JPH08267088A - Nitrator - Google Patents

Nitrator

Info

Publication number
JPH08267088A
JPH08267088A JP7203195A JP7203195A JPH08267088A JP H08267088 A JPH08267088 A JP H08267088A JP 7203195 A JP7203195 A JP 7203195A JP 7203195 A JP7203195 A JP 7203195A JP H08267088 A JPH08267088 A JP H08267088A
Authority
JP
Japan
Prior art keywords
liquid
nitrification
treated
tank
liq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7203195A
Other languages
Japanese (ja)
Inventor
Hiroaki Ishida
浩昭 石田
Atsushi Watanabe
敦 渡辺
Motoyuki Yoda
元之 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP7203195A priority Critical patent/JPH08267088A/en
Publication of JPH08267088A publication Critical patent/JPH08267088A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Abstract

PURPOSE: To obtain a nitrator maintaining the pH in a nitration tank in the range where the activity of nitration bacteria is increased even in the case when the pH, NH<4> concn. or alkalinity of a liq. to be treated are fluctuated in the biological nitration using a plug-flow nitration tank. CONSTITUTION: A part of a liq. to be treated is introduced into the lower part of a nitration tank 1 from a first liq. feed line 2a. At this time, the pH of the liq. is measured by a first pH measuring device 8a, the amt. of alkali to be added to control the liq. to pH6 to 9.7 is calculated from the pH value in a controller 10, and the addition of alkali is adjusted by controlling a first chemical injection pump 6a. The liq. is passed upward through the nitration tank 1 and biologically nitrated. Menwhile, the remainder of the liq. is introduced into an intermediate part from a second liq. feed line 2b. At this time, the pH of the liq. is measured by a second pH measuring device 8b, the amt. of alkali to be added to control the liq. to pH6.5 to 11.5 is calculated from the pH value in the controller 10, and the addition of alkali is adjusted by controlling a second chemical injection pump 6b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被処理液中の窒素化合
物をプラグフロー型の硝化槽を用いて生物学的に硝化す
る硝化装置に関し、さらに詳細には窒素化合物含有排液
の生物学的硝化脱窒法に利用可能な硝化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrification apparatus for biologically nitrifying nitrogen compounds in a liquid to be treated by using a plug flow type nitrification tank, and more particularly to biology of waste liquid containing nitrogen compounds. The present invention relates to a nitrification apparatus that can be used in a nitrification denitrification method.

【0002】[0002]

【従来の技術】下排水中のアンモニア性または有機性窒
素化合物は湖沼、内湾などの閉鎖性水域における富栄養
化現象の原因とされている。このような排液中からアン
モニア性または有機性窒素化合物を除去する方法とし
て、微生物を利用した生物学的硝化脱窒処理法があり、
最も実績が多く、高い信頼性を得ている。この方法は活
性汚泥の存在下に好気性処理して排液中のCOD、BO
D成分を分解するとともに、有機性窒素化合物をアンモ
ニア性窒素とし、その後硝化細菌が増殖した活性汚泥の
存在下に曝気してアンモニア性窒素を硝化細菌により亜
硝酸性または硝酸性窒素に硝化(酸化)した後、脱窒細
菌が増殖した活性汚泥の存在下に嫌気状態に維持するこ
とにより、亜硝酸性また硝酸性窒素を窒素ガスに還元し
て脱窒する方法である。このような生物学的硝化脱窒処
理法には、浮遊細菌を用いた浮遊法、あるいは担体の表
面に菌体を付着増殖させる固定床法または生物ろ過法と
呼ばれる方法が実用化されている。特に固定床法または
生物ろ過法と呼ばれる方法は増殖速度の小さな硝化細菌
を反応槽内に保持する能力において浮遊法よりも優れて
いるため、高効率の硝化脱窒方法として注目されてい
る。
2. Description of the Related Art Ammoniacal or organic nitrogen compounds in sewage are said to be the cause of eutrophication in closed water areas such as lakes and bays. As a method of removing ammoniacal or organic nitrogen compounds from such waste liquid, there is a biological nitrification denitrification treatment method using microorganisms,
Most proven and highly reliable. In this method, aerobic treatment is performed in the presence of activated sludge to remove COD and BO in the effluent.
Along with decomposing the D component, the organic nitrogen compound is converted to ammonia nitrogen, and then aerated in the presence of activated sludge in which nitrifying bacteria have proliferated, and the ammonia nitrogen is nitrified by nitrifying bacteria to nitrite or nitrate nitrogen (oxidation). After that, the nitrite or nitrate nitrogen is reduced to nitrogen gas to denitrify it by maintaining it in an anaerobic state in the presence of activated sludge in which denitrifying bacteria have grown. As such a biological nitrification denitrification treatment method, a floating method using floating bacteria, or a fixed bed method in which bacterial cells adhere to and grow on the surface of a carrier or a method called a biological filtration method has been put into practical use. In particular, a method called a fixed bed method or a biofiltration method is superior to the floating method in the ability to retain nitrifying bacteria having a small growth rate in a reaction tank, and therefore, it is attracting attention as a highly efficient nitrification denitrification method.

【0003】硝化および脱窒の両反応ともpH変化を伴
う反応であるが、特に硝化反応では、
Both nitrification and denitrification reactions are reactions involving pH changes.

【化1】 NH4 + + 3/2O2 −> NO2 - + 2H+ + H2O …(1) の反応に従って、1モルのNH4 +が硝化される際に2モ
ルのH+が発生するため、硝化処理液のpHが大幅に低
下する。ところが硝化細菌の硝化活性は図5に示すよう
にpHによって大きく影響を受けるため、何らかの手段
で硝化槽内のpHを硝化細菌の活性が高い範囲内に制御
することが必要である。
Embedded image According to the reaction of NH 4 + + 3 / 2O 2 −> NO 2 + 2H + + H 2 O (1), 2 mol of H + is converted when 1 mol of NH 4 + is nitrified. As a result, the pH of the nitrification treatment liquid drops significantly. However, the nitrifying activity of nitrifying bacteria is greatly affected by pH as shown in FIG. 5, so it is necessary to control the pH in the nitrifying tank within a range where the activity of nitrifying bacteria is high by some means.

【0004】ところで硝化におけるpH変化は、被処理
液のNH4 +濃度およびアルカリ度によって決定される。
すなわち、被処理液のアルカリ度がNH4 +濃度と比較し
て十分に大きい場合は、硝化によるpH低下は小さくな
り、逆にアルカリ度がNH4 +濃度と比較して小さい場合
にはpH低下は大きくなる。従来、硝化によるpH低下
に対処するために、pH調整剤として水酸化ナトリウム
等のアルカリを添加して、pHを所定値に維持すること
が行われている。
The pH change in nitrification is determined by the NH 4 + concentration and alkalinity of the liquid to be treated.
That is, when the alkalinity of the liquid to be treated is sufficiently large compared with the NH 4 + concentration, the pH decrease due to nitrification is small, and conversely, when the alkalinity is small compared with the NH 4 + concentration, the pH decrease is caused. Grows. Conventionally, in order to cope with a decrease in pH due to nitrification, an alkali such as sodium hydroxide is added as a pH adjuster to maintain the pH at a predetermined value.

【0005】活性汚泥法など、完全混合型の浮遊法によ
って硝化を行う場合、被処理液はほぼ完全混合状態とな
っているため、pH制御は硝化槽液中にpHセンサーを
入れ、pHが所定の範囲内になるように水酸化ナトリウ
ム等のアルカリを添加することにより、容易に制御する
ことができる。
When nitrification is carried out by a complete mixing type floating method such as the activated sludge method, the liquid to be treated is in a nearly completely mixed state. Therefore, pH control is carried out by putting a pH sensor in the nitrification tank liquid. It can be easily controlled by adding an alkali such as sodium hydroxide so as to fall within the range.

【0006】これに対し、硝化細菌が増殖した生物ろ過
層を有する硝化槽を用いて硝化を行う場合は、被処理液
がプラグフロー(一方向流)で流れているため、このよ
うなプラグフロー型の硝化槽全体のpHを所定の範囲に
調整することは困難であり、流下方向にpHが低下す
る。プラグフロー型の場合でも硝化槽の前段にpH調整
槽を設け、硝化槽の入口で水酸化ナトリウムを添加して
pH調整を行うことはできるが、被処理液のアルカリ度
がNH4 +濃度と比較して低い場合は硝化槽内でのpH低
下が大きく、硝化細菌の活性を高く維持することが困難
となり、このため安定して高い硝化速度(アンモニア性
窒素除去速度)で硝化することはできない。
On the other hand, when nitrification is carried out using a nitrification tank having a biological filtration layer in which nitrifying bacteria have proliferated, such a plug flow occurs because the liquid to be treated flows in a plug flow (one-way flow). It is difficult to adjust the pH of the entire nitrification tank of the mold within a predetermined range, and the pH decreases in the downward direction. Even in the case of the plug flow type, it is possible to install a pH adjustment tank in front of the nitrification tank and add sodium hydroxide at the inlet of the nitrification tank to adjust the pH, but the alkalinity of the liquid to be treated is equal to the NH 4 + concentration. If the pH is low, the pH drop in the nitrification tank becomes large, and it becomes difficult to maintain high activity of nitrifying bacteria. Therefore, stable nitrification cannot be performed at a high nitrification rate (ammonia nitrogen removal rate). .

【0007】また、硝化槽の入口で炭酸水素ナトリウ
ム、炭酸ナトリウムなどの緩衝能を有するアルカリを添
加してpH調整を行うこともできる。このような炭酸塩
を添加する方法は、水酸化ナトリウムを添加する方法に
比べて硝化槽内のpHの低下を抑えることができるが、
pH低下の防止には限界がある。一方炭酸水素ナトリウ
ム、炭酸ナトリウム等の粉体を貯留するサイロや溶解設
備などの設備コストは水酸化ナトリウムの場合に比べて
きわめて大きくなる。さらにあらかじめ硝化槽内でのp
H低下を見越して、硝化槽入口でのpHを高く設定する
こともできるが、この場合は硝化槽入口のpHが高くな
りすぎて、硝化細菌の反応が阻害される場合がある。
The pH can be adjusted by adding an alkali having a buffering ability such as sodium hydrogen carbonate or sodium carbonate at the entrance of the nitrification tank. The method of adding such a carbonate can suppress the decrease in pH in the nitrification tank as compared with the method of adding sodium hydroxide,
There is a limit to the prevention of pH drop. On the other hand, the equipment costs such as silos for storing powders of sodium hydrogen carbonate, sodium carbonate and the like, and melting equipment are much higher than those for sodium hydroxide. In addition, p in the nitrification tank in advance
The pH at the entrance of the nitrification tank can be set high in anticipation of a decrease in H, but in this case, the pH of the entrance of the nitrification tank becomes too high, and the reaction of nitrifying bacteria may be inhibited.

【0008】硝化槽内でのpHの低下を防止するには、
例えば硝化槽から流出する硝化処理液を再び入口に循環
し、被処理液と循環液とを混合した状態でpH調整する
ことが可能である。この場合、硝化槽入口でのNH4 +
度がアルカリ度と比較して小さくなるため、硝化槽内の
pH低下が小さくなる。理論的には、循環比(被処理液
流量に対する循環液量の割合)を大きくすればするほ
ど、被処理液の流れが完全混合状態に近づき、浮遊法と
同様の条件に近づく。しかし、実際には循環ポンプの動
力コストの増加、硝化槽内の液流速が増加することによ
る圧力損失の増加などから、上記のような方法では限界
がある。このためプラグフロー型の硝化槽により硝化す
る場合、低コストで簡単にpH調整することができ、こ
れにより安定して高い硝化速度で硝化することが可能な
硝化方法が要望されている。
To prevent the pH from decreasing in the nitrification tank,
For example, it is possible to circulate the nitrification treatment liquid flowing out of the nitrification tank again to the inlet, and adjust the pH in a state where the liquid to be treated and the circulation liquid are mixed. In this case, since the NH 4 + concentration at the entrance of the nitrification tank becomes smaller than the alkalinity, the pH drop in the nitrification tank becomes small. Theoretically, the larger the circulation ratio (the ratio of the amount of circulating liquid to the amount of liquid to be treated), the closer the flow of the liquid to be treated becomes to a completely mixed state, and the conditions similar to those of the floating method are approached. However, in practice, there is a limit in the above method due to an increase in power cost of the circulation pump and an increase in pressure loss due to an increase in liquid flow rate in the nitrification tank. Therefore, when nitrification is performed by a plug flow type nitrification tank, there is a demand for a nitrification method capable of easily adjusting the pH at low cost and thereby stably nitrifying at a high nitrification rate.

【0009】ところで特開昭53−76550号には、
棚段式の硝化脱窒塔に2分流した被処理液を分注して生
物学的に硝化脱窒を行う排水の処理方法が記載されてい
る。しかし、この従来法は脱窒に必要なBODを供給す
るために被処理液を2分流にして反応塔の頂部(硝化部
入口)および中間部(脱窒部入口)に供給する方法であ
り、この方法では硝化部でのpHの低下を防止すること
はできない。
By the way, JP-A-53-76550 discloses that
It describes a method for treating wastewater in which a liquid to be treated, which has been flowed for two minutes into a tray type nitrification denitrification tower, is dispensed and biologically nitrification denitrification is performed. However, this conventional method is a method of supplying the BOD necessary for denitrification into a two-part flow of the liquid to be treated and supplying it to the top (nitrification section inlet) and intermediate section (denitrification section inlet) of the reaction tower. This method cannot prevent a decrease in pH in the nitrification part.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、被処
理液中の窒素化合物をプラグフロー型の硝化槽を用いて
生物学的に硝化するに際し、被処理液のpH、NH4 +
度、アルカリ度、有機性窒素化合物含有量などが変動す
る場合でも、硝化槽内のpHを硝化細菌の硝化活性が高
くなるように低コストで簡単に維持することができ、こ
れにより安定して高い硝化速度で硝化することが可能な
硝化装置を提供することである。
Purpose, upon biologically nitrifying using nitrification tank plug flow of nitrogen compounds in the liquid to be treated, pH of the liquid to be treated, NH 4 + concentration in the present invention is to solve] The pH in the nitrification tank can be easily maintained at low cost so that the nitrification activity of nitrifying bacteria becomes high, even when the alkalinity, the content of organic nitrogen compounds, etc. fluctuate. An object of the present invention is to provide a nitrification apparatus capable of nitrifying at a nitrification rate.

【0011】[0011]

【課題を解決するための手段】本発明は、被処理液を受
入れて生物学的に硝化を行うプラグフロー型の硝化槽
と、この硝化槽の一端部から被処理液の一部を供給する
第一の給液装置と、この第一の給液装置から供給する被
処理液のpHを6〜9.7に調整する第一のpH調整装
置と、前記プラグフロー型の硝化槽の中間部から被処理
液の他の一部を供給する第二の給液装置と、この第二の
給液装置から供給する被処理液のpHを6.5〜11.
5に調整する第二のpH調整装置とを備えていることを
特徴とする硝化装置である。
According to the present invention, a plug flow type nitrification tank for receiving a liquid to be treated and nitrifying it biologically, and a part of the liquid to be treated are supplied from one end of the nitrification tank. A first liquid supply device, a first pH adjusting device for adjusting the pH of a liquid to be treated supplied from the first liquid supply device to 6 to 9.7, and an intermediate portion of the plug flow type nitrification tank. From the second liquid supply device that supplies the other part of the liquid to be processed from the second liquid supply device, and the pH of the liquid to be processed supplied from the second liquid supply device is 6.5 to 11.
And a second pH adjusting device for adjusting to pH 5.

【0012】本発明の硝化装置において処理の対象とな
る被処理液は、アンモニア性窒素または有機性窒素化合
物を含有する液であり、他の不純物を含んでいてもよ
い。このような被処理液は硝化槽に供給する前に、活性
汚泥を用いた好気性処理により有機物を分解し、あるい
は硝化処理液の循環により脱窒工程を行うなどの処理を
行ってもよい。
The liquid to be treated in the nitrification apparatus of the present invention is a liquid containing ammoniacal nitrogen or an organic nitrogen compound and may contain other impurities. Before being supplied to the nitrification tank, such a liquid to be treated may be subjected to a treatment such as decomposing organic matter by aerobic treatment using activated sludge, or performing a denitrification step by circulating the nitrification treatment liquid.

【0013】本発明の硝化装置を構成するプラグフロー
型の硝化槽は、硝化細菌が増殖した生物汚泥層を槽内に
充填し、この充填層に被処理液をプラグフロー(一方向
流)で通液して、好気性下に接触させて硝化する装置で
ある。被処理液の通液方向としては上向流でも下向流で
もよい。生物汚泥層の形成方法としては、造粒化汚泥を
充填するもの、あるいは充填層に生物汚泥を付着させる
ものなど、任意に選択することができ、固定床型、流動
床型など任意の形式のものが採用できる。
The plug-flow type nitrification tank constituting the nitrification apparatus of the present invention is filled with a biological sludge layer in which nitrifying bacteria have proliferated, and the liquid to be treated is plug-flowed (one-way flow) into this packed layer. It is a device that passes liquid and contacts it under aerobic conditions to nitrify. The flow direction of the liquid to be treated may be an upward flow or a downward flow. The method for forming the biological sludge layer can be arbitrarily selected, such as a method of filling the granulated sludge or a method of attaching the biological sludge to the packed layer, and can be of any form such as a fixed bed type or a fluidized bed type. Things can be adopted.

【0014】本発明の硝化装置では、被処理液は分流し
て一部を第一の給液装置から、他の一部を第二の給液装
置から前記プラグフロー型の硝化槽に供給する。さらに
第三、第四……の給液装置から段階的に供給してもよ
い。第一の給液装置は、被処理液を前記プラグフロー型
の硝化槽の一端部から硝化槽に供給する装置である。
In the nitrification apparatus of the present invention, the liquid to be treated is divided into a part and the other part is supplied from the first liquid supply device and the second liquid supply device to the plug flow type nitrification tank. . Further, the liquid may be supplied stepwise from the third, fourth, ... The first liquid supply device is a device that supplies the liquid to be treated from one end of the plug flow type nitrification tank to the nitrification tank.

【0015】第一のpH調整装置は、前記第一の給液装
置から供給する被処理液のpHを調整する装置である。
ここで第一のpH測定装置を設け、その測定値がpH6
〜9.7、好ましくは7〜9.5を維持するように、第
一の薬注装置から注入するアルカリ剤の量を制御するよ
うに構成することができる。pHの制御は、被処理液の
pHが上記下限値を下まわり、あるいは下限値に近づい
たときにアルカリ剤の添加量を増大させ、上限値を超
え、あるいは上限値に近づいたときにアルカリ剤の添加
量を減少させるように制御する。アルカリ剤としては、
水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウ
ム、水酸化カルシウムなどが使用できる。これらの中で
は、pH調整および残留アルカリ度の面からは炭酸ナト
リウムや炭酸水素ナトリウムが好ましいが、注入設備の
コスト面からは水酸化ナトリウムが最も好ましい。
The first pH adjusting device is a device for adjusting the pH of the liquid to be treated supplied from the first liquid supplying device.
Here, the first pH measuring device is provided, and the measured value is pH 6
It can be configured to control the amount of alkaline agent injected from the first dosing device so as to maintain ˜9.7, preferably 7-9.5. The pH is controlled by increasing the addition amount of the alkaline agent when the pH of the liquid to be treated is below the lower limit value or approaching the lower limit value, and exceeds the upper limit value or approaching the upper limit value. Control is performed so as to reduce the addition amount of. As an alkaline agent,
Sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, calcium hydroxide and the like can be used. Among these, sodium carbonate and sodium hydrogen carbonate are preferable from the viewpoint of pH adjustment and residual alkalinity, but sodium hydroxide is most preferable from the viewpoint of the cost of injection equipment.

【0016】第二の給液装置は、被処理液の他の一部を
前記プラグフロー型の硝化槽の中間部から硝化槽に供給
する装置である。第二のpH調整装置は、前記第二の給
液装置から供給する被処理液のpHを調整する装置であ
る。ここで第二のpH測定装置を設け、その測定値がp
H6.5〜11.5、好ましくは7〜11を維持するよ
うに、第二の薬注装置から注入するアルカリ剤の量を制
御するように構成することができる。pHの制御は、被
処理液のpHが上記下限値を下まわり、あるいは下限値
に近づいたときにアルカリ剤の添加量を増大させ、上限
値を超え、あるいは上限値に近づいたときにアルカリ剤
の添加量を減少させるように制御する。アルカリ剤とし
ては、前記と同様のものが使用できる。
The second liquid supply device is a device for supplying another part of the liquid to be treated to the nitrification tank from an intermediate portion of the plug flow type nitrification tank. The second pH adjusting device is a device that adjusts the pH of the liquid to be treated supplied from the second liquid supply device. A second pH measuring device is installed here, and the measured value is p
It can be configured to control the amount of alkaline agent injected from the second dosing device so as to maintain H6.5-11.5, preferably 7-11. The pH is controlled by increasing the addition amount of the alkaline agent when the pH of the liquid to be treated is below the lower limit value or approaching the lower limit value, and exceeds the upper limit value or approaching the upper limit value. Control is performed so as to reduce the addition amount of. As the alkaline agent, the same ones as described above can be used.

【0017】[0017]

【作用】本発明の硝化装置では、被処理液の一部を第一
のpH調整装置でpH6〜9.7、好ましくは7〜9.
5に調整して、第一の給液装置によりプラグフロー型の
硝化槽の一端部から供給するとともに、被処理液の他の
一部を第二のpH調整装置でpH6.5〜11.5、好
ましくは7〜11に調整して、第二の給液装置によりプ
ラグフロー型の硝化槽の中間部から供給し、好気性下に
プラグフローで通液して、硝化細菌により硝化を行う。
硝化槽における硝化はアンモニア性窒素を亜硝酸性また
は硝酸性窒素に酸化するものであるから、被処理液中に
有機物が存在する場合はあらかじめ活性汚泥処理等によ
り除去しておくことにより、硝化槽における硝化細菌を
優勢にして効率よく硝化を行うことができる。
In the nitrification apparatus of the present invention, a part of the liquid to be treated is treated by the first pH adjusting apparatus to have a pH of 6 to 9.7, preferably 7 to 9.
5 and supply it from one end of the plug flow type nitrification tank by the first liquid supply device, and supply another part of the liquid to be treated by the second pH adjusting device to pH 6.5 to 11.5. Preferably, it is adjusted to 7 to 11 and is supplied from the middle part of the plug flow type nitrification tank by the second liquid supply device, and is aerobically passed through the plug flow to carry out nitrification by nitrifying bacteria.
Nitrification in the nitrification tank oxidizes ammoniacal nitrogen to nitrite or nitrate nitrogen.Therefore, if organic matter is present in the liquid to be treated, remove it by activated sludge treatment beforehand. It is possible to dominate nitrifying bacteria and efficiently perform nitrification.

【0018】本発明の硝化装置では、第二の給液装置に
より硝化槽の中間部からpH調整された被処理液を供給
しているので、この被処理液と槽内液(硝化処理液)と
が硝化槽の中間部で混合される。これにより、硝化反応
の進行によりpHが低下した槽内液(硝化処理液)が、
中間部から供給されるpH調整された被処理液と混合さ
れて中和され、pHの低下が防止される。このため、プ
ラグフローの場合でも硝化細菌の硝化活性を高く維持し
て効率のよい硝化が行われる。
In the nitrification apparatus of the present invention, since the pH-adjusted liquid to be treated is supplied from the intermediate portion of the nitrification tank by the second liquid supply device, the liquid to be treated and the liquid in the tank (nitrification liquid). And are mixed in the middle part of the nitrification tank. As a result, the liquid in the tank (nitrification treatment liquid) whose pH has decreased due to the progress of the nitrification reaction,
It is mixed with the pH-adjusted liquid to be treated supplied from the intermediate portion and neutralized to prevent the pH from decreasing. Therefore, even in the case of the plug flow, the nitrifying activity of nitrifying bacteria can be maintained high and efficient nitrification can be performed.

【0019】本発明の硝化装置は、アンモニア含有液ま
たは有機性排液の生物学的硝化脱窒法における硝化装置
として用いられるが、硝化のみを対象とする場合にも利
用可能である。生物学的硝化脱窒法として利用する場合
は、予め活性汚泥法等の好気性処理により有機物を分解
すると同時に有機性窒素化合物をアンモニア性窒素に変
換しておくことが好適である。また脱窒槽を硝化槽の前
段に設けて硝化処理液を脱窒槽に循環するとともに、こ
の脱窒槽に第一の給液装置から被処理液を供給して、脱
窒細菌の存在下に嫌気状態に維持することにより脱窒を
行った後、硝化槽に供給して硝化を行うこともできる。
この場合は脱窒槽と硝化槽とを1個の槽内に設けること
ができ、例えば生物ろ過装置の中間に散気装置を設け
て、上部を好気状態に保ち、上向流で被処理液を通液す
ると、上部を硝化槽、下部を脱窒槽として一体化するこ
とができる。このような場合でも、前記のように第二の
給液装置により硝化槽の中間部からpH調整した被処理
液を供給することにより、効率よく硝化を行うことがで
きる。
The nitrification apparatus of the present invention is used as a nitrification apparatus in a biological nitrification denitrification method of an ammonia-containing liquid or an organic waste liquid, but it can also be used when only nitrification is intended. When used as a biological nitrification / denitrification method, it is preferable to previously decompose an organic matter by an aerobic treatment such as an activated sludge method and at the same time convert an organic nitrogen compound into ammoniacal nitrogen. In addition, a denitrification tank is installed in the preceding stage of the nitrification tank to circulate the nitrification treatment liquid to the denitrification tank, and the liquid to be treated is supplied from the first liquid supply device to this denitrification tank to anaerobicize in the presence of denitrification bacteria It is also possible to carry out denitrification by maintaining the temperature at 1, and then to supply it to the nitrification tank for nitrification.
In this case, the denitrification tank and the nitrification tank can be provided in one tank. For example, an air diffuser is provided in the middle of the biological filtration device to keep the upper part in an aerobic state, and the liquid to be treated is directed upward. When liquid is passed, the upper part can be integrated into a nitrification tank and the lower part can be integrated into a denitrification tank. Even in such a case, nitrification can be efficiently performed by supplying the liquid to be treated whose pH is adjusted from the intermediate portion of the nitrification tank by the second liquid supply device as described above.

【0020】[0020]

【実施例】次に本発明の実施例を図面により説明する。
図1は実施例の硝化装置を示す系統図、図2は硝化槽お
よび脱窒槽が一体化した硝化装置を示す系統図である。
図1において、1は硝化槽、2は被処理液路で、第一の
給液路2aおよび第二の給液路2bに分岐し、それぞれ
第一および第二の給液ポンプ3a、3b、ならびに第一
および第二のpH調整装置4a、4bが設けられてい
る。pH調整装置4a、4bはそれぞれ第一および第二
の混合器(ラインミキサー)5a、5b、その前に接続
する第一および第二の薬注ポンプ6a、6bを有する第
一および第二の薬注路7a、7b、ならびに後に接続す
る第一および第二のpH測定装置8a、8bから構成さ
れている。第一および第二の薬注路7a、7bは合流し
て一本の薬注路7となり、アルカリ剤貯槽9に接続して
いる。10は制御装置、11は第三のpH測定装置であ
る。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 is a system diagram showing a nitrification apparatus of the embodiment, and FIG. 2 is a system diagram showing a nitrification apparatus in which a nitrification tank and a denitrification tank are integrated.
In FIG. 1, 1 is a nitrification tank, 2 is a liquid passage to be treated, which branches into a first liquid supply passage 2a and a second liquid supply passage 2b, and first and second liquid supply pumps 3a, 3b, respectively. In addition, first and second pH adjusters 4a and 4b are provided. The pH adjusting devices 4a and 4b are first and second medicines having first and second mixers (line mixers) 5a and 5b, respectively, and first and second chemical injection pumps 6a and 6b connected in front of them. It is composed of injection channels 7a and 7b, and first and second pH measuring devices 8a and 8b to be connected later. The first and second chemical injection passages 7a and 7b merge to form one chemical injection passage 7, which is connected to the alkaline agent storage tank 9. Reference numeral 10 is a control device, and 11 is a third pH measuring device.

【0021】硝化槽1の下部には第一の給液路2aが接
続している。硝化槽1の中間部には第二の給液路2bが
接続している。第二の給液路2bにはバルブ12を有す
る被処理液引抜液路13bが接続している。硝化槽1の
上部には処理液路21および排ガス路22が接続してい
る。処理液路21からは循環路23が分岐し、第一の給
液路2aに接続している。循環路23の中間には循環ポ
ンプ24が設けられている。
A first liquid supply path 2a is connected to the lower part of the nitrification tank 1. A second liquid supply path 2b is connected to an intermediate portion of the nitrification tank 1. The second liquid supply passage 2b is connected to a liquid extraction passage 13b to be treated having a valve 12. A treatment liquid passage 21 and an exhaust gas passage 22 are connected to the upper part of the nitrification tank 1. A circulation path 23 branches from the processing liquid path 21 and is connected to the first liquid supply path 2a. A circulation pump 24 is provided in the middle of the circulation path 23.

【0022】硝化槽1の内部には、硝化細菌を有する生
物ろ過層31が形成されている。この生物ろ過層31の
下部には散気装置32が設けられて空気供給路33に接
続している。また生物ろ過層31の中間部には散液装置
34が設けられて第二の給液路2bに接続している。散
液装置34の下部にはバルブ35を有する槽内液引抜液
路13aが接続している。槽内液引抜液路13aと被処
理液引抜液路13bとは合流して一本の引抜液路13と
なり、この引抜液路13には第三のpH測定装置11が
設けられている。
Inside the nitrification tank 1, a biological filtration layer 31 containing nitrifying bacteria is formed. An air diffuser 32 is provided below the biological filtration layer 31 and is connected to the air supply passage 33. Further, a sprinkler device 34 is provided at an intermediate portion of the biological filtration layer 31 and is connected to the second liquid supply passage 2b. An in-tank liquid withdrawing liquid passage 13 a having a valve 35 is connected to a lower portion of the liquid spraying device 34. The in-tank liquid drawing liquid path 13a and the liquid to be treated drawing liquid path 13b join to form one drawing liquid path 13, and the third pH measuring device 11 is provided in the drawing liquid path 13.

【0023】図2において、41は脱窒硝化槽であっ
て、上部の硝化槽と下部の脱窒槽とが一体化した構造に
なっている。この脱窒硝化槽41では、槽内に一体的に
充填された生物ろ過層42、43の中間に散気装置32
が設けられ、散気装置32の上部に硝化細菌を含む生物
ろ過層42、下部に脱窒細菌を含む生物ろ過層43が形
成され、それぞれ硝化部44および脱窒部45を構成し
ている。そして硝化処理液が脱窒部45に循環するよう
に、循環路23は第一の給液路2aに接続している。ま
た図2の硝化装置では、引抜液路13が散液装置34の
上部に設けられている。その他の構成は図1と同様であ
る。
In FIG. 2, reference numeral 41 denotes a denitrification nitrification tank, which has a structure in which an upper nitrification tank and a lower denitrification tank are integrated. In the denitrification and nitrification tank 41, an air diffuser 32 is provided between the biological filtration layers 42 and 43 that are integrally filled in the tank.
Is provided, the biological filter layer 42 containing nitrifying bacteria is formed on the upper part of the air diffuser 32, and the biological filter layer 43 containing denitrifying bacteria is formed on the lower part, which constitute a nitrification section 44 and a denitrification section 45, respectively. The circulation passage 23 is connected to the first liquid supply passage 2a so that the nitrification treatment liquid circulates in the denitrification unit 45. Further, in the nitrification device of FIG. 2, the drawing liquid passage 13 is provided above the liquid dispersion device 34. Other configurations are the same as those in FIG.

【0024】図1の硝化装置により硝化を行うには、ま
ず第一の給液ポンプ3aを駆動して第一の給液路2aか
ら被処理液の一部(以下、第一の被処理液という場合が
ある)を硝化槽1の下部に供給する。このとき第一のp
H測定装置8aで第一の被処理液のpHを測定し、その
pH値を制御装置10に出力する。制御装置10では第
一の被処理液のpHが所定値となるようなアルカリ剤の
添加量を演算し、その信号を第一の薬注ポンプ6aに出
力し、アルカリ剤の添加量を調整する。第一の被処理液
とアルカリ剤とは第一の混合器5aで混合する。
In order to carry out nitrification by the nitrification apparatus of FIG. 1, first, the first feed liquid pump 3a is driven to drive a part of the liquid to be treated (hereinafter referred to as the first liquid to be treated) from the first liquid feed passage 2a. In some cases) to the lower part of the nitrification tank 1. At this time, the first p
The H measuring device 8a measures the pH of the first liquid to be treated and outputs the pH value to the control device 10. The controller 10 calculates the addition amount of the alkaline agent such that the pH of the first liquid to be treated becomes a predetermined value, outputs the signal to the first chemical injection pump 6a, and adjusts the addition amount of the alkaline agent. . The first liquid to be treated and the alkaline agent are mixed in the first mixer 5a.

【0025】このようにしてpH調整した第一の被処理
液は生物ろ過層31を上向流で通液するとともに、空気
供給路33から供給する空気を散気装置32から散気し
て、硝化細菌の作用により被処理液中のアンモニア性窒
素を亜硝酸性または硝酸性窒素に生物学的に硝化する。
被処理液中に有機性窒素化合物が含有されている場合
は、この有機物性窒素化合物はBOD分解細菌の作用に
よりアンモニア性窒素に分解され、さらに硝化細菌の作
用により亜硝酸性または硝酸性窒素に硝化される。なお
第一の被処理液のpHが9.7を超えるような場合はほ
とんどないが、このような場合は予め酸を添加してpH
を9.7以下に調整しておく。
The first liquid to be treated whose pH has been adjusted in this manner passes through the biological filtration layer 31 in an upward flow, and at the same time, the air supplied from the air supply passage 33 is diffused from the diffuser 32. Biological nitrification of ammoniacal nitrogen in the liquid to be treated into nitrite or nitrate nitrogen by the action of nitrifying bacteria.
When the liquid to be treated contains an organic nitrogen compound, this organic nitrogen compound is decomposed into ammonia nitrogen by the action of BOD-decomposing bacteria, and further converted into nitrite or nitrate nitrogen by the action of nitrifying bacteria. Nitrified. It should be noted that there is almost no case where the pH of the first liquid to be treated exceeds 9.7.
Is adjusted to 9.7 or less.

【0026】一方、第二の給液ポンプ3bを駆動して、
第二の給液路2bを通して散液装置34から被処理液の
残部(以下、第二の被処理液という場合がある)を硝化
槽1の中間部に供給する。このとき第二のpH測定装置
8bで第二の被処理液のpHを測定し、そのpH値を制
御装置10に出力する。制御装置10では第二の被処理
液のpHが所定値となるようなアルカリ剤の添加量を演
算し、その信号を第二の薬注ポンプ6bに出力し、アル
カリ剤の添加量を調整する。第二の被処理液とアルカリ
剤とは第二の混合器5bで混合する。
On the other hand, by driving the second liquid supply pump 3b,
The remaining part of the liquid to be treated (hereinafter, sometimes referred to as the second liquid to be treated) is supplied from the sprinkling device 34 to the middle part of the nitrification tank 1 through the second liquid supply passage 2b. At this time, the second pH measuring device 8b measures the pH of the second liquid to be treated and outputs the pH value to the control device 10. The controller 10 calculates the addition amount of the alkaline agent such that the pH of the second liquid to be treated becomes a predetermined value, outputs the signal to the second chemical injection pump 6b, and adjusts the addition amount of the alkaline agent. . The second liquid to be treated and the alkaline agent are mixed in the second mixer 5b.

【0027】このようにしてpH調整した第二の被処理
液は硝化槽1内を上昇する硝化処理液(槽内液)と混合
されて硝化される。この場合、第一の被処理液と第二の
被処理液との分流割合は、第一の被処理液:第二の被処
理液の容量比で1〜5:1、好ましくは1〜2:1とす
るのが望ましい。ここではpHの低下した硝化処理液
(槽内液)とpH調整した第二の被処理液とが混合され
るので、硝化処理液(槽内液)が中和されてpHが高く
なり、これにより効率のよい硝化が行われる。
The second liquid to be treated whose pH has been adjusted in this manner is mixed with the nitrifying liquid (in-tank liquid) rising in the nitrification tank 1 and nitrified. In this case, the split ratio of the first liquid to be treated and the second liquid to be treated is 1 to 5: 1, preferably 1 to 2 in terms of a volume ratio of the first liquid to be treated: the second liquid to be treated. It is desirable to set it to: 1. Here, since the nitrification treatment liquid (in-tank liquid) having a lowered pH is mixed with the second liquid to be treated whose pH has been adjusted, the nitrification treatment liquid (in-tank liquid) is neutralized to increase the pH. This enables efficient nitrification.

【0028】硝化処理液(槽内液)と第二の被処理液と
の混合は、硝化細菌の硝化活性が高くなるpH8〜9に
なるように混合するのが好ましい。そのためには第一の
被処理液と第二の被処理液との分流割合を調整するか、
あるいは第二の被処理液のpHを調整するなどの方法に
より行うことができる。
The nitrification treatment liquid (solution in the bath) and the second liquid to be treated are preferably mixed so that the nitrification activity of nitrifying bacteria becomes high at pH 8-9. To do so, adjust the split ratio of the first liquid to be treated and the second liquid to be treated,
Alternatively, it can be performed by a method such as adjusting the pH of the second liquid to be treated.

【0029】第二の被処理液を供給した後の槽内混合液
のpHは次のようにして所定値に制御することができ
る。すなわち、槽内液引抜液路13aおよび被処理液引
抜液路13bから液を引抜いて混合し、この引抜混合液
のpHを第三のpH測定装置11で測定し、このpH値
を制御装置10に出力する。制御装置10では、このp
H値から第一および/または第二のpH調整装置4a、
4bの目標pH値を設定する。これにより、第一および
/または第二のpH調整装置4a、4bにおいて第一お
よび/または第二の被処理液に添加するアルカリ剤の量
が調整される。この場合バルブ12、35を調整して、
第一の被処理液と第二の被処理液との分流割合と等しく
なるように、槽内液および第二の被処理液を引抜いて混
合する。
The pH of the mixed liquid in the tank after supplying the second liquid to be treated can be controlled to a predetermined value as follows. That is, the liquids are drawn from the in-tank liquid drawing liquid passage 13a and the liquid to be treated drawing liquid passage 13b and mixed, the pH of the drawn liquid mixture is measured by the third pH measuring device 11, and this pH value is controlled by the control device 10. Output to. In the control device 10, this p
From the H value, the first and / or second pH adjusting device 4a,
Set the target pH value of 4b. This adjusts the amount of the alkaline agent added to the first and / or second liquid to be treated in the first and / or second pH adjusters 4a and 4b. In this case, adjust valves 12 and 35,
The in-tank liquid and the second liquid to be treated are drawn out and mixed so that the split flow ratio between the first liquid to be treated and the second liquid to be treated becomes equal.

【0030】硝化処理液の一部は、循環ポンプ24によ
り循環路23を通して第一の給液路2aに循環する。残
部は処理液として処理液路21から取出す。排ガスは排
ガス路22から排出する。硝化処理液の一部を循環して
被処理液と混合することにより、硝化槽1入口における
NH4 +濃度がアルカリ度と比較して小さくなるため、p
Hの低下を小さくすることができる。なお、硝化処理液
の循環は必ずしも必要ではなく、場合によっては省略す
ることもできる。
A part of the nitrification treatment liquid is circulated by the circulation pump 24 through the circulation passage 23 to the first liquid supply passage 2a. The rest is taken out from the processing liquid passage 21 as the processing liquid. The exhaust gas is discharged from the exhaust gas passage 22. By circulating a part of the nitrification treatment liquid and mixing it with the liquid to be treated, the NH 4 + concentration at the inlet of the nitrification tank 1 becomes smaller than the alkalinity.
The decrease in H can be reduced. It should be noted that the circulation of the nitrification treatment liquid is not always necessary and may be omitted in some cases.

【0031】以上のようにして硝化を行うと、硝化槽1
の中間部で液が混合されるので硝化槽1内でのpHの低
下が防止され、硝化槽1全体を通して硝化細菌の活性が
高くなるpHに保たれ、高い硝化速度で安定して硝化を
行うことができる。この場合被処理液のpH、NH4 +
度、アルカリ度または有機性窒素化合物含有量などが変
動しても、それに応じてpH調整がなされるので、高い
硝化速度を維持でき、しかも注入するアルカリ剤の量を
必要最低限に抑えることができる。また被処理液の一部
を硝化槽1の中間部から供給しているので、圧力損失を
小さくすることができる。
When nitrification is performed as described above, the nitrification tank 1
Since the liquid is mixed in the middle part of the, the pH in the nitrification tank 1 is prevented from lowering, the pH of the nitrification tank 1 is maintained at a level at which the activity of nitrifying bacteria becomes high, and nitrification is stably performed at a high nitrification rate. be able to. In this case, even if the pH, NH 4 + concentration, alkalinity or organic nitrogen compound content of the liquid to be treated changes, the pH is adjusted accordingly, so that a high nitrification rate can be maintained and the alkali The amount of the agent can be suppressed to the necessary minimum. Moreover, since a part of the liquid to be treated is supplied from the intermediate portion of the nitrification tank 1, the pressure loss can be reduced.

【0032】図2の硝化装置においても、図1の場合と
同様にして操作することができる。図2の場合、脱窒硝
化槽41の内部は、散気装置32より下が嫌気状態とな
るので、生物ろ過層42、43は下部に脱窒細菌を含む
脱窒部45、上部に硝化細菌を含む硝化部44が形成さ
れ、1つの槽内で脱窒および硝化が行われる。図2で
は、引抜液路13を散液装置34の上部に設けているの
で、槽内混合液のpHを直接測定することができる。な
お図2の場合、脱窒部45で脱窒を行うことにより脱窒
処理液のpHが脱窒部に供給する被処理液のpHより高
くなるので、第一の被処理液のpHは脱窒部45を設け
ない場合に比べて0〜1程度低いpHに調整するのが好
ましい。
The nitrification apparatus of FIG. 2 can be operated in the same manner as in the case of FIG. In the case of FIG. 2, the inside of the denitrification and nitrification tank 41 is in an anaerobic state below the aeration device 32. Therefore, the biological filtration layers 42 and 43 have a denitrification section 45 containing denitrification bacteria at the bottom and a nitrification bacterium at the top. Is formed, and denitrification and nitrification are performed in one tank. In FIG. 2, since the extraction liquid passage 13 is provided above the liquid dispersion device 34, the pH of the in-tank mixed liquid can be directly measured. In the case of FIG. 2, the pH of the denitrification treatment liquid becomes higher than the pH of the liquid to be treated supplied to the denitrification unit by performing the denitrification in the denitrification unit 45. It is preferable to adjust the pH to be lower by about 0 to 1 as compared with the case where the nitrification unit 45 is not provided.

【0033】試験例1 下記水質の工場廃水 NH4 +濃度 :100mg-N/l BOD :2〜5mg/l M−アルカリ度:150mg-CaCO3/l pH :6.8〜7.1 を、図1の硝化装置により硝化を行った。硝化槽には直
径3.5mmのポリスチレン製の浮上性ろ材を充填し、
高さ300cmの生物ろ過層を形成した。第二の被処理
液は生物ろ過層のちょうど真中(下から150cmの位
置)から供給するように構成した。
Test Example 1 Factory wastewater of the following water quality: NH 4 + concentration: 100 mg-N / l BOD: 2-5 mg / l M-alkalinity: 150 mg-CaCO 3 / l pH: 6.8-7.1 Nitrification was performed by the nitrification apparatus shown in FIG. The nitrification tank is filled with 3.5 mm diameter polystyrene floatable filter media,
A 300 cm high biofiltration layer was formed. The second liquid to be treated was configured so as to be supplied from just in the center of the biological filtration layer (position 150 cm from the bottom).

【0034】硝化は次のようにして行った。まず硝化槽
が定常になった後、最初の1か月間は被処理液は全量第
一の給液路から硝化槽に供給し、硝化負荷1.5kg-
N/m3・日で運転した(比較例)。このときの被処理液
のpHは水酸化ナトリウムを添加して8.5に調整し
た。その後は第一の給液路および第二の給液路から等量
ずつ硝化槽に供給して運転した(実施例)。このときの
第一の被処理液のpHは8.5、第二の被処理液のpH
は9.5に水酸化ナトリウムにより調整した。試験期間
中のNH4 +の除去率を図3、硝化槽の槽内液のpHを図
4に示す。
Nitrification was performed as follows. First, after the nitrification tank becomes steady, all the liquid to be treated is supplied to the nitrification tank from the first supply line for the first month, and the nitrification load is 1.5 kg-
It was operated at N / m 3 · day (comparative example). The pH of the liquid to be treated at this time was adjusted to 8.5 by adding sodium hydroxide. After that, an equal amount was supplied to the nitrification tank from the first liquid supply passage and the second liquid supply passage to operate (Example). The pH of the first liquid to be treated at this time is 8.5, and the pH of the second liquid to be treated is
Was adjusted to 9.5 with sodium hydroxide. The NH 4 + removal rate during the test period is shown in FIG. 3, and the pH of the solution in the nitrification tank is shown in FIG.

【0035】図3からわかるように、NH4 +の除去率
は、硝化槽の中間部からpH9.5に調整した第二の被
処理液を供給することにより大きく上昇し、平均で22
%高い除去率が得られた。また図4からわかるように、
槽内液のpHは、硝化槽の中間部からpH9.5に調整
した第二の被処理液を供給することによりpH低下の幅
が減少した。
As can be seen from FIG. 3, the removal rate of NH 4 + is greatly increased by supplying the second liquid to be treated adjusted to pH 9.5 from the middle part of the nitrification tank, and the removal rate is 22 on average.
% High removal rate was obtained. Also, as can be seen from FIG.
Regarding the pH of the in-tank liquid, the range of pH decrease was reduced by supplying the second liquid to be treated, which was adjusted to pH 9.5 from the middle part of the nitrification tank.

【0036】[0036]

【発明の効果】本発明の硝化装置は、硝化槽の中間部か
ら被処理液を供給する第二の給液装置と、この第二の給
液装置から供給する被処理液のpHを6.5〜11.5
に調整する第二のpH調整装置とを備えているので、被
処理液のpH、NH4 +濃度、アルカリ度または有機性窒
素化合物含有量などが変動する場合でも、簡単な構造の
装置を用いかつ簡単な操作により、硝化槽内のpHを硝
化細菌の硝化活性が高くなる範囲に維持することがで
き、これにより安定して高い硝化速度で硝化を行うこと
ができる。
According to the nitrification apparatus of the present invention, the second liquid supply device for supplying the liquid to be treated from the intermediate portion of the nitrification tank and the pH of the liquid to be treated supplied from the second liquid supply device are set to 6. 5-11.5
Since it has a second pH adjusting device for adjusting the pH of the liquid to be treated, even if the pH, NH 4 + concentration, alkalinity or organic nitrogen compound content of the liquid to be treated changes, a device with a simple structure is used. Moreover, the pH in the nitrification tank can be maintained within a range where the nitrifying activity of the nitrifying bacteria is high by a simple operation, whereby stable nitrification can be performed at a high nitrification rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の硝化装置を示す系統図であ
る。
FIG. 1 is a system diagram showing a nitrification apparatus according to an embodiment of the present invention.

【図2】本発明の別の実施例の硝化装置を示す系統図で
ある。
FIG. 2 is a system diagram showing a nitrification apparatus according to another embodiment of the present invention.

【図3】試験例1の結果を示すグラフである。FIG. 3 is a graph showing the results of Test Example 1.

【図4】試験例1の結果を示すグラフである。FIG. 4 is a graph showing the results of Test Example 1.

【図5】硝化細菌の硝化活性とpHとの関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between nitrifying activity of nitrifying bacteria and pH.

【符号の説明】[Explanation of symbols]

1 硝化槽 2 被処理液路 2a 第一の給液路 2b 第二の給液路 3a 第一の給液ポンプ 3b 第二の給液ポンプ 4a 第一のpH調整装置 4b 第二のpH調整装置 5a 第一の混合器 5b 第二の混合器 6a 第一の薬注ポンプ 6b 第二の薬注ポンプ 7 薬注路 7a 第一の薬注路 7b 第二の薬注路 8a 第一のpH測定装置 8b 第二のpH測定装置 9 アルカリ剤貯槽 10 制御装置 11 第三のpH測定装置 12、35 バルブ 13 引抜液路 13a 槽内液引抜液路 13b 被処理液引抜液路 21 処理液路 22 排ガス路 23 循環路 24 循環ポンプ 31、42、43 生物ろ過層 32 散気装置 33 空気供給路 34 散液装置 41 脱窒硝化槽 44 硝化部 45 脱窒部 DESCRIPTION OF SYMBOLS 1 Nitrification tank 2 Liquid to be processed 2a 1st liquid supply path 2b 2nd liquid supply path 3a 1st liquid supply pump 3b 2nd liquid supply pump 4a 1st pH adjusting device 4b 2nd pH adjusting device 5a 1st mixer 5b 2nd mixer 6a 1st chemical injection pump 6b 2nd chemical injection pump 7 chemical injection path 7a 1st chemical injection path 7b 2nd chemical injection path 8a 1st pH measurement Device 8b Second pH measuring device 9 Alkaline agent storage tank 10 Control device 11 Third pH measuring device 12, 35 Valve 13 Extraction liquid passage 13a In-tank liquid extraction liquid passage 13b Treatment liquid extraction liquid passage 21 Treatment liquid passage 22 Exhaust gas Channel 23 Circulation channel 24 Circulation pump 31, 42, 43 Biological filtration layer 32 Air diffuser 33 Air supply channel 34 Fluidizer 41 Denitrification nitrification tank 44 Nitrification section 45 Denitrification section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被処理液を受入れて生物学的に硝化を行
うプラグフロー型の硝化槽と、 この硝化槽の一端部から被処理液の一部を供給する第一
の給液装置と、 この第一の給液装置から供給する被処理液のpHを6〜
9.7に調整する第一のpH調整装置と、 前記プラグフロー型の硝化槽の中間部から被処理液の他
の一部を供給する第二の給液装置と、 この第二の給液装置から供給する被処理液のpHを6.
5〜11.5に調整する第二のpH調整装置とを備えて
いることを特徴とする硝化装置。
1. A plug flow type nitrification tank for receiving a liquid to be treated and nitrifying it biologically, and a first liquid supply device for supplying a part of the liquid to be treated from one end of the nitrification tank. The pH of the liquid to be treated supplied from the first liquid supply device is 6 to
A first pH adjusting device for adjusting to 9.7; a second liquid supplying device for supplying another part of the liquid to be treated from an intermediate portion of the plug flow type nitrification tank; The pH of the liquid to be treated supplied from the apparatus is 6.
A nitrification device comprising a second pH adjusting device for adjusting the pH to 5 to 11.5.
JP7203195A 1995-03-29 1995-03-29 Nitrator Pending JPH08267088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7203195A JPH08267088A (en) 1995-03-29 1995-03-29 Nitrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7203195A JPH08267088A (en) 1995-03-29 1995-03-29 Nitrator

Publications (1)

Publication Number Publication Date
JPH08267088A true JPH08267088A (en) 1996-10-15

Family

ID=13477642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7203195A Pending JPH08267088A (en) 1995-03-29 1995-03-29 Nitrator

Country Status (1)

Country Link
JP (1) JPH08267088A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519309A (en) * 2008-04-28 2011-07-07 ポステック アカデミー−インダストリー ファンデーション Biofilm reactor with helical structure and water treatment apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519309A (en) * 2008-04-28 2011-07-07 ポステック アカデミー−インダストリー ファンデーション Biofilm reactor with helical structure and water treatment apparatus using the same

Similar Documents

Publication Publication Date Title
EP1806325B1 (en) Method of treating nitrogen-containing liquid
JP5890374B2 (en) Biological nitrogen removal apparatus and water treatment system
JP5932639B2 (en) Biological nitrogen removal method using anaerobic ammonia oxidation reaction
US7267764B2 (en) Apparatus for removing nitrogen
JP6227509B2 (en) Waste water treatment apparatus and waste water treatment method
JP2006088092A (en) Method and apparatus for treating nitrogen-containing liquid
JP4872171B2 (en) Biological denitrification equipment
JP2017144402A (en) Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
JP7133339B2 (en) Nitrogen treatment method
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
JP2003024987A (en) Nitrification method for ammonia nitrogen-containing water
JP2008221161A (en) Denitrifying treatment device and denitrifying treatment method
JPH08267088A (en) Nitrator
JP3396959B2 (en) Nitrification method and apparatus
JPH0880497A (en) Nitrator
JP3293218B2 (en) Biological nitrification denitrification treatment method
KR100403288B1 (en) A treatment method of wastewater with low concentration of ammonia by the type of non-aeration nitrification
JP2673488B2 (en) Method and apparatus for treating organic wastewater
JP4867097B2 (en) Biological denitrification method and biological denitrification apparatus
US20050023215A1 (en) Periodic aeration in an activated sludge reactor for wastewater treatment
WO2005030654A1 (en) Method and apparatus for nitrification
JPH11226594A (en) Intermittent aeration type activated sludge treatment apparatus
JPH0144398B2 (en)