JPH0880497A - Nitrator - Google Patents

Nitrator

Info

Publication number
JPH0880497A
JPH0880497A JP21921794A JP21921794A JPH0880497A JP H0880497 A JPH0880497 A JP H0880497A JP 21921794 A JP21921794 A JP 21921794A JP 21921794 A JP21921794 A JP 21921794A JP H0880497 A JPH0880497 A JP H0880497A
Authority
JP
Japan
Prior art keywords
nitrification
water
tank
treated
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21921794A
Other languages
Japanese (ja)
Inventor
Hiroaki Ishida
浩昭 石田
Motoyuki Yoda
元之 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP21921794A priority Critical patent/JPH0880497A/en
Publication of JPH0880497A publication Critical patent/JPH0880497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: To maintain the pH in a nitration tank with the range where the activity of nitrating bacteria is enhanced even when the pH, NH4 <+> concn. or alkalinity of the water to be treated are fluctuated at a low cost and with a simple operation at the time of biologically nitrating the water with the plug-flow nitration tank and consequently to stably conduct nitration at a high rate. CONSTITUTION: The water 11 to be treated is introduced into a pH regulating tank 1, and an alkaline agent is added from its storage tank 3. In this case, the pH is measured by a first pH measuring device 2, and the water is controlled to pH 6.0-9.7 where the activity of the nitrating bacteria is enhanced. The pH-regulated water is introduced into a plug-flow nitration tank 4 and biologically nitrated. The pH of the nitrated water (outlet water) is measured by a second pH measuring device 5, and carbon dioxide is injected into the alkaline agent in the tank 3 to keep the pH at 6.0-9.7, and a buffer capacity is imparted to the water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被処理水中の窒素化合
物をプラグフロー型の硝化槽を用いて生物学的に硝化す
る硝化装置に関し、窒素化合物含有排液の生物学的硝化
脱窒法に利用可能な硝化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrification apparatus for biologically nitrifying nitrogen compounds in water to be treated by using a plug flow type nitrification tank. The present invention relates to usable nitrification equipment.

【0002】[0002]

【従来の技術】アンモニア性または有機性窒素化合物を
含む排液を処理する方法として、生物学的硝化脱窒処理
法がある。この方法は活性汚泥の存在下に好気性処理し
て排液中のCOD、BOD成分を分解するとともに、有
機性窒素化合物をアンモニア性窒素とし、その後硝化細
菌が増殖した活性汚泥の存在下に曝気してアンモニア性
窒素(NH4−N)を硝化細菌により亜硝酸性または硝
酸性窒素(以下、これらをまとめてNOx−Nという場
合がある)に硝化(酸化)した後、脱窒細菌が増殖した
活性汚泥の存在下に嫌気状態に維持することにより、亜
硝酸性また硝酸性窒素を窒素ガスに還元して脱窒する方
法である。
2. Description of the Related Art As a method for treating an effluent containing an ammoniacal or organic nitrogen compound, there is a biological nitrification denitrification treatment method. This method decomposes COD and BOD components in the effluent by aerobic treatment in the presence of activated sludge, converts organic nitrogen compounds into ammonia nitrogen, and then aerates in the presence of activated sludge in which nitrifying bacteria have proliferated. After nitrifying (oxidizing) ammoniacal nitrogen (NH 4 —N) into nitrite or nitrate nitrogen (hereinafter collectively referred to as NOx-N) by nitrifying bacteria, denitrifying bacteria grow. This is a method of denitrifying by reducing nitrite or nitrate nitrogen to nitrogen gas by maintaining it in an anaerobic state in the presence of the activated sludge.

【0003】硝化および脱窒の両反応ともpH変化を伴
う反応であるが、特に硝化反応では、1モルのNH4 +
硝化される際に2モルのH+が発生するため、硝化処理
水のpHが大幅に低下する。ところが硝化細菌の硝化活
性は図3に示すようにpHによって大きく影響を受ける
ため、何らかの手段で硝化槽内のpHを硝化細菌の活性
が高い範囲内に制御することが必要である。
Both nitrification and denitrification reactions are reactions involving pH changes. Particularly, in the nitrification reaction, 2 mol of H + is generated when 1 mol of NH 4 + is nitrified, so that nitrification-treated water is treated. The pH of is drastically reduced. However, the nitrifying activity of nitrifying bacteria is greatly affected by pH as shown in FIG. 3, so it is necessary to control the pH in the nitrifying tank within a range where the activity of nitrifying bacteria is high by some means.

【0004】ところで硝化におけるpH変化は、被処理
水のNH4 +濃度およびアルカリ度によって決定される。
すなわち、被処理水のアルカリ度がNH4 +濃度と比較し
て十分に大きい場合は、硝化によるpH低下は小さくな
り、逆にアルカリ度がNH4 +濃度と比較して小さい場合
にはpH低下は大きくなる。
The pH change in nitrification is determined by the NH 4 + concentration and alkalinity of the water to be treated.
That is, when the alkalinity of the water to be treated is sufficiently higher than the NH 4 + concentration, the pH drop due to nitrification is small, and conversely, when the alkalinity is small compared to the NH 4 + concentration, the pH drop is low. Grows.

【0005】従来、硝化によるpH低下に対処するため
に、pH調整剤として水酸化ナトリウム等のアルカリを
添加して、pHを所定値に維持することが行われてお
り、pH調整剤としては炭酸アルカリの使用も可能とさ
れている(例えば特開昭56−111097号、同55
−102498号、同59−139987号)。しかし
これらの従来例に示されている硝化は完全混合型のもの
であって、プラグフロー型の硝化槽への適用については
示唆されていない。
Conventionally, in order to deal with the decrease in pH due to nitrification, an alkali such as sodium hydroxide is added as a pH adjusting agent to maintain the pH at a predetermined value. It is also possible to use an alkali (for example, JP-A-56-111097 and JP-A-55-11550).
-102498, 59-139987). However, the nitrification shown in these conventional examples is of a completely mixed type, and no application to a plug flow type nitrification tank is suggested.

【0006】活性汚泥法など、完全混合型の浮遊法によ
って硝化を行う場合、被処理水はほぼ完全混合状態とな
っているため、pH制御は硝化槽液中にpHセンサーを
入れ、pHが所定の範囲内になるようにNaOH等のア
ルカリを添加することにより、容易に制御することがで
きる。
When nitrification is carried out by a complete mixing type floating method such as the activated sludge method, the water to be treated is in a nearly completely mixed state. Therefore, a pH sensor is put in the nitrification tank liquid to control the pH. It can be easily controlled by adding an alkali such as NaOH so as to fall within the range.

【0007】これに対し、硝化細菌が増殖した生物ろ過
層を有する硝化槽を用いて硝化を行う場合は、被処理水
がプラグフローで流れているため、硝化槽全体のpHを
所定の範囲に調整することは困難であり、流下方向にp
Hが低下する。この場合でも硝化槽の前段にpH調整槽
を設け、硝化槽の入口でpH調整を行うことはできる
が、被処理水のアルカリ度がNH4 +濃度と比較して低い
場合は、硝化槽内でのpH低下が大きく、硝化細菌の活
性を高く維持することが困難となり、このため安定して
高い硝化速度(NH4−N除去速度)で硝化することは
できない。また、あらかじめ硝化槽内でのpH低下を見
越して、硝化槽入口でのpHを高く設定すると、硝化槽
入口のpHが高くなりすぎて、硝化細菌の反応が阻害さ
れる場合がある。
On the other hand, when nitrification is carried out using a nitrification tank having a biological filtration layer in which nitrifying bacteria have proliferated, the pH of the whole nitrification tank falls within a predetermined range because the water to be treated flows in a plug flow. It is difficult to adjust and p
H decreases. Even in this case, it is possible to install a pH adjustment tank at the front stage of the nitrification tank and adjust the pH at the entrance of the nitrification tank, but if the alkalinity of the water to be treated is lower than the NH 4 + concentration, In this case, it is difficult to maintain the activity of nitrifying bacteria at a high level due to a large decrease in pH, and therefore nitrification cannot be stably performed at a high nitrification rate (NH 4 -N removal rate). Also, if the pH at the entrance of the nitrification tank is set to a high value in anticipation of a decrease in pH in the nitrification tank, the pH at the entrance of the nitrification tank becomes too high, and the reaction of nitrifying bacteria may be hindered.

【0008】硝化槽内でのpHの低下を防止するには、
例えば硝化槽から流出する硝化処理水を再び入口に循環
し、被処理水と循環水とを混合した状態でpH調整する
ことが可能である。この場合、硝化槽入口でのNH4 +
度がアルカリ度と比較して小さくなるため、硝化槽内の
pH低下が小さくなる。理論的には、循環比(被処理水
流量に対する循環水量の割合)を大きくすればするだ
け、被処理水の流れが完全混合状態に近づき、浮遊法と
同様の条件に近づく。しかし、実際には循環ポンプの動
力コストの増加、硝化槽内の液流速が増加することによ
る圧力損失の増加などから、上記のような方法では限界
がある。このためプラグフロー型の硝化槽により硝化す
る場合、低コストで簡単にpH調整することができ、こ
れにより安定して高い硝化速度で硝化することが可能な
硝化方法が要望されている。
To prevent the pH from decreasing in the nitrification tank,
For example, it is possible to circulate the nitrification-treated water flowing out from the nitrification tank again to the inlet, and to adjust the pH in a state where the water to be treated and the circulating water are mixed. In this case, since the NH 4 + concentration at the entrance of the nitrification tank becomes smaller than the alkalinity, the pH drop in the nitrification tank becomes small. Theoretically, as the circulation ratio (ratio of the circulating water amount to the treated water flow rate) is increased, the flow of the treated water approaches a completely mixed state, and the conditions similar to those of the floating method are approached. However, in practice, there is a limit in the above method due to an increase in power cost of the circulation pump and an increase in pressure loss due to an increase in liquid flow rate in the nitrification tank. Therefore, when nitrification is performed by a plug flow type nitrification tank, there is a demand for a nitrification method capable of easily adjusting the pH at low cost and thereby stably nitrifying at a high nitrification rate.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、被処
理水中の窒素化合物をプラグフロー型の硝化槽を用いて
生物学的に硝化するに際し、被処理水中のpH、NH4 +
濃度、有機性窒素化合物含有量またはアルカリ度などが
変動する場合でも、硝化槽内のpHを硝化細菌の硝化活
性が高くなるように低コストで簡単に維持することがで
き、これにより安定して高い硝化速度で硝化することが
可能な硝化装置を提供することである。
An object of the present invention is to provide a, upon biologically nitrifying using nitrification tank plug flow of nitrogen compounds in the water to be treated, in the for-treatment water pH, NH 4 +
Even when the concentration, organic nitrogen compound content or alkalinity changes, the pH in the nitrification tank can be easily maintained at a low cost so that the nitrifying activity of nitrifying bacteria becomes high, and thereby stable An object of the present invention is to provide a nitrification apparatus capable of nitrifying at a high nitrification rate.

【0010】[0010]

【課題を解決するための手段】本発明は、被処理水のp
Hを調整するpH調整槽と、pH調整された被処理水を
生物学的に硝化するプラグフロー型の硝化槽と、この硝
化槽に導入する被処理水のpHを測定する第一のpH測
定装置と、この第一のpH測定装置の測定値がpH6.
0〜9.7になるように、pH調整槽にアルカリ剤を添
加する薬注装置と、硝化処理水のpHを測定する第二の
pH測定装置と、この第二のpH測定装置の測定値がp
H6.0〜9.7を維持するように、前記アルカリ剤に
二酸化炭素を注入する二酸化炭素注入装置とを備えてい
ることを特徴とする硝化装置である。
SUMMARY OF THE INVENTION The present invention is based on p
A pH adjusting tank for adjusting H, a plug flow type nitrification tank for biologically nitrifying the pH-adjusted water to be treated, and a first pH measurement for measuring the pH of the water to be introduced to the nitrification tank The measurement value of the device and the first pH measuring device is pH 6.
A chemical injection device for adding an alkaline agent to the pH adjusting tank so as to be 0 to 9.7, a second pH measuring device for measuring the pH of the nitrification-treated water, and a measurement value of the second pH measuring device. Is p
A nitrification device comprising: a carbon dioxide injection device for injecting carbon dioxide into the alkali agent so as to maintain H 6.0 to 9.7.

【0011】本発明の硝化装置において処理の対象とな
る被処理水は、アンモニア性窒素または有機性窒素化合
物を含有する液であり、他の不純物を含んでいてもよ
い。特にアルカリ度(M−アルカリ度、以下同じ)がN
4 +濃度と比較して低く、硝化によりpHが大きく低下
する排液、あるいはpH、NH4 +濃度、有機性窒素化合
物含有量またはアルカリ度が変動する排液などが処理に
適している。このような被処理水は硝化槽に導入する前
に、活性汚泥を用いた好気性処理により有機物を分解
し、あるいは硝化処理水の循環により脱窒工程を行うな
どの処理を行ってもよい。
The water to be treated in the nitrification apparatus of the present invention is a liquid containing ammoniacal nitrogen or an organic nitrogen compound and may contain other impurities. Especially the alkalinity (M-alkalinity, the same applies below) is N
An effluent which is lower than the H 4 + concentration and whose pH is greatly lowered by nitrification, or an effluent whose pH, NH 4 + concentration, organic nitrogen compound content or alkalinity varies is suitable for the treatment. Such water to be treated may be subjected to a treatment such as decomposing organic matter by aerobic treatment using activated sludge or performing a denitrification process by circulating nitrification treated water before introducing it into the nitrification tank.

【0012】本発明で使用するプラグフロー型の硝化槽
は、硝化細菌が増殖した生物汚泥層を槽内に充填し、こ
の充填層に被処理水をプラグフロー(一方向流)で通水
して、好気性下に接触させて硝化する装置である。生物
汚泥層の形成方法としては、造粒化汚泥を充填するも
の、あるいは充填層に生物汚泥を付着させるものなど、
任意に選択することができ、固定床型、流動床型など任
意の形式のものが採用できる。
In the plug flow type nitrification tank used in the present invention, a biological sludge layer in which nitrifying bacteria have grown is filled in the tank, and the water to be treated is passed through this packed layer by plug flow (one-way flow). Then, it is a device for nitrifying by contacting under aerobic conditions. As a method for forming a biological sludge layer, a method of filling the granulated sludge, or a method of attaching the biological sludge to the packed layer,
Any type such as a fixed bed type and a fluidized bed type can be adopted.

【0013】本発明の硝化装置を構成するpH調整槽
は、被処理水を導入し、アルカリ剤を添加して均一に混
合し、pH調整するように構成されたものである。均一
に混合するために任意の攪拌手段を用いることができ
る。pH調整槽には硝化槽から硝化処理水を循環して混
合するように構成するのが好ましく、これによってpH
が高すぎる場合は塩酸、硫酸等の酸をpH調整槽に添加
するのが好ましい。
The pH adjusting tank constituting the nitrification apparatus of the present invention is constructed so that the water to be treated is introduced, an alkaline agent is added and the mixture is uniformly mixed to adjust the pH. Any stirring means can be used for uniform mixing. The pH adjusting tank is preferably configured to circulate and mix the nitrification-treated water from the nitrification tank.
When the value is too high, it is preferable to add an acid such as hydrochloric acid or sulfuric acid to the pH adjusting tank.

【0014】第一のpH測定装置は硝化槽に導入する被
処理水のpHを測定し、その測定値に基づいて、被処理
水にpH調整剤としてアルカリ剤または酸を添加し、被
処理水を前記pHに制御するように構成する。原水が前
記pH範囲に入る場合でも、硝化処理水を循環すること
によってpHを下げ、これにより平均的な状態ではアル
カリ剤を注入してpH制御をするように構成する。
The first pH measuring device measures the pH of the water to be treated which is introduced into the nitrification tank, and based on the measured value, an alkaline agent or an acid is added to the water to be treated as a pH adjuster to obtain the water to be treated. Is controlled to the above pH. Even when the raw water falls within the above pH range, the pH is lowered by circulating the nitrification-treated water, so that the alkaline agent is injected to control the pH in an average state.

【0015】第二のpH測定装置は、硝化槽で硝化した
硝化処理水のpHを測定し、その測定値が前記pH値を
維持するように、アルカリ剤に注入する二酸化炭素量を
制御するように構成する。二酸化炭素の注入はガスボン
ベから直接注入する方法のほか、二酸化炭素を含む空気
を散気する方法によっても行うことができる。上記の制
御はフィードバック制御であり、硝化処理水のpHが上
記下限値を下まわり、あるいは下限値に近づいたときに
二酸化炭素の添加量を増大させ、上限値を超え、あるい
は上限値に近づいたときに二酸化炭素の添加量を減少さ
せるように制御する。
The second pH measuring device measures the pH of the nitrification-treated water nitrified in the nitrification tank, and controls the amount of carbon dioxide injected into the alkaline agent so that the measured value maintains the pH value. To configure. Carbon dioxide can be injected by a method of directly injecting from a gas cylinder or a method of diffusing air containing carbon dioxide. The above control is feedback control, and when the pH of the nitrification-treated water falls below the lower limit value or approaches the lower limit value, the amount of carbon dioxide added is increased and exceeds the upper limit value or approaches the upper limit value. At times, control is performed so as to reduce the amount of carbon dioxide added.

【0016】[0016]

【作用】本発明では、上記のようにしてpH調整槽でp
H6.0〜9.7、好ましくは6.5〜9.5、さらに
好ましくは7.5〜9.5に調整した被処理水を、プラ
グフロー型の硝化槽に導入し、好気性下にプラグフロー
で通水して、硝化細菌により硝化を行う。硝化槽におけ
る硝化はアンモニア性窒素を亜硝酸または硝酸性窒素に
酸化するものであるから、被処理水中に有機物が存在す
る場合はあらかじめ活性汚泥処理等により除去しておく
ことにより、硝化槽における硝化細菌を優勢にして効率
よく硝化を行うことができる。
In the present invention, the pH is adjusted in the pH adjusting tank as described above.
The water to be treated adjusted to H 6.0 to 9.7, preferably 6.5 to 9.5, and more preferably 7.5 to 9.5 was introduced into a plug flow type nitrification tank, and aerobically operated. Water is passed through the plug flow and nitrification is performed by nitrifying bacteria. Nitrification in the nitrification tank oxidizes ammoniacal nitrogen to nitrous acid or nitrate nitrogen.Therefore, if organic matter is present in the water to be treated, it should be removed by activated sludge treatment beforehand. Bacteria can be predominant and nitrification can be performed efficiently.

【0017】本発明では、被処理水のpHを前記範囲と
し、しかも硝化処理水のpHが6.0〜9.7、好まし
くは6.5〜9.5、さらに好ましくは6.5〜7.5
の範囲を維持するようにアルカリ剤に二酸化炭素を添加
することにより、硝化細菌の硝化活性が高くなるpH範
囲で硝化が行われ、しかも被処理水に緩衝性が付与され
るため、硝化反応により亜硝酸または硝酸が生成しても
緩衝作用によりpHの低下は防止され、プラグフローの
場合でも効率よく硝化が行われる。アルカリ剤としては
水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ
が好ましい。これらは二酸化炭素吹込により炭酸アルカ
リの析出が生じない濃度、例えば水酸化ナトリウムの場
合5〜15重量%が好ましい。
In the present invention, the pH of the water to be treated is within the above range, and the pH of the nitrification treated water is 6.0 to 9.7, preferably 6.5 to 9.5, more preferably 6.5 to 7. .5
By adding carbon dioxide to the alkaline agent so as to maintain the above range, nitrification is performed in a pH range where the nitrifying activity of nitrifying bacteria is high, and moreover, the water to be treated is buffered, so that the nitrification reaction Even if nitrous acid or nitric acid is produced, the pH is prevented from lowering due to the buffer action, and nitrification is efficiently performed even in the case of plug flow. As the alkaline agent, alkali hydroxides such as sodium hydroxide and potassium hydroxide are preferable. The concentration of these is preferably such that the precipitation of alkali carbonate does not occur by blowing carbon dioxide, for example, 5 to 15% by weight in the case of sodium hydroxide.

【0018】本発明の硝化装置は、アンモニア含有液ま
たは有機性排液の生物学的硝化脱窒法における硝化装置
として用いられるが、硝化のみを対象とする場合にも利
用可能である。
The nitrification apparatus of the present invention is used as a nitrification apparatus in a biological nitrification denitrification method of an ammonia-containing liquid or an organic waste liquid, but it can also be used when only nitrification is intended.

【0019】生物学的硝化脱窒法として利用する場合
は、予め活性汚泥法等の好気性処理により有機物を分解
すると同時に有機性窒素化合物をアンモニア性窒素に変
換しておくことが好適である。また脱窒槽を硝化槽の前
段に設けて硝化処理水を循環し、この脱窒槽に被処理水
を導入して、脱窒細菌の存在下に嫌気状態に維持するこ
とにより脱窒を行った後、硝化槽に導入して硝化を行う
ことができる。この場合は脱窒槽と硝化槽を1個の槽内
に設けることができ、例えば生物濾過装置の中間に散気
装置を設けて、上部を好気状態に保ち、上向流で被処理
水を通水すると、上部を硝化槽、下部を脱窒槽として一
体化することができる。このような場合でも、前記のよ
うに制御することにより、効率よく硝化を行うことがで
きる。
When used as a biological nitrification / denitrification method, it is preferable to previously decompose an organic matter by an aerobic treatment such as an activated sludge method and simultaneously convert an organic nitrogen compound into ammoniacal nitrogen. In addition, a denitrification tank was installed in the preceding stage of the nitrification tank to circulate the nitrification-treated water, and the water to be treated was introduced into this denitrification tank, and denitrification was performed by maintaining the anaerobic state in the presence of denitrification bacteria , Can be introduced into a nitrification tank to perform nitrification. In this case, a denitrification tank and a nitrification tank can be provided in one tank. For example, an air diffuser is provided in the middle of the biological filtration device to keep the upper part in an aerobic state and the treated water is treated in an upward flow. When water is passed, the upper part can be integrated with the nitrification tank and the lower part with the denitrification tank. Even in such a case, nitrification can be efficiently performed by controlling as described above.

【0020】[0020]

【実施例】次に本発明の実施例を図面により説明する。
図1は実施例の硝化装置を示す系統図である。図1にお
いて、1はpH調整槽、2は第一のpH測定装置、3は
アルカリ剤貯槽、4はプラグフロー型の硝化槽、5は第
二のpH測定装置、6は調圧槽、7は制御装置である。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 is a system diagram showing the nitrification apparatus of the embodiment. In FIG. 1, 1 is a pH adjusting tank, 2 is a first pH measuring device, 3 is an alkaline agent storage tank, 4 is a plug flow type nitrification tank, 5 is a second pH measuring device, 6 is a pressure adjusting tank, 7 Is a control device.

【0021】pH調整槽1には被処理水路11、アルカ
リ剤注入路12、および循環路13が接続し、槽内液の
pHを測定する第一のpH測定装置2、攪拌機14およ
び給液ポンプ15が設けられ、給液ポンプ15から連絡
路16が調圧槽6に連絡している。被処理水路11には
被処理水ポンプ17、アルカリ剤注入路12には薬注ポ
ンプ18、循環路13には循環ポンプ19が設けられて
いる。
The pH adjusting tank 1 is connected to a water passage 11 to be treated, an alkali agent injecting passage 12 and a circulation passage 13, and a first pH measuring device 2 for measuring the pH of the liquid in the tank, a stirrer 14 and a liquid supply pump. 15 is provided, and the communication passage 16 communicates with the pressure adjusting tank 6 from the liquid supply pump 15. The treated water passage 11 is provided with a treated water pump 17, the alkaline agent injection passage 12 is provided with a chemical injection pump 18, and the circulation passage 13 is provided with a circulation pump 19.

【0022】硝化槽4の内部には、硝化細菌を有する生
物ろ過層21が形成されている。生物ろ過層21の下部
には散気装置22が設けられて空気供給路23に接続
し、硝化槽4の上部には硝化処理水のpHを測定する第
二のpH測定装置5が設けられている。また硝化槽4の
下部には調圧槽6からの連絡路24、生物ろ過層21の
上部には処理水路25およびpH調整槽1への循環路1
3、ならびに硝化槽4の上部には排ガス路26が接続し
ている。
A biological filtration layer 21 containing nitrifying bacteria is formed inside the nitrification tank 4. An air diffuser 22 is provided below the biological filtration layer 21 and connected to the air supply passage 23, and a second pH measuring device 5 for measuring the pH of the nitrification-treated water is provided above the nitrification tank 4. There is. Further, the lower part of the nitrification tank 4 is a communication path 24 from the pressure adjusting tank 6, the upper part of the biological filtration layer 21 is a treated water path 25, and a circulation path 1 to the pH adjusting tank 1.
An exhaust gas passage 26 is connected to the upper portion of the nitrification tank 3 and the nitrification tank 4.

【0023】アルカリ剤貯槽3の下部には散気装置31
が設けられて二酸化炭素供給路32に接続している。二
酸化炭素供給路32はブロア33に連絡し、途中に流量
調節弁34が設けられている。35は選択的に用いられ
るガスボンベである。また、アルカリ剤貯槽3には水位
計36が設けられており、その検出信号によって必要に
より別途設けられたアルカリ剤供給源からアルカリ剤が
補給されて、所定範囲のアルカリ剤が常時貯えられるよ
うに構成されている。アルカリ剤貯槽3の大きさは二酸
化炭素吹込によるpH調整が容易にできるように小容量
のものが好ましい。
An air diffuser 31 is provided below the alkaline agent storage tank 3.
Is provided and connected to the carbon dioxide supply path 32. The carbon dioxide supply path 32 communicates with the blower 33, and a flow rate control valve 34 is provided on the way. Reference numeral 35 is a gas cylinder used selectively. In addition, a water level gauge 36 is provided in the alkaline agent storage tank 3, and the alkaline agent is replenished from a separately provided alkaline agent supply source according to the detection signal so that the alkaline agent in a predetermined range can be constantly stored. It is configured. The size of the alkaline agent storage tank 3 is preferably small so that the pH can be easily adjusted by blowing carbon dioxide.

【0024】制御装置7は第一のpH測定装置2の測定
pH信号を入力し、測定値がpH6.0、好ましくは
6.5、さらに好ましくは7.5より低い場合には薬注
ポンプ18に駆動信号を出力し、測定値がpH9.7、
好ましくは9.5、より高い場合には停止信号を出力す
るように構成されている。また制御装置7は第二のpH
測定装置5の測定pH信号を入力し、フィードバック制
御により測定値がpH6.0、好ましくは6.5より低
い場合は必要二酸化炭素注入量を演算してブロア33お
よび流量調節弁34に駆動信号を出力するように構成さ
れている。
The control device 7 inputs the measured pH signal of the first pH measuring device 2, and when the measured value is lower than pH 6.0, preferably 6.5, more preferably 7.5, the dosing pump 18 Output a drive signal to the measured value of pH 9.7,
It is preferably configured to output a stop signal when it is higher than 9.5. In addition, the control device 7 controls the second pH.
When the measured pH signal of the measuring device 5 is input and the measured value is feedback-controlled, the required carbon dioxide injection amount is calculated when the measured value is lower than 6.0, preferably 6.5, and a drive signal is supplied to the blower 33 and the flow rate control valve 34. It is configured to output.

【0025】アルカリ剤貯槽3、アルカリ剤注入路1
2、および薬注ポンプ18が薬注装置を構成し、第一の
pH測定装置2の測定pH値に応じて、制御装置7の制
御信号によりアルカリ剤をpH調整槽1に注入するよう
に構成されている。また散気装置31、二酸化炭素供給
路32、ブロア33、流量調節弁34およびガスボンベ
35が二酸化炭素注入装置を構成し、第二のpH測定装
置5の測定pHに応じて制御装置7の制御信号により二
酸化炭素を注入するように構成されている。
Alkaline agent storage tank 3, alkaline agent injection passage 1
2 and the chemical injection pump 18 constitute a chemical injection device, and the alkaline agent is injected into the pH adjusting tank 1 by a control signal of the control device 7 according to the measured pH value of the first pH measuring device 2. Has been done. Further, the air diffuser 31, the carbon dioxide supply path 32, the blower 33, the flow rate control valve 34, and the gas cylinder 35 constitute a carbon dioxide injecting device, and a control signal of the control device 7 according to the measured pH of the second pH measuring device 5. Is configured to inject carbon dioxide.

【0026】図1において、22aおよび23aは硝化
槽4において、硝化のほかに脱窒を行う場合の散気装置
22および空気供給路23の位置を示し、この位置に散
気装置22および空気供給路23を配置することによ
り、生物ろ過層21のうち散気装置22aより上部に硝
化部21aが形成され、散気装置22aより下部に脱窒
部21bが形成される。
In FIG. 1, reference numerals 22a and 23a show the positions of the air diffuser 22 and the air supply passage 23 in the nitrification tank 4 when performing denitrification in addition to nitrification, and the air diffuser 22 and the air supply are provided at these positions. By arranging the passage 23, the nitrification part 21a is formed above the air diffuser 22a in the biological filtration layer 21, and the denitrification part 21b is formed below the air diffuser 22a.

【0027】図1の装置により硝化を行うには、まず被
処理水ポンプ17を駆動して被処理水路11から被処理
水をpH調整槽1に導入し、循環ポンプ19を駆動して
循環路13から硝化処理水を導入し、攪拌機14で攪拌
する。そしてpH調整槽1の槽内液のpHを第一のpH
測定装置2で測定し、測定pH値を制御装置7に入力す
る。この測定pH値に応じて制御装置7から制御信号を
出力して、薬注ポンプ18を駆動し、槽内液が前記pH
となるように、アルカリ剤貯槽3中のアルカリ剤を、ア
ルカリ剤注入路12を通して注入する。
In order to carry out nitrification by the apparatus of FIG. 1, first, the treated water pump 17 is driven to introduce the treated water from the treated water passage 11 into the pH adjusting tank 1, and the circulation pump 19 is driven to drive the circulation passage. Nitrification-treated water is introduced from 13 and stirred by a stirrer 14. The pH of the liquid in the pH adjusting tank 1 is set to the first pH.
It is measured by the measuring device 2 and the measured pH value is input to the control device 7. A control signal is output from the control device 7 in accordance with the measured pH value to drive the chemical injection pump 18 so that the liquid in the tank has the above-mentioned pH value.
In this way, the alkaline agent in the alkaline agent storage tank 3 is injected through the alkaline agent injection passage 12.

【0028】上記のpH調整した被処理水(槽内液)は
給液ポンプ15により連絡路16を通して調圧槽6に送
り、ここから一定圧力で硝化槽4に導入する。ここで
は、空気供給路23から供給する空気を散気装置22で
散気した状態で、被処理水を生物ろ過層21中を上向流
で通水し、硝化細菌の作用により、被処理水中のNH4
−NをNOx−Nに生物学的に硝化する。被処理水中に
有機性窒素化合物が含有されている場合は、この有機物
性窒素化合物はBOD分解細菌の作用によりNH 4−N
に分解され、さらに硝化細菌の作用によりNOx−Nに
硝化される。
The pH-adjusted water to be treated (solution in the tank) is
The liquid supply pump 15 sends it to the pressure adjusting tank 6 through the communication path 16.
From here, it is introduced into the nitrification tank 4 at a constant pressure. here
Uses the air diffuser 22 to supply the air supplied from the air supply path 23.
The water to be treated flows upward in the biological filtration layer 21 in an aerated state.
NH3 in the water to be treated due to the action of nitrifying bacteria.Four
Biologically nitrify -N to NOx-N. In the water to be treated
If organic nitrogen compounds are contained, this organic substance
Nitrogen compounds are converted into NH by the action of BOD-degrading bacteria. Four-N
Is decomposed into NOx-N by the action of nitrifying bacteria.
Nitrified.

【0029】硝化処理水の一部は、循環路13から循環
ポンプ19によりpH調整槽1に循環する。残部は処理
水として処理水路25から取出す。硝化処理水の一部を
循環して被処理水と混合することにより、硝化槽4入口
におけるNH4 +濃度がアルカリ度と比較して小さくなる
ため、pHの低下を小さくすることができる。なお、硝
化処理水の循環は必ずしも必要ではなく、場合によって
は省略することもできる。
A part of the nitrification-treated water is circulated from the circulation path 13 to the pH adjusting tank 1 by the circulation pump 19. The rest is taken out from the treated water channel 25 as treated water. By circulating a part of the nitrification-treated water and mixing it with the water to be treated, the NH 4 + concentration at the inlet of the nitrification tank 4 becomes smaller than the alkalinity, so that the decrease in pH can be reduced. The circulation of the nitrification-treated water is not always necessary and may be omitted in some cases.

【0030】上記の処理において、硝化処理水のpHを
第二のpH測定装置5により測定し、測定pH値を制御
装置7に入力する。制御装置7ではこの測定pH値によ
り必要炭酸アルカリ量を演算して、制御信号を出力し、
ブロア33を駆動し、流量調節弁34を開閉して流量を
調節する。これにより二酸化炭素供給路32から空気が
供給されて散気装置31から散気され、空気中の二酸化
炭素がアルカリ剤中に溶解し炭酸アルカリが生成する。
このとき硝化処理水のpHが前記範囲となるように、流
量調節弁34の流量を調節する。ブロア33に代えてガ
スボンベ35から直接二酸化炭素を供給するようにして
もよい。二酸化炭素の添加位置とpH測定位置とが離れ
ているので、フィードバック制御により必要添加量を演
算して制御するのが好ましい。二酸化炭素の添加および
硝化処理水の循環によりpH調整槽1内の槽内液のpH
が所定のpHの範囲外になる場合には、制御装置7の判
定によりアルカリまたは酸を添加してpH調整が行われ
る。
In the above treatment, the pH of the nitrification-treated water is measured by the second pH measuring device 5, and the measured pH value is input to the control device 7. The controller 7 calculates the required amount of alkali carbonate based on the measured pH value and outputs a control signal,
The blower 33 is driven and the flow rate control valve 34 is opened and closed to regulate the flow rate. As a result, air is supplied from the carbon dioxide supply path 32 and diffused from the air diffuser 31, carbon dioxide in the air is dissolved in the alkaline agent, and alkali carbonate is generated.
At this time, the flow rate of the flow rate control valve 34 is adjusted so that the pH of the nitrification-treated water falls within the above range. Instead of the blower 33, carbon dioxide may be directly supplied from the gas cylinder 35. Since the carbon dioxide addition position and the pH measurement position are distant from each other, it is preferable to calculate and control the required addition amount by feedback control. By adding carbon dioxide and circulating the nitrifying water, the pH of the tank liquid in the pH adjusting tank 1
When is out of the predetermined pH range, the pH is adjusted by adding an alkali or an acid according to the judgment of the controller 7.

【0031】以上のような操作を繰返して行うと、生成
する炭酸アルカリの緩衝作用により、硝化槽4内でのp
Hの低下を防止して、高い硝化速度で安定して硝化を行
うことができる。このときpH調整槽1では炭酸アルカ
リのPアルカリ度を利用してpH調整が行われ、硝化槽
4ではMアルカリ度を利用してpH調整が行われ、硝化
槽4では硝酸の生成にもかかわらず、全体を通して硝化
細菌の活性が高くなるpHに保たれる。この場合被処理
水のpH、NH4 +濃度、有機性窒素化合物含有量または
アルカリ度などが変動しても、それに応じてpH調整が
なされるので、高い硝化速度を維持でき、しかも注入す
る薬品の量を必要最低限に抑えることができる。
When the above-described operation is repeated, the buffering effect of the alkali carbonate produced will cause the p in the nitrification tank 4 to rise.
It is possible to prevent reduction of H and stably perform nitrification at a high nitrification rate. At this time, pH adjustment is performed in the pH adjustment tank 1 by using the P alkalinity of the alkali carbonate, pH adjustment is performed in the nitrification tank 4 by using the M alkalinity, and the nitrification tank 4 may generate nitric acid. Instead, it is maintained at a pH throughout which the activity of nitrifying bacteria becomes high. In this case, even if the pH of the water to be treated, the NH 4 + concentration, the organic nitrogen compound content or the alkalinity changes, the pH is adjusted accordingly, so that a high nitrification rate can be maintained, and a chemical to be injected The amount of can be minimized.

【0032】図1において散気装置22および空気供給
路23を22a、23aの位置に配置する場合も前記と
同様にして操作することができる。このとき硝化槽4の
内部は、散気装置22aより下が嫌気状態となるので、
生物ろ過層21は下部に脱窒細菌を含む脱窒部21b、
および上部に硝化細菌を含む硝化部21aが形成され、
1つの槽内で脱窒および硝化が行われる。
When the air diffuser 22 and the air supply passage 23 are arranged at the positions 22a, 23a in FIG. 1, the same operation as described above can be performed. At this time, the inside of the nitrification tank 4 becomes anaerobic below the air diffuser 22a.
The biological filtration layer 21 has a denitrification section 21b containing denitrification bacteria at the bottom,
And a nitrification part 21a containing nitrifying bacteria is formed in the upper part,
Denitrification and nitrification are performed in one tank.

【0033】実施例1、比較例1 NH4 +=50mg−N/l、BOD=2〜5mg/l、
M−アルカリ度=70〜160mg−CaCO3/l、
pH=6.6〜7.3(ただしNH4 +濃度は50mg−
N/lになるように人為的に制御したが、他は上記値の
範囲内で変動した)の工場廃水を被処理水として、図1
の装置(ただし散気装置22は実線位置に配置した)に
より硝化を行った。硝化槽4内部には、直径3.5mm
のポリスチレン性の浮上性ろ材に硝化細菌を含む微生物
汚泥を付着させて生物ろ過層21を形成した。アルカリ
剤としては水酸化ナトリウムを用い、二酸化炭素はガス
ボンベ35から注入した。循環路13からの循環量は被
処理水路11からの被処理水量と同量とした。
Example 1, Comparative Example 1 NH 4 + = 50 mg-N / l, BOD = 2-5 mg / l,
M- alkalinity = 70~160mg-CaCO 3 / l,
pH = 6.6 to 7.3 (NH 4 + concentration is 50 mg-
It was artificially controlled to be N / l, but other values varied within the range of the above values).
(However, the air diffuser 22 was placed in the position indicated by the solid line) to perform nitrification. Inside the nitrification tank 4, the diameter is 3.5 mm.
The biological filtration layer 21 was formed by adhering microbial sludge containing nitrifying bacteria to the polystyrene floatable filter medium of No. 1. Sodium hydroxide was used as the alkaline agent, and carbon dioxide was injected from the gas cylinder 35. The amount of circulation from the circulation passage 13 was the same as the amount of treated water from the treated water passage 11.

【0034】硝化の操作は次のようにして行った。すな
わち、生物ろ過層21が定常になった後、最初の1か月
間は二酸化炭素の添加は行わず、25重量%水酸化ナト
リウムを添加してpH調整槽1内をpH8.5に制御し
て硝化を行った(比較例1)。次の1か月間は、pH調
整槽1内がpH8.5になるように10重量%水酸化ナ
トリウムを添加し、さらに硝化処理水がpH6.5にな
るように二酸化炭素を注入して制御を行った(実施例
1)。その他の条件は試験期間中全く同じとし、硝化負
荷1.5kg−N/m3・dayで運転した。試験期間
中の硝化槽4出口の硝化処理水のpHおよびNH4 +の除
去率を図2に示す。
The operation of nitrification was performed as follows. That is, after the biological filtration layer 21 became steady, carbon dioxide was not added for the first month, and 25 wt% sodium hydroxide was added to control the pH in the pH adjusting tank 1 to 8.5. Nitrification was performed (Comparative Example 1). For the next month, control is performed by adding 10 wt% sodium hydroxide so that the pH inside the pH adjusting tank 1 becomes 8.5, and further injecting carbon dioxide so that the nitrification-treated water becomes pH 6.5. It did (Example 1). The other conditions were exactly the same during the test period, and the system was operated at a nitrification load of 1.5 kg-N / m 3 · day. The pH of the nitrification-treated water at the outlet of the nitrification tank 4 and the NH 4 + removal rate during the test period are shown in FIG.

【0035】図2からわかるように、被処理水のアルカ
リ度の変動によって最初の1か月間(比較例となる試験
期間)は硝化処理水のpHが変動し、それに伴いNH4 +
の除去率も変動している。それに対して、硝化処理水の
pHが6.5になるように二酸化炭素を注入した次の1
か月間(実施例の試験期間)は、NH4 +の除去率が安定
した値を示しており、しかも平均で除去率が18%増加
した。
As can be seen from FIG. 2, the pH of the nitrification-treated water fluctuates during the first month (test period as a comparative example) due to the fluctuation of the alkalinity of the water to be treated, and accordingly NH 4 +.
The removal rate of is also fluctuating. On the other hand, the following 1 in which carbon dioxide was injected so that the pH of the nitrification-treated water was 6.5:
The removal rate of NH 4 + showed a stable value during the month (the test period of the example), and the removal rate increased by 18% on average.

【0036】[0036]

【発明の効果】本発明の硝化装置は、硝化処理水のpH
を測定するpH測定装置、およびこの装置の測定pH値
に応じて、硝化処理水のpHが特定の範囲になるよう
に、被処理水のpHを調整するアルカリ剤に二酸化炭素
を注入する二酸化炭素注入装置を備えているので、被処
理水のpH、NH4 +濃度、有機性窒素化合物含有量また
はアルカリ度などが変動する場合でも、簡単な構造の装
置を用いかつ簡単な操作により、硝化槽内のpHを硝化
細菌の硝化活性が高くなる範囲に維持することができ、
これにより安定して高い硝化速度で硝化を行うことがで
きる。
The nitrification apparatus of the present invention has a pH of nitrification-treated water.
A carbon dioxide for injecting carbon dioxide into an alkaline agent that adjusts the pH of the water to be treated so that the pH of the nitrification-treated water falls within a specific range according to the pH measuring device for measuring Since it is equipped with an injection device, the nitrification tank can be operated with a simple structure and by simple operation even when the pH, NH 4 + concentration, organic nitrogen compound content or alkalinity of the water to be treated fluctuates. It is possible to maintain the internal pH within the range where the nitrifying activity of nitrifying bacteria is high,
This enables stable nitrification at a high nitrification rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の硝化装置を示す系統図であ
る。
FIG. 1 is a system diagram showing a nitrification apparatus according to an embodiment of the present invention.

【図2】実施例1および比較例1の試験結果を示すグラ
フである。
FIG. 2 is a graph showing test results of Example 1 and Comparative Example 1.

【図3】硝化細菌の硝化活性とpHとの関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between nitrifying activity of nitrifying bacteria and pH.

【符号の説明】[Explanation of symbols]

1 pH調整槽 2 第一のpH測定装置 3 アルカリ剤貯槽 4 硝化槽 5 第二のpH測定装置 6 調圧槽 7 制御装置 11 被処理水路 12 アルカリ剤注入路 13 循環路 14 攪拌機 15 給液ポンプ 16、24 連絡路 17 被処理水ポンプ 18 薬注ポンプ 19 循環ポンプ 21 生物ろ過層 22、31 散気装置 23 空気供給路 25 処理水路 26 排ガス路 32 二酸化炭素供給路 33 ブロア 34 流量調節弁 35 ガスボンベ 36 水位計 1 pH adjusting tank 2 First pH measuring device 3 Alkaline agent storage tank 4 Nitrification tank 5 Second pH measuring device 6 Pressure adjusting tank 7 Control device 11 Treated water channel 12 Alkaline agent injecting channel 13 Circulating channel 14 Stirrer 15 Liquid feeding pump 16, 24 Communication path 17 Treated water pump 18 Chemical injection pump 19 Circulation pump 21 Biological filtration layer 22, 31 Air diffuser 23 Air supply channel 25 Treatment water channel 26 Exhaust gas channel 32 Carbon dioxide supply channel 33 Blower 34 Flow control valve 35 Gas cylinder 36 Water gauge

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被処理水のpHを調整するpH調整槽
と、 pH調整された被処理水を生物学的に硝化するプラグフ
ロー型の硝化槽と、 この硝化槽に導入する被処理水のpHを測定する第一の
pH測定装置と、 この第一のpH測定装置の測定値がpH6.0〜9.7
になるように、pH調整槽にアルカリ剤を添加する薬注
装置と、 硝化処理水のpHを測定する第二のpH測定装置と、 この第二のpH測定装置の測定値がpH6.0〜9.7
を維持するように、前記アルカリ剤に二酸化炭素を注入
する二酸化炭素注入装置とを備えていることを特徴とす
る硝化装置。
1. A pH adjusting tank for adjusting the pH of the water to be treated, a plug flow type nitrification tank for biologically nitrifying the pH-adjusted water, and the water to be introduced into the nitrification tank. A first pH measuring device for measuring pH, and a measurement value of the first pH measuring device is pH 6.0 to 9.7.
So that the pH adjustment tank contains an alkaline agent, a second pH measuring device for measuring the pH of the nitrification-treated water, and a measurement value of the second pH measuring device is pH 6.0 to 6.0. 9.7
And a carbon dioxide injection device for injecting carbon dioxide into the alkali agent so as to maintain the above.
JP21921794A 1994-09-13 1994-09-13 Nitrator Pending JPH0880497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21921794A JPH0880497A (en) 1994-09-13 1994-09-13 Nitrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21921794A JPH0880497A (en) 1994-09-13 1994-09-13 Nitrator

Publications (1)

Publication Number Publication Date
JPH0880497A true JPH0880497A (en) 1996-03-26

Family

ID=16732042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21921794A Pending JPH0880497A (en) 1994-09-13 1994-09-13 Nitrator

Country Status (1)

Country Link
JP (1) JPH0880497A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320844A (en) * 2005-05-19 2006-11-30 Japan Organo Co Ltd Method and apparatus for treating waste water
JP2007038107A (en) * 2005-08-02 2007-02-15 Kurita Water Ind Ltd Method for treating organic drainage
JP2011062653A (en) * 2009-09-18 2011-03-31 Chugoku Electric Power Co Inc:The Nitrogen-containing wastewater treatment method
JP2021013900A (en) * 2019-07-12 2021-02-12 栗田工業株式会社 Wastewater treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320844A (en) * 2005-05-19 2006-11-30 Japan Organo Co Ltd Method and apparatus for treating waste water
JP2007038107A (en) * 2005-08-02 2007-02-15 Kurita Water Ind Ltd Method for treating organic drainage
JP2011062653A (en) * 2009-09-18 2011-03-31 Chugoku Electric Power Co Inc:The Nitrogen-containing wastewater treatment method
JP2021013900A (en) * 2019-07-12 2021-02-12 栗田工業株式会社 Wastewater treatment method

Similar Documents

Publication Publication Date Title
EP1806325B1 (en) Method of treating nitrogen-containing liquid
US7329352B2 (en) Nitrifying method of treating water containing ammonium-nitrogen
EP2377819B1 (en) Method for removing biological nitrogen
US20160257590A1 (en) Method and apparatus for maximizing nitrogen removal from wastewater
KR20160030042A (en) Wastewater treatment apparatus and wastewater treatment method
JP4691938B2 (en) Nitrogen-containing liquid processing method and apparatus
JPWO2011148949A1 (en) Biological nitrogen removal method using anaerobic ammonia oxidation reaction
JP4872171B2 (en) Biological denitrification equipment
JP2003024983A (en) Nitrification treatment method
JP5292658B2 (en) A method for nitrification of ammonia nitrogen-containing water
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
JP5292659B2 (en) A method for nitrification of ammonia nitrogen-containing water
JPH0880497A (en) Nitrator
JP2008221161A (en) Denitrifying treatment device and denitrifying treatment method
JP3396959B2 (en) Nitrification method and apparatus
JP3293218B2 (en) Biological nitrification denitrification treatment method
JPH08224594A (en) Biological nitrification and denitrification device
JP6211547B2 (en) Batch-type denitrification treatment apparatus, batch tank for denitrification treatment, and batch-type denitrification treatment method
JP3134145B2 (en) Wastewater biological denitrification method
JPS62286598A (en) Biological nitration and denitrification of high temperature ammonia-containing waste water
JPH08267088A (en) Nitrator
WO2005030654A1 (en) Method and apparatus for nitrification
JPH11226594A (en) Intermittent aeration type activated sludge treatment apparatus
JP2003205296A (en) Nitrogen removing apparatus
JPS62234596A (en) Method for biological-removement of nitrogen