JPH0885866A - Production of ito sintered compact - Google Patents

Production of ito sintered compact

Info

Publication number
JPH0885866A
JPH0885866A JP24672794A JP24672794A JPH0885866A JP H0885866 A JPH0885866 A JP H0885866A JP 24672794 A JP24672794 A JP 24672794A JP 24672794 A JP24672794 A JP 24672794A JP H0885866 A JPH0885866 A JP H0885866A
Authority
JP
Japan
Prior art keywords
sintering
sintered body
temperature
oxygen
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24672794A
Other languages
Japanese (ja)
Inventor
Shoji Takanashi
昌二 高梨
Toshito Kishi
俊人 岸
Tatsuo Nate
達夫 名手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP24672794A priority Critical patent/JPH0885866A/en
Publication of JPH0885866A publication Critical patent/JPH0885866A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE: To obtain an ITO sintered compact capable of stably forming an ITO film having satisfactory specific resistance even at a low temp. of a substrate. CONSTITUTION: When powder consisting of indium oxide and tin oxide is compacted and sintered in a sintering furnace to produce an ITO sintered compact, sintering is carried out at 1,450-1,550 deg.C for 10-30hr in an atmosphere in which gaseous oxygen is allowed to flow so that the rate of substitution of oxygen is regulated to >=1.8×10<-2> per 1min per unit volume of the sintering furnace. The atmosphere is then changed over to a nonreducing atmosphere and sintering is carried out again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明導電膜作成に使用
するスパッタリング用ターゲット、具体的には、200
℃以下に加熱された基板上にスパッタリングすることに
より、透明性が良く、また比抵抗値が2.0×10-4Ω
・cm程度の良質な膜が得られるITO焼結体に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a sputtering target used for producing a transparent conductive film, specifically, 200
By sputtering on a substrate heated below ℃, the transparency is good and the specific resistance is 2.0 × 10 -4 Ω.
The present invention relates to an ITO sintered body capable of obtaining a high quality film of about cm.

【0002】[0002]

【従来の技術】近年、カラー液晶ディスプレイのカラー
フィルター、プラスチック基板へのITO膜のコーティ
ングが行われている。しかし、これらのカラーフィルタ
ーやプラスチック基板は耐熱性に劣るため、従来行われ
てきた高温(400℃程度)でのスパッタリングは行え
ず、基板加熱温度は200℃以下という制約を受けてい
る。酸素雰囲気中あるいは大気中で1600℃以上の温
度で焼結するITO焼結体は、高温での基板加熱(たと
えば、400℃以上)を行うスパッタリングによれば比
抵抗値の低い膜が得られるが、200℃以下の低温の基
板加熱によるスパッタリングでは、得られるITO膜の
比抵抗値は2×10-4Ω・cm以上であり、比抵抗値の
低い膜を得ることが困難である。
2. Description of the Related Art In recent years, a color filter of a color liquid crystal display and a plastic substrate are coated with an ITO film. However, since these color filters and plastic substrates are poor in heat resistance, conventional sputtering cannot be performed at a high temperature (about 400 ° C.), and the substrate heating temperature is limited to 200 ° C. or less. An ITO sintered body that is sintered in an oxygen atmosphere or in the air at a temperature of 1600 ° C. or higher can obtain a film having a low specific resistance value by sputtering the substrate at a high temperature (for example, 400 ° C. or higher). In sputtering by heating the substrate at a low temperature of 200 ° C. or lower, the specific resistance value of the ITO film obtained is 2 × 10 −4 Ω · cm or more, and it is difficult to obtain a film having a low specific resistance value.

【0003】また、酸素雰囲気中で1450〜1500
℃以上の温度で焼結するITO焼結体は、高密度が得ら
れにくい。もっとも、酸素流量を上げることにより高密
度は得られるが、炉内の温度分布にばらつきが生じ、焼
結体に割れ、反りの問題が生じる。さらに、加圧酸素雰
囲気焼結法やホットプレス法のような特殊な装置を用い
る方法では、高密度化が可能であり、比抵抗値の低い膜
も得られる。たとえば、特開平4−51409号、特開
平4−160047号では、ホットプレスにより、相対
密度が80%以上で、電子線マイクロアナライザーの線
分析による錫組成が平均組成の0.8〜1.2倍の範囲
内にあるITO焼結体が開示されている。これらは、装
置に莫大な投資を必要とするばかりでなく、大面積の基
板に成膜するために必要な大型品の焼結体を製造する上
で、量産性が低下すると共に焼結体価格が高くなり生産
上好ましくない。
In an oxygen atmosphere, 1450 to 1500
It is difficult to obtain a high density in an ITO sintered body that is sintered at a temperature of ℃ or more. Of course, although a high density can be obtained by increasing the oxygen flow rate, the temperature distribution in the furnace becomes uneven, and the sintered body is cracked and warped. Furthermore, by a method using a special apparatus such as a pressurized oxygen atmosphere sintering method or a hot pressing method, high density can be achieved and a film having a low specific resistance value can be obtained. For example, in Japanese Unexamined Patent Publication Nos. 4-51409 and 4-160047, the relative density is 80% or more by hot pressing, and the tin composition determined by line analysis by an electron beam microanalyzer is 0.8 to 1.2, which is the average composition. ITO sintered bodies in the double range are disclosed. These not only require enormous investment in the equipment, but also reduce the mass productivity and the price of the sintered body when manufacturing a large-sized sintered body required for film formation on a large area substrate. Is high, which is not preferable in production.

【0004】したがって、基板温度が200℃以下の低
温であっても、比抵抗値の良好な(2.0×10-4Ω・
cm以下)ITO膜が安定して成膜でき、生産性よく安
価に製造できる大型品の高密度ITO焼結体を提供する
方法が提案されている。たとえば、特願平6−2482
6号公報では、実質的にインジウム、錫、酸素からなる
粉末を成形した後炉内に入れ、成形体の周囲に、酸素ガ
スを焼結炉内の容積に対して1分間あたり1.8×10
-2以上の割合で流入しながら、1300℃から1450
℃まで50分以内で昇温し、1450〜1550℃の温
度範囲で焼結することを特徴とする高密度ITO焼結体
の製造方法が開示されている。
Therefore, even if the substrate temperature is as low as 200 ° C. or lower, the specific resistance value is good (2.0 × 10 −4 Ω ·
(cm or less) A method has been proposed for providing a large-sized high-density ITO sintered body that can stably form an ITO film and can be manufactured with good productivity and at low cost. For example, Japanese Patent Application No. 6-2482
According to Japanese Patent Laid-Open No. 6, a powder consisting essentially of indium, tin, and oxygen is molded and then placed in a furnace, and oxygen gas around the compact is 1.8 × per minute with respect to the volume in the sintering furnace. 10
-From 1300 ° C to 1450 while flowing at a rate of -2 or more
Disclosed is a method for producing a high-density ITO sintered body, which comprises raising the temperature to 50 ° C. within 50 minutes and sintering in the temperature range of 1450 to 1550 ° C.

【0005】[0005]

【発明が解決しようとする課題】しかし、安価な製造方
法で高密度な大型品ITO焼結体が得られ、基板温度が
低い条件においても比抵抗値の良好なITO膜が安定し
て成膜できるITO焼結体の提供がさらに要望されてい
る。
However, a high-density large-sized ITO sintered body can be obtained by an inexpensive manufacturing method, and an ITO film having a good specific resistance value can be stably formed even under the condition of a low substrate temperature. It is further desired to provide an ITO sintered body that can be produced.

【0006】[0006]

【課題を解決するための手段】本発明では、酸素雰囲気
中で焼結して高密度焼結体を製造するにあたり、実質的
にインジウム、錫、および酸素からなる粉末を成形した
後、1450〜1550℃の温度で焼結を行う焼結過程
において、酸素雰囲気中による高温加熱で一次焼結を行
った後、雰囲気ガスを非還元性雰囲気(たとえば、窒素
ガス)に切り替えて二次焼結を行う。本発明の製造方法
によるITO焼結体は、実質的にインジウム、錫、およ
び酸素からなるものであり、In23−SnO2 系のも
のである。この組成自体は公知のITO焼結体と同様で
あり、一般に錫の平均組成が4〜12重量%であり、イ
ンジウムの平均組成が70〜78重量%の範囲にある。
しかし、200℃以下に加熱された基板上にスパッタリ
ングすることにより、透明性が良く、また比抵抗値が
2.0×10-4Ω・cm程度の良質な膜が得られるIT
O焼結体である。
According to the present invention, in producing a high-density sintered body by sintering in an oxygen atmosphere, a powder consisting essentially of indium, tin, and oxygen is molded, and then 1450- In the sintering process in which the sintering is performed at a temperature of 1550 ° C., after performing the primary sintering by heating at high temperature in an oxygen atmosphere, the atmosphere gas is switched to a non-reducing atmosphere (for example, nitrogen gas) to perform the secondary sintering. To do. The ITO sintered body according to the production method of the present invention is substantially composed of indium, tin, and oxygen, and is of In 2 O 3 —SnO 2 system. This composition itself is similar to that of a known ITO sintered body, and generally, the average composition of tin is 4 to 12% by weight, and the average composition of indium is in the range of 70 to 78% by weight.
However, by sputtering on a substrate heated to 200 ° C. or lower, a film having good transparency and a specific resistance value of about 2.0 × 10 −4 Ω · cm can be obtained IT
It is an O sintered body.

【0007】[0007]

【作用】一般に焼結体の密度が向上すると、焼結体の表
面抵抗値が低下するため、スパッタリング時のプラズマ
状態が安定的になるといわれている。しかし、前述した
従来公知の方法のように1600℃以上の焼結温度で製
造すれば、容易に焼結体密度が6.0g/cm3 以上は
得られるが、このITO焼結体を用いて基板温度が低い
条件でスパッタリングを行った場合、結晶化されていな
い膜や乱れた相が生成し、良質な膜が得られないのであ
る。この原因は、焼結体中に凝集したSn原子の粗大化
によるものであると推察される。すなわち、凝集したS
n原子の粗大化している焼結体を用いてスパッタリング
を行った場合、焼結体から放出される原子のうち10%
程度を占める十数原子ないし十数原子の集団が、Sn原
子を主体とするものになる確率が高くなり、その原子集
団がそのままの状態で基板に到達するため、乱れた結晶
構造を持つ相が基板に形成され、膜の比抵抗値を悪化さ
せる直接の原因となるものと考えられる。なお、凝集し
たSn原子は、電子線マイクロアナライザーの線分析に
より評価できる(特開平4−160047号参照)。一
方、スパッタリング時の基板加熱温度が高温である場合
には、膜中の原子の拡散が容易に起こるため、成膜状態
では乱れた構造を持つ膜であっても、スパッタリングが
継続されるうちに結晶質な膜に変化する。しかし、基板
加熱温度が低かったり、膜厚が薄かったり、スパッタリ
ング時間が短い等の場合には、結晶化が起こらずに良質
な膜は得られない。これが比抵抗値の良好な膜が得られ
ない原因となっているのである。
In general, it is said that when the density of the sintered body is improved, the surface resistance value of the sintered body is lowered, so that the plasma state during sputtering becomes stable. However, if the sintered body is manufactured at a sintering temperature of 1600 ° C. or higher as in the previously known method described above, a sintered body density of 6.0 g / cm 3 or more can be easily obtained. When sputtering is performed under the condition that the substrate temperature is low, an uncrystallized film or a disordered phase is generated, and a good quality film cannot be obtained. It is speculated that this is due to the coarsening of the Sn atoms aggregated in the sintered body. That is, the aggregated S
10% of the atoms released from the sintered body when sputtering is performed using a sintered body in which n atoms are coarsened.
The probability that a dozen or more atoms or a population of a dozen or so atoms that occupy the degree will be mainly composed of Sn atoms and the atomic population reaches the substrate as it is, so that a phase having a disordered crystal structure It is considered that it is directly formed on the substrate and deteriorates the specific resistance value of the film. The aggregated Sn atom can be evaluated by a line analysis of an electron beam microanalyzer (see JP-A-4-160047). On the other hand, when the substrate heating temperature at the time of sputtering is high, atoms in the film easily diffuse, so that even if the film has a disordered structure in the film formation state, while the sputtering is continued. Change to crystalline film. However, if the substrate heating temperature is low, the film thickness is thin, or the sputtering time is short, crystallization does not occur and a good film cannot be obtained. This is the reason why a film having a good specific resistance value cannot be obtained.

【0008】本発明のITO焼結体においては、145
0〜1550℃の比較的低い焼結温度にもかかわらず、
焼結体密度が6.0g/cm3 以上を達成しているう
え、ITO焼結体は電子線マイクロアナライザーの線分
析における錫組成が平均組成の0.8〜1.2倍の範囲
にあることからSn原子の凝集は認められず、低温での
成膜においても比抵抗値の良好なITO膜を得ることが
可能となる。
In the ITO sintered body of the present invention, 145
Despite the relatively low sintering temperature of 0 to 1550 ° C,
In addition to achieving a sintered body density of 6.0 g / cm 3 or more, the ITO sintered body has a tin composition in the range of 0.8 to 1.2 times the average composition in the line analysis of an electron beam microanalyzer. Therefore, no aggregation of Sn atoms is observed, and it becomes possible to obtain an ITO film having a good specific resistance value even when the film is formed at a low temperature.

【0009】以下に、本発明の製造方法に係わる諸要素
について説明する。 (原料粉末)酸化インジウムの粉末、酸化インジウム粉
末と酸化錫粉末との混合粉末、酸化インジウム−酸化錫
複合粉末、酸化インジウム−酸化錫複合粉末と酸化イン
ジウム粉末との混合粉末などを組合せあるいは単独で所
望の組成に配合して原料粉末とする。酸化インジウム粉
末を用いるときは、その平均粒径を0.1μm以下にす
る必要がある。その理由として、平均粒径が0.1μm
を越えると酸化インジウムを主とする粗大粒子が存在
し、原料粉末中の組成の均一分散性を悪化させ、原料粉
末の成形性、焼結性も悪化させるため高密度の焼結体が
得られなくなるためである。
Various elements related to the manufacturing method of the present invention will be described below. (Raw material powder) Indium oxide powder, mixed powder of indium oxide powder and tin oxide powder, indium oxide-tin oxide composite powder, mixed powder of indium oxide-tin oxide composite powder and indium oxide powder, etc. may be combined or alone. A raw material powder is prepared by blending it into a desired composition. When using indium oxide powder, it is necessary to make its average particle diameter 0.1 μm or less. The reason is that the average particle size is 0.1 μm.
If it exceeds, coarse particles mainly composed of indium oxide are present, which deteriorates the uniform dispersion of the composition in the raw material powder and deteriorates the formability and sinterability of the raw material powder, so that a high-density sintered body can be obtained. Because it will disappear.

【0010】(混合・粉砕)焼結体の錫組成が20重量
%以下、たとえば7.8重量%となるように酸化錫粉末
を酸化インジウム粉末中に配合した後、混合・粉砕を行
い造粒粉末とする。混合・粉砕を行う方法としては、た
とえばボールミル混合がある。混合時間は好ましくは1
2時間以上さらに好ましくは24時間以上である。パラ
フィンワックス、ポリビニルアルコールなどのバインダ
ーは混合・粉砕時などに1〜4重量%添加することが望
ましい。なお、造粒粉末の平均粒径は10μm以下であ
る。
(Mixing / Pulverizing) The tin oxide powder is blended in the indium oxide powder so that the tin composition of the sintered body is 20% by weight or less, for example, 7.8% by weight, and then the mixture is mixed and pulverized for granulation. Use as powder. As a method of mixing and pulverizing, there is, for example, ball mill mixing. Mixing time is preferably 1
It is 2 hours or more, more preferably 24 hours or more. It is desirable to add 1 to 4% by weight of a binder such as paraffin wax or polyvinyl alcohol at the time of mixing and pulverizing. The average particle size of the granulated powder is 10 μm or less.

【0011】(成形)次に、造粒粉末の成形を行う。焼
結体密度を6.0g/cm3 以上にするためには1to
n/cm2 以上の成形圧力が好ましい。
(Molding) Next, the granulated powder is molded. To increase the sintered density to 6.0 g / cm 3 or more, 1 to
A molding pressure of n / cm 2 or more is preferable.

【0012】(酸化錫成分の載置)成形後、一定の蒸気
圧を与えるための雰囲気調整用の酸化錫粉末、酸化イン
ジウム粉末と酸化錫粉末との混合粉末、もしくは酸化イ
ンジウム−酸化錫複合粉末やそれらの成形物を、前記成
形体の裏面に敷くか、成形体全面もしくは成形体周囲に
載置して前記成形体の焼結を行うのが望ましい。ITO
焼結体の作製では、特に酸化錫は蒸気圧が高いために、
焼結時に蒸発−再蒸着による物質移動が生じるため、高
密度化しにくくなる。したがって、酸化錫成分を成形体
全面、裏面もしくは成形体周囲に載置しておくことで、
焼結炉内の雰囲気は、主に錫酸化物成分の蒸気で満たさ
れる。この状態で焼結を行うと、焼結体中の錫原子の蒸
発を抑制でき、ITO焼結体の高密度化を達成できる。
この際の酸化錫成分の載置量は制限しないが、好ましく
は成形体重量に対して、酸化錫成分で5〜40重量%が
よい。なお、焼結炉内の雰囲気に関し、酸化インジウム
の蒸気圧は錫のような問題を生じない。さらに、これら
の効果は、錫酸化物を主とするガス、もしくはインジウ
ム酸化物−錫酸化物のガス、またはこれらのガスと酸素
ガスの混合ガスを導入することでも達成可能である。酸
化物ガスと酸素ガスとの混合ガスの割合は酸化物ガスに
対し、酸素ガスが20〜80%含有することが両者のガ
ス効果が薄れることなく高密度化にとっては好ましい。
ここでいうインジウム酸化物とはInO、In2O、I
23、錫酸化物とはSnO、SnO2 、(SnO)
2,3,4 が主体となる。
(Placement of Tin Oxide Component) After molding, tin oxide powder for adjusting the atmosphere to give a constant vapor pressure, mixed powder of indium oxide powder and tin oxide powder, or indium oxide-tin oxide composite powder It is preferable to lay the molded product or the molded product on the back surface of the molded product, or place it on the entire surface of the molded product or around the molded product to sinter the molded product. ITO
In the production of a sintered body, tin oxide has a high vapor pressure, so
Since mass transfer occurs due to evaporation-re-deposition during sintering, it is difficult to increase the density. Therefore, by placing the tin oxide component on the entire surface of the molded body, the back surface or around the molded body,
The atmosphere in the sintering furnace is mainly filled with vapor of tin oxide component. If sintering is performed in this state, evaporation of tin atoms in the sintered body can be suppressed, and high density of the ITO sintered body can be achieved.
At this time, the amount of the tin oxide component placed is not limited, but the tin oxide component is preferably 5 to 40% by weight based on the weight of the molded body. Regarding the atmosphere in the sintering furnace, the vapor pressure of indium oxide does not cause the problem of tin. Further, these effects can also be achieved by introducing a gas mainly containing tin oxide, a gas of indium oxide-tin oxide, or a mixed gas of these gases and oxygen gas. The ratio of the mixed gas of the oxide gas and the oxygen gas is preferably 20 to 80% of the oxygen gas with respect to the oxide gas for the sake of high density without diminishing the gas effect of both.
Indium oxide here means InO, In 2 O, I
n 2 O 3 and tin oxide are SnO, SnO 2 and (SnO)
Mainly 2,3,4 .

【0013】(焼結−酸素置換率)酸化錫を含む粉末お
よび/またはその成形物を載置する場合は、酸素ガスは
流さなくてもよいが、流した方が高密度化にはよりよ
い。これは前述した、焼結体中の錫原子の蒸発を抑制す
る効果が酸素ガスにもあるからである。酸化物粉末やそ
の成形物を置かない場合、炉内の酸素置換率は、炉内容
積に対し、酸素が1分間あたりに入る流量で表され、す
なわち酸素置換率(1分間あたり)=酸素流量(リット
ル/分)/焼結炉内の体積(cm3 )で表され、1.8
×10-2以上、好ましくは2.8〜16.3×10-2
する。さらに好ましくは、4.9〜6.8×10-2とす
る。1.8×10-2未満であると、焼結体の表面近傍と
内部とで錫組成のずれが生じてしまう。16.3×10
-2より多いと、炉内の温度分布にばらつきが生じ、その
結果ITO焼結体の密度の不均一が生じてしまう。な
お、酸化ガスには、酸素ガスに限られず、空気を使用す
ることもできる。空気の場合は、炉中の酸素分圧を測定
して、所定の酸素置換率を得る。
(Sintering-Oxygen Substitution Ratio) When a powder containing tin oxide and / or a molded product thereof is placed, the oxygen gas does not have to flow, but the flow is better for higher density. . This is because oxygen gas also has the above-described effect of suppressing evaporation of tin atoms in the sintered body. When no oxide powder or its molded product is placed, the oxygen substitution rate in the furnace is represented by the flow rate of oxygen entering the furnace volume per minute, that is, oxygen substitution rate (per minute) = oxygen flow rate. (Liter / min) / volume in sintering furnace (cm 3 ) 1.8
It is set to x10 -2 or more, preferably 2.8 to 16.3 x 10 -2 . More preferably, it is 4.9 to 6.8 × 10 -2 . If it is less than 1.8 × 10 -2 , a tin composition shift will occur between the surface vicinity and the inside of the sintered body. 16.3 x 10
If it is more than -2 , the temperature distribution in the furnace becomes uneven, resulting in non-uniform density of the ITO sintered body. The oxidizing gas is not limited to oxygen gas, and air can be used. In the case of air, the oxygen partial pressure in the furnace is measured to obtain a predetermined oxygen substitution rate.

【0014】(焼結−昇温速度)焼結では、室温から1
300℃までの昇温時間を23時間程度、1300℃か
ら1450℃までの昇温時間を50分以内、好ましくは
7〜30分の範囲内にて温度を上昇させる。室温から1
000度までは脱バインダー過程であるため、昇温時間
が短いと焼結体に割れが生じてしまう。また、1300
〜1450℃までにおいては、焼結挙動がもっとも活発
な温度範囲であるため昇温時間は炉内の均熱を保てるか
ぎり、速くなければならない。この温度範囲での加熱に
より大きな収縮率が得られ、高密度な焼結体が作製でき
る。また、1450℃から、たとえば1550℃の焼結
温度までの昇温時間は、1300〜1450℃までの昇
温時間より遅くてもよいが、少なくとも150分以内、
好ましくは7〜50分の範囲内にて炉内の均熱を保てる
程度に温度上昇させる。
(Sintering-temperature rising rate) In sintering, the temperature is from room temperature to 1
The temperature rising time up to 300 ° C. is about 23 hours, and the temperature rising time from 1300 ° C. to 1450 ° C. is within 50 minutes, preferably 7 to 30 minutes. From room temperature to 1
Since the binder removal process is performed up to 000 ° C., if the temperature rising time is short, the sintered body is cracked. Also, 1300
Up to ˜1450 ° C., since the sintering behavior is in the most active temperature range, the temperature rising time must be fast as long as the soaking in the furnace can be maintained. A large shrinkage ratio is obtained by heating in this temperature range, and a high-density sintered body can be manufactured. Further, the temperature rising time from 1450 ° C. to the sintering temperature of 1550 ° C. may be later than the temperature rising time from 1300 to 1450 ° C., but at least within 150 minutes,
Preferably, the temperature is raised within a range of 7 to 50 minutes to such an extent that uniform heating in the furnace can be maintained.

【0015】(焼結−焼結温度)焼結温度は1450℃
以上かつ1550℃以下とする。1450℃未満では高
密度の焼結体は得られない上、SnO2 相が安定に存在
するために、比抵抗値の低い良質なITO膜を得ること
が困難となる。また、1550℃以上であると電子線マ
イクロアナライザーの線分析における錫組成が平均組成
の0.8〜1.2倍の範囲外となる。
(Sintering-Sintering temperature) The sintering temperature is 1450 ° C.
Above and above 1550 ° C. If the temperature is lower than 1450 ° C., a high-density sintered body cannot be obtained, and since the SnO 2 phase is stably present, it is difficult to obtain a high-quality ITO film having a low specific resistance value. Further, when the temperature is 1550 ° C. or higher, the tin composition in the line analysis of the electron beam microanalyzer is out of the range of 0.8 to 1.2 times the average composition.

【0016】(焼結−保持時間)焼結温度に達した際に
保持する時間は10時間以上、好ましくは10〜30時
間の範囲内である。保持時間が10時間未満であると結
晶粒径が十分成長せず、高密度な焼結体は得られない。
(Sintering-holding time) The holding time when the sintering temperature is reached is 10 hours or longer, preferably 10 to 30 hours. If the holding time is less than 10 hours, the crystal grain size does not grow sufficiently and a high density sintered body cannot be obtained.

【0017】(焼結−窒素置換率)本発明においては、
1450〜1550℃の温度で10〜30時間の焼結を
行った後、炉内の酸化錫蒸気用粉末やその成形物を取り
出し、また酸素ガスの導入を止めて、雰囲気を非還元性
にする。このために、真空にしたり、アルゴン、二酸化
炭素等を焼結炉内に導入するが、好ましくは安価な窒素
ガスの導入を行う。その窒素ガス流量を炉内容積に対し
て、1分間あたり1.8×10-2以上の割合で流入させ
て、さらに5〜30時間程度の焼結を行う。すなわち、
窒素ガスに切り替えることで、内部の酸欠により酸素空
孔が導入され、空孔拡散が行われるので、窒素導入時間
を延ばすほど、その焼結体密度は上昇していく。炉内の
窒素置換率は、窒素流量が炉内容積に対し、1分間あた
り1.8×10-2以上、好ましくは、4.9〜6.8×
10-2とする。1.8×10-2未満であるとその効果は
薄く、6.8×10-2以上流してもそれほど大きな効果
は得られない。なお、窒素ガス置換率あるいは不活性ガ
ス置換率は、酸素置換率と同様に定義される。
(Sintering-Nitrogen Substitution Rate) In the present invention,
After sintering at a temperature of 1450 to 1550 ° C. for 10 to 30 hours, the tin oxide vapor powder and its molded product in the furnace are taken out, and the introduction of oxygen gas is stopped to make the atmosphere non-reducing. . For this purpose, a vacuum is applied, and argon, carbon dioxide, etc. are introduced into the sintering furnace, but preferably inexpensive nitrogen gas is introduced. The nitrogen gas flow rate is flown into the furnace volume at a rate of 1.8 × 10 -2 or more per minute, and sintering is further performed for about 5 to 30 hours. That is,
By switching to nitrogen gas, oxygen vacancies are introduced due to oxygen deficiency inside, and vacancies are diffused. Therefore, as the nitrogen introduction time is extended, the density of the sintered body increases. The nitrogen substitution rate in the furnace is such that the nitrogen flow rate is 1.8 × 10 −2 or more per minute, preferably 4.9 to 6.8 × with respect to the volume in the furnace.
Set to 10 -2 . If it is less than 1.8 × 10 -2 , the effect is thin, and even if 6.8 × 10 -2 or more is flown, the effect is not so great. The nitrogen gas substitution rate or the inert gas substitution rate is defined similarly to the oxygen substitution rate.

【0018】[0018]

【実施例】以下に実施例を用いて本発明を説明する。 (実施例1)平均粒径0.07μmの酸化インジウム粉
末中に平均粒径1μmの酸化錫粉末を錫組成が7.8重
量%となるように配合し、3重量%の酢酸ビニール系バ
インダーを添加した後、湿式ボールミル中で18時間混
合し、乾燥および粉砕にて平均粒径を10μm以下に
し、これを造粒粉末とした。さらに、造粒粉末を用いて
3ton/cm2 で成形した。成形体を炉内の容器内に
配置した後、炉内の酸素置換率を2.8×10-2とした
酸素雰囲気中で焼結を行った。焼結工程は、室温から1
300℃までを23時間にて昇温し、1300℃から3
0分間の昇温時間をかけ1450℃まで温度を上昇させ
た。そして、1500℃まで10分間の昇温時間にて温
度を上昇させ、1500℃にて15時間保持した。さら
に、雰囲気ガスをアルゴンに切り替えた。アルゴンのガ
ス流量は炉内容積に対して、1分間あたり1.8×10
-2以上の置換率で流入させて10時間の焼結を行い、□
175mm、厚さ6mmの大きさの板状のITO焼結体
を得た。この得られた焼結体密度は6.4g/cm3
あった。さらに研磨した試料の表面をビーム径1μmの
電子線マイクロアナライザー(EPMA)線分析にて錫
組成の均一性の評価を行った。その結果、錫量は7.6
〜8.1重量%の範囲であった。以上の結果を表1、表
2に示す。
EXAMPLES The present invention will be described below with reference to examples. Example 1 A tin oxide powder having an average particle diameter of 1 μm was mixed in an indium oxide powder having an average particle diameter of 0.07 μm so that the tin composition was 7.8% by weight, and a vinyl acetate binder of 3% by weight was added. After the addition, the mixture was mixed in a wet ball mill for 18 hours, dried and pulverized to have an average particle size of 10 μm or less, and this was used as a granulated powder. Further, the granulated powder was used for molding at 3 ton / cm 2 . After the molded body was placed in a container in a furnace, sintering was performed in an oxygen atmosphere with an oxygen substitution rate of 2.8 × 10 -2 in the furnace. Sintering process is from room temperature to 1
The temperature was raised to 300 ° C in 23 hours and the temperature was raised from 1300 ° C to 3
The temperature was raised to 1450 ° C. over a heating time of 0 minutes. Then, the temperature was raised to 1500 ° C. with a temperature rising time of 10 minutes and kept at 1500 ° C. for 15 hours. Further, the atmosphere gas was switched to argon. The gas flow rate of argon is 1.8 × 10 per minute with respect to the internal volume of the furnace.
-Inflow at a substitution rate of -2 or more and perform sintering for 10 hours,
A plate-shaped ITO sintered body having a size of 175 mm and a thickness of 6 mm was obtained. The density of the obtained sintered body was 6.4 g / cm 3 . Further, the surface of the polished sample was evaluated for uniformity of tin composition by electron beam microanalyzer (EPMA) beam analysis with a beam diameter of 1 μm. As a result, the tin content was 7.6.
Was in the range of up to 8.1% by weight. The above results are shown in Tables 1 and 2.

【0019】また、このITO焼結体をスパッタリング
用ターゲット材として使用し、DCマグネトロンスパッ
タ法によってスパッタリング試験を行った。スパッタリ
ング条件は、投入電力2W/cm2 、圧力0.4Pa、
2 分圧2容量%、基板加熱温度200℃とし、1時間
連続スパッタリングをした後、各ターゲットについて2
000A(オングストローム)ごとに成膜し、四端針法
による比抵抗値の測定を行った。さらに同一スパッタリ
ング条件で30時間の連続スパッタリングを行い、比抵
抗値の測定を行った。これらの結果を表2に示す。
Further, using this ITO sintered body as a target material for sputtering, a sputtering test was conducted by a DC magnetron sputtering method. The sputtering conditions are as follows: input power 2 W / cm 2 , pressure 0.4 Pa,
O 2 partial pressure was 2% by volume, substrate heating temperature was 200 ° C., and continuous sputtering was performed for 1 hour.
A film was formed every 000 A (angstrom), and the specific resistance value was measured by the four-end probe method. Further, continuous sputtering was performed for 30 hours under the same sputtering conditions, and the specific resistance value was measured. The results are shown in Table 2.

【0020】(実施例2)実施例1におけるアルゴンの
代わりに窒素ガスを使用し、焼結時間を5、10、30
時間とし、その他は実施例1と同様にITO焼結体の作
製および評価を行った。その結果を表1、表2に示す
(2−1、2−2、2−3)。
Example 2 Nitrogen gas was used instead of argon in Example 1, and the sintering time was 5, 10, 30.
The time was set and the ITO sintered body was prepared and evaluated in the same manner as in Example 1 except for the above. The results are shown in Tables 1 and 2 (2-1, 2-2, 2-3).

【0021】(実施例3)平均粒径0.07μmの酸化
インジウム粉末中に平均粒径1μmの酸化錫粉末を錫組
成が7.8重量%となるように配合し、3重量%の酢酸
ビニール系バインダーを添加した後、湿式ボールミル中
で18時間混合し、乾燥および粉砕にて平均粒径を10
μm以下にし、これを造粒粉末とした。さらに、造粒粉
末を用いて3ton/cm2 で成形した。成形体を炉内
の容器内に配置した後、成形体に対し20重量%の平均
粒径1μmの酸化錫粉末を、前記成形体容器の周囲の皿
上に積載した。炉内において、昇温とともに、前記酸化
錫より蒸気ガスが発生した。酸素ガスが強制的に炉内に
供給され、前記蒸気ガスと混合された。酸素ガスは、焼
結炉の炉内容積に対して、1分間あたり1.8×10-2
以上の割合で流入させた。この混合ガス雰囲気中にて、
室温から1300℃までを23時間にて昇温し、130
0℃から30分間の昇温時間をかけ1450℃まで温度
上昇させた。そして、1500℃まで10分間の昇温時
間にて温度を上昇させ、1500℃にて15時間の焼結
を行った後、雰囲気ガスを窒素ガスに切り替え、その窒
素ガス流量を炉内容積に対して、1分間あたり1.8×
10-2以上の置換率で流入させて10時間の焼結を行
い、□175mm、厚さ6mmの大きさの板状のITO
焼結体を得た。得られた焼結体の物性値と錫組成を実施
例1と同様の方法にて測定した後、スパッタリング用タ
ーゲット材として使用しDCマグネトロンスパッタ法に
よって、実施例1と同様の方法にてスパッタリング試験
を行った。得られた結果を表1、表2に示す。
(Example 3) Indium oxide powder having an average particle diameter of 0.07 μm was mixed with tin oxide powder having an average particle diameter of 1 μm so that the tin composition was 7.8% by weight, and 3% by weight of vinyl acetate was added. After adding the system binder, mix in a wet ball mill for 18 hours, and dry and pulverize to obtain an average particle size of 10
It was made to be not more than μm, and this was used as a granulated powder. Further, the granulated powder was used for molding at 3 ton / cm 2 . After the molded body was placed in a container in a furnace, 20% by weight of the molded body of tin oxide powder having an average particle size of 1 μm was loaded on a plate around the molded body container. In the furnace, vapor gas was generated from the tin oxide as the temperature increased. Oxygen gas was forced into the furnace and mixed with the steam gas. Oxygen gas is 1.8 × 10 -2 per minute with respect to the internal volume of the sintering furnace.
Inflow was made at the above rate. In this mixed gas atmosphere,
Increase the temperature from room temperature to 1300 ° C in 23 hours,
The temperature was raised from 0 ° C. to 1450 ° C. over 30 minutes. Then, the temperature was raised to 1500 ° C. with a temperature rising time of 10 minutes, and after sintering was performed at 1500 ° C. for 15 hours, the atmosphere gas was switched to nitrogen gas, and the nitrogen gas flow rate was changed with respect to the furnace internal volume. 1.8 x per minute
A plate-shaped ITO having a size of □ 175 mm and a thickness of 6 mm was obtained by inflowing at a substitution rate of 10 −2 or more and sintering for 10 hours.
A sintered body was obtained. The physical properties and tin composition of the obtained sintered body were measured by the same method as in Example 1, and then used as a sputtering target material by the DC magnetron sputtering method by the same method as in Example 1. I went. The obtained results are shown in Tables 1 and 2.

【0022】(実施例4)平均粒径0.07μmの酸化
インジウム粉末中に平均粒径1μmの酸化錫粉末を錫組
成が7.8重量%となるように配合し、3重量%の酢酸
ビニール系バインダーを添加した後、湿式ボールミル中
で18時間混合し、乾燥および粉砕にて平均粒径を10
μm以下にし、これを造粒粉末とした。さらに、造粒粉
末を用いて3ton/cm2 で成形した。成形体を炉内
の容器内に配置した後、成形体に対し20重量%の平均
粒径1μmの酸化錫粉末を、前記成形体容器の周囲の皿
上に積載し、発生した蒸気ガス雰囲気中にて、室温から
1300℃までを23時間にて昇温し、1300℃から
30分間の昇温時間をかけ1450℃まで温度を上昇さ
せた。そして、1500℃まで10分間の昇温時間にて
温度を上昇させ、1500℃にて15時間の焼結を行っ
た後、雰囲気ガスを窒素ガスに切り替え、その窒素ガス
流量を炉内容積に対して、1分間あたり1.8×10-2
以上の置換率で流入させて10、30時間の焼結を行
い、□175mm、厚さ6mmの大きさの板状のITO
焼結体を得た。得られたITO焼結体の物性値と錫組成
を実施例1と同様の方法にて測定した後、スパッタリン
グ用ターゲット材として使用しDCマグネトロンスパッ
タ法によって、実施例1と同様の方法にてスパッタリン
グ試験を行った。得られた結果を表1、表2に示す(4
−1、4−2)。
Example 4 Indium oxide powder having an average particle size of 0.07 μm was mixed with tin oxide powder having an average particle size of 1 μm so that the tin composition was 7.8% by weight, and 3% by weight of vinyl acetate was added. After adding the system binder, mix in a wet ball mill for 18 hours, and dry and pulverize to obtain an average particle size of 10
It was made to be not more than μm, and this was used as a granulated powder. Further, the granulated powder was used for molding at 3 ton / cm 2 . After the molded body is placed in a container in a furnace, 20% by weight of the molded body of tin oxide powder having an average particle size of 1 μm is loaded on a plate around the molded body container, and in a vapor gas atmosphere generated. At 23 ° C., the temperature was raised from room temperature to 1300 ° C. in 23 hours, and the temperature was raised from 1300 ° C. to 1450 ° C. over 30 minutes. Then, the temperature was raised to 1500 ° C. with a temperature rising time of 10 minutes, and after sintering was performed at 1500 ° C. for 15 hours, the atmosphere gas was switched to nitrogen gas, and the nitrogen gas flow rate was changed with respect to the furnace internal volume. , 1.8 × 10 -2 per minute
The plate-shaped ITO having a size of □ 175 mm and a thickness of 6 mm was made by inflowing at the above substitution rate and sintering for 10 to 30 hours.
A sintered body was obtained. The physical properties and tin composition of the obtained ITO sintered body were measured by the same method as in Example 1, and then used as a sputtering target material by the DC magnetron sputtering method by the same method as in Example 1. The test was conducted. The obtained results are shown in Tables 1 and 2 (4
-1, 4-2).

【0023】(比較例1)平均粒径0.07μmの酸化
インジウム粉末中に平均粒径1μmの酸化錫粉末を錫組
成が7.8重量%となるように配合し、3重量%の酢酸
ビニール系バインダーを添加した後、湿式ボールミル中
で18時間混合し、乾燥および粉砕にて平均粒径を10
μm以下にし、これを造粒粉末とした。さらに、造粒粉
末を用いて3ton/cm2 で成形した後、大気中で焼
結を行った。焼結工程では、室温から1300℃までを
23時間にて昇温し、1300℃から30分間かけて1
450℃まで温度を上昇させた。そして、1500℃ま
で10分間の昇温時間にて温度を上昇させ、1500℃
にて15時間の焼結を行った後、雰囲気ガスを窒素ガス
に切り替え、その窒素ガス流量を炉内容積に対して、1
分間あたり1.8×10-2以上の置換率で流入させて1
5時間の焼結を行い、□175mm、厚さ6mmの大き
さの板状のITO焼結体を得た。得られたITO焼結体
の物性値と錫組成を実施例1と同様の方法にて測定した
後、スパッタリング用ターゲット材として使用しDCマ
グネトロンスパッタ法によって、実施例1と同様の方法
にてスパッタリング試験を行った。得られた結果を表
1、表2に示す。
Comparative Example 1 Indium oxide powder having an average particle size of 0.07 μm was mixed with tin oxide powder having an average particle size of 1 μm so that the tin composition was 7.8% by weight, and 3% by weight of vinyl acetate was added. After adding the system binder, mix in a wet ball mill for 18 hours, and dry and pulverize to obtain an average particle size of 10
It was made to be not more than μm, and this was used as a granulated powder. Further, the granulated powder was molded at 3 ton / cm 2 and then sintered in the atmosphere. In the sintering process, the temperature is raised from room temperature to 1300 ° C in 23 hours, and the temperature is raised from 1300 ° C to 30 minutes by 1
The temperature was raised to 450 ° C. Then, the temperature is raised to 1500 ° C. with a temperature rising time of 10 minutes, and 1500 ° C.
After performing the sintering for 15 hours, the atmosphere gas is switched to nitrogen gas, and the nitrogen gas flow rate is set to 1 with respect to the furnace internal volume.
Inflow at a replacement rate of 1.8 × 10 -2 or more per minute to 1
Sintering was performed for 5 hours to obtain a plate-shaped ITO sintered body having a size of □ 175 mm and a thickness of 6 mm. The physical properties and tin composition of the obtained ITO sintered body were measured by the same method as in Example 1, and then used as a sputtering target material by the DC magnetron sputtering method by the same method as in Example 1. The test was conducted. The obtained results are shown in Tables 1 and 2.

【0024】(比較例2)平均粒径0.07μmの酸化
インジウム粉末中に平均粒径1μmの酸化錫粉末を錫組
成が7.8重量%となるように配合し、3重量%の酢酸
ビニール系バインダーを添加した後、湿式ボールミル中
で18時間混合し、乾燥および粉砕にて平均粒径を10
μm以下にし、これを造粒粉末とした。さらに、造粒粉
末を用いて3ton/cm2 で成形した。成形体を炉内
の容器内に配置した後、炉内の酸素置換率を2.8×1
-2とした酸素雰囲気中で焼結を行った。焼結工程で
は、室温から1300℃までを23時間にて昇温し、1
300℃から30分間かけて1450℃まで温度を上昇
させた。そして、1600℃まで30分間の昇温時間に
て温度を上昇させ、1600℃にて15時間の焼結を行
った後、雰囲気ガスを窒素ガスに切り替え、その窒素ガ
ス流量を炉内容積に対して、1分間あたり1.8×10
-2以上の置換率で流入させて15時間の焼結を行い、□
175mm、厚さ6mmの大きさの板状のITO焼結体
を得た。得られたITO焼結体の物性値と錫組成を実施
例1と同様の方法にて測定した後、スパッタリング用タ
ーゲット材として使用しDCマグネトロンスパッタ法に
よって、実施例1と同様の方法にてスパッタリング試験
を行った。得られた結果を表1、表2に示す。
Comparative Example 2 Indium oxide powder having an average particle diameter of 0.07 μm was mixed with tin oxide powder having an average particle diameter of 1 μm so that the tin composition was 7.8% by weight, and 3% by weight of vinyl acetate was added. After adding the system binder, mix in a wet ball mill for 18 hours, and dry and pulverize to obtain an average particle size of 10
It was made to be not more than μm, and this was used as a granulated powder. Further, the granulated powder was used for molding at 3 ton / cm 2 . After placing the molded body in the container in the furnace, the oxygen substitution rate in the furnace was set to 2.8 × 1.
Sintering was performed in an oxygen atmosphere of 0 -2 . In the sintering process, the temperature is raised from room temperature to 1300 ° C in 23 hours,
The temperature was raised from 300 ° C to 1450 ° C over 30 minutes. Then, the temperature was raised to 1600 ° C. with a temperature rising time of 30 minutes, and after sintering was performed at 1600 ° C. for 15 hours, the atmosphere gas was switched to nitrogen gas, and the nitrogen gas flow rate was changed with respect to the furnace internal volume. 1.8 x 10 per minute
-Sintering for 15 hours by flowing in at a substitution rate of -2 or more,
A plate-shaped ITO sintered body having a size of 175 mm and a thickness of 6 mm was obtained. The physical properties and tin composition of the obtained ITO sintered body were measured by the same method as in Example 1, and then used as a sputtering target material by the DC magnetron sputtering method by the same method as in Example 1. The test was conducted. The obtained results are shown in Tables 1 and 2.

【0025】[0025]

【表1】 (表1−1) 積載粉末成分 積載方法 焼結温度 導入ガス 置換率 (℃) (一次焼結) 実施例1 − − 1500 酸素 2.8x10-2 実施例2-1 − − 1500 酸素 2.8x10-2 実施例2-2 − − 1500 酸素 2.8x10-2 実施例2-3 − − 1500 酸素 2.8x10-2 実施例3 SnO2 周囲 1500 酸素 1.8x10-2 実施例4-1 SnO2 周囲 1500 − − 実施例4-2 SnO2 周囲 1500 − − 比較例1 − − 1500 大気 − 比較例2 − − 1600 酸素 2.8x10-2 [Table 1] (Table 1-1) Loading powder component Loading method Sintering temperature Introduced gas Substitution rate (℃) (Primary sintering) Example 1--1500 oxygen 2.8x10 -2 Example 2-1--1500 oxygen 2.8x10 -2 Example 2-2 --- 1500 oxygen 2.8x10 -2 Example 2-3 --- 1500 oxygen 2.8x10 -2 Example 3 SnO 2 ambient 1500 oxygen 1.8x10 -2 Example 4-1 SnO 2 ambient 1500 − − Example 4-2 SnO 2 ambient 1500 − − Comparative example 1 − − 1500 Atmosphere − Comparative example 2 − − 1600 Oxygen 2.8 × 10 −2

【0026】 (表1−2) 焼結時間 焼結雰囲気 置換率 焼結時間 (hr) (二次焼結) (hr) 実施例1 15 アルゴン 1.8x10-2 10 実施例2-1 15 窒素 1.8x10-2 5 実施例2-2 15 窒素 1.8x10-2 10 実施例2-3 15 窒素 1.8x10-2 30 実施例4 15 窒素 1.8x10-2 10 実施例4-1 15 窒素 1.8x10-2 10 実施例4-2 15 窒素 1.8x10-2 30 比較例1 15 窒素 1.8x10-2 15 比較例2 15 窒素 1.8x10-2 15(Table 1-2) Sintering time Sintering atmosphere Substitution rate Sintering time (hr) (Secondary sintering) (hr) Example 1 15 Argon 1.8x10 -2 10 Example 2-1 15 Nitrogen 1.8 x10 -2 5 Example 2-2 15 Nitrogen 1.8x10 -2 10 Example 2-3 15 Nitrogen 1.8x10 -2 30 Example 4 15 Nitrogen 1.8x10 -2 10 Example 4-1 15 Nitrogen 1.8x10 -2 10 Example 4-2 15 Nitrogen 1.8x10 -2 30 Comparative Example 1 15 Nitrogen 1.8x10 -2 15 Comparative Example 2 15 Nitrogen 1.8x10 -2 15

【0027】[0027]

【表2】 線分析による 比抵抗値 焼結体密度 焼結後の 錫組成(重量%) (x10-4Ω・cm) (g/cm3) 反り具合 1時間後 30時間後 実施例1 7.8〜8.1 1.7 1.7 6.4 なし 実施例2-1 7.8〜8.2 1.7 1.9 6.3 なし 実施例2-2 7.7〜8.0 1.7 1.7 6.4 なし 実施例2-3 7.3〜8.1 1.8 1.8 6.6 なし 実施例3 7.6〜8.3 1.7 1.7 6.8 なし 実施例4-1 7.5〜8.2 1.7 1.8 6.3 なし 実施例4-2 7.1〜8.5 1.7 1.8 6.5 なし 比較例1 4.5〜6.9 3.2 4.7 5.6 なし 比較例2 5.8〜10.2 2.4 2.8 6.4 なし [Table 2] Specific resistance value by line analysis Sintered body density Tin composition after sintering (wt%) (x10 -4 Ω · cm) (g / cm 3 ) Warpage 1 hour 30 hours Example 17 8.8-8.1 1.7 1.7 6.4 None Example 2-1 7.8-8.2 1.7 1.9 6.3 None Example 2-2 7.7-8.0 1.7 1.7 6.4 None Example 2-3 7.3 to 8.1 1.8 1.8 6.6 None Example 3 7.6 to 8.3 1.7 1.7 6. 8 None Example 4-1 7.5-8.2 1.7 1.8 1.8 6.3 None Example 4-2 7.1-8.5 1.7 1.7 6.5 6.5 None Comparative Example 1 4 0.5-6.9 3.2 4.7 5.6 None Comparative Example 2 5.8-10.2 2.4 2.8 6.4 None

【0028】[0028]

【発明の効果】本発明は、以上述べたように構成されて
いるので、スパッタリングによる成膜において基板加熱
温度が200℃以下の低温であっても、比抵抗値が2.
0×10-4Ω・cm以下の低抵抗なITO膜を安定して
得ることが可能な高密度ITO焼結体を提供できる。
EFFECTS OF THE INVENTION Since the present invention is constructed as described above, the specific resistance value is 2. even when the substrate heating temperature is 200 ° C. or lower in the film formation by sputtering.
It is possible to provide a high density ITO sintered body capable of stably obtaining an ITO film having a low resistance of 0 × 10 −4 Ω · cm or less.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酸化インジウムおよび酸化錫からなる粉
末を成形した成形体を焼結するITO焼結体の製造方法
において、酸素雰囲気において、1450〜1550℃
の温度で10〜30時間の焼結を行った後、前記酸素雰
囲気を非還元性雰囲気に切り替えて焼結を行うことを特
徴とするITO焼結体の製造方法。
1. A method for producing an ITO sintered body, which comprises sintering a molded body obtained by molding a powder of indium oxide and tin oxide, at 1450 to 1550 ° C. in an oxygen atmosphere.
After the sintering is performed at the temperature of 10 to 30 hours, the oxygen atmosphere is switched to a non-reducing atmosphere and the sintering is performed.
【請求項2】 非還元性雰囲気を不活性ガスまたは真空
で形成することを特徴とする請求項1に記載のITO焼
結体の製造方法。
2. The method for producing an ITO sintered body according to claim 1, wherein the non-reducing atmosphere is formed by an inert gas or vacuum.
【請求項3】 不活性ガスの流量を炉内容積に対して、
1分間あたり1.8×10-2以上の不活性ガス置換率で
流入させて焼結を行うことを特徴とする請求項2に記載
のITO焼結体の製造方法。
3. The flow rate of the inert gas with respect to the internal volume of the furnace,
The method for producing an ITO sintered body according to claim 2, wherein sintering is carried out by inflowing at an inert gas substitution rate of 1.8 × 10 -2 or more per minute.
【請求項4】 不活性ガス流量を炉内容積に対して、1
分間あたり1.8×10-2以上の不活性ガス置換率で流
入させて1450〜1550℃の温度で5〜30時間の
焼結を行うことを特徴とする請求項2に記載のITO焼
結体の製造方法。
4. The inert gas flow rate is set to 1 with respect to the internal volume of the furnace.
The ITO sintering according to claim 2, wherein the sintering is carried out at a temperature of 1450 to 1550 ° C. for 5 to 30 hours by inflowing at an inert gas substitution rate of 1.8 × 10 −2 or more per minute. Body manufacturing method.
【請求項5】 酸素雰囲気が、雰囲気調整用の酸化錫成
分を含む粉末および/またはその成形物を、成形体重量
に対して酸化錫成分で5〜40重量%、成形体の裏面に
敷くか、成形体全面もしくは成形体周囲に載置し、酸化
錫成分の蒸発により得られた蒸気ガスで形成されること
を特徴とする請求項1〜4のいずれかに記載のITO焼
結体の製造方法。
5. An oxygen atmosphere, wherein the powder containing a tin oxide component for atmosphere adjustment and / or a molded product thereof is spread on the back surface of the molded product in an amount of 5 to 40% by weight of the tin oxide component based on the weight of the molded product. The manufacturing of the ITO sintered body according to any one of claims 1 to 4, wherein the ITO sintered body is placed on the entire surface of the molded body or around the molded body, and is formed by vapor gas obtained by evaporation of a tin oxide component. Method.
【請求項6】 酸素雰囲気が、焼結炉の炉内容積に対し
て1分間あたり1.8×10-2以上の酸素置換率で酸素
ガスを流入させて形成されることを特徴とする請求項1
〜4のいずれかに記載のITO焼結体の製造方法。
6. The oxygen atmosphere is formed by introducing oxygen gas at an oxygen substitution rate of 1.8 × 10 −2 or more per minute with respect to the furnace internal volume of the sintering furnace. Item 1
5. The method for manufacturing an ITO sintered body according to any one of to 4.
JP24672794A 1994-09-16 1994-09-16 Production of ito sintered compact Pending JPH0885866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24672794A JPH0885866A (en) 1994-09-16 1994-09-16 Production of ito sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24672794A JPH0885866A (en) 1994-09-16 1994-09-16 Production of ito sintered compact

Publications (1)

Publication Number Publication Date
JPH0885866A true JPH0885866A (en) 1996-04-02

Family

ID=17152754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24672794A Pending JPH0885866A (en) 1994-09-16 1994-09-16 Production of ito sintered compact

Country Status (1)

Country Link
JP (1) JPH0885866A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299873C (en) * 2002-01-11 2007-02-14 电子科学工业公司 Method for laser machining a workpiece with laser spot enlargement
JP2007119289A (en) * 2005-10-27 2007-05-17 Idemitsu Kosan Co Ltd Oxide particle, sintered compact and their producing methods
WO2011089984A1 (en) * 2010-01-25 2011-07-28 住友金属鉱山株式会社 Oxide deposition material, vapor deposited thin film, and solar cell
JP2016188164A (en) * 2015-03-30 2016-11-04 東ソー株式会社 Oxide sintered compact, and production method therefor
CN114853467A (en) * 2022-05-24 2022-08-05 先导薄膜材料(广东)有限公司 ITO (indium tin oxide) planar target material and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299873C (en) * 2002-01-11 2007-02-14 电子科学工业公司 Method for laser machining a workpiece with laser spot enlargement
JP2007119289A (en) * 2005-10-27 2007-05-17 Idemitsu Kosan Co Ltd Oxide particle, sintered compact and their producing methods
WO2011089984A1 (en) * 2010-01-25 2011-07-28 住友金属鉱山株式会社 Oxide deposition material, vapor deposited thin film, and solar cell
JP2011149082A (en) * 2010-01-25 2011-08-04 Sumitomo Metal Mining Co Ltd Oxide vapor deposition material and vapor deposited thin film, and solar battery
US8941002B2 (en) 2010-01-25 2015-01-27 Sumitomo Metal Mining Co., Ltd. Oxide evaporation material, vapor-deposited thin film, and solar cell
JP2016188164A (en) * 2015-03-30 2016-11-04 東ソー株式会社 Oxide sintered compact, and production method therefor
CN114853467A (en) * 2022-05-24 2022-08-05 先导薄膜材料(广东)有限公司 ITO (indium tin oxide) planar target material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5349587B2 (en) Indium oxide sintered body, indium oxide transparent conductive film, and method for producing the transparent conductive film
JP2007238375A (en) ZnO-Al2O3-BASED SINTERED COMPACT, SPUTTERING TARGET AND METHOD OF FORMING TRANSPARENT CONDUCTIVE FILM
JPH0885866A (en) Production of ito sintered compact
US5480531A (en) Target for cathode sputtering and method of its production
JP3314898B2 (en) Manufacturing method of ITO sintered body
JPH07243036A (en) Ito sputtering target
JP4026194B2 (en) ZnO-Ga2O3-based sintered body for sputtering target and method for producing the same
JPH03126655A (en) Indium oxide-tin oxide sintered body and production therefor
JP2602390B2 (en) High density ITO sintered body and method of manufacturing the same
JPH0754133A (en) Ito target for sputtering
JP3269272B2 (en) ITO sintered body and method of manufacturing the same
JP2904358B2 (en) Manufacturing method of ITO sintered body
JP4120351B2 (en) High concentration tin oxide ITO target and manufacturing method thereof
JP2523251B2 (en) Method for manufacturing ITO sintered body
JP2595864B2 (en) Manufacturing method of ITO sintered body
JP2979648B2 (en) ITO sintered body
JP3781398B2 (en) I. T.A. O sintered body, production method thereof, and I.I. T.A. O thin film
JPH05222526A (en) Sputtering target for transparent conductive film consisting of ito and production thereof
JPH06247765A (en) Ito sintered compact, ito target and ito film
JP4437934B2 (en) Fluorine-containing indium-tin oxide sintered body and method for producing the same
JP3134405B2 (en) Method for producing indium oxide / tin oxide sintered body
JPH05339721A (en) Production of indium oxide-tin oxide sputtering target
JPH04104936A (en) Production of ito sinter
JP6133531B1 (en) Oxide sintered body
JPH0779005B2 (en) ITO sintered body and manufacturing method thereof