JPH0882799A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JPH0882799A
JPH0882799A JP21929594A JP21929594A JPH0882799A JP H0882799 A JPH0882799 A JP H0882799A JP 21929594 A JP21929594 A JP 21929594A JP 21929594 A JP21929594 A JP 21929594A JP H0882799 A JPH0882799 A JP H0882799A
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment
refractive index
crystal element
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21929594A
Other languages
Japanese (ja)
Other versions
JP3412775B2 (en
Inventor
Takashi Sasabayashi
貴 笹林
Seiji Tanuma
清治 田沼
Takemune Mayama
剛宗 間山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21929594A priority Critical patent/JP3412775B2/en
Publication of JPH0882799A publication Critical patent/JPH0882799A/en
Application granted granted Critical
Publication of JP3412775B2 publication Critical patent/JP3412775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE: To provide a liquid crystal element which is bright in a liquid crystal display surface and is high in the contrast of the brightness between on and off by alternately disposing liquid crystals varying in orientation directions without using diffraction gratings. CONSTITUTION: A pair of transparent substrates 12a, 12b facing each other are provided thereon with oriented films 14a, 14b and are arranged apart a spacing T to form a pair. Further, liquid crystals 15 having an ordinary refractive index n0 and extraordinary refractive index ne are encapsulated between a pair of the oriented films 14a and 14b and are arranged alternately with first regions 16a and second regions 16b where the orientation directions of the liquid crystal molecules 15a in the liquid crystals 15 are both parallel with the surfaces of the oriented films 14a, 14b and intersect orthogonally with each other. Further, the liquid crystal element is constituted in such a manner that the relation (ne -n0 )T=λ(2m+1)/2 (m=integer) holds between the spacing T between the oriented films 14a, 14b and the ordinary refractive index n0 and extraordinary refractive index ne of the liquid crystals 15 and the wavelength λof light 17 or the light 17 having a distribution around the wavelength λ.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶素子に関し、特に光
の回折によって光の透過、遮断を制御する液晶素子に係
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal element, and more particularly to a liquid crystal element which controls transmission and blocking of light by diffracting light.

【0002】液晶素子は、入射する光を入射方向、或い
は入射方向以外の方向に回折して制御することにより、
光表示等利用されるものであって、通常配向処理を施し
た封入部材によって液晶を封入した構成となっている。
A liquid crystal element diffracts incident light in an incident direction or in a direction other than the incident direction to control the light.
It is used for optical display or the like, and usually has a configuration in which liquid crystal is sealed by a sealing member that has been subjected to an alignment treatment.

【0003】古くは封入部材に一対の透明電極を備えた
透明基板を用いて透明基板の相対する内面に配向処理を
施し、さらにこれを偏光板によって挟んだ構成を採用し
ていた。しかし、二枚の偏光板の使用は光の利用効率が
悪く、液晶表示が暗くなることから、偏光板を用いない
液晶素子が種々検討されている。
In the past, a structure was used in which a transparent substrate having a pair of transparent electrodes was used as an encapsulating member, the opposite inner surfaces of the transparent substrate were subjected to an orientation treatment, and this was sandwiched by polarizing plates. However, since the use efficiency of light is poor and the liquid crystal display becomes dark when two polarizing plates are used, various liquid crystal elements that do not use polarizing plates have been studied.

【0004】[0004]

【従来の技術】光の利用効率を上げて、より明るい液晶
表示を得るために開発された液晶素子に、回折格子を用
いた液晶素子がある。
2. Description of the Related Art A liquid crystal element using a diffraction grating has been developed as a liquid crystal element which has been developed in order to improve light utilization efficiency and obtain a brighter liquid crystal display.

【0005】この回折格子を用いた液晶素子の構成を以
下に述べる。
The structure of a liquid crystal element using this diffraction grating will be described below.

【0006】図8(a)及び(b)は、出願公開広報、
平5−15247号に記載された本発明の従来例である
液晶素子の概略構成図である。図8(a)は第1の透明
基板2a、及び第2の透明基板2bの透明電極3a、3
bに電圧が印加されていない状態を示し、図8(b)は
電圧が印加された状態を示す。
FIGS. 8 (a) and 8 (b) show application publication information,
It is a schematic block diagram of the liquid crystal element which is the prior art example of this invention described in Japanese Unexamined Patent Publication No. 5-15247. FIG. 8A shows the transparent electrodes 3a and 3a of the first transparent substrate 2a and the second transparent substrate 2b.
FIG. 8B shows a state where no voltage is applied to b, and FIG. 8B shows a state where voltage is applied.

【0007】図8中、1は回折格子を用いた液晶素子で
あって、透明電極3a、3bを設けた透明基板2a、及
び2bを間隔を隔てて対向して配置し、透明基板2a、
2b間には屈折率ng 、厚さTを有する回折格子6と、
液晶5を封入した構成となっている。斜線で示す回折格
子6は、光学的な等方性を有する物質よりなり、透明電
極3a、3bと回折格子6との間には液晶5が封入され
ている。液晶5の液晶分子5aの配向方向を図中に示
す。
In FIG. 8, reference numeral 1 denotes a liquid crystal element using a diffraction grating, and transparent substrates 2a and 2b provided with transparent electrodes 3a and 3b are arranged to face each other with a space therebetween, and the transparent substrate 2a,
A diffraction grating 6 having a refractive index ng and a thickness T between 2b,
The liquid crystal 5 is enclosed. The hatched diffraction grating 6 is made of a substance having optical isotropy, and a liquid crystal 5 is enclosed between the transparent electrodes 3 a and 3 b and the diffraction grating 6. The alignment direction of the liquid crystal molecules 5a of the liquid crystal 5 is shown in the figure.

【0008】また、液晶素子1の透明基板2a、2bに
垂直に入射してくる波長λの光7を図示する。光7は、
実際には図示した方向から透明基板3bの全領域にわた
って照射されるが説明の便宜上一点のみを示すものとす
る。
Further, light 7 having a wavelength λ which is vertically incident on the transparent substrates 2a and 2b of the liquid crystal element 1 is shown. Light 7
Actually, the entire area of the transparent substrate 3b is irradiated from the direction shown, but only one point is shown for convenience of explanation.

【0009】また、自然光7は互いに直交する偏光成分
に分けて考えることができる。
The natural light 7 can be considered by dividing it into polarized light components orthogonal to each other.

【0010】今、光7の紙面に平行方向な偏光成分を7
a、紙面に垂直な方向の偏光成分を7bとする。
Now, the polarized component of the light 7 parallel to the paper surface is
a, and the polarized component in the direction perpendicular to the paper surface is 7b.

【0011】液晶分子5aは液晶5中に一様に存在して
おり、図8(a)に示した液晶素子1に電圧を印加して
いない状態では偏光成分7aに垂直、かつ7bに平行に
配向しているものとする。液晶分子5aに垂直な方向の
偏光成分7aは液晶5に入射して液晶の常屈折率n0
従う挙動を示す。一方、液晶分子5aに平行な方向の偏
光成分7bは液晶5内で、液晶5の異常屈折率ne に従
う挙動を示す。
The liquid crystal molecules 5a are evenly present in the liquid crystal 5, and are perpendicular to the polarization component 7a and parallel to 7b when no voltage is applied to the liquid crystal element 1 shown in FIG. 8 (a). It shall be oriented. The polarization component 7a in the direction perpendicular to the liquid crystal molecules 5a enters the liquid crystal 5 and behaves according to the ordinary refractive index n 0 of the liquid crystal. On the other hand, the polarized light component 7b in the direction parallel to the liquid crystal molecules 5a behaves in the liquid crystal 5 according to the extraordinary refractive index n e of the liquid crystal 5.

【0012】ところで、入射する光の強度をIO 、液晶
5で回折して、入射した光と同じ方向の光として取り出
される光の強度をIとした場合、I/IO を回折効率と
言う。
When the intensity of incident light is I O and the intensity of light diffracted by the liquid crystal 5 and extracted in the same direction as the incident light is I, I / I O is called diffraction efficiency. .

【0013】回折効率は近似的に以下の式(1)で表さ
れる。
The diffraction efficiency is approximately represented by the following equation (1).

【0014】 I/IO ≒ { 1+cos(2πΔnT/λ)}/2・・・・(1) 式(1)において、Tは回折格子6の厚さ、λは入射光
の波長、或いは入射光の波長の分布中心となる波長であ
る。
I / I O ≈ {1 + cos (2πΔnT / λ)} / 2 (1) In the formula (1), T is the thickness of the diffraction grating 6, λ is the wavelength of incident light, or incident light The wavelength is the center of the wavelength distribution.

【0015】Δnは回折格子6を成す物質の屈折率ng
と液晶5に入射する偏光成分が従う屈折率の差分であ
る。従って、偏光成分7aにおいてのΔnは(ng −n
0 )であり、偏光成分7bにおいては(ng −ne )と
それぞれ異なる値を持つ。
Δn is the refractive index n g of the substance forming the diffraction grating 6.
And the difference in the refractive index that the polarization component incident on the liquid crystal 5 follows. Therefore, Δn in the polarization component 7a is ( ng −n
0), in the polarization component 7b has a different value as (n g -n e).

【0016】また、透明電極3a、3b間に電圧を印加
した状態を図8(b)に示す。
FIG. 8B shows a state in which a voltage is applied between the transparent electrodes 3a and 3b.

【0017】液晶分子5aは一様に透明基板面に対して
垂直な方向になり、この時液晶5中に入射した光7の偏
光成分7a、7bのいずれもが液晶5の常屈折率n0
感じる。 式(1)を解いて、I/IO の値が最小値0
を持つ条件は、 ΔnT = λ(2m+1)/2 ・・・・・(2) であることが分かる(mは整数)。(2)の条件が満た
された場合、液晶5に入射した光7の偏光成分7a、7
bは入射方向以外の方向へ透過する。こうした回折を高
次回折という。 一方、I/IO が最大値1を持つ条件
は、(1)式より Δn = 0 ・・・・・(3) である。(3)の条件が満たされた場合、高次回折光さ
れる偏光成分7a、7bは0となって液晶5に入射した
光は入射方向のまま直進してくる。こうした回折を0次
回折という。
The liquid crystal molecules 5a are uniformly oriented in the direction perpendicular to the transparent substrate surface, and at this time, both the polarization components 7a and 7b of the light 7 incident on the liquid crystal 5 have a normal refractive index n 0 of the liquid crystal 5. Feel By solving the equation (1), the minimum value of I / I O value 0
It can be seen that the condition that has is ΔnT = λ (2m + 1) / 2 (2) (m is an integer). When the condition (2) is satisfied, the polarization components 7a, 7 of the light 7 incident on the liquid crystal 5 are
b is transmitted in directions other than the incident direction. Such diffraction is called high-order diffraction. On the other hand, the condition that I / I O has the maximum value of 1 is Δn = 0 ... (3) from the equation (1). When the condition (3) is satisfied, the polarization components 7a and 7b, which are high-order diffracted lights, become 0, and the light incident on the liquid crystal 5 travels straight in the incident direction. Such diffraction is called zero-order diffraction.

【0018】液晶素子1はこうした液晶5の特性を利用
して、液晶5に入射する光を入射方向と同一の方向に回
折する、或いは入射方向以外の方向に回折するといった
制御を行うことによって液晶表示等を行うものであるか
ら、液晶素子1には、表示画像が明るいこと、液晶素子
1のON、OFFで画像のコントラストが大きいといっ
た特性が要求される。
The liquid crystal element 1 utilizes such characteristics of the liquid crystal 5 to perform control such that light incident on the liquid crystal 5 is diffracted in the same direction as the incident direction or diffracted in a direction other than the incident direction. Since the display is performed, the liquid crystal element 1 is required to have characteristics such as a bright display image and a large image contrast when the liquid crystal element 1 is turned on and off.

【0019】表示画像の明るいことは液晶素子1を透過
してくる光の強さであるIの絶対量が大きいことを意味
する。
Brightness of the displayed image means that the absolute amount of I, which is the intensity of light transmitted through the liquid crystal element 1, is large.

【0020】また、ON、OFFでの画像のコントラス
トの大きさはON状態でのI/IO値と、OFF状態で
のI/IO の値の比で決まる値であるから、ON状態で
入射した光の各偏光成分7a、7bが全て直進する方向
に取り出される0次回折を行うと共に、OFF状態で液
晶素子1に入射してくる光が全て入射方向以外に回折さ
れる高次回折することが望ましい。
Further, ON, and I / I O value in magnitude ON state of the contrast of the image at OFF, since a value determined by the ratio of the value of I / I O in the OFF state, the ON state The polarization components 7a and 7b of the incident light are all subjected to the 0th order diffraction that is extracted in the direction of straight advance, and the light that enters the liquid crystal element 1 in the OFF state is all diffracted in a direction other than the incident direction. Is desirable.

【0021】液晶素子1において上記の条件を満たすた
めには、液晶5の常屈折率n0 及び異常屈折率ne 、回
折格子を構成する部材の屈折率ng 、回折格子の厚さ
T、光7の波長λの間に以下に記した条件1及び条件2
のいずれかが成立するように液晶素子1を設計し、液晶
表示を行っていた。
In order to satisfy the above conditions in the liquid crystal element 1, the ordinary refractive index n 0 and the extraordinary refractive index n e of the liquid crystal 5, the refractive index n g of the members constituting the diffraction grating, the thickness T of the diffraction grating, Condition 1 and Condition 2 described below between the wavelengths λ of the light 7
The liquid crystal element 1 is designed so that any of the above is established and liquid crystal display is performed.

【0022】 条件(1)(ne −ng )T = λ/2 ・・・・・・・・(1.1) かつ Δn=ng −n0 =0 ・・・・・・・・(1.2) 或いは、 条件(2)(ng −n0 )T = λ/2 ・・・・・・・・(2.1) かつ Δn=ng −ne =0 ・・・・・・・・(2.2) 条件(1)、及び条件(2)のいずれかを満たす偏光成
分7a、7bの振る舞いをそれぞれ図9にまとめる。
Condition (1) (n e −n g ) T = λ / 2 ... (1.1) and Δn = n g −n 0 = 0. (1.2) or condition (2) (n g -n 0 ) T = λ / 2 ········ (2.1) and Δn = n g -n e = 0 ···· .. (2.2) The behaviors of the polarization components 7a and 7b satisfying either the condition (1) or the condition (2) are summarized in FIG.

【0023】図9中、I/IO =1は0次回折、即ち入
射した光を全て直進方向のまま透過させることを意味
し、I/IO =0は高次回折、即ち入射した光の全てを
入射方向以外に回折することを示す。
In FIG. 9, I / I O = 1 means zero-order diffraction, that is, all incident light is transmitted in the direction of straight travel, and I / I O = 0 means higher-order diffraction, that is, incident light. It is shown that all of are diffracted in directions other than the incident direction.

【0024】条件(1)を満たす液晶素子1の場合、偏
光成分7aが透明電極3a、3bへの電圧の印加に依ら
ずに0次回折してしまうことが分かる。偏光成分7bは
透明電極3a、3bに電圧が印加された場合にのみ0次
回折し、かつ電圧が印加されない場合には高次回折する
という電圧印加による制御が可能な特性を示すものの、
液晶素子1のOFF状態で0次回折する偏光成分7aの
ために液晶表示面が明るくなり、ON状態の明るさとの
コントラストが悪くなる。
In the case of the liquid crystal element 1 satisfying the condition (1), it can be seen that the polarization component 7a is diffracted in the 0th order regardless of the voltage application to the transparent electrodes 3a and 3b. Although the polarization component 7b exhibits the characteristic that can be controlled by applying a voltage, that is, the 0th order diffraction is performed only when a voltage is applied to the transparent electrodes 3a and 3b, and the higher order diffraction is performed when a voltage is not applied,
In the OFF state of the liquid crystal element 1, the polarization component 7a that is diffracted in the 0th order makes the liquid crystal display surface bright, and the contrast with the brightness in the ON state becomes poor.

【0025】次に、条件(2)においての各偏光成分7
a、7bの振る舞いは、図9より偏光成分7aが透明電
極3a、3bへの電圧の印加に依らずに高次回折してし
まうことが分かる。偏光成分7bは透明電極3a、3b
に電圧が印加された場合にのみ高次回折し、かつ電圧が
印加されない場合には0次回折するという電圧印加によ
る制御が可能な特性を示すことにより、電圧を透明電極
3a、3bに印加しない状態を液晶素子1においてのO
N、透明電極3a、3bに印加した状態をOFFと設定
すると、ON状態の明るさ、即ち液晶表示時の表示面の
明るさが半減してしまう。
Next, each polarization component 7 under the condition (2)
As for the behaviors of a and 7b, it can be seen from FIG. 9 that the polarization component 7a is diffracted in higher orders regardless of the application of the voltage to the transparent electrodes 3a and 3b. Polarization component 7b is transparent electrode 3a, 3b
The voltage is not applied to the transparent electrodes 3a and 3b by exhibiting a characteristic that can be controlled by applying a voltage, that is, high-order diffraction is performed only when a voltage is applied, and 0-order diffraction is applied when a voltage is not applied. The state of the liquid crystal element 1 is O
If N and the state applied to the transparent electrodes 3a and 3b are set to OFF, the brightness of the ON state, that is, the brightness of the display surface during liquid crystal display is halved.

【0026】回折格子6を用いた液晶素子1において上
記の問題を解決するための構成を図10(a)、(b)
に示す。
A structure for solving the above problem in the liquid crystal element 1 using the diffraction grating 6 is shown in FIGS. 10 (a) and 10 (b).
Shown in

【0027】図10(a)、(b)共に第1の液晶素子
1aと、第2の液晶素子1bを用意して一対とし、互い
に直角となる方向に配置したものである。図10(a)
に示した例では第1の液晶素子1aと第2の液晶素子1
bが第1の液晶素子1aの透明基板2b、第2の液晶素
子1bの透明基板2aどうしを貼り合わせることによっ
て接続していることに対して、図10(b)では第1の
液晶素子1aと第2の液晶素子1bで内側に配置される
透明基板を無くしたことが特徴となる。
In both FIGS. 10A and 10B, the first liquid crystal element 1a and the second liquid crystal element 1b are prepared and paired, and they are arranged at right angles to each other. Figure 10 (a)
In the example shown in, the first liquid crystal element 1a and the second liquid crystal element 1 are
In FIG. 10B, the transparent substrate 2b of the first liquid crystal element 1a and the transparent substrate 2a of the second liquid crystal element 1b are connected to each other by bonding to each other. The second liquid crystal element 1b is characterized by eliminating the transparent substrate disposed inside.

【0028】[0028]

【発明が解決しようとする課題】しかし、いずれも液晶
素子1を積層する工程は複雑である。また、こうした構
成の液晶素子1においては、回折格子6の加工精度が重
要であり通常、格子ピッチが10μm以下、回折格子の
厚さは1μm以上が望ましいが、このような微細なパタ
ーンの回折格子6を透明基板上に精度良く形成すること
は困難である。
However, in any case, the process of laminating the liquid crystal element 1 is complicated. Further, in the liquid crystal element 1 having such a configuration, the processing accuracy of the diffraction grating 6 is important, and it is usually desirable that the grating pitch is 10 μm or less and the thickness of the diffraction grating is 1 μm or more. It is difficult to accurately form 6 on the transparent substrate.

【0029】以上の点を鑑み、本発明では回折格子を使
わない簡易なプロセスで、積層した回折格子と同等な性
能を有する液晶素子を提供することを目的とする。
In view of the above points, it is an object of the present invention to provide a liquid crystal element having a performance equivalent to that of a laminated diffraction grating by a simple process that does not use the diffraction grating.

【0030】[0030]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明では下記の通り構成した。
In order to solve the above problems, the present invention has the following configuration.

【0031】請求項1の発明の液晶素子は、対向する一
対の透明基板と、一対の透明基板上にそれぞれ設けら
れ、間隔Tを隔てて配置される一対の配向膜と、基板上
に設けられた透明電極と、一対の配向膜間に封入された
常屈折率n0 及び異常屈折率ne を有する液晶とを有
し、液晶の液晶分子の配向方向が、共に配向膜の表面と
平行方向であって、互いに直交する第1の領域と第2の
領域とを交互に配置した構成を有すると共に、液晶内に
入射した入射光が、電極間に電圧を印加した場合に全て
0次回折光として出射し、かつ電圧を印加しない場合に
は全て高次回折光として出射する構成としたことを特徴
とするものである。
The liquid crystal device according to the invention of claim 1 is provided with a pair of transparent substrates which face each other, a pair of alignment films which are respectively provided on the pair of transparent substrates and are separated by a space T, and on the substrate. A transparent electrode and a liquid crystal having an ordinary refractive index n 0 and an extraordinary refractive index n e enclosed between a pair of alignment films, and the alignment directions of the liquid crystal molecules of the liquid crystal are parallel to the surface of the alignment film. In addition, the first region and the second region which are orthogonal to each other are arranged alternately, and the incident light that has entered the liquid crystal is all zero-order diffracted light when a voltage is applied between the electrodes. It is characterized in that the light is emitted as high-order diffracted light when the light is emitted and no voltage is applied.

【0032】請求項2の発明の液晶素子は、対向する一
対の透明基板と、一対の透明基板上にそれぞれ設けら
れ、間隔Tを隔てて配置される一対の配向膜と、基板上
に設けられた透明電極と、一対の配向膜間に封入された
常屈折率n0 及び異常屈折率ne を有する液晶とを有
し、液晶の液晶分子の配向方向が、共に配向膜の表面と
平行方向であって、かつ互いに直交する第1の領域と第
2の領域とを交互に配置した構成を有すると共に、配向
膜の間隔Tと、液晶の常屈折率n0 、異常屈折率n
e と、該液晶に入射する入射光の波長λ、或いは波長λ
を中心とした分布を有する入射光との間に、 ( ne − n0 )T = λ(2m+1)/2 (m
=整数) の関係が成立する構成としたことを特徴とするものであ
る。
A liquid crystal device according to a second aspect of the present invention is provided with a pair of transparent substrates facing each other, a pair of alignment films respectively provided on the pair of transparent substrates and spaced apart by a distance T, and provided on the substrate. A transparent electrode and a liquid crystal having an ordinary refractive index n 0 and an extraordinary refractive index n e enclosed between a pair of alignment films, and the alignment directions of the liquid crystal molecules of the liquid crystal are parallel to the surface of the alignment film. In addition, the first region and the second region which are orthogonal to each other are alternately arranged, and the distance T between the alignment films, the ordinary refractive index n 0 of the liquid crystal, and the extraordinary refractive index n
e and the wavelength λ of the incident light incident on the liquid crystal, or the wavelength λ
Between (n e − n 0 ) T = λ (2m + 1) / 2 (m
= Integer).

【0033】請求項3の発明の液晶素子は、第1の領域
と、第2の領域が共に縞状の形状を有し、かつ配向膜の
表面上一方向に交互に配置された構成としたことを特徴
とするものである。
In the liquid crystal element of the third aspect of the present invention, the first region and the second region both have a striped shape and are arranged alternately in one direction on the surface of the alignment film. It is characterized by that.

【0034】請求項4の発明の液晶素子は、第1の領域
と、第2の領域が、共に矩形状の形状を有し、かつ配向
膜の表面上一方向、及び一方向と直交する方向に交互に
配置された構成としたことを特徴とするものである。
According to a fourth aspect of the invention, in the liquid crystal element, the first region and the second region both have a rectangular shape, and one direction on the surface of the alignment film and a direction orthogonal to the one direction. It is characterized in that it is arranged alternately.

【0035】請求項5の発明の液晶素子は、上記一対の
配向膜のうち、一方の配向膜にのみ配向処理が成されて
いる構成としたことを特徴とするものである。
A liquid crystal device according to a fifth aspect of the present invention is characterized in that only one of the pair of alignment films is subjected to alignment treatment.

【0036】請求項6の発明の液晶素子は、配向膜は感
光性の樹脂より成る構成としたことを特徴とするもので
ある。
The liquid crystal device according to the invention of claim 6 is characterized in that the alignment film is made of a photosensitive resin.

【0037】[0037]

【作用】請求項1記載の発明により、配向膜が、互いに
直行する配向方向を有する第1の領域と、第2の領域を
併せ持ち、かつ互いに直交する配向方向を有する第1の
領域、及び第2の領域が交互に配置されることによっ
て、第1の領域、或いは第2の領域を透過する光は、伝
播の媒質が変わることによって屈折率の差が生ずる。光
の回折方向は屈折率の差と相関を持つから、屈折率を制
御することによって、光の回折方向を制御することがで
きる。
According to the invention described in claim 1, the alignment film has a first region and a second region having orthogonal alignment directions, and a first region having orthogonal alignment directions, and By alternately arranging the two regions, the light transmitted through the first region or the second region has a difference in refractive index due to the change of the propagation medium. Since the diffraction direction of light correlates with the difference in refractive index, it is possible to control the diffraction direction of light by controlling the refractive index.

【0038】また、電圧印加時において入射光の偏光成
分が全て0次回折光となり、かつ電圧無印加時において
全て高次回折光となるように制御することは液晶素子に
おける理想的な特性を実現することが可能となる。請求
項2記載の発明により、配向膜の間隔Tと、液晶の常屈
折率n0 、異常屈折率ne と、光の波長λとの間に、 (ne − n0 )T = λ(2m+1)/2,(m=
整数) の関係が成立することによって、透明基板及び透明電極
に電圧を印加しない状態において光を高次回折すること
ができる。よって、電圧を印加しない状態を液晶素子の
OFF状態に設定すると、入射方向に回折される偏光成
分の無い良好なOFF状態となる。
Controlling that all the polarization components of the incident light become 0th order diffracted light when a voltage is applied and all become high order diffracted light when no voltage is applied realizes ideal characteristics in the liquid crystal element. Is possible. According to the invention of claim 2, between the distance T of the alignment film, the ordinary refractive index n 0 of liquid crystal, the extraordinary refractive index ne, and the wavelength λ of light, (n e −n 0 ) T = λ ( 2m + 1) / 2, (m =
By satisfying the relationship of (integer), light can be diffracted to a higher order in a state where no voltage is applied to the transparent substrate and the transparent electrode. Therefore, when the liquid crystal element is set to the OFF state when no voltage is applied, it is in a good OFF state in which there is no polarization component diffracted in the incident direction.

【0039】請求項3記載の発明により、液晶中の液晶
分子が互い直交する領域を交互に一直線方向に配設する
工程が簡易に実現される。
According to the third aspect of the invention, the step of alternately arranging the regions where the liquid crystal molecules in the liquid crystal are orthogonal to each other can be easily realized.

【0040】請求項4記載の発明により、液晶素子の回
折効果をより高めることができる。
According to the invention described in claim 4, the diffraction effect of the liquid crystal element can be further enhanced.

【0041】請求項5記載の発明により、配向膜におけ
る第1の領域と第2の領域が、一対の透明基板の一方に
のみ形成れることによって、透明基板の表面に配向膜を
形成する工程に係る作業が軽減され、製造工程を簡略化
すると共に、透明基板を併せる際に配向膜の位置合わせ
が不要になる。
According to the fifth aspect of the invention, the first region and the second region of the alignment film are formed only on one of the pair of transparent substrates, so that the alignment film is formed on the surface of the transparent substrate. The work involved is reduced, the manufacturing process is simplified, and alignment of the alignment film is not necessary when the transparent substrates are combined.

【0042】請求項6記載の発明により、配向膜が感光
性の樹脂より成ることによって、配向方向が異なる領域
を配向膜上に設ける工程で配向膜が受けるダメージが低
減される。
According to the sixth aspect of the invention, since the alignment film is made of a photosensitive resin, damage to the alignment film in the step of providing regions having different alignment directions on the alignment film is reduced.

【0043】[0043]

【実施例】図1(a)及び(b)は本発明の第1実施例
の液晶素子11の概略構成図である。(a)は透明電極
13a及び13bに電圧が印加されていない状態で、
(b)は電圧が印加された状態を示す。
1A and 1B are schematic configuration diagrams of a liquid crystal element 11 according to a first embodiment of the present invention. (A) shows a state where no voltage is applied to the transparent electrodes 13a and 13b,
(B) shows a state where a voltage is applied.

【0044】先ず、液晶素子11の構成は、第1の透明
基板12a、第2の透明基板12b上に、それぞれ第1
の透明電極13a、第2の透明電極13bが形成されて
いる。透明電極13a、13b上に配向膜14a、14
bが形成される。配向膜14a、14b上には、後述す
るプロセスによって配向方向が異なる領域が設けられて
等間隔に並んでいる。この、透明電極13a、13b配
向膜14a、14bが形成された基板12a、12bを
配向膜14a、14bが設けられた面が対向するように
間隔Tを隔てて配置し、その間に液晶15を封入する。
First, the structure of the liquid crystal element 11 is such that the first transparent substrate 12a and the second transparent substrate 12b are formed on the first transparent substrate 12a and the second transparent substrate 12b, respectively.
Transparent electrode 13a and second transparent electrode 13b are formed. Alignment films 14a, 14 on the transparent electrodes 13a, 13b
b is formed. On the alignment films 14a and 14b, regions having different alignment directions are provided and arranged at equal intervals by a process described later. The substrates 12a and 12b having the transparent electrodes 13a and 13b and the alignment films 14a and 14b formed thereon are arranged at intervals T so that the surfaces having the alignment films 14a and 14b face each other, and the liquid crystal 15 is sealed between them. To do.

【0045】この液晶素子11に入射する光を17とし
て図示する。光17は偏光成分17a、17bにより構
成される。
Light incident on the liquid crystal element 11 is shown as 17. The light 17 is composed of polarized components 17a and 17b.

【0046】配向膜14a、14bの配向方向に従う液
晶15の配向方向は、液晶分子15aで示す通り、隣り
合う領域で互いに直交する向きである。
The alignment directions of the liquid crystal 15 according to the alignment directions of the alignment films 14a and 14b are, as shown by the liquid crystal molecules 15a, orthogonal to each other in adjacent regions.

【0047】本実施例の構成図においては、液晶分子1
5aが偏光成分17aに平行の向きに配向する領域を領
域16aとし、偏光成分17bに平行に配向する領域を
16bと定める。
In the block diagram of this embodiment, liquid crystal molecules 1
A region in which 5a is oriented in a direction parallel to the polarized component 17a is defined as a region 16a, and a region in which 5a is oriented parallel to the polarized component 17b is defined as 16b.

【0048】次に、図1(b)を用いて透明電極13
a、13bに電圧を印加した状態について述べる。
Next, referring to FIG. 1B, the transparent electrode 13
A state in which a voltage is applied to a and 13b will be described.

【0049】液晶素子の構成は図1(a)に示したのと
同一であるが、封止された液晶分子15aが電圧を印加
されたことにより領域16a、16bの液晶15中の液
晶分子15aの光軸の向きが共に透明電極13a、13
bに垂直な方向に向いたものである。次に液晶素子11
の配向膜14a、14bを形成する具体的な方法につい
て述べる。
The structure of the liquid crystal element is the same as that shown in FIG. 1A, but the liquid crystal molecules 15a in the liquid crystals 15 in the regions 16a and 16b are applied by applying a voltage to the sealed liquid crystal molecules 15a. The optical axes of both are transparent electrodes 13a, 13
It is oriented in a direction perpendicular to b. Next, the liquid crystal element 11
A specific method of forming the alignment films 14a and 14b will be described.

【0050】図2(a)乃至(c)は配向膜14a、1
4bを形成する工程を説明する図である。本実施例で
は、透明基板12a、12bに投射型ディスプレイ液晶
パネルを構成する基板を用いた。この基板は既に電極が
設けられた構成となっている。
2A to 2C show alignment films 14a and 1a.
It is a figure explaining the process of forming 4b. In the present embodiment, the transparent substrates 12a and 12b are substrates that form a projection type display liquid crystal panel. This substrate has a structure already provided with electrodes.

【0051】先ず、図2(a)で述べる工程では、透明
電極13bの上から感光性ポリイミド配向材料を転写印
刷し、紫外線の照射、焼成の工程により配向膜14bの
母体となる膜を形成する。形成された配向膜14bの表
面の全面に一定方向(例えば図2(a)中に示す紙面に
平行なx方向)のラビング処理を施す。ラビング処理は
配向膜の配向方向を決定するために行う処理であるか
ら、配向方向が一定の配向膜14bが形成される。
First, in the step described with reference to FIG. 2A, a photosensitive polyimide alignment material is transferred and printed on the transparent electrode 13b, and a film serving as a matrix of the alignment film 14b is formed by the steps of irradiation with ultraviolet rays and baking. . The entire surface of the formed alignment film 14b is rubbed in a fixed direction (for example, the x direction parallel to the paper surface shown in FIG. 2A). Since the rubbing process is a process performed to determine the alignment direction of the alignment film, the alignment film 14b having a constant alignment direction is formed.

【0052】次に図2(b)で示すように配向膜14b
上にレジスト18によるパターンを形成する。本実施例
では5μmピッチの縞状のパターンを用いた。パターニ
ングされたレジスト18をマスクにして再びラビング処
理を行う、今回のラビング処理は、先に行ったラビング
処理の方向と直交する方向(例えば図2(b)中に示し
た紙面に垂直なy方向)に行う。
Next, as shown in FIG. 2B, the alignment film 14b is formed.
A pattern is formed by the resist 18 on the top. In this example, a striped pattern having a pitch of 5 μm was used. The rubbing process is performed again using the patterned resist 18 as a mask. This rubbing process is performed in a direction orthogonal to the direction of the rubbing process previously performed (for example, the y direction perpendicular to the paper surface shown in FIG. 2B). ).

【0053】配向膜の配向方向は最終的にラビング処理
を行った方向が有効であるので、レジスト18が覆って
いた配向膜14b上の領域は図2(a)中xで示す配向
方向を有し、覆われていない配向膜14b上の領域は図
2(a)中yで示す配向方向を有するから、レジスト1
8の剥離を行うと、互いに直交する配向方向を有する5
μmピッチの縞状の領域を有する配向膜14bが完成す
る。
The orientation of the orientation film is effective after the rubbing treatment, so that the region on the orientation film 14b covered by the resist 18 has the orientation direction shown by x in FIG. 2 (a). However, since the uncovered region on the alignment film 14b has the alignment direction indicated by y in FIG.
When the peeling of No. 8 is performed, 5 having the orientation directions orthogonal to each other are obtained.
The alignment film 14b having stripe regions with a pitch of μm is completed.

【0054】本実施例の液晶素子11では、配向膜14
a、14bが感光性ポリイミドの配向材料を用いている
ことによって、このレジスト18を現像する工程で使用
する現像液が配向膜14a、14bに与えられるダメー
ジを低減できる。最後に図2(c)に示すように、上記
の処理と同様の処理を施して、液晶分子の配向方向が互
いに直交する向きの領域が5μmピッチで形成された配
向膜14aを設けた基板12aを、配向膜14a、14
bを対向させて配置する。
In the liquid crystal element 11 of this embodiment, the alignment film 14
By using the photosensitive polyimide alignment material for a and 14b, it is possible to reduce the damage given to the alignment films 14a and 14b by the developer used in the step of developing the resist 18. Finally, as shown in FIG. 2C, the same process as the above process is performed to form the substrate 12a provided with the alignment film 14a in which the regions in which the alignment directions of the liquid crystal molecules are orthogonal to each other are formed at a pitch of 5 μm. The alignment films 14a, 14
b are arranged facing each other.

【0055】この時、配向膜14a、14b間で、同一
の配向方向を有する領域が重なるように位置を合わせる
ことが必要である。
At this time, it is necessary to align the alignment films 14a and 14b so that regions having the same alignment direction overlap each other.

【0056】以上の工程を経ることによって、図4に示
した構成の液晶素子11得る。図4は図1(a)の斜視
図である。
Through the above steps, the liquid crystal element 11 having the structure shown in FIG. 4 is obtained. FIG. 4 is a perspective view of FIG.

【0057】ここで再び図1(a)、(b)に戻って本
実施例の液晶素子11の機能について説明する。
Now, returning to FIGS. 1A and 1B again, the function of the liquid crystal element 11 of this embodiment will be described.

【0058】説明の便宜上、点光源で示したが、光17
は透明基板12bの全領域にわたって一様に図示した方
向から入射する。
For convenience of explanation, the light source 17 is shown as a point light source.
Is uniformly incident on the entire area of the transparent substrate 12b from the illustrated direction.

【0059】図1(a)に示した電圧を印加していない
状態において、領域16a、16bでは液晶分子15a
が向かう方向が異なるので、領域16aに入射した偏光
成分17a、17bの屈折率が異なる。偏光成分17a
を例にして説明すると、偏光方向に対して液晶分子15
aの配向方向が平行である領域16aに入射した場合に
は、偏光成分17aは異常屈折率ne を感じる。また、
偏光方向に対して液晶分子15aの配向方向が垂直な領
域16bに入射した場合は常屈折率n0 を感じる。
In the state where the voltage shown in FIG. 1A is not applied, the liquid crystal molecules 15a are formed in the regions 16a and 16b.
Are directed in different directions, the refractive indices of the polarization components 17a and 17b incident on the region 16a are different. Polarization component 17a
For example, the liquid crystal molecules 15 are polarized relative to the polarization direction.
When incident on the region 16a in which the orientation direction of a is parallel, the polarization component 17a feels an extraordinary refractive index n e . Also,
When entering the region 16b in which the alignment direction of the liquid crystal molecules 15a is perpendicular to the polarization direction, the ordinary refractive index n 0 is felt.

【0060】異なる屈折率を有する媒質を伝播して透過
された偏光成分17aは、液晶15によって回折され、
互いに干渉し合って透明基板12aから取り出される。
この時、前期したように、 ΔnT = λ(2m+1)/2 ・・・・・(2) の関係が成立すれば偏光成分17aは全て高次回折を起
こす。
The polarized component 17a which has propagated through the medium having different refractive index and is transmitted is diffracted by the liquid crystal 15,
They interfere with each other and are taken out from the transparent substrate 12a.
At this time, as described above, if the relationship of ΔnT = λ (2m + 1) / 2 (2) holds, all the polarization components 17a cause high-order diffraction.

【0061】また、 Δn = 0 ・・・・・(3) の条件が満たされた場合には17aは全て0次回折を起
こす。
Further, when the condition of Δn = 0 (3) is satisfied, all 17a cause 0th-order diffraction.

【0062】従って、 (ne −n0 )T=λ/2 ・・・・・・・(4) の条件を満たすように液晶素子11を設計した場合、偏
光成分17aは透明電極13aに電圧を印加していない
状態で高次回折、即ち入射方向に回折される光が0とな
る回折を起こす。
Therefore, when the liquid crystal element 11 is designed so as to satisfy the condition (n e −n 0 ) T = λ / 2 (4), the polarization component 17a is applied to the transparent electrode 13a by a voltage. In the state where is not applied, higher-order diffraction, that is, diffraction in which the light diffracted in the incident direction becomes 0, occurs.

【0063】一方、偏光成分17bも、電圧印加の無い
状態において偏光成分17aと同様に高次回折を起こす
ので、液晶素子11において、透明電極13a、13b
に電圧を印加しない場合には、全ての光17の0次回折
光が0となることになる。
On the other hand, since the polarization component 17b also causes high-order diffraction like the polarization component 17a when no voltage is applied, in the liquid crystal element 11, the transparent electrodes 13a and 13b are formed.
When the voltage is not applied to 0, the 0th-order diffracted light of all the lights 17 becomes 0.

【0064】また、図1(b)に示す電圧が印加された
状態では、領域16a、16b共に液晶分子15aが透
明電極13a、13bに垂直な方向に向く。この方向は
偏光成分17a、17bのいずれに対しても垂直である
から、領域16aに入射した光と、領域16bの入射し
た光の屈折率の差分であるΔnの値が0となり、(3)
式を満たす。
In the state where the voltage shown in FIG. 1 (b) is applied, the liquid crystal molecules 15a in both the regions 16a and 16b face the direction perpendicular to the transparent electrodes 13a and 13b. Since this direction is perpendicular to both the polarization components 17a and 17b, the value of Δn, which is the difference between the refractive indices of the light incident on the region 16a and the light incident on the region 16b, becomes 0, and (3)
Satisfy the formula.

【0065】従って、本実施例の液晶素子11において
は透明電極13a、13bに電圧が印加された状態にお
いて全ての光17が0次回折され、透過光の強度の最大
値を得る。
Therefore, in the liquid crystal element 11 of the present embodiment, all the light 17 is diffracted in the 0th order when the voltage is applied to the transparent electrodes 13a and 13b, and the maximum value of the intensity of the transmitted light is obtained.

【0066】上記の結果を図3にまとめる。The above results are summarized in FIG.

【0067】図3より、液晶素子11がON状態で、入
射してくる光を全て0次回折して光の強度を弱めること
が無く、かつOFF状態で入射してくる光を全て高次回
折する。このとによって、ON時の画面が明るく、しか
もON時とOFF時のコントラストが高い液晶素子が実
現できる。
From FIG. 3, when the liquid crystal element 11 is in the ON state, all the incident light is diffracted to the 0th order without weakening the intensity of the light, and all the incident light in the OFF state is subjected to the high order diffraction. To do. This makes it possible to realize a liquid crystal element which has a bright screen when turned on and has a high contrast when turned on and when turned off.

【0068】次に本発明の第2実施例について述べる。Next, a second embodiment of the present invention will be described.

【0069】図5は第2実施例の液晶素子21の概略構
成図である。
FIG. 5 is a schematic diagram of the liquid crystal element 21 of the second embodiment.

【0070】第1実施例では配向膜上に液晶分子の配向
方向が互いに直交する第1の領域と、第2の領域が共に
縞状の形状を有し、かつ一方向にのみ設けられる構成と
したが、領域の形状、配置はこの例に限定されるもので
は無く、例えば第2実施例の液晶素子21においては第
1の領域と、第2の領域が共に矩形状の形状を有し、か
つ光の入射方向に対して一方向、及び方向と直交する方
向に設けられる構成としたものである。
In the first embodiment, the first region and the second region in which the alignment directions of the liquid crystal molecules are orthogonal to each other are both stripe-shaped on the alignment film and are provided only in one direction. However, the shape and arrangement of the regions are not limited to this example. For example, in the liquid crystal element 21 of the second embodiment, both the first region and the second region have a rectangular shape, Moreover, it is configured to be provided in one direction with respect to the incident direction of light and in a direction orthogonal to the direction.

【0071】図5に示すように液晶分子15aの配向方
向が直交する領域16a、16bを形成したことによっ
て、更に回折効果を上げる事が可能である。
By forming the regions 16a and 16b in which the alignment directions of the liquid crystal molecules 15a are orthogonal to each other as shown in FIG. 5, it is possible to further enhance the diffraction effect.

【0072】液晶素子21においては、図2(a)、
(b)に示した工程と同様の工程によって配向膜14
a、14bにラビング処理を行うのであるが、図2
(a)に示した配向膜14a、14b全面へのラビング
処理の後に図5に示す領域16a、16bの配置が実現
できるようにレジスト18のパターンを形成する。即
ち、第1実施例において縞状で、一直線方向にのみ配置
されていたレジスト18のパターンを矩形状にして、互
いに直交する直線方向に配置し、レジスト18によって
マスキングされる領域と、されない領域を交互に配置し
て配向膜14a、14b全面への配向処理と直角方向に
ラビング処理を行うことによって実現されるものであ
る。
In the liquid crystal element 21, as shown in FIG.
The alignment film 14 is formed by a process similar to the process shown in FIG.
The rubbing process is performed on a and 14b.
After the rubbing process on the entire surfaces of the alignment films 14a and 14b shown in (a), a pattern of the resist 18 is formed so that the regions 16a and 16b shown in FIG. 5 can be arranged. That is, in the first embodiment, the pattern of the resist 18 which is striped and arranged only in one straight line direction is made into a rectangular shape and is arranged in the straight line directions orthogonal to each other, and a region masked by the resist 18 and a region not masked are formed. It is realized by alternately arranging the alignment films 14a and 14b on the entire surface and performing a rubbing process in the perpendicular direction.

【0073】次に第3実施例の概略構成図を図6に示
す。
Next, FIG. 6 shows a schematic block diagram of the third embodiment.

【0074】図6は第3実施例の液晶素子31の断面図
である。本実施例の液晶素子31においては、液晶分子
15aの配向方向が直交する領域16a、16bが配向
膜14a、14bの一方にのみ設けられることが特徴と
なる。つまり、基板12aに対して(12bでも可)第
1実施例の液晶素子11で述べた処理と同様の工程によ
って配向膜14a上に互いに直交する領域を設けるが、
他方の基板12aに対しては、感光性ポリイミド配向材
料を転写印刷し、紫外線照射、及び焼成工程のみを施し
て、以降のラビング処理を行わない。このラビング処理
を行わない配向膜を14cと示す。
FIG. 6 is a sectional view of the liquid crystal element 31 of the third embodiment. The liquid crystal element 31 of this embodiment is characterized in that the regions 16a and 16b in which the alignment directions of the liquid crystal molecules 15a are orthogonal to each other are provided only on one of the alignment films 14a and 14b. That is, the regions which are orthogonal to each other are provided on the alignment film 14a by the same process as the process described in the liquid crystal element 11 of the first embodiment for the substrate 12a (12b is also possible).
On the other substrate 12a, a photosensitive polyimide alignment material is transferred and printed, and only the ultraviolet irradiation and firing steps are performed, and the subsequent rubbing process is not performed. The alignment film which is not subjected to this rubbing treatment is shown as 14c.

【0075】一対の基板12a、12bのうち一方のの
み設けられたを配向膜14aを対向する向きに配置し
て、液晶15を封止しても、液晶分子15aは一方の基
板に施された配向処理に従うので第1実施例と同様の効
果を有する液晶素子31が得られる。
Even if only one of the pair of substrates 12a and 12b is provided and the alignment films 14a are arranged in opposite directions to seal the liquid crystal 15, the liquid crystal molecules 15a are applied to one substrate. Since the alignment treatment is performed, the liquid crystal element 31 having the same effect as that of the first embodiment is obtained.

【0076】。 第3実施例では領域16a、16bが
基板12aにのみ設けられていることによって、第1実
施例の液晶素子11、第2実施例の液晶素子21よりも
製造の工程が簡易になり、また基板12a、12bを配
置する際の位置合わせが楽になるという効果がある。第
3実施例の、一方の配向膜にのみラビリング処理を行う
ことで工程を簡易化する方法は、は第1実施例の液晶素
子11、第2実施例21共に適用が可能である また、式(1)、(2)に示した光の波長λと、基板上
の配向膜の間隔Tの相関から、基板上の配向膜の間隔T
を変えることによって、所望の波長の光を制御すること
が可能であることが分かる。
.. In the third embodiment, since the regions 16a and 16b are provided only on the substrate 12a, the manufacturing process is simpler than that of the liquid crystal element 11 of the first embodiment and the liquid crystal element 21 of the second embodiment, and the substrate is This has the effect of facilitating alignment when arranging 12a and 12b. The method of simplifying the process by subjecting only one alignment film to the labyrinth process of the third embodiment can be applied to both the liquid crystal element 11 of the first embodiment and the second embodiment 21. From the correlation between the wavelength λ of light shown in (1) and (2) and the interval T of the alignment film on the substrate, the interval T of the alignment film on the substrate is calculated.
It is understood that it is possible to control the light of the desired wavelength by changing the.

【0077】よって、以上述べた液晶素子11、21、
31のいずれを用いても、透明基板上の配向膜間の間隔
Tを変化させることによって赤(R)、緑(G)、青
(B)の異なる波長を有する光を制御して、合成するこ
とによって投射型ディスプレイの液晶パネルを作成する
ことが可能である。
Therefore, the above-mentioned liquid crystal elements 11, 21,
Whichever of 31 is used, light having different wavelengths of red (R), green (G), and blue (B) is controlled and combined by changing the interval T between the alignment films on the transparent substrate. By doing so, it is possible to create a liquid crystal panel for a projection display.

【0078】この投射型ディスプレイの液晶パネルの例
として概略構成を図7に示す。
A schematic structure is shown in FIG. 7 as an example of a liquid crystal panel of this projection type display.

【0079】光源100から出た光はミラー108、1
06等を通って液晶素子103、104、105を透過
し、またスクリーン107上に合成されて画像を構成す
る。
The light emitted from the light source 100 is reflected by the mirrors 108, 1
The liquid crystal elements 103, 104, and 105 pass through 06 and the like, and are combined on the screen 107 to form an image.

【0080】液晶素子103、104、105は各々
R,G,Bの色に相当する波長領域に対して制御を行う
ように透明基板の間隔を設計してある。例えば、液晶の
屈折率を、 常屈折率n0 =1.5230、異常屈折率ne =1.7
081 として計算してみると、 R表示を行う液晶素子の配向膜の間隔T= 5.1μm G表示を行う液晶素子の配向膜の間隔T= 4.5μm B表示を行う液晶素子の配向膜の間隔T= 3.9μm となる。
In the liquid crystal elements 103, 104 and 105, the intervals between the transparent substrates are designed so as to control the wavelength regions corresponding to the colors of R, G and B, respectively. For example, the refractive index of liquid crystal is as follows: ordinary refractive index n 0 = 1.5230, extraordinary refractive index n e = 1.7.
The distance between the alignment films of the liquid crystal element for R display is T = 5.1 μm, and the distance between the alignment films of the liquid crystal element for G display is T = 4.5 μm. The interval T = 3.9 μm.

【0081】[0081]

【発明の効果】請求項1記載の発明によれば、電圧印加
時において入射光の偏光成分を全て0次回折光とし、か
つ電圧無印加時において全て高次回折光とできることに
よって、従来よりも画面が明るく、かつON、OFFの
コントラストの高い理想的な特性を得ることができる。
請求項2記載の発明によれば、配向膜の間隔Tと、液晶
の常屈折率n0 、異常屈折率ne と、光の波長λとの間
に、 ( ne − n0 )T = λ(2m+1)/2 (m
=整数) の関係が成立することによって、最も暗いOFF状態が
実現でき、ON時とのコントラストの高い良好な特性を
得ることができる。
According to the first aspect of the present invention, when the voltage is applied, all the polarization components of the incident light can be made into the 0th order diffracted light, and when the voltage is not applied, all the higher order diffracted light can be obtained. It is possible to obtain an ideal characteristic that is bright and has a high ON / OFF contrast.
According to the second aspect of the invention, between the distance T of the alignment film, ordinary refractive index n 0 of the liquid crystal, and the extraordinary refractive index n e, and the wavelength of light λ, (n e - n 0 ) T = λ (2m + 1) / 2 (m
= Integer), the darkest OFF state can be realized, and good characteristics with high contrast with the ON state can be obtained.

【0082】請求項3記載の発明によれば、ON、OF
Fのコントラストが高く、かつON時の液晶面が明るい
液晶素子の配向膜の配向処理工程が簡易に行える。
According to the invention of claim 3, ON, OF
The alignment treatment process of the alignment film of the liquid crystal element having a high F contrast and a bright liquid crystal surface when ON can be easily performed.

【0083】請求項4記載の発明によれば、液晶素子の
回折効果をより高め、更に高性能な液晶素子を実現する
ことができる。
According to the invention described in claim 4, it is possible to further enhance the diffraction effect of the liquid crystal element and realize a liquid crystal element of higher performance.

【0084】請求項5記載の発明によれば、製造工程を
簡略化すると共に、透明基板を併せる際に配向膜の位置
合わせが不要になることによって工程の歩留りを向上さ
せて液晶素子の製造コストを低減することができる。
According to the invention described in claim 5, the manufacturing process is simplified, and the alignment film is not required to be aligned when the transparent substrate is combined, so that the process yield is improved and the manufacturing cost of the liquid crystal device is improved. Can be reduced.

【0085】請求項6記載の発明によれば、配向膜上に
配向方向が異なる領域を設ける工程で配向膜が受けるダ
メージが低減し、プロセスを安定させると共に、液晶素
子の信頼性をより高めることができる。
According to the sixth aspect of the present invention, damage to the alignment film is reduced in the step of providing regions having different alignment directions on the alignment film, the process is stabilized, and the reliability of the liquid crystal element is further enhanced. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の概略構成図である。
(a)は電圧を印加していない状態、(b)は電圧を印
加した状態を示す。
FIG. 1 is a schematic configuration diagram of a first embodiment of the present invention.
(A) shows a state where no voltage is applied, and (b) shows a state where a voltage is applied.

【図2】本発明の第1実施例の液晶素子の製造工程を示
したものである。(a)、(b)、(c)は工程の順を
追って示すものである。
FIG. 2 shows a manufacturing process of a liquid crystal device according to a first embodiment of the present invention. (A), (b) and (c) show the order of the steps.

【図3】本発明の第1実施例の液晶素子が、入射光に対
して行う回折結果をまとめた図である。
FIG. 3 is a diagram summarizing diffraction results performed on incident light by the liquid crystal element according to the first embodiment of the present invention.

【図4】図1(a)の斜視図である。FIG. 4 is a perspective view of FIG.

【図5】本発明の第2実施例の概略構成図である。FIG. 5 is a schematic configuration diagram of a second embodiment of the present invention.

【図6】本発明の第3実施例の概略構成図である。FIG. 6 is a schematic configuration diagram of a third embodiment of the present invention.

【図7】参考に、本発明の液晶素子を用いて構成される
TFT液晶パネルの概略構成を示した図である。
FIG. 7 is a diagram showing a schematic configuration of a TFT liquid crystal panel configured by using the liquid crystal element of the present invention for reference.

【図8】従来の回折格子を用いた液晶素子の概略構成図
である。(a)は電圧を印加していない状態、(b)は
電圧を印加した状態を示す。
FIG. 8 is a schematic configuration diagram of a liquid crystal element using a conventional diffraction grating. (A) shows a state where no voltage is applied, and (b) shows a state where a voltage is applied.

【図9】従来の回折格子を用いた液晶素子が、入射光に
対して行う回折結果をまとめた図である。
FIG. 9 is a diagram summarizing diffraction results performed on incident light by a liquid crystal element using a conventional diffraction grating.

【図10】従来の回折格子を用いた液晶素子を積層した
構成の例を示す図である
FIG. 10 is a diagram showing an example of a configuration in which liquid crystal elements using a conventional diffraction grating are laminated.

【符号の説明】[Explanation of symbols]

11、21、31 液晶素子 12a、12b 透明基板 13a、13b 透明電極 14a、14b、14c 配向膜 15 液晶 15a 液晶分子 16a、16b 配向膜の領域 17a、17b 入射光の偏光成分 103、104、105 液晶素子 11, 21, 31 Liquid crystal element 12a, 12b Transparent substrate 13a, 13b Transparent electrode 14a, 14b, 14c Alignment film 15 Liquid crystal 15a Liquid crystal molecule 16a, 16b Alignment film region 17a, 17b Polarization component of incident light 103, 104, 105 Liquid crystal element

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 対向する一対の透明基板と、 該一対の透明基板上にそれぞれ設けられ、間隔Tを隔て
て配置される一対の配向膜と、 該基板上に設けられた透明電極と、該一対の配向膜間に
封入された常屈折率n0 及び異常屈折率ne を有する液
晶とを有し、 該液晶の液晶分子の配向方向が、共に該配向膜の表面と
平行方向であって、互いに直交する第1の領域と第2の
領域とを交互に配置した構成を有すると共に、該液晶内
に入射した入射光が、該電極間に電圧を印加した場合に
全て0次回折光として出射し、かつ電圧を印加しない場
合には全て高次回折光として出射する構成としたことを
特徴とする液晶素子。
1. A pair of transparent substrates facing each other, a pair of alignment films respectively provided on the pair of transparent substrates with a distance T therebetween, a transparent electrode provided on the substrate, A liquid crystal having an ordinary refractive index n 0 and an extraordinary refractive index n e enclosed between a pair of alignment films, and the alignment directions of the liquid crystal molecules of the liquid crystal are both parallel to the surface of the alignment film. , And has a structure in which first regions and second regions that are orthogonal to each other are alternately arranged, and all incident light that has entered the liquid crystal is emitted as 0th-order diffracted light when a voltage is applied between the electrodes. In addition, the liquid crystal element is characterized in that all the light is emitted as high-order diffracted light when no voltage is applied.
【請求項2】 対向する一対の透明基板と、 該一対の透明基板上にそれぞれ設けられ、間隔Tを隔て
て配置される一対の配向膜と、 該基板上に設けられた透明電極と、該一対の配向膜間に
封入された常屈折率n0 及び異常屈折率ne を有する液
晶とを有し、 該液晶の液晶分子の配向方向が、共に該配向膜の表面と
平行方向であって、かつ互いに直交する第1の領域と第
2の領域とを交互に配置した構成を有すると共に、該配
向膜の間隔Tと、該液晶の常屈折率n0 と、異常屈折率
e 、該液晶に入射する入射光の波長λと、或いは波長
λを中心とした分布を有する入射光との間に、 ( ne − n0 )T = λ(2m+1)/2 (m
=整数) の関係が成立する構成としたことを特徴とする液晶素
子。
2. A pair of transparent substrates facing each other, a pair of alignment films respectively provided on the pair of transparent substrates with a distance T therebetween, a transparent electrode provided on the substrate, A liquid crystal having an ordinary refractive index n 0 and an extraordinary refractive index n e enclosed between a pair of alignment films, and the alignment directions of the liquid crystal molecules of the liquid crystal are both parallel to the surface of the alignment film. And the first region and the second region which are orthogonal to each other are alternately arranged, and the distance T between the alignment films, the ordinary refractive index n 0 of the liquid crystal, and the extraordinary refractive index n e , Between the wavelength λ of the incident light entering the liquid crystal and the incident light having a distribution centered around the wavelength λ, (n e −n 0 ) T = λ (2m + 1) / 2 (m
= Integer), the liquid crystal element is configured to satisfy the relationship.
【請求項3】 該第1の領域と、該第2の領域が共に縞
状の形状を有し、かつ該配向膜の表面上一方向に交互に
配置された構成としたことを特徴とする請求項1または
2記載の液晶素子。
3. The first region and the second region both have a striped shape, and are arranged alternately in one direction on the surface of the alignment film. The liquid crystal element according to claim 1 or 2.
【請求項4】 該第1の領域と該第2の領域が、共に矩
形状の形状を有し、かつ該配向膜の表面上一方向、及び
該一方向と直交する方向に交互に配置された構成とした
ことを特徴とする請求項1または2記載の液晶素子。
4. The first region and the second region both have a rectangular shape and are alternately arranged on the surface of the alignment film in one direction and in a direction orthogonal to the one direction. 3. The liquid crystal device according to claim 1, wherein the liquid crystal device has the above structure.
【請求項5】 上記一対の該配向膜のうち、一方の配向
膜にのみ配向処理が成されている構成としたことを特徴
とする請求項1乃至4いずれかに記載の液晶素子。
5. The liquid crystal device according to claim 1, wherein only one of the pair of alignment films is subjected to the alignment treatment.
【請求項6】 該配向膜は感光性の樹脂より成る構成と
したことを特徴とする請求項1乃至5のいずれかに記載
の液晶素子。
6. The liquid crystal device according to claim 1, wherein the alignment film is made of a photosensitive resin.
JP21929594A 1994-09-13 1994-09-13 Liquid crystal element Expired - Fee Related JP3412775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21929594A JP3412775B2 (en) 1994-09-13 1994-09-13 Liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21929594A JP3412775B2 (en) 1994-09-13 1994-09-13 Liquid crystal element

Publications (2)

Publication Number Publication Date
JPH0882799A true JPH0882799A (en) 1996-03-26
JP3412775B2 JP3412775B2 (en) 2003-06-03

Family

ID=16733265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21929594A Expired - Fee Related JP3412775B2 (en) 1994-09-13 1994-09-13 Liquid crystal element

Country Status (1)

Country Link
JP (1) JP3412775B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533735A (en) * 2000-05-18 2003-11-11 レイセオン・カンパニー Electronic variable optical attenuator
JP2006215186A (en) * 2005-02-02 2006-08-17 Ricoh Co Ltd Diffraction element, manufacturing method of the same, and polarization selecting device using diffraction element
WO2008004570A1 (en) * 2006-07-05 2008-01-10 Nikon Corporation Optical low pass filter, camera, imaging device and process for manufacturing optical low pass filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533735A (en) * 2000-05-18 2003-11-11 レイセオン・カンパニー Electronic variable optical attenuator
JP2006215186A (en) * 2005-02-02 2006-08-17 Ricoh Co Ltd Diffraction element, manufacturing method of the same, and polarization selecting device using diffraction element
WO2008004570A1 (en) * 2006-07-05 2008-01-10 Nikon Corporation Optical low pass filter, camera, imaging device and process for manufacturing optical low pass filter
US8194209B2 (en) 2006-07-05 2012-06-05 Nikon Corporation Optical low-pass filter, camera, imaging apparatus, and method for producing optical low-pass filter

Also Published As

Publication number Publication date
JP3412775B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JP3590737B2 (en) Liquid crystal display device
JP4651791B2 (en) Reflective liquid crystal display device, manufacturing method thereof, and driving method thereof
KR100382586B1 (en) LCD and its manufacturing method
JP3412775B2 (en) Liquid crystal element
JPS62239126A (en) Liquid crystal display panel and its production
JPH09160013A (en) Liquid crystal display panel
JP3718695B2 (en) LCD panel
JP2537562B2 (en) Method for manufacturing color filter layer of liquid crystal display device
JPS60211425A (en) Liquid crystal display device
US20130314631A1 (en) Pixel structure of liquid crystal display utilizing asymmetrical diffraction
JP2003344860A (en) Method for simultaneously manufacturing spacer and protrusion
JPH0652351B2 (en) Light modulator
JPH1062798A (en) Diffraction type liquid crystal display panel
JP4335067B2 (en) Electro-optic device
JP4241315B2 (en) Color filter substrate, electro-optical device, method for manufacturing color filter substrate, method for manufacturing electro-optical device, and electronic apparatus
JP3379390B2 (en) Master hologram, method for manufacturing color filter using the same
JP3588643B2 (en) Liquid crystal display panel and projection display
JP2517589B2 (en) Light modulation element
JPS60222824A (en) Liquid crystal display device
JPS62237425A (en) Light modulating element
JPH06265927A (en) Liquid crystal spatial light modulator
JPS62238521A (en) Optical modulator
JPH0315822A (en) Projection type liquid crystal display device
JPS6234141A (en) In-finder display device
JPS62238517A (en) Optical modulator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110328

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120328

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120328

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees