JPH0888010A - Manganese dry battery - Google Patents
Manganese dry batteryInfo
- Publication number
- JPH0888010A JPH0888010A JP6247088A JP24708894A JPH0888010A JP H0888010 A JPH0888010 A JP H0888010A JP 6247088 A JP6247088 A JP 6247088A JP 24708894 A JP24708894 A JP 24708894A JP H0888010 A JPH0888010 A JP H0888010A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- fluorine
- general formula
- compound represented
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y02E60/12—
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Primary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、鉛含有量が少ない亜鉛
缶を用い、水銀およびカドミウムを添加していないマン
ガン乾電池に関するものであり、さらに詳しくは、亜鉛
缶の耐食性を向上させたマンガン乾電池に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manganese dry battery using a zinc can having a low lead content and containing neither mercury nor cadmium. It is about.
【0002】[0002]
【従来の技術】従来のマンガン乾電池では、亜鉛缶の耐
食性向上のために、水銀、カドミウム、鉛などが添加さ
れていた。2. Description of the Related Art In conventional manganese dry batteries, mercury, cadmium, lead, etc. have been added to improve the corrosion resistance of zinc cans.
【0003】しかしながら、最近は環境汚染防止の観点
から、水銀やカドミウムは使用することができなくな
り、鉛についても削減が必要になってきた。ところが、
鉛の削減に伴って、亜鉛缶の耐食性が低下し、亜鉛缶か
ら水素ガスが発生して、電池の放電特性が低下していく
ので、鉛に代えて、亜鉛缶の耐食性を向上させる対策が
必要になってきた。However, recently, from the viewpoint of preventing environmental pollution, mercury and cadmium cannot be used, and it is necessary to reduce lead. However,
With the reduction of lead, the corrosion resistance of the zinc can decreases, hydrogen gas is generated from the zinc can, and the discharge characteristics of the battery decrease.Therefore, instead of lead, there is a measure to improve the corrosion resistance of the zinc can. I need it.
【0004】[0004]
【発明が解決しようとする課題】本発明は、鉛の削減に
伴う亜鉛缶の耐食性の低下を解消し、亜鉛缶の耐食性を
向上させたマンガン乾電池を提供することを目的とす
る。SUMMARY OF THE INVENTION An object of the present invention is to provide a manganese dry battery in which the deterioration of corrosion resistance of a zinc can due to the reduction of lead is eliminated and the corrosion resistance of the zinc can is improved.
【0005】[0005]
【課題を解決するための手段】本発明は、電池内に下記
の一般式(I) F(CF2 )n CH2 CH2 SO3 H (I) (式中、nは1〜25である)で示されるフッ素系化合
物を添加することによって、上記目的を達成したもので
ある。According to the present invention, the following general formula (I) F (CF 2 ) n CH 2 CH 2 SO 3 H (I) (wherein n is 1 to 25) is provided in a battery. The above object is achieved by adding a fluorine-based compound represented by (4).
【0006】上記一般式(I)で示されるフッ素系化合
物としては、その式中のnが2〜16であるもの〔すな
わち、n=2のF(CF2 )2 CH2 CH2 SO3 Hか
らn=16のF(CF2 )16CH2 CH2 SO3 Hまで
のもの〕が好ましい。nが上記範囲より小さい場合は、
亜鉛缶の耐食性を向上させる効果が充分に発現せず、一
方、nが上記範囲より大きくなると、放電持続時間が短
くなるなど、放電特性が低下する傾向がある。Fluorine compounds represented by the above general formula (I) are those in which n in the formula is 2 to 16 [that is, F (CF 2 ) 2 CH 2 CH 2 SO 3 H of n = 2]. To F (CF 2 ) 16 CH 2 CH 2 SO 3 H of n = 16] are preferred. When n is smaller than the above range,
The effect of improving the corrosion resistance of the zinc can is not sufficiently exhibited, while when n is larger than the above range, the discharge characteristics tend to be deteriorated such that the discharge duration becomes short.
【0007】上記一般式(I)で示されるフッ素系化合
物の電池内への添加方法としては、一般式(I)で示
されるフッ素系化合物を電解液に溶解または分散させて
電池内に添加する方法、セパレータに塗付する糊材に
一般式(I)で示されるフッ素系化合物を混ぜて糊材と
共にセパレータに塗付して電池内に添加する方法、正
極合剤の配合時に一般式(I)で示されるフッ素系化合
物を正極合剤中に混入させて電池内に添加する方法など
を採用することができる。As a method for adding the fluorine-based compound represented by the general formula (I) to the battery, the fluorine-based compound represented by the general formula (I) is dissolved or dispersed in an electrolytic solution and added to the battery. The method, the method of mixing the fluorinated compound represented by the general formula (I) with the paste material to be applied to the separator, applying the paste compound together with the paste material to the separator and adding it to the battery, the general formula (I It is possible to employ a method in which the fluorine-based compound represented by (4) is mixed in the positive electrode mixture and added into the battery.
【0008】この一般式(I)で示されるフッ素系化合
物による亜鉛缶の腐食抑制メカニズム、すなわち亜鉛缶
の耐食性を向上させるメカニズムは、現在のところ必ず
しも明確ではないが、電池内で一般式(I)で示される
フッ素系化合物がそのスルホン酸基(SO3 H基)によ
って亜鉛缶の表面に吸着し、かつ撥水性を有するF(C
H2 )n CH2 CH2 の部分が亜鉛缶と電解液との親和
性を阻害して、両者の接触面積を小さくすることが亜鉛
缶の腐食を抑制するものと考えられる。一般式(I)で
示されるフッ素系化合物を前記のように糊材や正極合剤
に添加した場合には、一般式(I)で示されるフッ素系
化合物が電解液中に溶出し、それから亜鉛缶に接触し
て、上記のようなメカニズムにより亜鉛缶の腐食を抑制
するものと考えられる。The mechanism for suppressing corrosion of zinc cans by the fluorine-based compound represented by the general formula (I), that is, the mechanism for improving the corrosion resistance of the zinc cans is not clear at present, but the general formula (I The fluorine-based compound represented by the formula ( 4 ) is adsorbed on the surface of the zinc can by its sulfonic acid group (SO 3 H group) and has water repellency.
It is considered that the H 2 ) n CH 2 CH 2 portion inhibits the affinity between the zinc can and the electrolytic solution and reduces the contact area between the two, thereby suppressing the corrosion of the zinc can. When the fluorine-based compound represented by the general formula (I) is added to the paste material or the positive electrode mixture as described above, the fluorine-based compound represented by the general formula (I) is eluted into the electrolytic solution and then zinc is added. It is considered that the corrosion of the zinc can is suppressed by coming into contact with the can and by the mechanism as described above.
【0009】一般式(I)で示されるフッ素系化合物の
添加量としては、電解液に対して一般式(I)で示され
るフッ素系化合物が0.01〜0.5重量%であること
が好ましい。なお、一般式(I)で示されるフッ素系化
合物を糊材や正極合剤に添加する場合には、その添加量
を電解液に対する量として換算する。一般式(I)で示
されるフッ素系化合物の添加量が電解液に対して0.0
1重量%より少ない場合は亜鉛缶の耐食性を向上させる
効果が充分に発現せず、一般式(I)で示されるフッ素
系化合物の添加量が電解液に対して0.5重量%より多
くなると放電特性が低下する傾向があり、この一般式
(I)で示されるフッ素系化合物の添加量としては、電
解液に対してポリエチレングリコールが0.05〜0.
2重量%であることが特に好ましい。The addition amount of the fluorine-based compound represented by the general formula (I) is 0.01 to 0.5% by weight of the fluorine-based compound represented by the general formula (I) with respect to the electrolytic solution. preferable. When the fluorine compound represented by the general formula (I) is added to the paste material or the positive electrode mixture, the addition amount is converted as the amount with respect to the electrolytic solution. The addition amount of the fluorine compound represented by the general formula (I) is 0.0 with respect to the electrolytic solution.
If the amount is less than 1% by weight, the effect of improving the corrosion resistance of the zinc can is not sufficiently exhibited, and if the addition amount of the fluorine-based compound represented by the general formula (I) is more than 0.5% by weight with respect to the electrolytic solution. The discharge characteristics tend to deteriorate, and the amount of the fluorine-based compound represented by the general formula (I) added is 0.05 to 0.
It is particularly preferably 2% by weight.
【0010】本発明において、亜鉛缶の鉛含量率を30
ppm以下にしているが、これは亜鉛板のJIS規格
(JIS−H2107の最純亜鉛地金)がそのようにな
っていることに基づくものである。すなわち、工業的規
模で、鉛をまったく含有しない亜鉛板(亜鉛缶の材料に
なる)を得ることがむつかしいので、JIS規格でも鉛
含有率が30ppm以下であれば許容されており、小規
模では鉛を含有しない亜鉛缶を入手することが可能であ
っても、工業的規模で大量に亜鉛缶を入手するときに
は、鉛をまったく含有しない亜鉛缶を入手することがむ
つかしいからである。従来使用の亜鉛缶は鉛を0.4重
量%(4000ppm)含有しており、上記のように3
0ppm以下という鉛含有率でも、従来使用の亜鉛缶に
比べればはるかに少ないし、また、30ppm以下の低
い鉛含有量であれば、鉛による環境汚染や人体への影響
はそれほど多くないものと考えられる。ただし、鉛の含
有量はできるだけ少なく、できれば鉛をまったく含有し
ないことが環境汚染の防止や安全性面から好ましい。In the present invention, the lead content of the zinc can is 30%.
Although it is set to be not more than ppm, this is based on the fact that the JIS standard for zinc plates (JIS-H2107 pure zinc metal) is such. That is, on an industrial scale, it is difficult to obtain a zinc plate that does not contain lead at all (a material for zinc cans). This is because even if it is possible to obtain a zinc can containing no lead, it is difficult to obtain a zinc can containing no lead when a large amount of zinc can is obtained on an industrial scale. Conventionally used zinc cans contain 0.4 wt% (4000 ppm) of lead, and
Even a lead content of 0 ppm or less is much lower than that of conventional zinc cans, and if the lead content is 30 ppm or less, it is considered that lead will not cause much environmental pollution and human effects. To be However, it is preferable that the content of lead is as small as possible, and if possible, it is preferable not to contain lead at all from the viewpoint of preventing environmental pollution and safety.
【0011】本発明のマンガン乾電池には、水銀および
カドミウムを添加していない。ただし、亜鉛缶には、製
缶性の向上などのため、アルミニウムやマグネシウムな
ど、人体や環境に悪影響を及ぼすおそれのない金属を含
有していてもよい。そして、本発明のマンガン乾電池
は、電池内に一般式(I)で示されるフッ素系化合物を
添加することや亜鉛缶に鉛含有量の少ないものを用いる
ことを除いては、従来と同様に構成することができる。No mercury or cadmium is added to the manganese dry battery of the present invention. However, the zinc can may contain a metal such as aluminum or magnesium that does not adversely affect the human body or the environment in order to improve the can making property. The manganese dry battery of the present invention has the same structure as the conventional one except that the fluorine-based compound represented by the general formula (I) is added to the battery and that the zinc can has a small lead content. can do.
【0012】[0012]
【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。なお、実施例に先立ち、実用電
池にすることなく、一般式(I)で示されるフッ素系化
合物の亜鉛缶に対する腐食抑制効果を調べた結果を実験
例1として示す。このような実験例1は、実用電池にし
た場合の他の構成材料による影響を避け、一般式(I)
で示されるフッ素系化合物の亜鉛缶に対する腐食抑制効
果を正確に把握するためである。そして、以後の実験
例、実施例などにおいて、濃度を示す%は重量%であ
る。EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only those examples. In addition, prior to the Examples, Experimental Example 1 shows the results of investigating the corrosion inhibiting effect of the fluorine-based compound represented by the general formula (I) on the zinc can without making it into a practical battery. In Experimental Example 1 as described above, the influence of other constituent materials in the case of being used as a practical battery is avoided, and the general formula (I) is used.
This is for accurately understanding the corrosion inhibiting effect of the fluorine-based compound on the zinc can. In the following experimental examples, examples, etc., the% indicating the concentration is% by weight.
【0013】実施例1 電解液となる32%塩化亜鉛水溶液に、前記一般式
(I)において、n=2、4、6、8、12、16、2
5の一般式(I)で示されるフッ素系化合物をそれぞれ
0.1%添加した。Example 1 In a 32% zinc chloride aqueous solution as an electrolytic solution, n = 2, 4, 6, 8, 12, 16, 2 in the general formula (I) was used.
0.1% of each of the fluorine-based compounds represented by the general formula (I) of 5 was added.
【0014】この一般式(I)で示されるフッ素系化合
物を0.1%添加した32%塩化亜鉛水溶液10ml
に、亜鉛組成として、鉛を含有せず、マグネシウムを1
0ppm含有する単3形亜鉛缶を浸漬し、45℃で15
日間貯蔵し、貯蔵に伴うガス発生量を測定した。その結
果を表1に示す。なお、亜鉛缶は、浸漬に先立って、そ
の開口端部を樹脂系接着剤で覆い、開口端部が液に接触
しないようにした。10 ml of 32% zinc chloride aqueous solution containing 0.1% of the fluorine compound represented by the general formula (I)
In addition, as a zinc composition, it does not contain lead but contains 1 magnesium.
Dip AA zinc can containing 0ppm, 15 at 45 ℃
It was stored for a day and the amount of gas generated during storage was measured. The results are shown in Table 1. The zinc can was covered with a resin adhesive at its opening end prior to the dipping so that the opening end did not come into contact with the liquid.
【0015】また、比較のため、カルバゾールを0.1
%添加した32%塩化亜鉛水溶液および添加剤をまった
く添加していない32%塩化亜鉛水溶液に、前記の亜鉛
缶を同様の条件下で浸漬してガス発生量を測定した。そ
の結果を表1に示す。For comparison, carbazole was added to 0.1
% Of the 32% zinc chloride aqueous solution to which 32% zinc chloride was added and the 32% zinc chloride aqueous solution to which no additive was added were immersed in the zinc can under the same conditions to measure the gas generation amount. The results are shown in Table 1.
【0016】さらに、添加剤をまったく添加してない3
2%塩化亜鉛水溶液に従来使用の鉛を0.4%(400
0ppm)含有する亜鉛缶(マグネシウムも5ppm含
んでいる)を前記と同様の条件下で浸漬して、ガス発生
量を測定した。その結果も表1に示す。Further, no additives are added 3
Conventionally used lead 0.4% (400% in 2% zinc chloride solution)
A zinc can containing 0 ppm) (containing 5 ppm of magnesium) was immersed under the same conditions as above to measure the amount of gas generated. Table 1 also shows the results.
【0017】[0017]
【表1】 [Table 1]
【0018】表1に示すように、一般式(I)で示され
るフッ素系化合物のnが2以上になるとガス発生量が少
なくなり、亜鉛缶の耐食性を向上させるという観点から
は、一般式(I)で示されるフッ素系化合物はn=2以
上のものが好ましいと考えられる。As shown in Table 1, when n of the fluorine-based compound represented by the general formula (I) is 2 or more, the gas generation amount decreases, and from the viewpoint of improving the corrosion resistance of the zinc can, the general formula ( It is considered that the fluorine-based compound represented by I) preferably has n = 2 or more.
【0019】実施例1 前記実験例1の場合と同様に鉛を含有せず、マグネシウ
ムを10ppm含有する単3形亜鉛缶を用い、電解液に
は一般式(I)で示されるフッ素系化合物を0.1%添
加した32%塩化亜鉛水溶液を用いて、図1に示す構造
の塩化亜鉛型マンガン乾電池を作製し、20℃で5Ω連
続放電持続時間(終止電圧0.9V)を測定した。その
結果を表2に示す。Example 1 As in the case of Experimental Example 1, an AA zinc can containing no lead and containing 10 ppm of magnesium was used, and the fluorine-based compound represented by the general formula (I) was used as the electrolytic solution. Using a 32% zinc chloride aqueous solution added with 0.1%, a zinc chloride-type manganese dry battery having a structure shown in FIG. 1 was prepared, and a 5Ω continuous discharge duration (final voltage 0.9 V) was measured at 20 ° C. The results are shown in Table 2.
【0020】ここで、図1に示すマンガン乾電池につい
て説明すると、図中、1は負極としての亜鉛缶、2はセ
パレータ、3は底紙、4は正極合剤、5は上蓋紙、6は
炭素棒、7は封口体、8は密封材、9は負極端子板、1
0は絶縁リング、11は熱収縮性樹脂チューブ、12は
正極端子板、13は絶縁リング、14は金属外装缶であ
る。The manganese dry battery shown in FIG. 1 will now be described. In the figure, 1 is a zinc can as a negative electrode, 2 is a separator, 3 is a bottom paper, 4 is a positive electrode mixture, 5 is a top cover paper, and 6 is carbon. Rod, 7 sealing body, 8 sealing material, 9 negative electrode terminal plate, 1
Reference numeral 0 is an insulating ring, 11 is a heat-shrinkable resin tube, 12 is a positive electrode terminal plate, 13 is an insulating ring, and 14 is a metal outer can.
【0021】上記亜鉛缶1はコップ状をしており、本実
施例の亜鉛缶1は前記のように鉛を含有せず、マグネシ
ウムを10ppm含有するものである。セパレータ2は
クラフト紙からなり、このセパレータ2の亜鉛缶1と接
触する側の表面には糊材が塗付され、セパレータ2はそ
の糊材が亜鉛缶1に接触するようにして正極合剤4と亜
鉛缶1との間に配置されている。The zinc can 1 is cup-shaped, and the zinc can 1 of the present embodiment does not contain lead as described above but contains 10 ppm of magnesium. The separator 2 is made of kraft paper, and the surface of the separator 2 that contacts the zinc can 1 is coated with a paste material. The separator 2 contacts the zinc can 1 so that the positive electrode mixture 4 And the zinc can 1.
【0022】正極合剤4は正極活物質の二酸化マンガン
とアセチレンブラックとの混合物に電解液を加えて混合
したものからなり、この電池の電解液は32%塩化亜鉛
水溶液からなり、その中に一般式(I)で示されるフッ
素系化合物が0.1%添加されている。そして、この電
池の全電解液量、すなわち上記のように正極合剤に加え
た電解液と組立時に注入する電解液の総量は約2mlで
ある。The positive electrode mixture 4 is composed of a mixture of manganese dioxide as a positive electrode active material and acetylene black and mixed with an electrolytic solution. The electrolytic solution of this battery is composed of a 32% zinc chloride aqueous solution. The fluorine compound represented by the formula (I) is added in an amount of 0.1%. The total amount of the electrolytic solution of this battery, that is, the total amount of the electrolytic solution added to the positive electrode mixture and the electrolytic solution injected at the time of assembly is about 2 ml.
【0023】上記電池は次に示すように組み立てた。ま
ず、コップ状の亜鉛缶1の内部にセパレータ2、底紙3
および正極合剤4を挿入し、電解液を注入したのち、正
極合剤4上に上蓋紙5を配置し、予備プレス後、炭素棒
6を上蓋紙5の中央に設けた貫通孔を通して正極合剤4
中に挿入した。The above battery was assembled as follows. First, inside a cup-shaped zinc can 1, a separator 2 and a bottom paper 3 are provided.
After inserting the positive electrode mixture 4 and injecting the electrolytic solution, the upper lid paper 5 is placed on the positive electrode mixture 4, and after prepressing, the carbon rod 6 is passed through the through hole provided in the center of the upper lid paper 5 to form the positive electrode mixture. Agent 4
Inserted inside.
【0024】ついで、亜鉛缶1の開口縁を内方へカール
し、炭素棒6の上端部近傍に密封材8を塗付し、中央に
透孔を有する封口体7を炭素棒6に嵌合し、亜鉛缶1の
底部外面側に負極端子板9を配設し、該負極端子板9の
周縁部に絶縁リング10を配置したのち、亜鉛缶1の側
面に熱収縮性樹脂チューブ11を配置し、加熱して上記
熱収縮性樹脂チューブ11を熱収縮させ、亜鉛缶1の側
面および亜鉛缶1の底部に配置した絶縁リング10上お
よび亜鉛缶1の上部に配置する封口体7の周縁部を被覆
した。Then, the opening edge of the zinc can 1 is curled inward, the sealing material 8 is applied near the upper end of the carbon rod 6, and the sealing body 7 having a through hole in the center is fitted to the carbon rod 6. Then, the negative electrode terminal plate 9 is disposed on the outer surface of the bottom of the zinc can 1, the insulating ring 10 is disposed on the peripheral portion of the negative electrode terminal plate 9, and then the heat-shrinkable resin tube 11 is disposed on the side surface of the zinc can 1. Then, the heat-shrinkable resin tube 11 is heat-shrinked by heating, and the peripheral portion of the sealing body 7 disposed on the side surface of the zinc can 1 and on the insulating ring 10 disposed on the bottom of the zinc can 1 and on the top of the zinc can 1. Was coated.
【0025】つぎに、炭素棒6の頭部に正極端子板12
を嵌め込み、正極端子板12の外周縁部に絶縁リング1
3を配置したのち、金属外装缶14で各構成部材を軸方
向に締め付けるとともに外装して、図1に概略構造を示
すマンガン乾電池にした。Next, the positive electrode terminal plate 12 is attached to the head of the carbon rod 6.
The insulating ring 1 on the outer peripheral edge of the positive electrode terminal plate 12.
After arranging 3, the respective components were axially fastened and packaged with a metal outer can 14 to form a manganese dry battery whose schematic structure is shown in FIG.
【0026】また、比較のため、カルバゾールを0.1
%添加した32%塩化亜鉛水溶液および添加剤をまった
く添加していない32%塩化亜鉛水溶液を電解液として
用い、亜鉛缶には前記と同様に鉛を含有せず、マグネシ
ウムを10ppm含有する亜鉛缶を用いて、前記と同様
に単3形のマンガン乾電池を作製した。For comparison, carbazole was added to 0.1
% 32% zinc chloride aqueous solution containing 32% zinc chloride and 32% zinc chloride aqueous solution containing no additive are used as electrolytes, and the zinc can contains a zinc can containing 10 ppm of magnesium and not containing lead as described above. Using the same, an AA-type manganese dry battery was prepared in the same manner as described above.
【0027】さらに、添加剤をまったく添加していない
32%塩化亜鉛水溶液を電解液として用い、亜鉛缶には
従来使用の鉛を0.4%含有する亜鉛缶(ただし、マグ
ネシウムも5ppm含有している)を用いて、前記と同
様に単3形のマンガン乾電池を作製した。Furthermore, a 32% zinc chloride aqueous solution containing no additives was used as an electrolytic solution, and a zinc can containing 0.4% of lead used in the past (however, magnesium can also contain 5 ppm). AA-type manganese dry battery was produced in the same manner as above.
【0028】これらの電池についても、前記と同様に5
Ω連続放電持続時間(終止電圧0.9V)を測定し、そ
の結果を表2に示した。For these batteries as well, 5
Ω continuous discharge duration (final voltage 0.9 V) was measured, and the results are shown in Table 2.
【0029】[0029]
【表2】 [Table 2]
【0030】表2に示すように、一般式(I)で示され
るフッ素系化合物のnが25になると、連続放電持続時
間が短くなり、放電特性の低下が大きくなるが、n=1
6までの範囲では、従来使用の亜鉛缶を用いた場合と同
等またはそれに近い連続放電持続時間を示し、放電特性
の大きな低下は認められなかった。As shown in Table 2, when n of the fluorine-based compound represented by the general formula (I) becomes 25, continuous discharge duration becomes short and discharge characteristics deteriorate largely, but n = 1.
In the range up to 6, the continuous discharge duration was equal to or close to that in the case of using the conventionally used zinc can, and no significant deterioration in discharge characteristics was observed.
【0031】以上の表1および表2に示す結果から、一
般式(I)で示されるフッ素系化合物としては、n=2
〜16のものが特に好ましいと考えられる。From the results shown in Tables 1 and 2 above, n = 2 for the fluorine-based compound represented by the general formula (I).
Those of ˜16 are considered to be particularly preferable.
【0032】実施例2 以上の結果から、亜鉛缶に対する腐食抑制効果および放
電特性がともに良好なn=8の一般式(I)で示される
フッ素系化合物〔F(CH2 )8 CH2 CH2SO
3 H〕を用い、添加量を種々に変え、その適量を調べる
ため、実験例1および実施例1と同様の実験を行い、そ
の結果を表3に示した。Example 2 From the above results, the fluorine-based compound [F (CH 2 ) 8 CH 2 CH 2 represented by the general formula (I) with n = 8, which has both excellent corrosion inhibiting effect on zinc cans and good discharge characteristics, is obtained. SO
[3 H] was used, the addition amount was variously changed, and in order to examine the appropriate amount, the same experiment as in Experimental Example 1 and Example 1 was performed, and the results are shown in Table 3.
【0033】すなわち、32%塩化亜鉛水溶液に、一般
式(I)においてn=8のF(CF2 )8 CH2 CH2
SO3 Hをその添加量を0.005%、0.01%、
0.05%、0.1%、0.2%、0.5%、1%と種
々に変えて添加し、前記実験例1と同様にガス発生量を
調べ、かつ上記実施例1と同様に単3形マンガン乾電池
を作製し、その5Ω連続放電持続時間(終止電圧0.9
V)を測定した。その結果を表3に示す。また、表3に
は、前記実験例1および実施例1で調べた無添加の場合
と従来使用の亜鉛缶を用いた場合(従来品)の結果につ
いても併記した。That is, in a 32% zinc chloride aqueous solution, F (CF 2 ) 8 CH 2 CH 2 with n = 8 in the general formula (I) was used.
The amount of SO 3 H added is 0.005%, 0.01%,
0.05%, 0.1%, 0.2%, 0.5%, 1% were added variously, the amount of gas generated was examined in the same manner as in Experimental Example 1, and the same as in Example 1 above. AA manganese dry battery was prepared for 5 Ω continuous discharge duration (final voltage 0.9
V) was measured. Table 3 shows the results. In addition, Table 3 also shows the results of the case of no addition and the case of using the conventionally used zinc can (conventional product), which were examined in Experimental Example 1 and Example 1.
【0034】[0034]
【表3】 [Table 3]
【0035】表3に示すように、ガス発生量はF(CF
2 )8 CH2 CH2 SO3 Hの添加量が0.01%以上
になると少なくなり、特に添加量が0.05%以上にな
ると顕著に少なくなる。また、連続放電持続時間はF
(CF2 )8 CH2 CH2 SO3 Hの添加量が0.2%
までの範囲では従来と同等またはそれに近い連続放電持
続時間を示し、F(CF2 )8 CH2 CH2 SO3 Hの
添加量が0.5%の場合も従来品に比べてそれほど低下
の大きくない連続放電持続時間を示したが、F(C
F2 )8 CH2 CH2 SO3 Hの添加量が1%になると
連続放電持続時間が短くなった。この結果から、一般式
(I)で示されるフッ素系化合物の添加量としては、
0.01〜0.5%の範囲、特に0.05〜0.2%の
範囲が好ましいと考えられる。As shown in Table 3, the gas generation amount is F (CF
2 ) When the amount of 8 CH 2 CH 2 SO 3 H added is 0.01% or more, the amount decreases, and particularly when the amount added is 0.05% or more, the amount decreases remarkably. The continuous discharge duration is F
Addition amount of (CF 2 ) 8 CH 2 CH 2 SO 3 H is 0.2%
The continuous discharge duration is equal to or close to that of the conventional product in the range up to, and even when the amount of F (CF 2 ) 8 CH 2 CH 2 SO 3 H added is 0.5%, the decrease is much larger than that of the conventional product. No continuous discharge duration was shown, but F (C
When the amount of F 2 ) 8 CH 2 CH 2 SO 3 H added was 1%, the continuous discharge duration became short. From this result, as the addition amount of the fluorine-based compound represented by the general formula (I),
It is considered that the range of 0.01 to 0.5%, particularly the range of 0.05 to 0.2% is preferable.
【0036】[0036]
【発明の効果】以上説明したように、本発明では、鉛含
有率を30ppm以下に削減した亜鉛缶を用い、水銀お
よびカドミウムを添加していないマンガン乾電池におい
て、電池内に一般式(I)で示されるフッ素系化合物を
添加することによって、亜鉛缶の耐食性を向上させるこ
とができた。As described above, according to the present invention, in a manganese dry battery which does not contain mercury and cadmium, a zinc can whose lead content is reduced to 30 ppm or less is used. It was possible to improve the corrosion resistance of the zinc can by adding the indicated fluorine compound.
【図1】本発明に係るマンガン乾電池の一例を概略的に
示す部分断面図である。FIG. 1 is a partial cross-sectional view schematically showing an example of a manganese dry battery according to the present invention.
1 亜鉛缶 2 セパレータ 4 正極合剤 1 Zinc can 2 Separator 4 Positive electrode mixture
Claims (4)
い、水銀およびカドミウムを添加していないマンガン乾
電池において、下記の一般式(I) F(CF2 )n CH2 CH2 SO3 H (I) (式中、nは1〜25である)で示されるフッ素系化合
物を電池内に添加したことを特徴とするマンガン乾電
池。1. In a manganese dry battery using a zinc can having a lead content of 30 ppm or less and containing neither mercury nor cadmium, the following general formula (I) F (CF 2 ) n CH 2 CH 2 SO 3 H ( I) A manganese dry battery in which a fluorine-based compound represented by the formula (wherein n is 1 to 25) is added to the battery.
求項1記載のマンガン乾電池。2. The manganese dry battery according to claim 1, wherein n in the general formula (I) is 2 to 16.
の添加量が、電池内の電解液に対して0.01〜0.5
重量%である請求項1記載のマンガン乾電池。3. The amount of the fluorine-based compound represented by the general formula (I) added is 0.01 to 0.5 with respect to the electrolytic solution in the battery.
The manganese dry battery according to claim 1, which has a weight percentage.
を、電解液に、セパレータに塗付する糊材に、また
は正極合剤に添加した請求項1記載のマンガン乾電
池。4. The manganese dry battery according to claim 1, wherein the fluorine-based compound represented by the general formula (I) is added to an electrolytic solution, a paste material applied to a separator, or a positive electrode mixture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6247088A JPH0888010A (en) | 1994-09-14 | 1994-09-14 | Manganese dry battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6247088A JPH0888010A (en) | 1994-09-14 | 1994-09-14 | Manganese dry battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0888010A true JPH0888010A (en) | 1996-04-02 |
Family
ID=17158254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6247088A Withdrawn JPH0888010A (en) | 1994-09-14 | 1994-09-14 | Manganese dry battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0888010A (en) |
-
1994
- 1994-09-14 JP JP6247088A patent/JPH0888010A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0888010A (en) | Manganese dry battery | |
JPS60131768A (en) | Organic electrolyte battery | |
KR100322140B1 (en) | Manganese dry batteries | |
JPH0421310B2 (en) | ||
JPH0888009A (en) | Manganese dry battery | |
JPS61153950A (en) | Zinc alkaline storage battery | |
JP3618140B2 (en) | Manganese battery | |
JPH0375985B2 (en) | ||
JPH08153520A (en) | Manganese dry battery | |
JPH0119622B2 (en) | ||
JPH0317181B2 (en) | ||
JPH07240202A (en) | Alkaline battery | |
JPH0750612B2 (en) | Zinc alkaline battery | |
JPH07201337A (en) | Manganese dry battery | |
JPH08335463A (en) | Manganese dry battery | |
JP3087536B2 (en) | Manganese dry cell | |
JP2739360B2 (en) | Manganese dry cell | |
JP2606480B2 (en) | Alkaline battery | |
JP3106807B2 (en) | Mercury-free manganese dry cell | |
JP2001189157A (en) | Manganese battery | |
JP2739361B2 (en) | Manganese dry cell | |
JPH08148158A (en) | Manganese dry battery | |
JPH0629013A (en) | Dry cell | |
JPS62123657A (en) | Zinc-alkaline battery | |
JPH0629014A (en) | Dry cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20011120 |