JPH0883736A - Active carbon electrode of electronic double-layer capacitor and manufacture thereof - Google Patents

Active carbon electrode of electronic double-layer capacitor and manufacture thereof

Info

Publication number
JPH0883736A
JPH0883736A JP6216446A JP21644694A JPH0883736A JP H0883736 A JPH0883736 A JP H0883736A JP 6216446 A JP6216446 A JP 6216446A JP 21644694 A JP21644694 A JP 21644694A JP H0883736 A JPH0883736 A JP H0883736A
Authority
JP
Japan
Prior art keywords
activated carbon
activation
activation treatment
carbon electrode
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6216446A
Other languages
Japanese (ja)
Inventor
Takushi Osaki
琢志 大崎
Akira Wakaizumi
章 若泉
Mitsuo Kogure
光男 木暮
Akihiro Nakamura
章寛 中村
Shinichi Marumo
信一 丸茂
Toshiya Miyagawa
俊哉 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP6216446A priority Critical patent/JPH0883736A/en
Priority to US08/523,622 priority patent/US5603867A/en
Publication of JPH0883736A publication Critical patent/JPH0883736A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE: To stably obtain an active carbon electrode which is high in electrostatic capacitance and quality by a method wherein a carbide is subjected to a primary activation treatment to serve as a carbon material, binder is added to the carbon material, the binder-loaded carbon material is molded, and the molded body is subjected to a carbonization treatment and then to a secondary activation treatment. CONSTITUTION: Novolak phenolic resin is cured and then ground into particles prescribed in size, the resin particles are carbonized by a thermal treatment carried out in a nitrogen atmosphere. In succession, the carbonized particles are thermally treated into granular activated carbon material in a carbon dioxide gas atmosphere through a primary activation treatment. The granular activated carbon material is ground into powder, and phenolic resin, ethanol, and creosote are mixed as binder into the activated carbon powder, which is kneaded well and molded into a plate-like piece. The molded plate-like piece is subjected to a carbonization treatment in a nitrogen atmosphere, and thermally treated into a plate-like activated carbon in a carbon dioxide gas atmosphere through a secondary activation treatment. By this setup, an active carbon electrode high in electrostatic capacitance and quality can be stably obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気二重層コンデンサ
ーとして好適に用いられる活性炭電極の製造方法とそれ
により得られる活性炭電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an activated carbon electrode suitably used as an electric double layer capacitor and an activated carbon electrode obtained thereby.

【0002】[0002]

【従来の技術】電気二重層コンデンサーは、パソコンな
どの電子機器のバックアップ用電源として実用されてお
り、また自動車の補助バッテリーなど瞬間大電流供給用
補助電源用としても開発が行われている。この電気二重
層コンデンサーの電極は分極性電極と称され、大きな静
電容量を持つことが要求されている。そのために分極性
電極の材料としては比表面積の大きい導電性の炭素材料
が使用され、特に賦活済みの活性炭が好ましい。賦活済
みの活性炭基材としては、粉末状と繊維状のものとがあ
る。
2. Description of the Related Art Electric double layer capacitors have been put to practical use as backup power sources for electronic devices such as personal computers, and have also been developed as auxiliary power sources for supplying instantaneous large current such as auxiliary batteries for automobiles. The electrode of this electric double layer capacitor is called a polarizable electrode and is required to have a large capacitance. Therefore, a conductive carbon material having a large specific surface area is used as the material of the polarizable electrode, and activated carbon which is already activated is particularly preferable. The activated carbon base material that has been activated includes powdery and fibrous materials.

【0003】活性炭の製造には、コークス、石炭、ヤシ
ガラ炭などの炭素質のものから、フェノール樹脂等の熱
硬化性樹脂など、様々な熱分解性炭素化合物が原料とし
て用いられる。図6aはフェノール樹脂を原料とした活
性炭製造工程の概要である。この図に示す如く、まずフ
ェノール樹脂を硬化した後、乾留して炭素以外の成分を
揮発させる炭化工程を経て賦活し、必要に応じて粉砕・
整粒して粉末ないし粒状の活性炭基材を得る。なお、炭
素化合物原料にアクリル繊維などを用いて、繊維形状を
保ったまま、同様にして、炭化処理などの工程を経て繊
維状活性炭基材を得る方法も知られている。
In the production of activated carbon, various pyrolyzable carbon compounds such as carbonaceous materials such as coke, coal and coconut husk charcoal to thermosetting resins such as phenol resin are used as raw materials. FIG. 6a is an outline of the activated carbon manufacturing process using a phenol resin as a raw material. As shown in this figure, first, the phenol resin is hardened and then activated by a carbonization process in which components other than carbon are volatilized by dry distillation, and activated if necessary.
The powder is sized to obtain a powdery or granular activated carbon base material. There is also known a method in which acrylic fiber or the like is used as a carbon compound raw material and a fibrous activated carbon base material is similarly obtained through a process such as carbonization while maintaining the fiber shape.

【0004】従来、電気二重層コンデンサーの分極性電
極には、前記粉末ないし粒状の活性炭基材を硫酸溶液と
混合してペースト状として用いられているが、活性炭粒
子間の接触抵抗が大きく、大きな電流を流せなかった。
また、繊維状活性炭布を使用する場合も同様に、繊維間
の接触抵抗と単位体積当りの活性炭密度が小さく、大電
流を得ることができなかった。
Conventionally, the powdery or granular activated carbon base material is mixed with a sulfuric acid solution and used as a paste for a polarizable electrode of an electric double layer capacitor, but the contact resistance between activated carbon particles is large and large. I couldn't pass the current.
Similarly, when a fibrous activated carbon cloth was used, the contact resistance between fibers and the activated carbon density per unit volume were small, and a large current could not be obtained.

【0005】そこで、図6bに示すように、活性炭基材
に、更にバインダーを加えて成形し、加えたバインダー
を同様に炭化して焼結し、板状の成形体とする方法が考
えられる。バインダーには、炭化後、基材と同じ炭素質
となる熱分解性炭素化合物が選択されるが、この場合、
原料と同じフェノール樹脂が好ましい。基材に繊維状活
性炭を用いた場合も、バインダーで繊維間の空間を埋め
込み、同様に炭化して焼結すれば、密度の大きい板状と
なり、分極性電極としての使用が期待できる。
Therefore, as shown in FIG. 6b, a method is conceivable in which a binder is further added to the activated carbon base material to form a plate, and the added binder is similarly carbonized and sintered to form a plate-like formed body. For the binder, a thermally decomposable carbon compound that becomes carbonaceous after carbonization is selected, but in this case,
The same phenolic resin as the raw material is preferable. Even when fibrous activated carbon is used as the base material, if a space between the fibers is filled with a binder, and carbonized and similarly sintered, it becomes a plate-like material having a high density and can be expected to be used as a polarizable electrode.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記の
ような従来の活性炭基材にバインダーを加えて炭化・焼
結して得た電気二重層コンデンサー用の活性炭分極性電
極は、その重量当りの静電容量が、しばしば基材よりも
低くなるという不都合があった。その原因については、
上記従来の方法においては、加えたバインダーが炭化し
て生成した炭素質成分が賦活されていないのみならず、
この炭素質成分によって基材の活性が何らかの理由で阻
害されるのではないかと推察される。そこで、図6cに
示すように、活性炭基材を得る前には賦活せず、未賦活
の活性炭粉末にバインダーを添加し成形した後に最後に
賦活処理を施すことを試みたが、十分な機械的強度のも
のが得られず、賦活処理時にクラックが発生し、成形が
困難であった。さらに、静電容量も期待する程向上しな
かった。以上のように前記従来の方法によって作製され
た活性炭電極は、機械的強度が弱いために、大電流放電
に適した大きな板状のものが得られていないのが実情で
ある。
However, an activated carbon polarizable electrode for an electric double layer capacitor obtained by adding a binder to the conventional activated carbon base material and carbonizing / sintering it as described above has a static per unit weight. There is the disadvantage that the capacitance is often lower than that of the substrate. For the cause,
In the above-mentioned conventional method, not only the carbonaceous component generated by carbonization of the added binder is not activated,
It is speculated that this carbonaceous component may inhibit the activity of the base material for some reason. Therefore, as shown in FIG. 6c, the activated carbon base material was not activated before it was obtained, and an attempt was made to add the binder to the unactivated activated carbon powder, followed by molding, and finally performing activation treatment. It was not possible to obtain a strong product, and cracks were generated during the activation treatment, and molding was difficult. Furthermore, the electrostatic capacity did not improve as expected. As described above, the activated carbon electrode manufactured by the above-mentioned conventional method has a weak mechanical strength, and thus a large plate-like electrode suitable for large-current discharge is not obtained.

【0007】本発明は前記事情に鑑みてなされたもの
で、大きな板状に成形可能な機械的強度を有し、かつ大
電流放電が可能な電気二重層コンデンサー用として好適
な活性炭電極を提供することを目的としている。
The present invention has been made in view of the above circumstances, and provides an activated carbon electrode suitable for an electric double layer capacitor having mechanical strength capable of being formed into a large plate shape and capable of discharging a large current. Is intended.

【0008】[0008]

【課題を解決するための手段】本発明の電気二重層コン
デンサー用活性炭電極の製造方法は、炭素化合物を炭化
処理して得られた炭化物に、1次賦活処理を施して炭素
基材とし、該炭素基材にバインダーを加えて成形体と
し、該成形体を炭化処理した後に、2次賦活処理を施す
ことを特徴としている。
The method for producing an activated carbon electrode for an electric double layer capacitor according to the present invention comprises a carbon base material obtained by subjecting a carbide obtained by carbonizing a carbon compound to a primary activation treatment. It is characterized in that a binder is added to a carbon substrate to form a molded body, and the molded body is carbonized and then subjected to a secondary activation treatment.

【0009】前記炭素化合物には、ヤシガラ、木質、石
炭、ピッチ、天然高分子、合成高分子などいずれも使用
できるが、フェノール樹脂が好適である。また、前記バ
インダーとしては、フェノール樹脂粉末をアルコール類
や、アセトン、シクロヘキサノンなどのケトン類などの
有機溶剤とクレオソート油、コールタール、アントラセ
ン油、灯油、流動パラフィン、エチレングリコール、グ
リセリンなどの親油性液体に溶解したものが使用でき
る。
As the carbon compound, coconut husk, wood, coal, pitch, natural polymer, synthetic polymer and the like can be used, but a phenol resin is preferable. As the binder, phenolic resin powder is used as an alcohol or an organic solvent such as ketones such as acetone or cyclohexanone and creosote oil, coal tar, anthracene oil, kerosene, liquid paraffin, ethylene glycol, lipophilicity such as glycerin. Those dissolved in a liquid can be used.

【0010】ここで、賦活処理とは、炭酸ガスまたは水
蒸気雰囲気中で材料を熱処理することであり、本発明に
あっては、2次賦活処理において次式(i) 賦活収率=(賦活処理後の重量/賦活処理前の重量)×100……(i) により得られる2次賦活処理の賦活収率が75%以上と
なるように熱処理の温度と時間を選択することを特徴と
している。さらに次式(ii) 総合賦活収率=1次賦活処理の賦活収率×2次賦活処理の賦活収率÷100… …(ii) により得られる総合賦活収率が70〜95%であること
を特徴としている。
Here, the activation treatment is to heat-treat the material in a carbon dioxide gas or steam atmosphere, and in the present invention, in the secondary activation treatment, the following formula (i) activation yield = (activation treatment (Weight after treatment / weight before activation treatment) × 100 ... (i) The temperature and time of the heat treatment are selected so that the activation yield of the secondary activation treatment obtained is 75% or more. Furthermore, the total activation yield obtained by the following formula (ii): total activation yield = activation yield of primary activation treatment x activation yield of secondary activation treatment ÷ 100 ... (ii) is 70 to 95%. Is characterized by.

【0011】また、本発明の電気二重層コンデンサー用
の活性炭電極は、前記方法によって製造した該活性炭電
極が、600〜1500m2/gの比表面積を有するこ
とを特徴としている。
The activated carbon electrode for an electric double layer capacitor of the present invention is characterized in that the activated carbon electrode produced by the above method has a specific surface area of 600 to 1500 m 2 / g.

【0012】[0012]

【作用】賦活済みの活性炭基材をフェノール樹脂などの
バインダーを用いて板状の電極形状に成形した後、バイ
ンダー等を炭化する従来の方法(図6b)による活性炭
成形体は、その活性が基材のそれより低下することがあ
る。一方、図6cに示すように、基材の活性炭の製造工
程では賦活せず、焼結後に1回で賦活すると、板状成形
体への成形性が悪い。
The activated carbon molded body according to the conventional method (FIG. 6b) in which the activated activated carbon base material is molded into a plate-like electrode shape using a binder such as phenol resin and then the binder or the like is carbonized is based on the activity. It may be lower than that of wood. On the other hand, as shown in FIG. 6c, if it is not activated in the manufacturing process of the activated carbon of the base material and is activated once after sintering, the formability into a plate-shaped compact is poor.

【0013】そこで、1回の賦活のみでは電気二重層コ
ンデンサー用の活性炭電極は得られず、図1に示すよう
に、予め賦活(1次賦活)した活性炭基材をバインダー
を用いて板状の電極形状に成形した後、バインダー等を
炭化し、その後に再度賦活(2次賦活)することが、電
気二重層コンデンサー用の活性炭電極を得るために必須
であることを解明した。さらに、賦活の条件について試
行錯誤を繰り返し、種々考究した結果、賦活収率が、成
形性のみならず、静電容量に極めて重要な要件であるこ
とを見出した。
Therefore, an activated carbon electrode for an electric double layer capacitor cannot be obtained by only activating once, and as shown in FIG. 1, a previously activated (primarily activated) activated carbon base material is formed into a plate shape by using a binder. It has been clarified that it is essential to carbonize the binder and the like after forming the electrode shape, and then activate again (secondary activation) in order to obtain an activated carbon electrode for an electric double layer capacitor. Furthermore, as a result of repeated trial and error on activation conditions and various studies, it was found that the activation yield is an extremely important requirement not only for moldability but also for electrostatic capacity.

【0014】まず、2次賦活処理において、上記式
(i)により示される賦活処理収率が成形性に及ぼす影
響が大きく、その値が75%以上でなければ良好な電極
形状に成形することができない。また、1次および2次
の賦活収率の積である総合賦活収率が70〜95%の範
囲となるように熱処理の温度と時間を選択することによ
り、静電容量が高く、かつ安定な静電容量の値が得られ
る。さらに、比表面積が600〜1500m2/gの範
囲の時に、安定で高い静電容量の活性炭電極が得られ
る。
First, in the secondary activation treatment, the activation treatment yield represented by the above formula (i) has a great influence on the formability, and unless the value is 75% or more, the electrode can be formed into a good electrode shape. Can not. Further, by selecting the temperature and time of the heat treatment so that the total activation yield, which is the product of the primary and secondary activation yields, falls within the range of 70 to 95%, the electrostatic capacity is high and stable. The value of capacitance is obtained. Furthermore, when the specific surface area is in the range of 600 to 1500 m 2 / g, an activated carbon electrode having a stable and high capacitance can be obtained.

【0015】したがって、上記活性炭電極の製造工程に
おいて、上記賦活収率および比表面積を管理することに
よって、成形性に優れ、静電容量の高い高品質な活性炭
電極を安定に得ることができる。
Therefore, by controlling the activation yield and the specific surface area in the process of manufacturing the activated carbon electrode, it is possible to stably obtain a high quality activated carbon electrode having excellent moldability and high electrostatic capacity.

【0016】[0016]

【実施例】本発明を実施例によって更に詳細に説明す
る。図1に示す製造工程に従って、フェノール樹脂を原
料として活性炭電極の製造を実施した。下記実施例1,
2において、実施例1は、炭酸ガス雰囲気中での賦活処
理の効果を、また、実施例2は、水蒸気雰囲気中での賦
活処理の効果を調べたものである。実施例1での実験
(1)〜(11)は、1次および2次賦活処理の温度と
時間を変化させてその影響を調べたものである。また実
験(12)〜(14)では、2次賦活処理を行わず、ま
た、実験(15)では、1次賦活処理を行わなかった結
果を比較したものである。
EXAMPLES The present invention will be described in more detail by way of examples. According to the manufacturing process shown in FIG. 1, an active carbon electrode was manufactured using phenol resin as a raw material. Example 1 below
In Example 2, in Example 1, the effect of activation treatment in a carbon dioxide gas atmosphere was investigated, and in Example 2, the effect of activation treatment in a steam atmosphere was examined. Experiments (1) to (11) in Example 1 were conducted by changing the temperature and time of the primary and secondary activation treatments and examining the influence thereof. Further, in Experiments (12) to (14), the results of not performing the secondary activation treatment, and in Experiment (15), the results of not performing the primary activation treatment are compared.

【0017】実施例1:炭酸ガス雰囲気中での賦活 実験(1) ノボラック型フェノール樹脂を160℃で硬化した後、
約2mm角に破砕した。これを、窒素ガス中、900℃
で30分熱処理して炭化した。引き続き、炭酸ガス中、
900℃で1時間熱処理して1次賦活し、比表面積65
0m2/gの粒状活性炭基材を得た。1次賦活収率(=
賦活後の重量/賦活前の重量)は92%であった。
Example 1: Activation experiment in carbon dioxide atmosphere (1) After curing a novolac type phenol resin at 160 ° C.,
It was crushed to about 2 mm square. 900 ℃ in nitrogen gas
And heat treated for 30 minutes to carbonize. Next, in carbon dioxide,
Heat treatment at 900 ℃ for 1 hour to activate the primary surface area 65
A granular activated carbon base material of 0 m 2 / g was obtained. Primary activation yield (=
The weight after activation / weight before activation) was 92%.

【0018】この粒状活性炭基材を粉砕して、平均粒径
8μmの粉末として、この粉末100重量部に対し、バ
インダーとしてフェノール樹脂15重量部、エタノール
8重量部、およびクレオソート20重量部を加えて混練
し、圧力500kg/cm2でプレスして、50×50
×1(mm)の板状の成形体とした。
This granular activated carbon base material was pulverized to obtain a powder having an average particle size of 8 μm, and 15 parts by weight of a phenol resin as a binder, 8 parts by weight of ethanol, and 20 parts by weight of creosote were added to 100 parts by weight of the powder. And knead, press at a pressure of 500 kg / cm 2 , 50 × 50
It was a plate-shaped molded product of × 1 (mm).

【0019】得られた成形体を、窒素ガス中で、昇温速
度100℃/hで900℃に昇温して30分保持して炭
化処理し、引き続き炭酸ガス中、800℃で10時間熱
処理して2次賦活した。その時の賦活収率(=賦活後の
重量/賦活前の重量)は93%であった。従って、総合
賦活収率は0.92×0.93×100=86%となる。
得られた成形体のBET比表面積を測定した結果、74
0m2/gであった。
The molded body thus obtained was heated in a nitrogen gas at a heating rate of 100 ° C./h to 900 ° C. and held for 30 minutes to carry out a carbonization treatment, followed by heat treatment in a carbon dioxide gas at 800 ° C. for 10 hours. And then activated secondarily. The activation yield (= weight after activation / weight before activation) at that time was 93%. Therefore, the total activation yield is 0.92 × 0.93 × 100 = 86%.
The BET specific surface area of the obtained molded product was measured and found to be 74
It was 0 m 2 / g.

【0020】2次賦活処理によって、成形体に反りやク
ラックの発生等は無かったので、これから、14mmφ
(厚さ1mm)の円板を2枚切り出し、真空中で30w
t%硫酸溶液を含浸させて図2に示す測定用セルを作製
し、静電容量を求めた。図2中、符号1は活性炭電極、
2はガスケット、3は集電極、4はセパレータである。
静電容量Cは一般に、充電後、一定電流Iで放電し、電
圧V1からV2まで低下する時間Δtを測定し、下式(ii
i)によって求めることができる。 C=I×Δt/(V2−V1)……(iii) ここでは、900mVで24時間充電後4mA/cm2
で放電し、引き続き、2時間充電後400mA/cm2
で放電した。そして、いずれもV1=540mV、V2=
360mVとして、それぞれ4mA/cm2の時61F
/cm3、400mA/cm2の時26F/cm3を得
た。
Since the secondary activation treatment did not cause warping or cracks in the molded body, it is now expected that 14 mmφ
Cut out 2 (thickness 1mm) discs, 30w in vacuum
A t% sulfuric acid solution was impregnated into the measurement cell shown in FIG. 2 to determine the capacitance. In FIG. 2, reference numeral 1 is an activated carbon electrode,
2 is a gasket, 3 is a collecting electrode, and 4 is a separator.
Capacitance C is generally calculated by the following formula (ii) after charging, discharging at constant current I, and measuring time Δt during which voltage V1 drops to V2.
i) can be obtained. C = I × Δt / (V 2 −V 1) ... (iii) Here, after charging at 900 mV for 24 hours, 4 mA / cm 2
Discharged at 400 mA / cm 2 after charging for 2 hours
Discharged. And in each case, V1 = 540 mV, V2 =
61 F when 360 mV and 4 mA / cm 2 each
/ Cm 3 and 400 mA / cm 2 , 26 F / cm 3 was obtained.

【0021】実験(2)〜(11) 実験(1)における1次および2次賦活処理の温度と時
間を変化させて、それらの成形性および静電容量への影
響を調べた。実験(1)の結果も含めて表1にまとめて
掲げた。
Experiments (2) to (11) The temperature and time of the primary and secondary activation treatments in Experiment (1) were changed to examine their influence on the moldability and the electrostatic capacity. The results of the experiment (1) are also summarized in Table 1.

【0022】実験(12) 実験(1)で得られた成形体を、実験(1)と同じ条件
で炭化処理し、2次賦活処理をせず、そのまま14mm
φ(厚さ1mm)の円板を2枚切り出して、実験(1)
と同様に静電容量を測定した。その結果を表1に掲げ
た。
Experiment (12) The molded body obtained in the experiment (1) was carbonized under the same conditions as in the experiment (1), and was subjected to the secondary activation treatment without being subjected to the secondary activation treatment.
Experiment by cutting two φ (1mm thick) discs
The capacitance was measured in the same manner as in. The results are listed in Table 1.

【0023】実験(13) 1次賦活の時間を2時間とした以外は、実験(12)と
同様にして静電容量を測定した。その結果を表1に掲げ
た。
Experiment (13) The capacitance was measured in the same manner as in Experiment (12) except that the time for primary activation was set to 2 hours. The results are listed in Table 1.

【0024】実験(14) 1次賦活の時間を3時間とした以外は、実験(12)と
同様にして静電容量を測定した。その結果を表1に掲げ
た。
Experiment (14) The electrostatic capacity was measured in the same manner as in Experiment (12) except that the primary activation time was 3 hours. The results are listed in Table 1.

【0025】実験(15) 1次賦活を行わなかった以外は実験(1)と同様にし
て、活性炭電極を得て、静電容量を測定した。その結果
を表1に掲げた。
Experiment (15) An activated carbon electrode was obtained and the capacitance was measured in the same manner as in Experiment (1) except that the primary activation was not performed. The results are listed in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】上記表1において、実験(1)〜(11)
は、本発明方法において必須の要件である1次および2
次賦活を実施したものであり、それらの条件を変化させ
ている。まず、2次賦活について、その賦活収率が低下
すると板状への成形性が悪くなる傾向が観察された。実
験(4)と(5)では、2次賦活収率が、それぞれ76
%、75%であり、実用上は差し支えない程度のごく僅
かな反りが認められた。実験(6)では、2次賦活収率
が73%となり、反りと割れが発生して板状の成形体が
得られなかった。以上のことから、2次賦活収率が、7
5%未満では板状の電極形状に成形できるが、75%以
上では十分な成形性が得られないことが判る。さらに、
実験(15)は、1次賦活を行っていないもので、割れ
が発生して脆く板状に成形できなかった。
In Table 1 above, experiments (1) to (11)
Are the essential requirements in the method of the present invention
The following activation was carried out, and those conditions were changed. First, regarding the secondary activation, it was observed that when the activation yield was lowered, the formability into a plate-like shape was deteriorated. In experiments (4) and (5), the secondary activation yield was 76, respectively.
%, 75%, and an extremely slight warp that was not problematic in practical use was recognized. In the experiment (6), the secondary activation yield was 73%, warpage and cracking occurred, and a plate-shaped compact could not be obtained. From the above, the secondary activation yield was 7
It can be seen that if it is less than 5%, it can be molded into a plate-like electrode shape, but if it is 75% or more, sufficient moldability cannot be obtained. further,
In the experiment (15), the primary activation was not performed, and cracks were generated and brittle and could not be formed into a plate shape.

【0028】板状の電極形状に成形されたものの静電容
量を、総合収率の関数として図3に示す。この図におい
て、実線で結んだ点は、1次および2次賦活を行ったも
のであり、電流4mA/cm2と400mA/cm2とも
に、総合収率が、70〜95%の範囲で高い静電容量を
示しているが、70%未満および95%以上では静電容
量が低下している。一方、破線で結んだ点は、2次賦活
を行っていないもの(実験(12)〜(14))であ
り、静電容量は低い。
The capacitance of the plate shaped electrode is shown in FIG. 3 as a function of overall yield. In this figure, the points connected by a solid line are those obtained by primary and secondary activation, and the total yield is high in the range of 70 to 95% for both the current of 4 mA / cm 2 and 400 mA / cm 2. Although the electric capacity is shown, the electrostatic capacity is reduced at less than 70% and 95% or more. On the other hand, the points connected by the broken lines are those for which secondary activation is not performed (Experiments (12) to (14)), and the capacitance is low.

【0029】実施例2:水蒸気雰囲気中での賦活 実施例2では、図1に示す製造工程に従って、1次およ
び2次賦活処理を水蒸気雰囲気中にて行った。実験(1
6)〜(22)は1次および2次賦活処理の温度と時間
を変化させてその影響を調べたものである。一方、実験
(23)〜(24)では2次賦活処理を行わなかった結
果を比較したものである。
Example 2 Activation in Steam Atmosphere In Example 2, the primary and secondary activation treatments were performed in a steam atmosphere according to the manufacturing process shown in FIG. Experiment (1
6) to (22) are the results of investigating the effects of changing the temperature and time of the primary and secondary activation treatments. On the other hand, in Experiments (23) to (24), the results without the secondary activation treatment are compared.

【0030】実験(16) ノボラック型フェノール樹脂を、実験(1)と同様にし
て硬化、炭化した。引き続き、水蒸気雰囲気中、800
℃で3.5時間熱処理して1次賦活し、比表面積620
2/gの粒状活性炭基材を得た。1次賦活収率は94
%であった。
Experiment (16) The novolak type phenol resin was cured and carbonized in the same manner as in Experiment (1). Continuously, in a steam atmosphere, 800
Heat treatment at ℃ for 3.5 hours for primary activation, specific surface area 620
to obtain a granular activated carbon substrate m 2 / g. Primary activation yield is 94
%Met.

【0031】上記粒状活性炭基材を、平均粒径8μmに
粉砕して、実験1と同様にして、バインダーを加えて成
形し、良好な成形体を得た後、炭化を行った。引き続き
水蒸気雰囲気中、800℃で9時間熱処理して賦活し
た。賦活収率は85%であった。従って、総合賦活収率
は0.94×0.85×100=80%となる。BET表
面積を測定した結果、970m2/gであった。また、
実験(1)と同様にして静電容量を測定した結果、4m
A/cm2の時58F/cm3、400mA/cm2の時
22F/cm3であった。
The above granular activated carbon base material was pulverized to an average particle size of 8 μm, and a binder was added in the same manner as in Experiment 1 to form a good molded product, which was then carbonized. Subsequently, heat treatment was performed at 800 ° C. for 9 hours in a steam atmosphere for activation. The activation yield was 85%. Therefore, the total activation yield is 0.94 × 0.85 × 100 = 80%. The BET surface area was measured and found to be 970 m 2 / g. Also,
As a result of measuring the electrostatic capacity in the same manner as in the experiment (1), 4 m
When A / cm 2 58F / cm 3 , it was 22F / cm 3 when 400 mA / cm 2.

【0032】実験(17)〜(22) 実験(16)における、1次および2次賦活処理の温度
と時間を変化させて、それらの成形性および静電容量へ
の影響を調べた。その結果は、実験(16)の結果と合
わせて表2に掲げた。
Experiments (17) to (22) In Experiment (16), the temperature and time of the primary and secondary activation treatments were changed to examine their influence on the moldability and the electrostatic capacity. The results are shown in Table 2 together with the result of the experiment (16).

【0033】実験(23)〜(24) 水蒸気雰囲気中での1次賦活における条件を変え、2次
賦活は行わず、その他は実験(16)と同様にした。板
状成形性は良好であったので、静電容量を測定し、その
結果を表2に掲げた。
Experiments (23) to (24) The conditions for the primary activation in the steam atmosphere were changed, the secondary activation was not performed, and the other conditions were the same as in the experiment (16). Since the plate formability was good, the capacitance was measured and the results are shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】上記表2において、実験(16)〜(2
2)は、本発明方法において必須の要件である1次およ
び2次賦活を実施したものであり、それらの条件を変化
させている。まず、2次賦活について、その賦活収率が
低下すると板状への成形性が悪くなる傾向が観察され
た。2次賦活収率が74%、72%と75%に達してい
ない実験(21)と(22)では反りと割れが発生して
板状の成形体が得られず、75%未満では十分な成形性
が得られないことが判る。
In Table 2 above, experiments (16) to (2
In 2), primary and secondary activation, which are indispensable requirements in the method of the present invention, are carried out, and the conditions are changed. First, regarding the secondary activation, it was observed that when the activation yield was lowered, the formability into a plate-like shape was deteriorated. In experiments (21) and (22) in which the secondary activation yield did not reach 74%, 72% and 75%, warping and cracking occurred and a plate-shaped molded body was not obtained. It can be seen that moldability cannot be obtained.

【0036】次に、板状の電極形状に成形されたものの
静電容量を、総合賦活収率の関数として図4に示す、こ
の図において実線で結んだ点は、1次および2次賦活を
行ったものであり、電流4mA/cm2と400mA/
cm2ともに、総合収率が70〜95%の範囲で高い静
電容量を示しているが、70%未満および95%以上で
は、静電容量が低下している。一方、破線で結んだ点
は、2次賦活を行っていないもの(実験(23)〜(2
4))であり、先のものよりも静電容量が低いことが判
る。
Next, the capacitance of a plate-shaped electrode is shown in FIG. 4 as a function of the total activation yield. The points connected by solid lines in this figure indicate the primary and secondary activations. The current was 4 mA / cm 2 and 400 mA /
cm 2 together, but overall yield indicates a high capacitance in a range of 70% to 95%, is less than 70% and less than 95%, the capacitance is decreased. On the other hand, the points connected by broken lines are those for which secondary activation has not been performed (Experiments (23) to (2
4)), and it can be seen that the capacitance is lower than the previous one.

【0037】また、図5に示すように、BET比表面積
は総合収率が増すにつれて小さくなるという関係があ
る。賦活処理雰囲気が炭酸ガスの場合も水蒸気の場合
も、差異がなく、良好な特性を示す総合収率70〜95
%の範囲に対応するBET比表面積は、600から16
00m2/gであった。
Further, as shown in FIG. 5, the BET specific surface area has a relation that it decreases as the total yield increases. Whether the activation treatment atmosphere is carbon dioxide gas or water vapor, there is no difference and the overall yield is 70 to 95, which shows good characteristics.
The BET specific surface area corresponding to the range of% is 600 to 16
It was 00 m 2 / g.

【0038】[0038]

【発明の効果】以上説明したように、本発明による活性
炭電極は、炭素化合物を硬化・炭化して得られた炭化物
を、1次賦活して活性炭基材を得、これにバインダーを
添加して成形し、引き続き2次賦活を施して製造する。
そして本発明では1次および2次賦活の賦活収率が特定
の値になるように温度および時間を選択することによっ
て、電極に適した良好な板状に成形でき、かつ、特定な
比表面積の活性炭電極が得られ、静電容量の大きな優れ
た電気二重層コンデンサー用電極が得られる。
As described above, in the activated carbon electrode according to the present invention, the carbide obtained by curing and carbonizing a carbon compound is first activated to obtain an activated carbon base material, and a binder is added thereto. It is molded and subsequently subjected to secondary activation to manufacture.
In the present invention, by selecting the temperature and time so that the activation yields of the primary and secondary activations have specific values, it is possible to form a good plate shape suitable for an electrode and to obtain a specific specific surface area of the specific surface area. An activated carbon electrode can be obtained, and an excellent electrode for an electric double layer capacitor having a large capacitance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の活性炭電極の製造方法の一例を
示す工程図である。
FIG. 1 is a process drawing showing an example of a method for manufacturing an activated carbon electrode of the present invention.

【図2】図2は本発明の実施例において作製した活性炭
電極の断面図である。
FIG. 2 is a sectional view of an activated carbon electrode produced in an example of the present invention.

【図3】図3は本発明の実施例の結果を示し、炭酸ガス
賦活により製造した活性炭電極の静電容量と賦活収率と
の関係を示すグラフである。
FIG. 3 is a graph showing the results of Examples of the present invention and is a graph showing the relationship between the electrostatic capacity and the activation yield of an activated carbon electrode produced by carbon dioxide gas activation.

【図4】図4は本発明の実施例の結果を示し、水蒸気賦
活により製造した活性炭電極の静電容量と賦活収率との
関係を示すグラフである。
FIG. 4 is a graph showing the results of the examples of the present invention and is a graph showing the relationship between the capacitance and the activation yield of the activated carbon electrode produced by steam activation.

【図5】図5は本発明の実施例の結果を示し、製造した
活性炭電極の静電容量とBET比表面積との関係を示す
グラフである。
FIG. 5 is a graph showing the results of the examples of the present invention and is a graph showing the relationship between the electrostatic capacity and the BET specific surface area of manufactured activated carbon electrodes.

【図6】図6は従来の活性炭および活性炭電極の製造工
程を説明する図である。
[FIG. 6] FIG. 6 is a diagram illustrating a conventional manufacturing process of activated carbon and an activated carbon electrode.

【符号の説明】[Explanation of symbols]

1……活性炭電極、2……ガスケット、3……集電極、
4……セパレータ。
1 ... Activated carbon electrode, 2 ... Gasket, 3 ... Collection electrode,
4 ... Separator.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年9月20日[Submission date] September 20, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】2次賦活処理によって、成形体に反りやク
ラックの発生等は無かったので、これから、14mmφ
(厚さ1mm)の円板を2枚切り出し、真空中で30w
t%硫酸溶液を含浸させて図2に示す測定用セルを作製
し、静電容量を求めた。図2中、符号1は活性炭電極、
2はガスケット、3は集電極、4はセパレータである。
静電容量Cは一般に、充電後、一定電流Iで放電し、電
圧V1からV2まで低下する時間△tを測定し、下式(ii
i)によって求めることができる。 C=I×△t/(V1−V2)……(iii) ここでは、900mVで24時間充電後4mA/cm2
で放電し、引き続き、2時間充電後400mA/cm2
で放電した。そして、いずれもV1=540mV、V2=
360mVとして、それぞれ4mV/cm2の時61F
/cm3、400mA/cm2の時26F/cm3を得
た。
Since the secondary activation treatment did not cause warping or cracks in the molded body, it is now expected that 14 mmφ
Cut out 2 (thickness 1mm) discs, 30w in vacuum
A t% sulfuric acid solution was impregnated into the measurement cell shown in FIG. 2 to determine the capacitance. In FIG. 2, reference numeral 1 is an activated carbon electrode,
2 is a gasket, 3 is a collecting electrode, and 4 is a separator.
Capacitance C is generally calculated by the following formula (ii) after charging, discharging at constant current I, and measuring time Δt during which voltage V1 drops to V2.
i) can be obtained. C = I × Δt / ( V1-V2 ) (iii) Here, after charging at 900 mV for 24 hours, 4 mA / cm 2
Discharged at 400 mA / cm 2 after charging for 2 hours
Discharged. And in each case, V1 = 540 mV, V2 =
61F at 360 mV and 4 mV / cm 2 each
/ Cm 3 and 400 mA / cm 2 , 26 F / cm 3 was obtained.

フロントページの続き (72)発明者 中村 章寛 山梨県北巨摩郡高根町下黒沢3054−3 日 本酸素株式会社山梨研究所内 (72)発明者 丸茂 信一 山梨県北巨摩郡高根町下黒沢3054−3 日 本酸素株式会社山梨研究所内 (72)発明者 宮川 俊哉 山梨県北巨摩郡高根町下黒沢3054−3 日 本酸素株式会社山梨研究所内Front Page Continuation (72) Inventor Akihiro Nakamura 3054-3 Shimokurosawa Shimokurosawa, Takane-cho, Kitakoma-gun, Yamanashi Prefecture Yamanashi Research Institute (72) Inventor Shinichi Marumo 3054-3 Shimokurosawa, Takane-cho, Kitakoma-gun Yamanashi Nihon Oxygen Yamanashi Laboratory Co., Ltd. (72) Inventor Toshiya Miyagawa 3054-3 Shimokurosawa Shimokurosawa, Takane-cho, Kitakoma-gun, Yamanashi Nihon Oxygen Co., Ltd. Yamanashi Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炭素化合物を炭化処理して得られた炭化
物に、1次賦活処理を施して炭素基材とし、該炭素基材
にバインダーを加えて成形体とし、該成形体を炭化処理
した後に、2次賦活処理を施すことを特徴とする電気二
重層コンデンサー用活性炭電極の製造方法。
1. A carbonized material obtained by carbonizing a carbon compound is subjected to a primary activation treatment to form a carbon base material, a binder is added to the carbon base material to form a molded body, and the molded body is carbonized. A method for producing an activated carbon electrode for an electric double layer capacitor, which is characterized by performing a secondary activation treatment later.
【請求項2】 炭素化合物がフェノール樹脂であること
を特徴とする請求項1の電気二重層コンデンサー用活性
炭電極の製造方法。
2. The method for producing an activated carbon electrode for an electric double layer capacitor according to claim 1, wherein the carbon compound is a phenol resin.
【請求項3】 バインダーが、フェノール樹脂粉末、有
機溶剤および親油性液体からなる組成物であることを特
徴とする請求項1または2の電気二重層コンデンサー用
活性炭電極の製造方法。
3. The method for producing an activated carbon electrode for an electric double layer capacitor according to claim 1, wherein the binder is a composition comprising a phenol resin powder, an organic solvent and a lipophilic liquid.
【請求項4】 1次賦活処理および2次賦活処理が、炭
酸ガス雰囲気または水蒸気雰囲気中での熱処理であり、
かつ次式(i) 賦活収率=(賦活処理後の重量/賦活処理前の重量)×100……(i) により得られる2次賦活処理における賦活収率が75%
以上であることを特徴とする請求項1から3のいずれか
の電気二重層コンデンサー用活性炭電極の製造方法。
4. The primary activation treatment and the secondary activation treatment are heat treatments in a carbon dioxide gas atmosphere or a steam atmosphere.
And, the activation yield in the secondary activation treatment obtained by the following formula (i): activation yield = (weight after activation treatment / weight before activation treatment) × 100 (i) is 75%
It is above, The manufacturing method of the activated carbon electrode for electric double layer capacitors in any one of Claim 1 to 3 characterized by the above-mentioned.
【請求項5】 1次賦活処理および2次賦活処理が、炭
酸ガス雰囲気または水蒸気雰囲気中での熱処理であり、
かつ次式(ii) 総合賦活収率=1次賦活処理の賦活収率×2次賦活処理の賦活収率÷100… …(ii) により得られる総合賦活収率が70〜95%であること
を特徴とする請求項1から3のいずれかの電気二重層コ
ンデンサー用活性炭電極の製造方法。
5. The primary activation treatment and the secondary activation treatment are heat treatments in a carbon dioxide gas atmosphere or a steam atmosphere,
And the total activation yield obtained by the following formula (ii): total activation yield = activation yield of primary activation treatment x activation yield of secondary activation treatment ÷ 100 ... (ii) is 70 to 95%. A method for producing an activated carbon electrode for an electric double layer capacitor according to any one of claims 1 to 3.
【請求項6】 請求項1から5記載の電気二重層コンデ
ンサー用活性炭電極の製造方法により製造され、比表面
積が600〜1500m2/gであることを特徴とする
電気二重層コンデンサー用活性炭電極。
6. An activated carbon electrode for an electric double layer capacitor, which is produced by the method for producing an activated carbon electrode for an electric double layer capacitor according to claim 1 and has a specific surface area of 600 to 1500 m 2 / g.
JP6216446A 1994-09-09 1994-09-09 Active carbon electrode of electronic double-layer capacitor and manufacture thereof Withdrawn JPH0883736A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6216446A JPH0883736A (en) 1994-09-09 1994-09-09 Active carbon electrode of electronic double-layer capacitor and manufacture thereof
US08/523,622 US5603867A (en) 1994-09-09 1995-09-05 Method of production for active carbon electrode for use as electrical double layer condenser and active carbon electrode obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6216446A JPH0883736A (en) 1994-09-09 1994-09-09 Active carbon electrode of electronic double-layer capacitor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0883736A true JPH0883736A (en) 1996-03-26

Family

ID=16688665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6216446A Withdrawn JPH0883736A (en) 1994-09-09 1994-09-09 Active carbon electrode of electronic double-layer capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0883736A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1049116A1 (en) * 1999-04-30 2000-11-02 Asahi Glass Co., Ltd. Carbonaceous material, its production process and electric double layer capacitor employing it
US6353528B1 (en) 1998-05-22 2002-03-05 Kyocera Corporation Solid activated carbon, process for manufacturing the same and electric double layer capacitor using the same
WO2004110928A1 (en) * 2003-06-13 2004-12-23 Kuraray Chemical Co., Ltd Activated carbon product in sheet form and element of device for preventing transpiration of fuel vapor
JP2008270427A (en) * 2007-04-18 2008-11-06 Cataler Corp Carbon material for power storage device electrode, and manufacturing method thereof
JP2009292670A (en) * 2008-06-03 2009-12-17 Toshinori Kokubu Method for producing high specific surface area activated carbon
CN105776205A (en) * 2016-03-31 2016-07-20 神华集团有限责任公司 Preparation method of coal-based activated carbon for flue gas internal circulation
CN109433156A (en) * 2018-12-04 2019-03-08 中国科学院过程工程研究所 A kind of column activated coke and its preparation method and application
KR101998190B1 (en) * 2018-02-12 2019-07-12 한국에너지기술연구원 Method for Preparation of mesoporous activated carbon from needle coke via 2nd steam activation
WO2020137849A1 (en) * 2018-12-28 2020-07-02 株式会社クラレ Porous carbon material and production method therefor and use thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353528B1 (en) 1998-05-22 2002-03-05 Kyocera Corporation Solid activated carbon, process for manufacturing the same and electric double layer capacitor using the same
EP1049116A1 (en) * 1999-04-30 2000-11-02 Asahi Glass Co., Ltd. Carbonaceous material, its production process and electric double layer capacitor employing it
WO2004110928A1 (en) * 2003-06-13 2004-12-23 Kuraray Chemical Co., Ltd Activated carbon product in sheet form and element of device for preventing transpiration of fuel vapor
US7666507B2 (en) 2003-06-13 2010-02-23 Kuraray Chemical Co., Ltd. Activated carbon product in sheet form and element of device for preventing transpiration of fuel vapor
JP2008270427A (en) * 2007-04-18 2008-11-06 Cataler Corp Carbon material for power storage device electrode, and manufacturing method thereof
JP2009292670A (en) * 2008-06-03 2009-12-17 Toshinori Kokubu Method for producing high specific surface area activated carbon
CN105776205A (en) * 2016-03-31 2016-07-20 神华集团有限责任公司 Preparation method of coal-based activated carbon for flue gas internal circulation
KR101998190B1 (en) * 2018-02-12 2019-07-12 한국에너지기술연구원 Method for Preparation of mesoporous activated carbon from needle coke via 2nd steam activation
CN109433156A (en) * 2018-12-04 2019-03-08 中国科学院过程工程研究所 A kind of column activated coke and its preparation method and application
WO2020137849A1 (en) * 2018-12-28 2020-07-02 株式会社クラレ Porous carbon material and production method therefor and use thereof
JP6762459B1 (en) * 2018-12-28 2020-09-30 株式会社クラレ Porous carbon material and its manufacturing method and application
US11065603B2 (en) 2018-12-28 2021-07-20 Kuraray Co., Ltd. Porous carbon material, method for producing same, and use of same

Similar Documents

Publication Publication Date Title
JP2993343B2 (en) Polarizing electrode and method of manufacturing the same
JP4113596B2 (en) Manufacturing method of carbon materials for electric double layer capacitors
JPH08119614A (en) Activated carbon, its production and electrode for electric-double-layer capacitor
JPH0883736A (en) Active carbon electrode of electronic double-layer capacitor and manufacture thereof
JPH03201517A (en) Electric double layer capacitor
US5603867A (en) Method of production for active carbon electrode for use as electrical double layer condenser and active carbon electrode obtained thereby
JPH04214072A (en) Carbonaceous composition, carbon material for fuel cell and its manufacture
CN106083049A (en) A kind of method preparing isotropic graphite material from sintering
JPH09289142A (en) Active carbon electrode, manufacture thereof and electric double layer capacitor
KR101381710B1 (en) Method for manufacturing active carbon for electrode using cokes and method for manufacturing active carbon composition for electrode
JP3602933B2 (en) Activated carbon substrate
JP3330235B2 (en) Carbon material for electric double layer capacitor and method for producing the same
JPH11135380A (en) Activated carbon for electric double layer capacitor and its manufacture
JP3722965B2 (en) Carbon material for electric double layer capacitors
JP3440515B2 (en) Electrode for electric double layer capacitor
JPH0888150A (en) Manufacture of activated-carbon electrode for electric double layer capacitor, and activated carbon electrode
JP2002083608A (en) Separator for fuel cell and its manufacturing method
JP3930739B2 (en) Activated carbon for electric double layer capacitor and manufacturing method thereof
JPH08115856A (en) Method for manufacturing activated carbon electrode for electrical double-layer capacitor
JP4854979B2 (en) Composition for fuel cell separator, method for producing fuel cell separator, and fuel cell separator
JPH0158623B2 (en)
JP2002134369A (en) Method of manufacturing activated carbon for electric double-layer capacitor, and polarizable electrode
JPH08138979A (en) Manufacture of active carbon electrode for electric double layer capacitor
JPH05299297A (en) Electrical double-layer capacitor
JP2001139696A (en) Method for producing conductive resin molding and separator for fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120