, a mark such as a predetermined icon or by lighting a predetermined part. In this way, the deterioration determination of all the batteries 2 of the emergency message 1 is performed.
  • FIG. 3 is an example of two-stage deterioration determination (and display of an alarm or the like).
  • each voltage sensor 7 is provided for each battery 2 and receives and transfers data with a digital signal by wireless communication. Even in the case of the emergency power source 1 provided with the batteries 2, it is not necessary to worry about the reference potential (ground level) electrically for each battery 2. Therefore, there is no need for differential operation or an isolation transformer. Further, since the measurement values of the plurality of individual voltage sensors 7 are transmitted wirelessly, there is no need for complicated wiring. By these, it can be set as a simple and cheap structure.
  • the deterioration of each battery 2 is determined instead of the entire power source 1 subject to deterioration determination.
  • a measurement current including an AC component is applied, and the wireless communication means 10 for each sensor 10 Since the internal resistance of each battery 2 is calculated using the transmitted measurement value and the deterioration of the battery 2 is determined from the internal resistance, the deterioration determination can be made with high accuracy.
  • the internal resistance of the battery 2 is closely related to the capacity of the battery 2, that is, the degree of deterioration. If the internal resistance 2 is known, the deterioration of the battery 2 can be accurately determined.
  • the amount of transmission data is drastically larger than when a voltage waveform signal is transmitted. Less is enough.
  • Calculation of the internal resistance of the battery 2 can be performed with an effective value or an average value with high accuracy.
  • the calculation of the internal resistance of the battery 2 is possible only by measuring the voltage, it is possible to assume that the current is a constant value. However, the current actually flowing through the battery 2 is measured and the voltage and current are calculated. By obtaining both, the internal resistance can be calculated with higher accuracy. Since the currents flowing through the batteries 2 arranged in series are the same, it is sufficient to provide one current sensor 8 for each battery group 3.
  • the controller 11 transmits a measurement start command to each sensor wireless communication means 10 of each voltage sensor 7 and starts measurement of the voltage sensor 2 by this command. Can be arranged. In this case, the controller 11 simultaneously transmits a measurement start command to each voltage sensor 7 by serial transmission or parallel transmission, and each voltage sensor 7 performs measurement simultaneously after the measurement start delay time elapses. After the measurement is completed, the controller 11 sequentially transmits a data transmission request command to each of the voltage sensors 7, and the voltage sensor 7 that has received the command transmits data, and repeats the above to perform data communication. Good. In the present invention, the controller 11 may make a re-transmission request to the voltage sensor 7 that has not been able to receive data after a predetermined time from the transmission of the data transmission request command.
  • the measurement start delay time determined for each voltage sensor 7 there are many even if a measurement start command is simultaneously transmitted to the wireless communication means 10 for each sensor.
  • the measurement of each voltage sensor 7 can be performed in order so as not to hinder wireless transmission and reception, and can be transmitted.
  • the transmission start command is a global command, and the voltage sensor 7 acquires it simultaneously.
  • the controller 11 makes a re-transmission request to the voltage sensor 7 that has not received data after a predetermined time from the transmission of the measurement start command.
  • the measurement start command cannot be received by the sensor-by-sensor wireless communication means 10 of some voltage sensors 7 due to some temporary transmission failure or the like. Even in such a case, by performing the re-transmission request, the voltage can be measured and transmitted, and the voltage measurement values of all the batteries 2 of the power source can be obtained. Whether or not the measurement start command has been received may be determined by determining whether or not the voltage measurement value has been received on the controller 11 side.
  • the controller 11 may individually transmit a data request command to the wireless communication means 10 for each sensor of each voltage sensor 7 and sequentially receive the data.
  • the delay unit 7bb is not required on the voltage sensor 7 side, and the configuration on the voltage sensor 7 side is simplified. Since the controller 11 outputs a multi-stage alarm according to the calculated magnitude of the internal resistance, the urgency of the need for battery replacement can be known, and maintenance planning and preparation can be performed without performing unnecessary battery replacement. Can be done smoothly and quickly.
  • the controller 11 and its internal components include a predetermined conversion function stored in a LUT (Look Up Table) implemented by software or hardware, or a software library (Library), or an equivalent thereof.
  • a hardware circuit or processor (not shown) that can perform computations and output the results using the library comparison functions, four arithmetic operations functions, or equivalent hardware, etc. It consists of software functions.
  • the measurement power application means 9 generates a measurement current including an AC component from the AC commercial power supply 21 and applies the measurement current to each of the battery groups 3, so that the measurement current including the AC component in the battery group 3 is configured with a simple configuration. Can be applied.
  • the transformer 22 and the capacitor 23 even if the voltages of the commercial power source 21 and the battery group 3 are different, the voltage of the current for measurement can be matched with the voltage of the battery group 3, and only the AC component can be obtained. It can be applied to the battery group 3.
  • the current limiting unit 24 such as a resistor is provided, the current applied to the battery group 3 can be limited, and the battery group 3 can be protected from overcurrent. When the current limiting unit 24 is a resistor, a simple configuration is sufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided is a secondary battery deterioration assessment device that can be manufactured easily and inexpensively and can accurately assess the deterioration of each battery in an emergency power source in which multiple battery groups, in which multiple batteries of a data center, mobile phone base station, or the like are connected in series, are connected in parallel. A secondary battery deterioration assessment device is provided with: multiple voltage sensors (7) each connected to a battery (2); a measurement current applying means (9) that applies, to each battery group (3), a measurement current including an alternating-current component; and a controller (11). The voltage sensors (7) measure the voltage value of the alternating-current component, an internal resistance computing unit (13a) computes an internal resistance from the measured value, and an assessment unit (13b) assesses the deterioration of a battery (2) from the internal resistance. The measurement current applying device (9) generates a measurement current, including an alternating-current component, from an alternating-current commercial power source (21) and applies the measurement current to each battery group (3).

Description

二次電池の劣化判定装置Secondary battery deterioration judgment device 関連出願Related applications
 本出願は、2016年2月24日出願の特願2016-032946の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2016-032946 filed on Feb. 24, 2016, which is incorporated herein by reference in its entirety.
 この発明は、データセンタ、携帯電話基地局、またはその他各種の電力安定供給が求められる電源装置における非常用電源等に用いられる二次電池の劣化を判定する劣化判定装置に関する。 The present invention relates to a deterioration determination device for determining deterioration of a secondary battery used for an emergency power source or the like in a data center, a mobile phone base station, or other various power supply devices that require stable power supply.
 データセンタおよび携帯電話基地局等では、電力の安定供給が重要であり、定常時には交流商用電源が用いられるが、交流商用電源が停止した場合の無停電電源装置として、二次電池を用いた非常用電源が装備される。非常用電源の充電方式としては、充電回路を用いて定常時に微小電流で充電するトリクル充電の形式と、整流器に対して負荷と二次電池を並列に接続し、一定電流を印加して負荷を運転させつつ充電するフロート充電の形式とがある。一般的に非常用電源にはトリクル充電の形式が多く採用されている。 In data centers and mobile phone base stations, it is important to provide a stable power supply, and an AC commercial power supply is used in steady state, but a secondary battery is used as an uninterruptible power supply when the AC commercial power supply stops. Power supply is equipped. The charging method for the emergency power supply includes trickle charging, which uses a charging circuit to charge with a small amount of current in a steady state, and a load and a secondary battery connected in parallel to the rectifier, applying a constant current to the load. There is a form of float charging that charges while driving. In general, many types of trickle charging are employed for emergency power supplies.
 前記非常用電源は、商用電源で駆動される負荷の駆動が可能な電圧と電流が要求され、一つの二次電池(バッテリとも称する)の電圧は低く、また容量も小さいため、複数のバッテリが直列接続されたバッテリ群を複数並列に接続した構成とされる。個々のバッテリは、鉛蓄電池やリチウムイオン電池等である。 The emergency power supply is required to have a voltage and current that can drive a load driven by a commercial power supply, and a single secondary battery (also referred to as a battery) has a low voltage and a small capacity. A plurality of battery groups connected in series are connected in parallel. Each battery is a lead storage battery, a lithium ion battery, or the like.
 このような非常用電源において、バッテリは劣化によって電圧が低下するため、信頼性確保のために、バッテリの劣化判定を行い、劣化したバッテリを交換しておくことが望まれる。しかし、データセンタ、携帯電話基地局等の大規模な非常用電源における多数のバッテリを精度良く劣化判定できる装置は、提案されるに至っていない。 In such an emergency power source, since the voltage of the battery decreases due to deterioration, it is desirable to determine the deterioration of the battery and replace the deteriorated battery in order to ensure reliability. However, an apparatus that can accurately determine the deterioration of a large number of batteries in a large-scale emergency power source such as a data center or a mobile phone base station has not been proposed.
 従来のバッテリの劣化判定の提案例としては、車載バッテリチェッカーとして、バッテリ全体を纏めて計測する提案(例えば、特許文献1)、バッテリにパルス状電圧を印加し、入力電圧と応答電圧とからバッテリ全体の内部インピーダンスを算出する提案(例えば、特許文献2)、バッテリにおける直列接続された個々のセルの内部抵抗を計測し、劣化判定する方法(例えば、特許文献3)等が提案されている。個々のセルの内部抵抗の計測には交流4端子法が用いられている。また、バッテリの内部抵抗等の非常に小さな抵抗値を計測するハンディチェッカーとして、交流4端子法バッテリテスタが商品化されている(例えば、非特許文献1)。 As a proposal example of conventional battery deterioration determination, as an in-vehicle battery checker, a proposal for measuring the whole battery collectively (for example, Patent Document 1), applying a pulsed voltage to the battery, and determining the battery from the input voltage and the response voltage Proposals for calculating the overall internal impedance (for example, Patent Document 2), methods for determining deterioration by measuring the internal resistance of individual cells connected in series in the battery (for example, Patent Document 3), and the like have been proposed. The AC four-terminal method is used to measure the internal resistance of each cell. Further, an AC four-terminal battery tester has been commercialized as a handy checker that measures a very small resistance value such as the internal resistance of the battery (for example, Non-Patent Document 1).
 前記特許文献1,2では、無線によるデータ送信も提案され、ケーブルの取り回しや手作業の削減、コンピュータによるデータ管理も提案されている。 In Patent Documents 1 and 2, wireless data transmission is also proposed, cable management and manual work reduction, and computer data management are also proposed.
特開平10-170615号公報JP-A-10-170615 特開2005-100969号公報Japanese Patent Laid-Open No. 2005-1000096 特開2010-164441号公報JP 2010-164441 A
 従来の前記ハンディチェッカー(非特許文献1)は、バッテリが何十、何百と接続された非常用電源では、計測箇所が多くなり過ぎ、実現性がない。特許文献1,2の技術は、いずれも、バッテリからなる電源の全体を計測するものであり、個々のバッテリ、つまり個々のセルの計測を行うものではない。そのため、劣化判定の精度が低く、また劣化した個々のバッテリを特定することができない。 The conventional handy checker (Non-Patent Document 1) is not feasible with an emergency power source connected with dozens or hundreds of batteries because there are too many measurement points. The techniques of Patent Literatures 1 and 2 both measure the entire power source including a battery, and do not measure individual batteries, that is, individual cells. For this reason, the accuracy of deterioration determination is low, and individual batteries that have deteriorated cannot be specified.
 特許文献3の技術は、直列接続された個々のセルの内部抵抗を計測することでは、劣化判定の精度向上、および劣化した個々のバッテリを特定する技術に繋がる。しかし、個々のセルの内部抵抗の計測に交流4端子法が用いられているため、構成が複雑であって、数十ないし数百のセルを持つ大規模な非常用電源では実用化が難しい。バッテリの劣化を精度良く判定できる比較的に簡易な装置としては、バッテリにリップル電流またはパルス電流などの交流成分を有する電流を印加し、バッテリの端子間電圧の交流成分からバッテリの内部抵抗を計測し、劣化を判定する方法がある。しかし、リップル電流の発生手段につき、構造が簡単で安価に製作できるものが提案されるに至っていない。 The technique of Patent Document 3 leads to a technique of improving the accuracy of deterioration determination and identifying each deteriorated battery by measuring the internal resistance of each cell connected in series. However, since the AC four-terminal method is used for measuring the internal resistance of each cell, the configuration is complicated and it is difficult to put it to practical use in a large-scale emergency power supply having tens to hundreds of cells. A relatively simple device that can accurately determine battery deterioration is to apply an alternating current component such as ripple current or pulse current to the battery, and measure the internal resistance of the battery from the alternating current component of the battery terminal voltage. However, there is a method for judging deterioration. However, no ripple current generating means has been proposed which has a simple structure and can be manufactured at low cost.
 この発明の目的は、それぞれ二次電池であるバッテリの複数が直列接続されたバッテリ群が複数並列に接続された電源における前記各バッテリの劣化を精度良く判定することができ、かつ簡素で安価に製造可能であり、特に交流成分を含む計測用電流の印加手段が簡素な構成で済む二次電池の劣化判定装置を提供することである。 An object of the present invention is to accurately determine the deterioration of each battery in a power source in which a plurality of batteries each of which is a secondary battery are connected in series, and is simple and inexpensive. It is an object of the present invention to provide a secondary battery deterioration determination device that can be manufactured and that requires a simple structure for applying a measurement current including an alternating current component.
 以下、この発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。 Hereinafter, in order to facilitate understanding, the present invention will be described with reference to the reference numerals of the embodiments for convenience.
 この発明の二次電池の劣化判定装置は、それぞれ二次電池であるバッテリ2の複数が直列接続されたバッテリ群3が複数並列に接続された、負荷に接続される非常用電源等の電源1における前記各バッテリ2の劣化を判定する二次電池の劣化判定装置であって、
 前記各バッテリ2に個別に接続された複数の電圧センサ7と、
 前記各電圧センサ7の計測値を用いてバッテリ2の内部抵抗を演算する内部抵抗演算部13aと、
 この演算された内部抵抗から劣化を判定する判定部13bと、
 交流の商用電源21から、交流成分を含む計測用電流を生成し前記各バッテリ群3に印加する計測用電流印加手段9とを備える。
The secondary battery deterioration determining apparatus according to the present invention includes a power source 1 such as an emergency power source connected to a load, in which a plurality of battery groups 3 each having a plurality of secondary batteries 2 connected in series are connected in parallel. A deterioration determination device for a secondary battery for determining deterioration of each of the batteries 2 in
A plurality of voltage sensors 7 individually connected to each of the batteries 2;
An internal resistance calculator 13a that calculates the internal resistance of the battery 2 using the measured values of the voltage sensors 7,
A determination unit 13b for determining deterioration from the calculated internal resistance;
A measurement current applying means 9 for generating a measurement current including an AC component from an AC commercial power source 21 and applying the measurement current to each battery group 3 is provided.
 なお、この明細書で言う交流成分は、電圧の大きさが繰り返し変化する成分であり、電圧の向きが常に一定であっても良く、例えばリップル電流やパルス電流であっても良い。前記「バッテリ」は、複数のセルが直列接続されたものであっても、セル単独であっても良い。 In addition, the AC component referred to in this specification is a component in which the magnitude of the voltage repeatedly changes, and the direction of the voltage may be always constant, for example, a ripple current or a pulse current. The “battery” may be a plurality of cells connected in series or a single cell.
 この構成によると、交流成分を含む計測用電流を印加し、電圧の計測値を用いて各バッテリ2の内部抵抗を算出し、内部抵抗から前記バッテリ2の劣化を判定する。このため、精度良く劣化を判定することができる。バッテリ2の内部抵抗は、バッテリ2の容量、つまり劣化の程度と密接な関係があり、内部抵抗が分かれば、バッテリ2の劣化を精度良く判定できる。また、劣化判定対象の電源1の全体ではなく、個々のバッテリ2の劣化を判定するが、交流成分を含む計測用電流を印加し、バッテリ2の内部抵抗を計測して劣化判定する構成であるため、比較的に簡易な構成で計測できる。計測用電流印加手段9が必要であるが、交流の商用電源21から、交流成分を含む計測用電流を生成する構成とされる。そのため、計測用電流印加手段9が簡易な構成ですむ。このように、各バッテリの劣化を精度良く判定することができ、電圧等の検出から判定までを行う手段、および計測用電流印加手段9のいずれもが簡素であり、全体として簡素で安価に製造可能な二次電池の劣化判定装置となる。 According to this configuration, a measurement current including an AC component is applied, the internal resistance of each battery 2 is calculated using the measured voltage value, and the deterioration of the battery 2 is determined from the internal resistance. For this reason, it is possible to accurately determine deterioration. The internal resistance of the battery 2 is closely related to the capacity of the battery 2, that is, the degree of deterioration. If the internal resistance is known, the deterioration of the battery 2 can be accurately determined. In addition, the deterioration of each battery 2 is determined instead of the entire power source 1 to be subjected to deterioration determination. However, the deterioration is determined by applying a measurement current including an AC component and measuring the internal resistance of the battery 2. Therefore, it is possible to measure with a relatively simple configuration. Although the measurement current application means 9 is necessary, the measurement current application unit 21 is configured to generate a measurement current including an AC component from the AC commercial power source 21. Therefore, the measurement current applying means 9 can be simply configured. In this way, deterioration of each battery can be determined with high accuracy, and both the means for performing detection from voltage detection and the determination and the current applying means 9 for measurement are simple, and are manufactured simply and inexpensively as a whole. It becomes a possible secondary battery deterioration determination device.
 この発明において、前記各バッテリ群3毎に電流センサ8が接続され、前記コントローラ11は、前記各電圧センサ7の前記計測値と例えばこの電圧センサ7が設けられた前記バッテリ群3毎の前記電流センサ8の計測値とから前記各バッテリ2の内部抵抗を算出する内部抵抗演算部13a、およびこの内部抵抗演算部13aの演算結果から前記各バッテリ2の劣化を判定する判定部13bを有するようにしても良い。電圧の計測だけであっても、電流を一定値に仮定することなどで、内部抵抗の算出が可能ではあるが、バッテリ2に実際に流れる電流を計測し、電圧と電流との両方を求めることで、内部抵抗をより一層精度良く算出することができる。直列に並んだ各バッテリに流れる電流は同じであるため、電流センサ8はバッテリ群3毎に1つ設けられていれば足りる。なお、電流センサ8は1つとし、例えばバッテリ群3の並列回路と充電回路6との間に介在させてもよい。 In the present invention, a current sensor 8 is connected to each battery group 3, and the controller 11 determines the measured value of each voltage sensor 7 and, for example, the current for each battery group 3 provided with this voltage sensor 7. An internal resistance calculation unit 13a that calculates the internal resistance of each battery 2 from the measurement value of the sensor 8 and a determination unit 13b that determines the deterioration of each battery 2 from the calculation result of the internal resistance calculation unit 13a. May be. Although it is possible to calculate the internal resistance by assuming the current to be constant even if only measuring the voltage, the current that actually flows through the battery 2 is measured to obtain both the voltage and the current. Thus, the internal resistance can be calculated with higher accuracy. Since the currents flowing through the batteries arranged in series are the same, it is sufficient that one current sensor 8 is provided for each battery group 3. Note that the number of current sensors 8 is one, and may be interposed between the parallel circuit of the battery group 3 and the charging circuit 6, for example.
 この発明において、前記計測用電流印加手段9が、前記交流の商用電源21の電圧が前記非常用の電源1の電圧と合致するように電圧変換するトランス22と、このトランス22で変換された電流から交流成分のみを分離して前記各バッテリ群3に印加するコンデンサ23と、前記各バッテリ群3に印加する電流を制限する電流制限部24とを含む構成であっても良い。この構成の場合、トランス22を備えるため、非常用の電源1の電圧にかかわらずに、商用電源21を利用できる。また、コンデンサ23を備えることで、簡単な構成で、交流成分のみを分離して各バッテリ群3に印加することができる。また、電流制限部24を備えるため、商用電源21の異常発生時などに、過大な電流が計測用電流印加手段9に流れ込んでも、非常用の電源1に異常電流が流れ込んで非常用の電源1を損傷することが回避される。 In the present invention, the measurement current applying means 9 performs voltage conversion so that the voltage of the AC commercial power supply 21 matches the voltage of the emergency power supply 1, and the current converted by the transformer 22 The capacitor | condenser 23 which isolate | separates only an alternating current component from and applies to each said battery group 3 and the structure containing the electric current limiting part 24 which restrict | limits the electric current applied to each said battery group 3 may be sufficient. In the case of this configuration, since the transformer 22 is provided, the commercial power source 21 can be used regardless of the voltage of the emergency power source 1. In addition, by providing the capacitor 23, it is possible to separate only the AC component and apply it to each battery group 3 with a simple configuration. Further, since the current limiting unit 24 is provided, even when an excessive current flows into the measurement current applying unit 9 when an abnormality occurs in the commercial power supply 21, the abnormal power flows into the emergency power supply 1 and the emergency power supply 1. To avoid being damaged.
 前記電流制限部24は、例えば電流制限抵抗とされる。抵抗を用いることで、簡素な構成で過大電流を防止できる。 The current limiting unit 24 is, for example, a current limiting resistor. By using a resistor, an excessive current can be prevented with a simple configuration.
 この発明において、前記各電圧センサ7は、計測した電圧を実効値または平均値に変換する変換部7bcを有し、前記内部抵抗演算部13aは、前記実効値または平均値から前記バッテリ2の内部抵抗を計測する構成であっても良い。このように、各電圧センサ7の計測した前記計測値を、ディジタル信号で表される実効値または平均値に変換し、送信するため、電圧波形の信号を送る場合に比べて飛躍的に送信データ量が少なくて済む。バッテリ2の内部抵抗の算出は実効値または平均値で精度良く行える。 In the present invention, each voltage sensor 7 has a conversion unit 7bc for converting the measured voltage into an effective value or an average value, and the internal resistance calculation unit 13a calculates the internal value of the battery 2 from the effective value or the average value. The structure which measures resistance may be sufficient. Thus, since the measured value measured by each voltage sensor 7 is converted into an effective value or an average value represented by a digital signal and transmitted, the transmission data is dramatically higher than when a voltage waveform signal is transmitted. The amount is small. Calculation of the internal resistance of the battery 2 can be performed with an effective value or an average value with high accuracy.
 この発明において、前記各電圧センサ7毎に、この電圧センサの計測値を無線で送信するセンサ毎無線通信手段10を備えるようにしても良い。無線通信によりデータの受け取り受け渡しをする構成であると、数十から数百個のバッテリ2を備える非常用の電源1であっても、各バッテリ2につき、電気的に基準電位(グランドレベル)を気にする必要がない。そのため、差動演算や絶縁トランスの必要がない。また、複数ある個々の電圧センサ7の計測値を無線で送信するため、複雑な配線の必要がない。これらにより、簡単で安価な構成とできる。 In the present invention, each voltage sensor 7 may include a sensor-by-sensor wireless communication means 10 that wirelessly transmits a measurement value of the voltage sensor. In the configuration for receiving and transferring data by wireless communication, even if the emergency power source 1 includes several tens to several hundreds of batteries 2, a reference potential (ground level) is electrically set for each battery 2. There is no need to worry. Therefore, there is no need for differential operation or an isolation transformer. Further, since the measurement values of a plurality of individual voltage sensors 7 are transmitted wirelessly, there is no need for complicated wiring. By these, it can be set as a simple and cheap structure.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。 The present invention will be understood more clearly from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
この発明の第1の実施形態に係る二次電池の劣化判定装置の回路図である。1 is a circuit diagram of a secondary battery deterioration determination device according to a first embodiment of the present invention. FIG. 同二次電池の劣化判定装置における電圧センサとコントローラの概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the voltage sensor and controller in the degradation determination apparatus of the same secondary battery. 同二次電池の劣化判定装置の動作例を示す流れ図である。It is a flowchart which shows the operation example of the deterioration determination apparatus of the secondary battery. この発明の他の実施形態に係る二次電池の劣化判定装置の回路図である。It is a circuit diagram of the deterioration determination apparatus of the secondary battery which concerns on other embodiment of this invention.
 この発明の二次電池の劣化判定装置の第1の実施形態を、図1ないし図3と共に説明する。図1において、劣化判定対象の電源1は、データセンタ、携帯電話基地局、またはその他各種の電力安定供給が求められる電源装置における非常用電源である。この電源1は、それぞれ二次電池であるバッテリ2の複数が直列接続されたバッテリ群3を複数有し、これらバッテリ群3が並列に接続され負荷4に接続される。各バッテリ2は、一つのセルであっても、また複数のセルが直列接続されたバッテリであっても良い。 A first embodiment of the secondary battery deterioration determination device of the present invention will be described with reference to FIGS. In FIG. 1, a power source 1 subject to deterioration determination is an emergency power source in a data center, a mobile phone base station, or other various power sources that require stable power supply. The power source 1 has a plurality of battery groups 3 in which a plurality of batteries 2 as secondary batteries are connected in series, and these battery groups 3 are connected in parallel and connected to a load 4. Each battery 2 may be a single cell or a battery in which a plurality of cells are connected in series.
 この非常用の電源1は、負荷4の正負の端子に接続された主電源5の正負の端子5A,5Bのうち、正の端子5Aには充電回路6とダイオード15とを介して接続され、負の端子5Bには直接に接続されている。ダイオード15は非常用の電源1から負荷4に電流を流す向きで、充電回路6と並列に接続されている。主電源5は、例えば交流商用電源に整流回路および平滑回路(いずれも図示せず)介して接続されて直流電力に変換する直流電源等からなる。 The emergency power source 1 is connected to the positive terminal 5A through the charging circuit 6 and the diode 15 among the positive and negative terminals 5A and 5B of the main power source 5 connected to the positive and negative terminals of the load 4. The negative terminal 5B is directly connected. The diode 15 is connected in parallel with the charging circuit 6 in such a direction that current flows from the emergency power source 1 to the load 4. The main power source 5 is composed of, for example, a DC power source that is connected to an AC commercial power source via a rectifier circuit and a smoothing circuit (both not shown) and converts to DC power.
 非常用の電源1の正電位は、主電源5の正電位よりも低く、通常は負荷4には流れないが、主電源5が停止または機能低下すると、主電源5側の電位が低下することから、非常用の電源1に蓄電した電荷により、ダイオード15を介して負荷4に給電される。なお、上記のように充電回路6を接続した充電形式は、トリクル充電形式と呼ばれる。 The positive potential of the emergency power source 1 is lower than the positive potential of the main power source 5 and normally does not flow to the load 4. However, when the main power source 5 stops or the function is lowered, the potential on the main power source 5 side decreases. Then, the electric charge stored in the emergency power supply 1 is fed to the load 4 via the diode 15. In addition, the charge form which connected the charging circuit 6 as mentioned above is called a trickle charge form.
 この二次電池の劣化判定装置は、このような電源1における各バッテリ2の劣化を判定する装置である。この二次電池の劣化判定装置は、前記各バッテリ2に個別に接続された複数の電圧センサ7と、各バッテリ群3毎に接続された複数の電流センサ8と、交流成分を含む計測用電流を前記バッテリ群3に印加する計測用電流印加手段9と、各電圧センサ7に設けられ計測された交流成分の電圧の計測値を無線で送信するセンサ毎無線通信手段10と、前記各電圧センサ毎無線通信手段10の送信した前記計測値を受信し、この受信した計測値を用いて各バッテリ2の内部抵抗を算出し、内部抵抗から前記バッテリ2の劣化を判定するコントローラ11とを備える。 This deterioration determination device for a secondary battery is a device for determining the deterioration of each battery 2 in such a power source 1. The secondary battery deterioration determination device includes a plurality of voltage sensors 7 individually connected to each battery 2, a plurality of current sensors 8 connected to each battery group 3, and a measurement current including an AC component. Current application means 9 for applying a voltage to the battery group 3, wireless sensor-by-sensor communication means 10 for wirelessly transmitting a measured value of the AC component voltage provided in each voltage sensor 7, and each voltage sensor A controller 11 that receives the measurement value transmitted by the wireless communication means 10, calculates the internal resistance of each battery 2 using the received measurement value, and determines deterioration of the battery 2 from the internal resistance;
 前記計測用電流印加手段9は、交流の商用電源21から、交流成分を含む計測用電流を生成し前記各バッテリ群3に印加する。計測用電流印加手段9は、バッテリ群3の正負の端子端に接続され、パルス状ないし正弦波状に変化する交流成分を有する電流、例えばリップル電流を電源1に与える。 The measurement current applying means 9 generates a measurement current including an AC component from the AC commercial power source 21 and applies it to each battery group 3. The measurement current applying means 9 is connected to the positive and negative terminal ends of the battery group 3 and supplies the power source 1 with a current having an alternating current component that changes in a pulse shape or a sine wave shape, for example, a ripple current.
 前記計測用電流印加手段9は、より具体的には、前記交流の商用電源21の電圧が前記非常用の電源1の電圧に適するように電圧変換するトランス22と、このトランス22で変換された電流から交流成分のみを分離して前記各バッテリ群3に印加するコンデンサ23と、前記各バッテリ群3に印加する電流を制限する電流制限部24とを含む(二次側)。前記トランス22の一次回路には、商用電源21を開閉する開閉スイッチ25が設けられている。開閉スイッチ25は、コントローラ11の主コントローラ11Aにおける前記電流印加制御部11e(図2参照)により開閉が制御される。図1において、前記電流制限部24は、図4に示すように抵抗、すなわち電流制限抵抗であっても良い。 More specifically, the measurement current applying means 9 is converted by the transformer 22 for voltage conversion so that the voltage of the AC commercial power supply 21 is suitable for the voltage of the emergency power supply 1, and the transformer 22 converts the voltage. It includes a capacitor 23 that separates only the AC component from the current and applies it to each battery group 3, and a current limiting unit 24 that limits the current applied to each battery group 3 (secondary side). The primary circuit of the transformer 22 is provided with an open / close switch 25 that opens and closes the commercial power supply 21. Opening / closing of the open / close switch 25 is controlled by the current application controller 11e (see FIG. 2) in the main controller 11A of the controller 11. In FIG. 1, the current limiting unit 24 may be a resistor, that is, a current limiting resistor as shown in FIG.
 電圧センサ7は、電圧の交流成分と直流成分の検出を行うセンサであり、図2に示すように、センサ機能部7aと演算処理部7bとを有する。センサ機能部7aは、電圧検出素子等からなる。演算処理部7bは、与えられたコマンド(指令)を実行する制御部7baと、コマンドに対してセンサ機能部7aの計測の開始を、定められた時間だけ遅延させる遅延部7bbと、前記センサ機能部7aで検出した交流電圧のアナログの検出値を、ディジタル信号による実効値または平均値に変換する変換部7bcとが設けられている。電圧センサ7は、この他に直流電圧を検出する直流検出部7cを有し、直流検出部7cで検出した直流成分の検出値も、前記センサ毎無線通信手段10から送信される。なお、直流検出部7cはセンサ機能部7aが兼ねるようにしても良い。また、各電圧センサ7は、前記遅延部7bbにより、または他の手段により、予め送信順が送信遅延時間で設定されており、計測値を、各電圧センサ7から時間多重で送信されるように、設定された順に送信遅延時間後に順次送信する。 The voltage sensor 7 is a sensor that detects an AC component and a DC component of the voltage, and includes a sensor function unit 7a and an arithmetic processing unit 7b as shown in FIG. The sensor function unit 7a includes a voltage detection element and the like. The arithmetic processing unit 7b includes a control unit 7ba that executes a given command (command), a delay unit 7bb that delays the start of measurement of the sensor function unit 7a with respect to the command by a predetermined time, and the sensor function A conversion unit 7bc is provided that converts the analog detection value of the AC voltage detected by the unit 7a into an effective value or an average value by a digital signal. In addition to this, the voltage sensor 7 has a DC detection unit 7c for detecting a DC voltage, and the detected value of the DC component detected by the DC detection unit 7c is also transmitted from the sensor-by-sensor wireless communication means 10. The DC detection unit 7c may also serve as the sensor function unit 7a. In addition, each voltage sensor 7 has a transmission order set in advance as a transmission delay time by the delay unit 7bb or by other means, and the measurement value is transmitted from each voltage sensor 7 in a time multiplexed manner. The transmission is sequentially performed after the transmission delay time in the set order.
 また、この実施形態では、バッテリ2の周囲の温度やバッテリの温度を計測する温度センサ18が設けられ、少なくとも電圧センサ7と、温度センサ18とでセンサユニット17を構成している。温度センサ18の検出温度は、電圧センサ7の前記実効値または平均値による電圧計測値と共に、センサ毎無線通信手段10でコントローラ11へ送信される。 In this embodiment, a temperature sensor 18 for measuring the ambient temperature of the battery 2 and the temperature of the battery is provided, and at least the voltage sensor 7 and the temperature sensor 18 constitute a sensor unit 17. The temperature detected by the temperature sensor 18 is transmitted to the controller 11 by the sensor-based wireless communication means 10 together with the voltage measurement value based on the effective value or the average value of the voltage sensor 7.
 前記コントローラ11は、この実施形態では主コントローラ11Aに、通信網12を介してデータサーバ13およびモニタ14を接続してなる。通信網12は、この実施形態ではLANからなり、ハブ12aを有している。通信網12は広域通信網であっても良い。データサーバ13は、前記通信網12や他の通信網により、遠隔地のパーソナルコンピュータ(図示せず)等と通信可能であり、どこからでもデータ監視できる。 In this embodiment, the controller 11 is formed by connecting a data server 13 and a monitor 14 to the main controller 11A via the communication network 12. In this embodiment, the communication network 12 is composed of a LAN and has a hub 12a. The communication network 12 may be a wide area communication network. The data server 13 can communicate with a remote personal computer (not shown) or the like via the communication network 12 or another communication network, and can monitor data from anywhere.
 主コントローラ11Aは、各センサ毎無線通信手段10から送信された電圧センサ7の検出値を受信する受信部11aと、受信部11aで受信した計測値を通信網12へ転送する転送部11bと、各電圧センサ7のセンサ毎無線通信手段10に無線で送信開始等のコマンドを送信するコマンド送信部11cと、後述の待機部11dと、電流印加制御部11eとを有している。電流印加制御部11eは、計測用電流印加手段9(図1)を制御する。図2において、コマンド送信部11cおよび受信部11aの無線送受は、アンテナ19を介して行われる。 The main controller 11A includes a receiving unit 11a that receives the detection value of the voltage sensor 7 transmitted from each sensor wireless communication unit 10, and a transfer unit 11b that transfers the measurement value received by the receiving unit 11a to the communication network 12. Each voltage sensor 7 includes a command transmission unit 11c that wirelessly transmits a command such as a transmission start to the sensor-by-sensor wireless communication unit 10, a standby unit 11d described later, and a current application control unit 11e. The current application control unit 11e controls the measurement current application unit 9 (FIG. 1). In FIG. 2, wireless transmission / reception of the command transmission unit 11 c and the reception unit 11 a is performed via the antenna 19.
 図1に示すように、各電流センサ8は、主コントローラ11Aに配線で接続され、その電流の計測値は図2の前記転送部11bから電圧計測値と共に転送される。前記主コントローラ11Aの前記コマンド送信部11cは、自己でコマンドを生成しても良いが、この実施形態では、データサーバ13から送信された計測開始コマンドに応答して各電圧センサ7のセンサ毎無線通信手段10へ前記計測開始コマンドを転送する。なお、主コントローラ11Aまたは電流センサ8に、この電流センサ8の計測値を実効値または平均値に換算する換算部(図示せず)が設けられている。 As shown in FIG. 1, each current sensor 8 is connected to the main controller 11A by wiring, and the measured value of the current is transferred together with the measured voltage value from the transfer unit 11b of FIG. The command transmission unit 11c of the main controller 11A may generate a command by itself, but in this embodiment, in response to a measurement start command transmitted from the data server 13, each sensor of each voltage sensor 7 is wireless. The measurement start command is transferred to the communication means 10. The main controller 11A or the current sensor 8 is provided with a conversion unit (not shown) that converts the measured value of the current sensor 8 into an effective value or an average value.
 上記のように、コントローラ11は、各センサ毎無線通信手段10に前記コマンドを送信する機能を有し、各センサ毎無線通信手段10は、当該コマンドを受信すると、電圧センサ7に備えられた演算処理部7bにこのコマンドに対応する指令を与える機能を有している。 As described above, the controller 11 has a function of transmitting the command to the wireless communication unit 10 for each sensor. When the wireless communication unit 10 for each sensor receives the command, the calculation provided in the voltage sensor 7 is performed. It has a function of giving a command corresponding to this command to the processing unit 7b.
 データサーバ13は、内部抵抗演算部13aと判定部13bとを有する。内部抵抗演算部13aは、主コントローラ11Aから送信されて受信した交流電圧値(実行値または平均値)と、直流電圧値(セル電圧)と、検出温度と、電流値(実行値または平均値)とを用い、定められた計算式に従ってバッテリ2の内部抵抗を算出する。検出温度は、温度補正に用いられる。 The data server 13 includes an internal resistance calculation unit 13a and a determination unit 13b. The internal resistance calculation unit 13a receives the AC voltage value (execution value or average value), DC voltage value (cell voltage), detected temperature, and current value (execution value or average value) transmitted from the main controller 11A. And the internal resistance of the battery 2 is calculated according to a predetermined calculation formula. The detected temperature is used for temperature correction.
 判定部13bは、閾値が設定され、算出された内部抵抗が閾値以上であると劣化と判定する。前記閾値は、複数(例えば2~3段階用)設けられ、複数段階の劣化判定を行い、後述のようにこの複数段階に対応した警報を出力する。判定部13bは、判定結果を、前記通信網12を介して、または専用の配線を介してモニタ14に表示させる機能を有する。データサーバ13は、この他に、主コントローラ11Aへ計測開始コマンドを送信するコマンド送信部13cと、主コントローラ11Aから送信された電圧計測値などのデータを格納するデータ格納部13dとを有している。 The determination unit 13b determines that the threshold is set and the calculated internal resistance is greater than or equal to the threshold. A plurality of threshold values are provided (for example, for two to three stages), deterioration determination of a plurality of stages is performed, and an alarm corresponding to the plurality of stages is output as will be described later. The determination unit 13b has a function of displaying the determination result on the monitor 14 via the communication network 12 or via a dedicated wiring. In addition, the data server 13 includes a command transmission unit 13c that transmits a measurement start command to the main controller 11A, and a data storage unit 13d that stores data such as a voltage measurement value transmitted from the main controller 11A. Yes.
 なお、上記構成において、主コントローラ11Aと計測用電流印加手段9とは、同一ケースに入れた一体のコントローラとして構成されても良い。また、コントローラ11は、この実施形態では主コントローラ11Aとデータサーバ13とで構成したが、これら主コントローラ11Aとデータサーバ13とは、同一ケースに入った一つのコントローラ11として構成しても良く、また一つの基板等で構成される一つの情報処理装置に、主コントローラ11Aとデータサーバ13との区別なく構成されていても良い。 In the above configuration, the main controller 11A and the measurement current applying unit 9 may be configured as an integrated controller in the same case. In addition, the controller 11 is configured by the main controller 11A and the data server 13 in this embodiment, but the main controller 11A and the data server 13 may be configured as one controller 11 in the same case. In addition, one information processing apparatus configured by one substrate or the like may be configured without distinction between the main controller 11A and the data server 13.
 上記構成の劣化判定装置の動作を説明する。図3は、その動作の一例の流れ図である。データサーバ13は、コマンド送信部13cから計測開始コマンドを送信する(ステップS1)。主コントローラ11Aは、データサーバ13から計測開始コマンド受信し(ステップS2)、各電圧センサ7のセンサ毎無線通信手段10、および各電流センサ8へ計測開始コマンドを送信する(ステップS3)。この送信以降の処理と並行して、待機部11dにより待機時間の終了判定(ステップS20)および待機時間のカウント(ステップS22)を行う。設定された待機時間が終了すると、計測用電流印加手段9により電流の印加を行う(ステップS21)。 The operation of the deterioration determination device having the above configuration will be described. FIG. 3 is a flowchart of an example of the operation. The data server 13 transmits a measurement start command from the command transmitter 13c (step S1). The main controller 11A receives a measurement start command from the data server 13 (step S2), and transmits a measurement start command to each sensor wireless communication means 10 of each voltage sensor 7 and each current sensor 8 (step S3). In parallel with the processing after this transmission, the standby unit 11d determines the end of the standby time (step S20) and counts the standby time (step S22). When the set standby time is finished, current is applied by the measurement current applying means 9 (step S21).
 ステップS3で送信された計測開始コマンドは、全数の電圧センサ7が受信し(ステップS4)、各電圧センサ7は、自己の計測遅延時間の終了を待って(ステップS5)、バッテリ2のDC電圧(端子間電圧)を計測する(ステップS6)。この後、電圧センサ7は、待機時間の終了を待って(ステップS7)、バッテリ2のAC電圧を計測する(ステップS8)。AC電圧の計測については、直接の計測値を実効電圧または平均電圧に換算し、その換算値を計測値として出力する。 The measurement start command transmitted in step S3 is received by all the voltage sensors 7 (step S4). Each voltage sensor 7 waits for the end of its own measurement delay time (step S5), and then the DC voltage of the battery 2 is received. (Inter-terminal voltage) is measured (step S6). Thereafter, the voltage sensor 7 waits for the end of the standby time (step S7), and measures the AC voltage of the battery 2 (step S8). For the measurement of the AC voltage, the direct measurement value is converted into an effective voltage or an average voltage, and the converted value is output as a measurement value.
 計測したDC電圧およびAC電圧は、自己の送信遅延時間だけ待って、センサ毎無線通信手段10により無線で送信し(ステップS9)、コントローラ11の主コントローラ11Aが無線で受信する(ステップS10)。主コントローラ11Aは、受信したDC電圧およびAC電圧を、電流センサ8および温度センサ18(図2)の検出値と共に、データサーバ13へLAN等の通信網12で送信する(ステップS11)。データサーバ13は、順に送信される各電圧センサ7等のセンサのデータを受信してデータ格納部13dに格納する(ステップS12)。前記無線送信のステップS9からデータサーバ13によるデータ格納までは、全電圧センサ7のデータの受信および格納が終了するまで行う(ステップS12でNO)。 The measured DC voltage and AC voltage wait for their own transmission delay time and are transmitted wirelessly by the wireless communication means 10 for each sensor (step S9), and the main controller 11A of the controller 11 receives wirelessly (step S10). The main controller 11A transmits the received DC voltage and AC voltage together with the detection values of the current sensor 8 and the temperature sensor 18 (FIG. 2) to the data server 13 via the communication network 12 such as a LAN (step S11). The data server 13 receives the data of the sensors such as the voltage sensors 7 transmitted in order and stores them in the data storage unit 13d (step S12). From the wireless transmission step S9 to the data storage by the data server 13 is performed until the reception and storage of the data of all the voltage sensors 7 is completed (NO in step S12).
 この受信および格納の終了(ステップS12でYES)の後、その終了信号のデータサーバ13から主コントローラ11Aへの送信、および主コントローラ11Aの電流印加制御信号の出力によって、前記計測用電流印加手段9の電流印加をオフにし(ステップS16)、データサーバ13では内部抵抗演算部13aで各バッテリ2の内部抵抗を演算する(ステップS13)。 After the end of reception and storage (YES in step S12), the measurement current applying means 9 is transmitted by transmitting the end signal from the data server 13 to the main controller 11A and outputting the current application control signal of the main controller 11A. Is turned off (step S16), and the data server 13 calculates the internal resistance of each battery 2 by the internal resistance calculator 13a (step S13).
 データサーバ13の判定部13bは、演算された内部抵抗を、適宜定められた第1しきい値と比較し(ステップS14)、第1しきい値よりも小さい場合は、バッテリ2が正常であると判定する(ステップS15)。第1しきい値よりも小さくない場合は、さらに第2しきい値と比較し(ステップS17)、第2しきい値より小さい場合、注意を喚起する警報である警告を出力する(ステップS18)。第2しきい値よりも小さくない場合は、警告よりも強い知らせの警報を出力する(ステップS19)。前記警報および警告は、モニタ14(図1)で表示する。上記の正常な場合は、モニタ14に正常である旨を表示してもよく、また特に表示しなくても良い。前記モニタ14による警報および警告の表示は、例えば定められたアイコン等のマークにより行っても、所定部位の点灯等で行っても良い。このようにして、非常用の伝言1の全てのバッテリ2の劣化判定を行う。なお、図3は、2段階の劣化判定(および警報等の表示)の例である。 The determination unit 13b of the data server 13 compares the calculated internal resistance with an appropriately determined first threshold value (step S14), and the battery 2 is normal if it is smaller than the first threshold value. Is determined (step S15). If it is not smaller than the first threshold value, it is further compared with the second threshold value (step S17), and if it is smaller than the second threshold value, a warning that is a warning alert is output (step S18). . If it is not smaller than the second threshold value, an alarm that is stronger than the warning is output (step S19). The alarm and warning are displayed on the monitor 14 (FIG. 1). If the above is normal, the monitor 14 may indicate that it is normal, or may not be displayed in particular. The alarm and warning display by the monitor 14 may be performed by, for example, a mark such as a predetermined icon or by lighting a predetermined part. In this way, the deterioration determination of all the batteries 2 of the emergency message 1 is performed. FIG. 3 is an example of two-stage deterioration determination (and display of an alarm or the like).
 この二次電池の劣化判定装置によると、このように、各電圧センサ7は、バッテリ2毎に設けられ、無線通信によりディジタル信号でデータの受け取り、受け渡しをするため、数十から数百個のバッテリ2を備える非常用の電源1であっても、各バッテリ2につき、電気的に基準電位(グランドレベル)を気にする必要がない。そのため、差動演算や絶縁トランスの必要がない。また、こうした複数ある個々の電圧センサ7の計測値を無線で送信するため、複雑な配線の必要がない。これらにより、簡単で安価な構成とできる。 According to the secondary battery deterioration determination device, each voltage sensor 7 is provided for each battery 2 and receives and transfers data with a digital signal by wireless communication. Even in the case of the emergency power source 1 provided with the batteries 2, it is not necessary to worry about the reference potential (ground level) electrically for each battery 2. Therefore, there is no need for differential operation or an isolation transformer. Further, since the measurement values of the plurality of individual voltage sensors 7 are transmitted wirelessly, there is no need for complicated wiring. By these, it can be set as a simple and cheap structure.
 また、劣化判定対象の電源1の全体ではなく、個々のバッテリ2の劣化を判定するようにし、またその判定については、交流成分を含む計測用電流を印加し、各センサ毎無線通信手段10の送信した前記計測値を用いて各バッテリ2の内部抵抗を演算し、内部抵抗から前記バッテリ2の劣化を判定するため、精度良く劣化判定をすることができる。バッテリ2の内部抵抗は、バッテリ2の容量、つまり劣化の程度と密接な関係があり、内部抵抗2が分かれば、バッテリ2の劣化を精度良く判定できる。 In addition, the deterioration of each battery 2 is determined instead of the entire power source 1 subject to deterioration determination. For the determination, a measurement current including an AC component is applied, and the wireless communication means 10 for each sensor 10 Since the internal resistance of each battery 2 is calculated using the transmitted measurement value and the deterioration of the battery 2 is determined from the internal resistance, the deterioration determination can be made with high accuracy. The internal resistance of the battery 2 is closely related to the capacity of the battery 2, that is, the degree of deterioration. If the internal resistance 2 is known, the deterioration of the battery 2 can be accurately determined.
 また、各電圧センサ7の計測した前記計測値を、ディジタル信号で表される実効値または平均値に変換し、送信するため、電圧波形の信号を送る場合に比べて飛躍的に送信データ量が少なくて済む。バッテリ2の内部抵抗の算出は実効値または平均値で精度良く行える。バッテリ2の内部抵抗の算出については、電圧の計測だけであっても、電流を一定値に仮定することなどで可能ではあるが、バッテリ2に実際に流れる電流を計測し、電圧と電流との両方を求めることで、内部抵抗をより一層精度良く算出することができる。直列に並んだ各バッテリ2に流れ電流は同じであるため、電流センサ8はバッテリ群3毎に1つ設ければ足りる。 In addition, since the measured value measured by each voltage sensor 7 is converted into an effective value or an average value represented by a digital signal and transmitted, the amount of transmission data is drastically larger than when a voltage waveform signal is transmitted. Less is enough. Calculation of the internal resistance of the battery 2 can be performed with an effective value or an average value with high accuracy. Although the calculation of the internal resistance of the battery 2 is possible only by measuring the voltage, it is possible to assume that the current is a constant value. However, the current actually flowing through the battery 2 is measured and the voltage and current are calculated. By obtaining both, the internal resistance can be calculated with higher accuracy. Since the currents flowing through the batteries 2 arranged in series are the same, it is sufficient to provide one current sensor 8 for each battery group 3.
 前記コントローラ11は、前記各電圧センサ7の各センサ毎無線通信手段10に計測開始コマンドを送信し、このコマンドによって電圧センサ2の計測を開始させるため、多数存在する各電圧センサ2の計測開始タイミングを整えることができる。この場合に、前記コントローラ11は、前記各電圧センサ7に計測開始コマンドを同時にシリアル伝送またはパラレル伝送で送信し、各電圧センサ7は、計測開始遅延時間経過後に同時に計測を行う。計測終了後、前記コントローラ11は、順に前記各電圧センサ7にデータ送信の要求コマンドを送信し、コマンドを受けた電圧センサ7がデータを送信し、以上を繰り返すことで、データ通信を行ってもよい。この発明において、前記コントローラ11は、データ送信要求コマンドの送信から一定時間後に、データ受信できなかった前記電圧センサ7に対し再送信要求を行うようにして良い。 The controller 11 transmits a measurement start command to each sensor wireless communication means 10 of each voltage sensor 7 and starts measurement of the voltage sensor 2 by this command. Can be arranged. In this case, the controller 11 simultaneously transmits a measurement start command to each voltage sensor 7 by serial transmission or parallel transmission, and each voltage sensor 7 performs measurement simultaneously after the measurement start delay time elapses. After the measurement is completed, the controller 11 sequentially transmits a data transmission request command to each of the voltage sensors 7, and the voltage sensor 7 that has received the command transmits data, and repeats the above to perform data communication. Good. In the present invention, the controller 11 may make a re-transmission request to the voltage sensor 7 that has not been able to receive data after a predetermined time from the transmission of the data transmission request command.
 別の例として、各電圧センサ7毎に定められた計測開始遅延時間だけ経過後に計測を行うようにする場合は、各センサ毎無線通信手段10へ同時に計測開始コマンドを送信しても、多数ある各電圧センサ7の計測を、無線送受に支障がないように順に行い、送信することかできる。例えば、送信開始コマンドはグローバルコマンドであり、電圧センサ7は同時に取得する。 As another example, in the case where measurement is performed after the measurement start delay time determined for each voltage sensor 7 has elapsed, there are many even if a measurement start command is simultaneously transmitted to the wireless communication means 10 for each sensor. The measurement of each voltage sensor 7 can be performed in order so as not to hinder wireless transmission and reception, and can be transmitted. For example, the transmission start command is a global command, and the voltage sensor 7 acquires it simultaneously.
 前記コントローラ11は、前記計測開始コマンドの送信から一定時間後に、データ受信できなかった前記電圧センサ7に対し再送信要求を行う。何らかの一時的な送信の障害等により、一部の電圧センサ7のセンサ毎無線通信手段10で計測開始コマンドを受信できない場合がある。そのような場合でも、前記再送信要求を行うことで、電圧を計測して送信でき、電源の全てのバッテリ2の電圧計測値を得ることができる。計測開始コマンドを受信できたか否かは、コントローラ11側で、電圧の計測値が受信されたか否かを判断することで行えば良い。 The controller 11 makes a re-transmission request to the voltage sensor 7 that has not received data after a predetermined time from the transmission of the measurement start command. There may be a case where the measurement start command cannot be received by the sensor-by-sensor wireless communication means 10 of some voltage sensors 7 due to some temporary transmission failure or the like. Even in such a case, by performing the re-transmission request, the voltage can be measured and transmitted, and the voltage measurement values of all the batteries 2 of the power source can be obtained. Whether or not the measurement start command has been received may be determined by determining whether or not the voltage measurement value has been received on the controller 11 side.
 コントローラ11は、前記のように計測開始コマンドを同時に送信するのではなく前記各電圧センサ7のセンサ毎無線通信手段10に個別にデータ要求コマンドを送信し、順にデータを受信するようにしても良い。この構成の場合、電圧センサ7側に遅延部7bbが不要となり、電圧センサ7側の構成が簡素化される。前記コントローラ11は、算出した前記内部抵抗の大きさに応じて複数段階の警報を出力するため、バッテリ交換の必要性の緊急度がわかり、無駄なバッテリ交換を行うことなく、保守の計画や準備が円滑かつ迅速に行える。 Instead of transmitting the measurement start command simultaneously as described above, the controller 11 may individually transmit a data request command to the wireless communication means 10 for each sensor of each voltage sensor 7 and sequentially receive the data. . In the case of this configuration, the delay unit 7bb is not required on the voltage sensor 7 side, and the configuration on the voltage sensor 7 side is simplified. Since the controller 11 outputs a multi-stage alarm according to the calculated magnitude of the internal resistance, the urgency of the need for battery replacement can be known, and maintenance planning and preparation can be performed without performing unnecessary battery replacement. Can be done smoothly and quickly.
 コントローラ11およびその内部の構成要素は、具体的には、ソフトウエアやハードウエアで実現されたLUT(Look Up Table)、またはソフトウエアのライブラリ(Library)に収められた所定の変換関数やそれに等価のハードウエア等、また必要に応じて、ライブラリの比較関数や四則演算関数やそれらに等価のハードウエア等を用いて、演算を行って結果を出力しうるハードウエア回路またはプロセッサ(不図示)上のソフトウエア関数で構成されている。 Specifically, the controller 11 and its internal components include a predetermined conversion function stored in a LUT (Look Up Table) implemented by software or hardware, or a software library (Library), or an equivalent thereof. On a hardware circuit or processor (not shown) that can perform computations and output the results using the library comparison functions, four arithmetic operations functions, or equivalent hardware, etc. It consists of software functions.
 計測用電力印加手段9は、交流の商用電源21から、交流成分を含む計測用電流を生成し前記各バッテリ群3に印加するため、簡単な構成でバッテリ群3に交流成分を含む計測用電流を印加することができる。トランス22およびコンデンサ23を設けたことで、商用電源21とバッテリ群3との電圧が異なっていても、計測用電流の電圧をバッテリ群3の電圧に合致させることができ、かつ交流成分のみをバッテリ群3に印加することができる。また、抵抗等の電流制限部24を設けたため、バッテリ群3に印加する電流を制限することができ、バッテリ群3を過電流から保護することができる。電流制限部24が抵抗である場合は、簡素な構成で済む。 The measurement power application means 9 generates a measurement current including an AC component from the AC commercial power supply 21 and applies the measurement current to each of the battery groups 3, so that the measurement current including the AC component in the battery group 3 is configured with a simple configuration. Can be applied. By providing the transformer 22 and the capacitor 23, even if the voltages of the commercial power source 21 and the battery group 3 are different, the voltage of the current for measurement can be matched with the voltage of the battery group 3, and only the AC component can be obtained. It can be applied to the battery group 3. Further, since the current limiting unit 24 such as a resistor is provided, the current applied to the battery group 3 can be limited, and the battery group 3 can be protected from overcurrent. When the current limiting unit 24 is a resistor, a simple configuration is sufficient.
 以上、図面を参照しながら実施形態に基づいて本発明を実施するための好適な形態を説明したが、ここで開示した実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて請求の範囲によって示される。当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内またはこれと均等の範囲内のものと解釈される。 As mentioned above, although the suitable form for implementing this invention based on embodiment was demonstrated referring drawings, embodiment disclosed here is an illustration and restrictive at no points. The scope of the present invention is shown not by the above description but by the claims. Those skilled in the art will readily appreciate various changes and modifications within the obvious scope upon reviewing this specification. Therefore, such changes and modifications should be construed as being within the scope of the invention defined by the claims or within the scope equivalent thereto.
1…電源
2…バッテリ
3…バッテリ群
4…負荷
5…主電源
5A,5B…端子
6…充電回路
7a…センサ機能部
7b…演算処理部
7ba…制御部
7bb…遅延部
7bc…変換部
7c…直流検出部
8…電流センサ
9…計測用電流印加手段
10…センサ毎無線通信手段
11…コントローラ
11A…主コントローラ
11a…受信部
11b…転送部
11c…コマンド送信部
11d…待機部
11e…電流印加制御部
12…通信網
13…データサーバ
13a…内部抵抗演算部
13b…判定部
14…モニタ
15…ダイトオード
17…センサユニット
18…温度センサ
19…アンテナ
21…商用電源
22…トランス
23…コンデンサ
24…電流制限部
25…開閉スイッチ
DESCRIPTION OF SYMBOLS 1 ... Power supply 2 ... Battery 3 ... Battery group 4 ... Load 5 ... Main power supply 5A, 5B ... Terminal 6 ... Charging circuit 7a ... Sensor function part 7ba ... Arithmetic processing part 7ba ... Control part 7bb ... Delay part 7bc ... Conversion part 7c ... DC detection unit 8 ... current sensor 9 ... measurement current application unit 10 ... per-sensor wireless communication unit 11 ... controller 11A ... main controller 11a ... reception unit 11b ... transfer unit 11c ... command transmission unit 11d ... standby unit 11e ... current application control Unit 12 ... Communication network 13 ... Data server 13a ... Internal resistance calculation unit 13b ... Determining unit 14 ... Monitor 15 ... Diode 17 ... Sensor unit 18 ... Temperature sensor 19 ... Antenna 21 ... Commercial power supply 22 ... Transformer 23 ... Capacitor 24 ... Current limit Part 25: Open / close switch

Claims (6)

  1.  それぞれ二次電池であるバッテリの複数が直列接続されたバッテリ群を複数有し、これらバッテリ群が並列に接続され負荷に接続される非常用電源における前記各バッテリの劣化を判定する二次電池の劣化判定装置であって、
     前記各バッテリに個別に接続された複数の電圧センサと、
     前記各電圧センサの計測値を用いてバッテリの内部抵抗を演算する内部抵抗演算部と、
     この演算された内部抵抗から劣化を判定する判定部と、
     交流の商用電源から、交流成分を含む計測用電流を生成し前記各バッテリ群に印加する計測用電流印加手段とを備える、
     二次電池の劣化判定装置。
    A secondary battery for determining deterioration of each battery in an emergency power source in which a plurality of batteries each of which is a secondary battery are connected in series, and these battery groups are connected in parallel and connected to a load A deterioration determination device,
    A plurality of voltage sensors individually connected to each of the batteries;
    An internal resistance calculator that calculates the internal resistance of the battery using the measured values of the voltage sensors;
    A determination unit for determining deterioration from the calculated internal resistance;
    A measurement current applying means for generating a measurement current including an AC component from an AC commercial power supply and applying the measurement current to each of the battery groups;
    Secondary battery deterioration determination device.
  2.  請求項1に記載の二次電池の劣化判定装置において、前記各バッテリ群毎に電流センサが接続され、前記内部抵抗演算部は、前記電圧センサの計測値と共に前記電流センサの計測値を用いて前記内部抵抗を演算する二次電池の劣化判定装置。 2. The secondary battery deterioration determination device according to claim 1, wherein a current sensor is connected to each of the battery groups, and the internal resistance calculation unit uses the measurement value of the current sensor together with the measurement value of the voltage sensor. A secondary battery deterioration determination device for calculating the internal resistance.
  3.  請求項1または請求項2に記載の二次電池の劣化判定装置において、前記計測用電流印加手段が、前記交流の商用電源の電圧が前記非常用電源の電圧と合致するように電圧変換するトランスと、このトランスで変換された電流から交流成分のみを分離して前記各バッテリ群に印加するコンデンサと、前記各バッテリ群に印加する電流を制限する電流制限部とを含む二次電池の劣化判定装置。 3. The secondary battery deterioration determination apparatus according to claim 1, wherein the measurement current application unit performs voltage conversion so that a voltage of the AC commercial power supply matches a voltage of the emergency power supply. A deterioration determination of a secondary battery including a capacitor that separates only an alternating current component from the current converted by the transformer and applies to each battery group, and a current limiting unit that limits a current applied to each battery group apparatus.
  4.  請求項3に記載の二次電池の劣化判定装置において、前記電流制限部が電流制限抵抗である二次電池の劣化判定装置。 4. The secondary battery deterioration determination device according to claim 3, wherein the current limiting unit is a current limiting resistor.
  5.  請求項1ないし請求項4のいずれか1項に記載の二次電池の劣化判定装置において、前記各電圧センサは計測した電圧を実効値または平均値に変換する変換部を有し、前記内部抵抗演算部は、前記実効値または平均値から前記バッテリの内部抵抗を計測する二次電池の劣化判定装置。 5. The secondary battery deterioration determination device according to claim 1, wherein each of the voltage sensors includes a conversion unit that converts a measured voltage into an effective value or an average value, and the internal resistance The calculation unit is a secondary battery deterioration determination device that measures an internal resistance of the battery from the effective value or the average value.
  6.  請求項1ないし請求項5のいずれか1項に記載の二次電池の劣化判定装置において、前記各電圧センサ毎に、この電圧センサの計測値を無線で送信するセンサ毎無線通信手段を備える二次電池の劣化判定装置。 6. The secondary battery deterioration determination device according to claim 1, further comprising a sensor-by-sensor wireless communication unit that wirelessly transmits a measurement value of the voltage sensor for each voltage sensor. Secondary battery deterioration judgment device.
PCT/JP2017/005984 2016-02-24 2017-02-17 Secondary battery deterioration assessment device WO2017145949A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-032946 2016-02-24
JP2016032946A JP2017150926A (en) 2016-02-24 2016-02-24 Secondary battery deterioration determination device

Publications (1)

Publication Number Publication Date
WO2017145949A1 true WO2017145949A1 (en) 2017-08-31

Family

ID=59686207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005984 WO2017145949A1 (en) 2016-02-24 2017-02-17 Secondary battery deterioration assessment device

Country Status (2)

Country Link
JP (1) JP2017150926A (en)
WO (1) WO2017145949A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021087541A1 (en) * 2019-11-08 2021-05-14 Avl List Gmbh Coupling-in device for coupling in a ripple current, testing system, and coupling-in method
US11870042B2 (en) 2017-09-06 2024-01-09 Semiconductor Energy Laboratory Co., Ltd. Power storage system, vehicle, electronic device, and semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888941A (en) * 1994-09-16 1996-04-02 Fuji Electric Co Ltd Determining device of quality of storage battery for uninterruptible power supply unit
GB2352820A (en) * 1999-08-03 2001-02-07 Elliott Ind Ltd Assessing the efficacy of battery cells in an uninterupptable power supply
JP2007181365A (en) * 2005-12-28 2007-07-12 Ntt Data Ex Techno Corp Ac voltage applying circuit and method to battery group
JP2010081716A (en) * 2008-09-25 2010-04-08 Toshiba Corp Battery information obtaining device
JP3181103U (en) * 2012-11-08 2013-01-24 日本テクロ株式会社 Battery measuring device and battery monitoring system
WO2014156263A1 (en) * 2013-03-29 2014-10-02 日立オートモティブシステムズ株式会社 Battery system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3293410B2 (en) * 1995-06-09 2002-06-17 松下電器産業株式会社 Battery monitoring device
WO2005078673A1 (en) * 2004-02-03 2005-08-25 Sys Technologies, Inc. Remote battery monitoring system having embedded telesensors
JP2012052831A (en) * 2010-08-31 2012-03-15 Furukawa Battery Co Ltd:The Battery degradation diagnosis device
JP2016039742A (en) * 2014-08-11 2016-03-22 Ntn株式会社 Charging apparatus
JP6559521B2 (en) * 2015-09-24 2019-08-14 Ntn株式会社 Battery checker
JP6679342B2 (en) * 2016-02-24 2020-04-15 Ntn株式会社 Secondary battery deterioration determination device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888941A (en) * 1994-09-16 1996-04-02 Fuji Electric Co Ltd Determining device of quality of storage battery for uninterruptible power supply unit
GB2352820A (en) * 1999-08-03 2001-02-07 Elliott Ind Ltd Assessing the efficacy of battery cells in an uninterupptable power supply
JP2007181365A (en) * 2005-12-28 2007-07-12 Ntt Data Ex Techno Corp Ac voltage applying circuit and method to battery group
JP2010081716A (en) * 2008-09-25 2010-04-08 Toshiba Corp Battery information obtaining device
JP3181103U (en) * 2012-11-08 2013-01-24 日本テクロ株式会社 Battery measuring device and battery monitoring system
WO2014156263A1 (en) * 2013-03-29 2014-10-02 日立オートモティブシステムズ株式会社 Battery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11870042B2 (en) 2017-09-06 2024-01-09 Semiconductor Energy Laboratory Co., Ltd. Power storage system, vehicle, electronic device, and semiconductor device
WO2021087541A1 (en) * 2019-11-08 2021-05-14 Avl List Gmbh Coupling-in device for coupling in a ripple current, testing system, and coupling-in method

Also Published As

Publication number Publication date
JP2017150926A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
WO2017145948A1 (en) Secondary battery deterioration assessment device
WO2017159758A1 (en) Secondary battery degradation determination device
WO2017209214A1 (en) Secondary battery degradation determination device
WO2017164073A1 (en) Deterioration suppression device for secondary battery and individual deterioration suppression device
WO2018056309A1 (en) Deterioration determination device for secondary battery
US9595847B2 (en) Uninterrupted lithium battery power supply system
WO2018056308A1 (en) Deterioration determination device for secondary battery
KR101732854B1 (en) Storage battery device and storage battery system
KR20170092552A (en) Wireless Network based Battery Management System
JP6639976B2 (en) Deterioration determination device for secondary battery
US20190025382A1 (en) Secondary battery degradation assessment device
WO2017145949A1 (en) Secondary battery deterioration assessment device
KR20160046547A (en) Apparatus and method for calculating of battery system diagnosis reference value using reliability and standard deviation
WO2017170205A1 (en) Secondary battery degradation assessment device
KR102376635B1 (en) Uninterruptible power supply using electric vehicle reusable battery
US11808816B2 (en) System for obtaining battery state information
KR101878949B1 (en) A battery resistance measuring method in on-load state
JP2022054682A (en) Secondary battery deterioration determination device
JP2023543886A (en) Battery management device and method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756388

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756388

Country of ref document: EP

Kind code of ref document: A1