JPH0144398B2 - - Google Patents

Info

Publication number
JPH0144398B2
JPH0144398B2 JP58055896A JP5589683A JPH0144398B2 JP H0144398 B2 JPH0144398 B2 JP H0144398B2 JP 58055896 A JP58055896 A JP 58055896A JP 5589683 A JP5589683 A JP 5589683A JP H0144398 B2 JPH0144398 B2 JP H0144398B2
Authority
JP
Japan
Prior art keywords
treatment tank
tank group
nitrogen
treatment
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58055896A
Other languages
Japanese (ja)
Other versions
JPS59179195A (en
Inventor
Chiaki Niwa
Teruyasu Hirayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP58055896A priority Critical patent/JPS59179195A/en
Publication of JPS59179195A publication Critical patent/JPS59179195A/en
Publication of JPH0144398B2 publication Critical patent/JPH0144398B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、含窒素有機性廃水の好気的な処理方
法に関するものである。 従来、含窒素有機性廃水の処理システムとし
て、接触酸化法を用いてBOD除去と窒素分の硝
化とを行なわしめる多段のシステムが知られてい
る。接触酸化法は、生物相の発生した物質(以
下、汚泥と称す)を処理槽内の充填材に固定し、
その間隙を、水を曝気により循環流動せしめて
BOD成分または窒素分を好気的に生物酸化処理
する方法であつて、汚泥の増殖は、不可避的なも
のである。このため、従来の接触酸化法を適用し
て処理システムにおいては、汚泥の増殖による処
理槽内充填材の目詰りを防止する方法として、生
物膜の一部を常時剥離させる手段や、汚泥に対し
て適時空気などによる逆洗を施し、生物膜の一部
を間欠的に剥離させる手段が採用されていた。し
かるに、前者においては、良質な処理水を得るに
は、少なくとも沈澱槽が必要であるが、それでも
得られる処理水質には限界があるという問題をか
かえていた。また、後者の場合には、逆洗装置が
必要な上、逆洗前後における水質の悪化を防止出
来ないという問題をかかえていた。 また、中小規模の廃水処理施設においては、経
済的観点から余剰汚泥の処理処分施設を設けず、
業者による引き取りとしているところが多い。し
かしながら、これに要する費用は、廃水処理場で
使う全電気料金にも匹敵するため、発生余剰汚泥
量が少なく、経済的に有利な廃水処理技術の開発
が強く望まれていた。 更に、富栄養化防止の観点から、廃水中の窒素
分の除去が不可欠である。この窒素分の除去法と
して、経済的には生物脱窒法が最も有利であるこ
とは、周知の通りであり、なかでも硝化反応の促
進に汚泥令を長くとれる接触酸化法が優れてい
る。従つて、含窒素有機性廃水の処理方法とし
て、前述の各問題を解消し得て、かつ経済的に有
利な接触酸化法による処理方法の開発が望まれて
いた。 本発明は、上記事情に鑑みてなされたもので、
BOD除去、窒素分の硝化及び余剰汚泥の分解、
消化を同一システム内で行なわせ、高度処理水を
経済的に有利に得ることができる含窒素有機性廃
水の処理方法を提供することを目的とするもので
ある。 本発明による含窒素有機性廃水の処理方法は、
含窒素有機性廃水を接触酸化法を用いて好気的に
処理するにあたり、内部に汚泥が支持された3個
以上の処理槽を、BOD除去処理槽群と窒素硝化
処理槽群と余剰汚泥消化処理槽群とに割振り、前
記含有窒素有機性廃水を前記BOD除去処理槽群
に導入すると共に同処理槽群に酸素を供給して
BOD除去処理を施し、このBOD除去処理槽群の
処理水の全部もしくは一部を前記窒素硝化処理槽
群に導くと共に残部を前記余剰汚泥消化処理槽群
に導き、前記窒素硝化処理槽群では酸素を供給し
つつ窒素硝化処理を施し、この窒素硝化処理槽群
の処理水の一部を最終処理水として送出すると共
に残部を前記余剰汚泥消化処理槽群に導き、この
余剰汚泥消化処理槽群で生ずる処理水を、前記
BOD除去処理槽群および/または前記窒素硝化
処理槽群に返送しつつ前記含窒素有機性廃水の処
理を行ない、かつ、所定期間経過毎に前記3個以
上の処理槽の前記BOD除去処理槽群と窒素硝化
処理槽群と余剰汚泥消化処理槽群とへの割振りを
変更することを特徴とするものである。 以下、本発明を図面に参照して詳細に説明す
る。 第1図は、本発明を実施するための含窒素有機
性廃水処理装置の一例を示す図である。この図に
示す処理装置においては、処理槽として、第1の
処理槽1、第2の処理槽2及び第3の処理槽3の
3個の処理槽を備えており、これらの処理槽1,
2,3に対して、BOD除去工程と窒素分の硝化
工程と余剰汚泥消化工程とが割り振られる。これ
らの処理槽1,2,3の内部には、それぞれ汚泥
の付着した充填材を4,5,6が設けられると共
に、散気装置7,8,9が設けられており、各散
気装置7,8,9には、ブロア10が接続され、
それぞれ第1〜第3の弁11,12,13を介し
て前記ブロア10により所望量の空気が送られる
ようになつている。 前記各処理槽1,2,3に対する3つの工程の
割り振りは、後に述べるように所定期間経過毎に
切換えられるが、図には第1の処理槽1にBOD
除去工程と、第2の処理槽2に窒素硝化工程を、
また第3の処理槽3に汚泥消化工程を割り振つた
状態での廃水及び流れを示してある。 この状態における処理工程を説明すると、ま
ず、含窒素有機性廃水(以下、廃水と称す。)は、
第1の処理槽(BOD除去処理槽群)1に導入さ
れる。第1の処理槽1において、廃水中には散気
装置7によつて空気が送り込まれて気泡を生じ、
これにより廃水に循環流を生じる。この循環流に
よつて廃水は、充填材4の表面に付着した汚泥に
循環接触され、汚泥中に存在する有機物を好気的
に処理する微生物の作用により、BODが減少さ
れる。 このBOD除去処理においては、散気装置7に
より送り込まれる空気量を調整して、廃水に充分
な酸素を供給し、槽内の溶存酸素量(以下DOと
記す。)を3mg/以上に保つことが必要である。
また、充填材7の目詰りを防止するために、
BOD負荷を0.3〜0.6Kg/m3・日程度とすることが
望ましい。 上記第1の処理槽1のでBOD除去された処理
水は、第2の処理槽(窒素硝化処理槽群)2に送
られる。 第2の処理槽2においては、前記第1の処理槽
1と同様に、散気装置8により生じる気泡によつ
て処理水の循環流が生じ、処理水が充填材8表面
の汚泥と循環接触される。処理水は、これに含ま
れるアンモニア性窒素分が、汚泥中の硝化菌また
は亜硝酸化菌の作用により硝酸性窒素または亜硝
酸性窒素に酸化され、BOD及びアンモニア性窒
素の除去された処理水となる。 この硝化処理にあたつては、硝化反応に必要
な酸素が充分に供給されること(DO6mg/以
上)、PH値が硝化菌の活性をさまたげない範囲
(PH6.5〜8.5)に保たれること、硝化反応と
BOD除去反応とは、競合反応であるため、BOD
−充填材負荷を0.05〜0.2Kg/m3・日程度に抑え
ること、水温の低下を防止して硝化菌の活性を
高く保つこと等が必要である。 上記第2の処理槽2で処理された処理水は、そ
の一部が最終処理水として系外に送出され、残部
が第3の処理槽3に導かれる。 第3の処理槽(余剰汚泥消化処理槽群)3にお
いては、散気装置9によりつくられる循環流によ
つて、充填材6の表面に付着増殖した汚泥の好気
的な自己消化が行なわれる。すなわち、第3の処
理槽3に導入される処理水は、有機汚濁物濃度が
低いため、充填材6に付着する汚泥は自己消化を
起こしてその絶対量が減少する。 この汚泥消化処理にあたつては、必要十分な酸
素が供給されることはもちろんであるが、酸素供
給量が過剰となると、消化、分解により生成した
アンモニア性窒素が更に硝化されて、処理水のM
アルカリ度が低下するため注意を要する。また、
BOD負荷が充分小さく抑えることが消化効率の
向上のために望ましい。 汚泥の自己消化によつて、第3の処理槽3内の
処理水には、SS分、有機性物質、アンモニア性
窒素が生じ、従つて、これらの各成分の除去が必
要であり、この処理水は抜液配管15、返送ポン
プ16、循環配管17を経て第1の処理槽1に返
送される。 上記の処理工程による本発明の処理方法の作用
を更に詳しく説明する。 前記第3の処理槽3における処理水中には、生
物体の分解によりアンモニア性窒素が生成する。
このため、第3の処理槽3の処理水のアルカリ度
は上昇しており、この高アルカリ度の処理水を第
1の処理槽1に返送することによつて、第1の処
理槽1及び第2の処理槽2内部の処理水のPH値の
低下を防止することができる。特に硝化処理を行
なう第2の処理槽2においては、硝化反応により
生成する硝酸性窒素のためにPHが低下する傾向に
あり、かつ硝化反応はPH値の低下によつて活性が
下がる反応であるため、前述のようにアルカリ度
の高い汚泥消化後の処理水を第1及び第2の処理
槽1,2に返送してPH値の低下を防止することに
より、硝化活性を高く保つことができる。また、
返送される処理水中の有機性物質やアンモニア性
窒素等は、第1及び第2の処理槽1,2で除去処
理され、従つて、廃水処理を伴つて生じる余剰汚
泥の処分を系の内部で行なうことができる。更に
は、第3の処理槽3の処理水は、硝酸性窒素を含
んでおり、この処理水を第1の処理槽1に返送す
ることによつて、第1の処理槽1にて硝酸性窒素
の一部が好気性脱窒され、これにより第1の処理
槽1及び第2の処理槽2内のPHの低下防止が図ら
れる。 また、余剰汚泥の自己消化を行なう処理槽(第
1図に示す状態では第3の処理槽3)に対して、
第1の処理槽(BOD除去)1と第2の処理槽
(硝化処理)2のうちの少なくとも第2の処理槽
の処理液を導入している。これは、有機性物質の
添加を全く行なわずに汚泥消化のみを行なうと、
充填材6表面の汚泥が減少すると同時に老化し、
残留生物膜の生物浄化活性が著しく低下し、この
ため、各槽の機能を切換えた直後に、BOD除去
能力が低下するという現象を引き起こす。これに
対して本発明は、第3の処理槽3の適量の有機物
を供給することにより、汚泥消化と同時に世代の
新しい生物膜の生成が図られ、従つてBOD除去
能力を高く保つことができる。また、生物態系を
多様化することができるため、汚泥の減少(消
化)を促進することができる。更に、汚泥の自己
消化にあたつて、同着汚泥周囲の水を常に更新し
ておくことにより、汚泥消化は促進することがで
きる。 また、硝化処理後の処理水の一部を、最終処理
水として系外に送り出すことにより、BOD成分
及びアンモニア性窒素分の極めて少ない処理水が
得られる。 しかして、本発明の処理方法においては、上記
のBOD除去処理と窒素分の硝化処理と余剰汚泥
の自己消化処理とを行なう処理槽が所定期間経過
毎に切換えられる。これは、BOD除去及び硝化
にあたる処理槽の生物膜が、生物の増殖により肥
厚して、目詰りを起こすことを防止するためであ
つて、BOD除去処理槽または硝化処理槽中の汚
泥量が過剰であると判断された時点で切換えられ
る。従つて、各処理槽について工程の切換えから
次の切換えまでの期間の長さは、廃水による
BOD負荷または窒素負荷に応じて定まる。 各処理槽1,2,3への各処理工程の割振り順
序の例を下記の第1表〜第3表に示す。表中の符
号BはBOD除去処理、Nは硝化処理、Dは汚泥
消化処理の各工程を示すものである。
The present invention relates to a method for aerobically treating nitrogen-containing organic wastewater. Conventionally, as a treatment system for nitrogen-containing organic wastewater, a multi-stage system that uses a catalytic oxidation method to remove BOD and nitrify nitrogen content is known. In the catalytic oxidation method, a substance containing biota (hereinafter referred to as sludge) is fixed to a filler in a treatment tank.
The water is circulated through the gap by aeration.
This is a method of aerobically biooxidizing BOD components or nitrogen, and growth of sludge is unavoidable. For this reason, in treatment systems that apply the conventional catalytic oxidation method, as a method to prevent clogging of the filling material in the treatment tank due to sludge growth, methods such as constantly peeling off part of the biofilm and A method of backwashing with air, etc. at appropriate times was used to intermittently peel off part of the biofilm. However, in the former method, at least a settling tank is required to obtain high-quality treated water, but there is still a problem in that there is a limit to the quality of the treated water that can be obtained. Moreover, in the latter case, a backwashing device is required and there is a problem in that deterioration of water quality before and after backwashing cannot be prevented. In addition, in small and medium-sized wastewater treatment facilities, from an economic point of view, surplus sludge treatment and disposal facilities are not installed.
In many places, the items are picked up by a business. However, the cost required for this is comparable to the cost of all the electricity used in a wastewater treatment plant, so there has been a strong desire to develop an economically advantageous wastewater treatment technology that generates less surplus sludge. Furthermore, from the perspective of preventing eutrophication, it is essential to remove nitrogen from wastewater. It is well known that the biological denitrification method is economically the most advantageous method for removing this nitrogen content, and among them, the catalytic oxidation method is excellent because it allows a long sludge period to promote the nitrification reaction. Therefore, it has been desired to develop a treatment method for nitrogen-containing organic wastewater using a catalytic oxidation method that can solve the above-mentioned problems and is economically advantageous. The present invention was made in view of the above circumstances, and
BOD removal, nitrogen nitrification and excess sludge decomposition,
The object of the present invention is to provide a method for treating nitrogen-containing organic wastewater in which digestion is performed within the same system and highly treated water can be economically advantageously obtained. The method for treating nitrogen-containing organic wastewater according to the present invention includes:
In aerobically treating nitrogen-containing organic wastewater using the contact oxidation method, three or more treatment tanks with sludge supported inside are combined into a BOD removal treatment tank group, a nitrogen nitrification treatment tank group, and an excess sludge digestion tank group. The nitrogen-containing organic wastewater is introduced into the BOD removal treatment tank group, and oxygen is supplied to the treatment tank group.
BOD removal treatment is carried out, and all or part of the treated water from this BOD removal treatment tank group is led to the nitrogen nitrification treatment tank group, and the remainder is led to the surplus sludge digestion treatment tank group, and the nitrogen nitrification treatment tank group is oxygenated. A part of the treated water from this nitrogen nitrification treatment tank group is sent out as final treated water, and the remainder is led to the surplus sludge digestion treatment tank group, where the surplus sludge digestion treatment tank group The resulting treated water is
The nitrogen-containing organic wastewater is treated while being returned to the BOD removal treatment tank group and/or the nitrogen nitrification treatment tank group, and the BOD removal treatment tank group of the three or more treatment tanks is processed every predetermined period of time. The present invention is characterized by changing the allocation to the nitrogen nitrification treatment tank group and the surplus sludge digestion treatment tank group. Hereinafter, the present invention will be explained in detail with reference to the drawings. FIG. 1 is a diagram showing an example of a nitrogen-containing organic wastewater treatment apparatus for implementing the present invention. The processing apparatus shown in this figure is equipped with three processing tanks: a first processing tank 1, a second processing tank 2, and a third processing tank 3.
2 and 3 are assigned a BOD removal process, a nitrogen nitrification process, and an excess sludge digestion process. Inside these treatment tanks 1, 2, and 3, filling materials 4, 5, and 6 with sludge attached are provided, respectively, and aeration devices 7, 8, and 9 are provided. A blower 10 is connected to 7, 8, and 9,
A desired amount of air is sent by the blower 10 through first to third valves 11, 12, and 13, respectively. The allocation of the three processes to each processing tank 1, 2, and 3 is switched every predetermined period of time as described later, but in the figure, the allocation of the three processes to the first processing tank 1 is changed.
a removal process and a nitrogen nitrification process in the second treatment tank 2,
Furthermore, wastewater and flows are shown in a state where the sludge digestion process is assigned to the third treatment tank 3. To explain the treatment process in this state, first, nitrogen-containing organic wastewater (hereinafter referred to as wastewater) is
It is introduced into the first treatment tank (BOD removal treatment tank group) 1. In the first treatment tank 1, air is sent into the wastewater by the aeration device 7 to generate bubbles,
This creates a circulating flow in the wastewater. Due to this circulating flow, the wastewater is brought into circulation contact with the sludge adhering to the surface of the filler 4, and the BOD is reduced by the action of microorganisms that aerobically treat organic matter present in the sludge. In this BOD removal process, the amount of air sent by the air diffuser 7 is adjusted to supply sufficient oxygen to the wastewater and maintain the amount of dissolved oxygen (hereinafter referred to as DO) in the tank at 3 mg/or more. is necessary.
In addition, in order to prevent clogging of the filler 7,
It is desirable to set the BOD load to about 0.3 to 0.6 Kg/m 3 ·day. The treated water from which BOD has been removed in the first treatment tank 1 is sent to a second treatment tank (nitrogen nitrification treatment tank group) 2. In the second treatment tank 2, similarly to the first treatment tank 1, bubbles generated by the aeration device 8 cause a circulating flow of treated water, and the treated water comes into circulation contact with the sludge on the surface of the filler 8. be done. Treated water is treated water in which the ammonia nitrogen contained in the water is oxidized to nitrate nitrogen or nitrite nitrogen by the action of nitrifying bacteria or nitrite-oxidizing bacteria in the sludge, and BOD and ammonia nitrogen have been removed. becomes. During this nitrification process, the oxygen necessary for the nitrification reaction must be sufficiently supplied (DO6mg/or more), and the pH value must be maintained within a range that does not hinder the activity of nitrifying bacteria (PH6.5-8.5). The nitrification reaction
BOD removal reaction is a competitive reaction, so BOD
- It is necessary to suppress the filler load to about 0.05 to 0.2 Kg/m 3 ·day, and to keep the activity of nitrifying bacteria high by preventing a drop in water temperature. A portion of the treated water treated in the second treatment tank 2 is sent out of the system as final treated water, and the remainder is led to the third treatment tank 3. In the third treatment tank (surplus sludge digestion treatment tank group) 3, aerobic self-digestion of the sludge that has adhered and grown on the surface of the filler 6 is performed by the circulation flow created by the air diffuser 9. . That is, since the treated water introduced into the third treatment tank 3 has a low concentration of organic pollutants, the sludge adhering to the filler 6 undergoes autolysis and its absolute amount decreases. In this sludge digestion process, it goes without saying that sufficient oxygen is supplied, but if the amount of oxygen supplied is excessive, the ammonia nitrogen produced by digestion and decomposition will be further nitrified, and the treated water will be nitrified. M of
Care must be taken as the alkalinity will decrease. Also,
It is desirable to keep the BOD load sufficiently low in order to improve digestion efficiency. Due to the self-digestion of sludge, SS content, organic substances, and ammonia nitrogen are generated in the treated water in the third treatment tank 3. Therefore, it is necessary to remove these components, and this treatment The water is returned to the first treatment tank 1 via a drain pipe 15, a return pump 16, and a circulation pipe 17. The operation of the treatment method of the present invention using the above treatment steps will be explained in more detail. Ammonia nitrogen is generated in the treated water in the third treatment tank 3 due to the decomposition of living organisms.
Therefore, the alkalinity of the treated water in the third treatment tank 3 has increased, and by returning this highly alkaline treated water to the first treatment tank 1, the alkalinity of the treated water in the third treatment tank 3 is increased. A decrease in the PH value of the treated water inside the second treatment tank 2 can be prevented. In particular, in the second treatment tank 2 that performs nitrification treatment, the PH tends to decrease due to nitrate nitrogen generated by the nitrification reaction, and the nitrification reaction is a reaction whose activity decreases as the PH value decreases. Therefore, as mentioned above, the nitrification activity can be kept high by returning the treated water after sludge digestion with high alkalinity to the first and second treatment tanks 1 and 2 to prevent the PH value from decreasing. . Also,
Organic substances, ammonia nitrogen, etc. in the returned treated water are removed in the first and second treatment tanks 1 and 2. Therefore, the surplus sludge generated during wastewater treatment is disposed of internally. can be done. Furthermore, the treated water in the third treatment tank 3 contains nitrate nitrogen, and by returning this treated water to the first treatment tank 1, the nitrate is removed in the first treatment tank 1. Part of the nitrogen is aerobically denitrified, thereby preventing a decrease in the pH in the first treatment tank 1 and the second treatment tank 2. In addition, for the treatment tank (third treatment tank 3 in the state shown in Fig. 1) that performs self-extinguishment of excess sludge,
The treatment liquid from at least the second treatment tank of the first treatment tank (BOD removal) 1 and the second treatment tank (nitrification treatment) 2 is introduced. This is because if only sludge digestion is performed without adding any organic substances,
The sludge on the surface of the filler 6 decreases and ages at the same time.
The biopurification activity of the residual biofilm decreases significantly, which causes a phenomenon in which the BOD removal ability decreases immediately after switching the function of each tank. In contrast, in the present invention, by supplying an appropriate amount of organic matter to the third treatment tank 3, a new generation of biofilm is generated at the same time as sludge digestion, and therefore the BOD removal ability can be maintained at a high level. . Furthermore, since the biological system can be diversified, the reduction (digestion) of sludge can be promoted. Furthermore, when sludge is self-extinguished, sludge digestion can be promoted by constantly renewing the water around the sludge. In addition, by sending a portion of the treated water after nitrification treatment outside the system as final treated water, treated water with extremely low BOD components and ammonia nitrogen content can be obtained. Therefore, in the treatment method of the present invention, the treatment tanks for performing the above BOD removal treatment, nitrogen nitrification treatment, and surplus sludge autolysis treatment are switched every predetermined period of time. This is to prevent the biofilm in the treatment tank used for BOD removal and nitrification from thickening due to the proliferation of organisms and causing clogging. It is switched when it is determined that Therefore, the length of time from one process change to the next for each treatment tank depends on the wastewater
Determined according to BOD load or nitrogen load. Examples of the allocation order of each treatment process to each treatment tank 1, 2, and 3 are shown in Tables 1 to 3 below. In the table, the code B represents the BOD removal process, N represents the nitrification process, and D represents the sludge digestion process.

【表】 この第1表に示す切換え方法においては、切換
時に各槽ごとに、BOD除去から汚泥消化へ、硝
化からBOD除去へ、汚泥消化から硝化への機能
の切換えがなされる。従つて、この場合において
は、切換時間がBOD除去にあたる処理槽の汚泥
量により判断される。この切換方法によれば、工
程中、微生物の増殖速度が最も速いBOD除去に
あたる処理槽の汚泥量が切換の基準となるため、
充填材の目詰りを確実に防止することができる。
[Table] In the switching method shown in Table 1, the functions are switched from BOD removal to sludge digestion, from nitrification to BOD removal, and from sludge digestion to nitrification for each tank at the time of switching. Therefore, in this case, the switching time is determined by the amount of sludge in the treatment tank from which BOD is removed. According to this switching method, during the process, the amount of sludge in the treatment tank that removes BOD, where the growth rate of microorganisms is the fastest, becomes the criterion for switching.
Clogging of the filling material can be reliably prevented.

【表】 上記第2表に示す切換方法においては、切換時
に各槽ごとに、BOD除去から硝化へ、硝化から
汚泥消化へ、汚泥消化からBOD除去への機能の
切換えがなされる。従つて、この場合において
は、切換えの時間が硝化にあたる処理槽の汚泥量
に基いて判断される。この切換方法によれば、最
終処理水が、BOD除去工程から硝化工程に切換
えられた処理槽から送出されるため、切換時にお
ける処理水の劣化を防止することができる。
[Table] In the switching method shown in Table 2 above, at the time of switching, the function is switched for each tank from BOD removal to nitrification, from nitrification to sludge digestion, and from sludge digestion to BOD removal. Therefore, in this case, the switching time is determined based on the amount of sludge in the treatment tank that undergoes nitrification. According to this switching method, the final treated water is sent out from the treatment tank that has been switched from the BOD removal process to the nitrification process, so it is possible to prevent deterioration of the treated water at the time of switching.

【表】 上記第3表は、窒素負荷が比較的小さい場合に
適用できる切換方法であり、硝化工程に所定処理
槽に固定し、他の処理槽でBOD除去と汚泥消化
とを交互に行なわせるものである。この切換方法
においては、硝化処理槽が目詰りを起こした場合
には、逆洗等の余剰汚泥除去手段を必要とする
が、硝化処理槽が所定槽に固定されているため、
最終処理水の水質が安定している。 上記のような本発明の廃水の処理方法によれ
ば、BOD除去及び硝化の各工程が、汚泥消化処
理水を返送しつつ良好な処理条件を保つてなされ
るため、良好な最終処理水を得ることができる。
また、各処理槽に対する各処理工程の割り振り
が、所定期間経過ごとに切換えられ、BOD除去
または硝化にあたつて肥厚した汚泥の自己消化が
なされるため、余剰汚泥による処理槽内の目詰り
を防止することができると同時に、余剰汚泥の処
理を処理系の内部で行なうことができる。従つ
て、余剰汚泥の処理手段を別途に設ける必要がな
く、経済的に有利である。 次に第2図に参照して、本発明を実施するため
の廃水処理装置の別の例を説明する。第2図にお
いて第1図と同一構成要素には、同一符号を付し
てその説明を省略する。 第2図は示す処理装置が、第1図に示すものと
異なる点は、最終処理水を導入する検査槽30を
備え、この検査槽30内の処理水の水質に応じ
て、汚泥消化にあたる処理槽への空気供給量と、
汚泥消化処理水の返送量とのうちの少なくとも一
方を制御するようにした点である。 すなわち、硝化処理にあたる第2の処理槽2か
ら送出される最終処理水は、検査槽30に導か
れ、この検査槽30を経て系外に送出される。検
査槽30の内部には、処理水の水質を検出するた
めの検査装置31が設けられている。この検査装
置31の検出出力は、制御装置32に供給され、
この制御装置32は、水質検出信号に基いて、第
3の処理槽3に空気を供給するためのブロア33
の吐出量および第3の処理槽3からの処理水を返
送するための返送ポンプ16の送水量を制御する
ようになつている。上記検査装置31により検出
する水質の因子としては、PH、Mアルカリ度、
UV、TOC、TODのうちの1つ以上の因子が選
択される。 上記の廃水処理装置における制御方式の例を説
明する。まず、検出装置31による検出因子とし
て、PHまたはMアルカリ度をとり、PHまたはMア
ルカリ度の検出値(例えばPH値においては6〜
8)より低下した場合には、第3の処理槽3への
送風量を減少させるか、あるいは汚泥消化処理水
の返送量を増加させるかのいずれか一方、または
両方の制御を行なう。これは、第3の処理槽にて
汚泥消化により生じたアンモニア性窒素が、過剰
な酸素により亜硝酸性窒素や硝酸性窒素に酸化さ
れることを防止して、返送される処理水のPHを高
く保つためである。 また、検出する因子として、UV、TOC、
TODをとり、これらの値が高くなつた場合には、
汚泥消化処理水の返送量を減少させ、BOD除去
及び硝化の各処理を行なう処理槽に対する汚濁物
質負荷を減少させればよい。 しかして、上述した第2図に示す処理装置にお
いても、第1図に示すものと同様に各処理槽1,
2,3に対する処理工程の割振りと、その切換え
がなされ、廃水の高度処理と、これに伴つて発生
する余剰汚泥の系内部での処理がなされる。 上述のような処理方法によれば、第1図に基い
て説明した処理方法による効果に加えて、各処理
槽における環境を常に良好に保つて、処理効率の
向上及び処理水の水質の向上を図ることができ
る。 なお、第1図及び第2図には、処理槽を3個設
けた例について示したが、4個以上の処理槽を用
い、各処理工程に1個または2個以上の処理槽を
割り振ることもできる。 また、上記の例では、硝化処理にあたる処理槽
の処理水のみを汚泥消化にあたる処理槽に導く例
について説明したが、必要に応じてBOD除去処
理槽の処理水の一部を汚泥消化槽に導き、同汚泥
消化槽のBOD負荷を増すこともできる。更には
汚泥消化槽からの返送水の一部を硝化処理槽に導
いてもよい。 以上、詳細に説明したように、本発明による含
窒素有機性廃水の処理方法は、3個以上の処理槽
を、BOD除去処理槽群と窒素硝化処理槽群と余
剰汚泥消化処理槽群とに割り振り、前記廃水を
BOD除去処理槽群から窒素硝化処理槽群を経て
汚泥消化処理槽群に送りつつ各処理を施し、前記
窒素硝化処理槽群の処理水の一部を最終処理水と
して系外に送出すると共に、前記汚泥消化処理槽
群の処理水を前記BOD除去処理槽群及び/また
は硝化処理槽群に返送して廃水を処理を行ない、
かつ、所定期間経過毎に処理槽の各工程への割り
振りを切換えるようにしたから、汚泥消化処理槽
群のPH(アルカリ度)の高い返送水をBOD除去
処理槽群及び/または硝化処理槽群に導いて、こ
れらの処理槽群のPHの低下を防止し、良好な処理
条件を維持することができる。また、BOD除去
処理槽群及び硝化処理槽群に生ずる汚泥の余剰分
を、汚泥消化処理において処理するようにし、か
つ、汚泥消化に伴つて生じる有機性物質等を系内
部で処理するようにしたから、接触酸化法におい
て不可避的に生じる余剰汚泥を一つの廃水処理系
内で処理することができるという利点が得られ、
また、これに伴つて経済的に有利となるという効
果を得られる。更には、最終処理水の水質に基い
て、汚泥消化処理槽群への空気供給量及び/また
は汚泥消化処理水の返送量を制御するようにし、
各処理槽群の環境の最適化を図ることによつて、
処理効率及び処理水の水質の向上を図ることがで
きるという利点が得られる。 以下に、実施例を示して本発明を具体的に説明
する。 実施例 第1図に示す廃水処理装置を構成し、この装置
により本発明の処理方法を実施した。処理槽1,
2,3としては、15m3の槽容量かつ10m3の充填材
容量をもつものを3個用いた。 実施にあたつては、まず第1〜第3の処理槽
1,2,3に対して有機栄養剤を供給しつつ、充
填材4,5,6に付着する汚泥を、目詰りを生ず
る量(以下、限度量と記す)約50%程度まで増殖
させた後、第1の処理槽1をBOD除去に、第2
の処理槽2を硝化処理に、第3の処理槽3を汚泥
消化処理に割り振つた。 第1の処理槽1にBOD200mg/、窒素濃度30
mg/の廃水を0.83m3/時の流量をもつて流入し
つつ、各処理槽に対する空気量を弁11,12,
13により調節して、第1の処理槽1のDO4
mg/、第2の処理槽2のDO6.5mg/第3の処
理槽3のDO7.5mg/に維持し、また第2の処理
槽2からの処理水送出量の67%を最終処理水とし
て系外に放出するように第3の処理槽3からの返
送水量を調節して20日間運転し、処理系の定常化
を図つた。 定常状態に達したときの各槽の状態は次のとう
りであつた。 ΓBOD除去処理槽(第1の処理槽) ●BOD充填材負荷(返送水を含む);0.43Kg/
m3・日 ●処理水中のBOD30mg/ ●窒素充填材負荷(返送水を含む);0.06Kg/
m3・日 ●処理水中の窒素濃度;20mg/ ●PH;7.2 ●DO 4.0mg/ Γ硝化処理槽(第2の処理槽) ●BOD充填材負荷 0.09Kg/日 ●窒素充填材負荷 0.045Kg/日 ●処理水中のBOD(最終処理水に相当);10
mg/ ●処理水中のアンモニア性窒素濃度;0.5mg/
●同硝酸性窒素濃度 14mg/ ●同亜硝酸性窒素濃度 0.5mg/ ●PH 6.5 ●DO 6.5mg/ Γ汚泥消化槽(第3の処理槽) ●BOD充填材負荷 0.1Kg/m3・日 ●返送水中のBOD濃度 30mg/ ●同窒素濃度 20mg/ PH 7.0mg/ ●DO 7.0mg/ 上記の状態を保つて第1の処理槽(BOD除去)
1の汚泥が限度量の70%に達した時点(運転開始
から40日経過)での他の処理槽の汚泥量は、次の
とおりとなつた。 Γ第2の処理槽(硝化);60% Γ第3の処理槽(汚泥消化);15% この時点で前期第1表に示した処理槽1を汚泥
消化処理に、第2の処理槽2をBOD除去処理に、
また第3の処理槽3を硝化処理にあてたところ、
切換後240分で定常状態に達し、各処理槽につい
て切換前の定常状態と略等しい負荷及び水質とな
つた。この状態で、切換から20日間経過後に、
BOD除去処理にあてた第2の処理槽2の汚泥量
が、限度量の70%に達し、このとき第1の処理槽
1の汚泥は52.5%に減少する一方、第3の処理槽
3の汚泥は20%に増加した。 上記の結果から、上記の処理条件において、
BOD除去処理における汚泥増加速度(Xとする)
と硝化処理における汚泥増加速度(Yとする)と
汚泥消化処理における汚泥減少速度(Zとする)
との比は、 X:Y:Z=4:2:7 であつて、処理系における汚泥増殖速度に較べ、
汚泥消化速度が大きく設定することが可能である
ことが分かつた。従つて、汚泥消化処理槽に対す
る酸素供給量やBOD負荷、処理水の返送量等を
制御することによつて、汚泥増殖量と汚泥消化量
とのバランスをとることができる。 また、最終処理水として、前記した定常状態に
おける処理水質のデータから分かるように、充分
に良質な処理水が得られることが確認された。
[Table] Table 3 above shows a switching method that can be applied when the nitrogen load is relatively small, in which a designated treatment tank is fixed in the nitrification process, and BOD removal and sludge digestion are performed alternately in other treatment tanks. It is something. In this switching method, if the nitrification tank becomes clogged, excess sludge removal means such as backwashing are required, but since the nitrification tank is fixed to a designated tank,
The quality of the final treated water is stable. According to the wastewater treatment method of the present invention as described above, each step of BOD removal and nitrification is performed while maintaining good treatment conditions while returning the sludge digestion treated water, so that good final treated water can be obtained. be able to.
In addition, the allocation of each treatment process to each treatment tank is switched every predetermined period of time, and the thickened sludge during BOD removal or nitrification is self-extinguished, which prevents clogging of the treatment tank with excess sludge. This can be prevented, and at the same time, excess sludge can be treated inside the treatment system. Therefore, there is no need to separately provide means for treating excess sludge, which is economically advantageous. Next, with reference to FIG. 2, another example of a wastewater treatment apparatus for carrying out the present invention will be described. In FIG. 2, the same components as those in FIG. 1 are given the same reference numerals and their explanations will be omitted. The treatment equipment shown in FIG. 2 is different from the one shown in FIG. Air supply amount to the tank,
The point is that at least one of the return amount of the sludge digestion treated water is controlled. That is, the final treated water sent out from the second treatment tank 2 for nitrification treatment is guided to the inspection tank 30, and sent out of the system through the inspection tank 30. An inspection device 31 for detecting the quality of treated water is provided inside the inspection tank 30. The detection output of this inspection device 31 is supplied to the control device 32,
This control device 32 controls a blower 33 for supplying air to the third treatment tank 3 based on the water quality detection signal.
The discharge amount and the amount of water sent by the return pump 16 for returning treated water from the third treatment tank 3 are controlled. The water quality factors detected by the inspection device 31 include PH, M alkalinity,
One or more factors of UV, TOC, and TOD are selected. An example of a control method in the above wastewater treatment device will be explained. First, PH or M alkalinity is taken as a detection factor by the detection device 31, and the detected value of PH or M alkalinity (for example, 6 to 6 for PH value)
8) If the amount is lower than that, control is performed to reduce the amount of air blown to the third treatment tank 3, increase the amount of returned sludge digested water, or both. This prevents the ammonia nitrogen produced by sludge digestion in the third treatment tank from being oxidized into nitrite nitrogen and nitrate nitrogen due to excess oxygen, and reduces the pH of the treated water that is returned. This is to keep it high. In addition, UV, TOC,
Take TOD and if these values become high,
It is sufficient to reduce the amount of returned sludge digested water and reduce the pollutant load on the treatment tank that performs BOD removal and nitrification. Therefore, in the processing apparatus shown in FIG. 2 described above, each processing tank 1,
The processing steps are allocated and switched to 2 and 3, and the wastewater is highly processed and the excess sludge generated along with this is processed within the system. According to the above-mentioned treatment method, in addition to the effects of the treatment method explained based on Fig. 1, the environment in each treatment tank is always maintained in a good condition, improving the treatment efficiency and the quality of the treated water. can be achieved. Although Figures 1 and 2 show an example in which three processing tanks are provided, four or more processing tanks may be used and one or two or more processing tanks may be allocated to each processing process. You can also do it. In addition, in the above example, only the treated water from the treatment tank for nitrification treatment is led to the treatment tank for sludge digestion, but if necessary, part of the treated water from the BOD removal treatment tank can be led to the sludge digestion tank. , it is also possible to increase the BOD load of the same sludge digester. Furthermore, a part of the return water from the sludge digestion tank may be guided to the nitrification treatment tank. As explained above in detail, the method for treating nitrogen-containing organic wastewater according to the present invention includes three or more treatment tanks: a BOD removal treatment tank group, a nitrogen nitrification treatment tank group, and an excess sludge digestion treatment tank group. Allocate said wastewater
Sending the water from the BOD removal treatment tank group to the sludge digestion treatment tank group via the nitrogen nitrification treatment tank group, performing various treatments, and sending a part of the treated water from the nitrogen nitrification treatment tank group out of the system as final treated water, Treating wastewater by returning the treated water of the sludge digestion treatment tank group to the BOD removal treatment tank group and/or nitrification treatment tank group,
In addition, since the allocation of treatment tanks to each process is switched every time a predetermined period of time passes, return water with high PH (alkalinity) from the sludge digestion treatment tank group is transferred to the BOD removal treatment tank group and/or the nitrification treatment tank group. It is possible to prevent a drop in the pH of these treatment tank groups and maintain good treatment conditions. In addition, the excess sludge generated in the BOD removal treatment tank group and nitrification treatment tank group is treated in the sludge digestion treatment, and the organic substances generated due to sludge digestion are treated within the system. Therefore, the advantage is that the excess sludge that inevitably occurs in the catalytic oxidation method can be treated within one wastewater treatment system,
In addition, an economically advantageous effect can be obtained as a result. Furthermore, the amount of air supplied to the sludge digestion treatment tank group and/or the amount of returned sludge digestion treated water is controlled based on the quality of the final treated water,
By optimizing the environment of each treatment tank group,
The advantage is that the treatment efficiency and the quality of treated water can be improved. EXAMPLES The present invention will be specifically described below with reference to Examples. Example A wastewater treatment apparatus shown in FIG. 1 was constructed, and the treatment method of the present invention was carried out using this apparatus. Processing tank 1,
As Nos. 2 and 3, three tanks having a tank capacity of 15 m 3 and a filler capacity of 10 m 3 were used. In implementation, firstly, while supplying organic nutrients to the first to third treatment tanks 1, 2, and 3, the amount of sludge adhering to the fillers 4, 5, and 6 is reduced to a level that causes clogging. (hereinafter referred to as the limit amount) After growing to about 50%, the first treatment tank 1 is used for BOD removal, and the second
The second treatment tank 2 was assigned to nitrification treatment, and the third treatment tank 3 was assigned to sludge digestion treatment. BOD200mg/, nitrogen concentration 30 in the first treatment tank 1
mg/hour of wastewater flows in at a flow rate of 0.83 m 3 /hour, the amount of air to each treatment tank is controlled by valves 11, 12,
13 to adjust the DO4 of the first treatment tank 1.
mg/, DO of the second treatment tank 2 is maintained at 6.5 mg/DO of the third treatment tank 3 is maintained at 7.5 mg/, and 67% of the amount of treated water sent from the second treatment tank 2 is used as the final treated water. The amount of water returned from the third treatment tank 3 was adjusted so as to discharge it outside the system, and the operation was continued for 20 days to stabilize the treatment system. The conditions of each tank when steady state was reached were as follows. ΓBOD removal treatment tank (first treatment tank) ●BOD filler load (including return water); 0.43Kg/
m 3・day ● BOD in treated water 30mg/ ●Nitrogen filler load (including return water); 0.06Kg/
m 3・day ●Nitrogen concentration in treated water; 20mg/ ●PH; 7.2 ●DO 4.0mg/ Γ nitrification treatment tank (second treatment tank) ●BOD filler load 0.09Kg/day ●Nitrogen filler load 0.045Kg/ Day ● BOD in treated water (equivalent to final treated water); 10
mg/ ●Ammonia nitrogen concentration in treated water; 0.5 mg/
●Nitrate nitrogen concentration 14mg/ ●Nitrite nitrogen concentration 0.5mg/ ●PH 6.5 ●DO 6.5mg/ Γ sludge digestion tank (third treatment tank) ●BOD filler load 0.1Kg/m 3・day ● BOD concentration in returned water: 30mg/ ●Nitrogen concentration: 20mg/ PH: 7.0mg/ ●DO: 7.0mg/ Maintaining the above conditions, proceed to the first treatment tank (BOD removal)
When the sludge in No. 1 reached 70% of the limit amount (40 days after the start of operation), the amounts of sludge in other treatment tanks were as follows. Γ Second treatment tank (nitrification): 60% Γ Third treatment tank (sludge digestion): 15% At this point, treatment tank 1 shown in Table 1 of the previous period is used for sludge digestion treatment, and second treatment tank 2 is used for sludge digestion treatment. to BOD removal processing,
In addition, when the third treatment tank 3 was subjected to nitrification treatment,
A steady state was reached 240 minutes after switching, and the load and water quality for each treatment tank were approximately the same as the steady state before switching. In this state, after 20 days have passed since switching,
The amount of sludge in the second treatment tank 2 used for BOD removal treatment reaches 70% of the limit amount, and at this time the sludge in the first treatment tank 1 decreases to 52.5%, while the amount in the third treatment tank 3 decreases to 52.5%. Sludge increased to 20%. From the above results, under the above processing conditions,
Sludge increase rate in BOD removal treatment (taken as X)
and sludge increase rate in nitrification treatment (denoted as Y) and sludge decrease rate in sludge digestion treatment (denoted as Z)
The ratio of
It was found that the sludge digestion rate could be set high. Therefore, by controlling the amount of oxygen supplied to the sludge digestion treatment tank, the BOD load, the amount of returned treated water, etc., it is possible to balance the amount of sludge growth and the amount of sludge digestion. Furthermore, it was confirmed that sufficiently high-quality treated water could be obtained as the final treated water, as seen from the data on the quality of treated water in the steady state described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施するための廃水処理装
置の一例を示す概略構成図、第2図は、廃水処理
装置の別の例を示す概略構成図である。 1……第1の処理槽、2……第2の処理槽、3
……第3の処理槽、4,5,6……充填材、7,
8,9……散気装置、10……ブロア、30……
検査槽、31……検査装置、32……制御装置。
FIG. 1 is a schematic configuration diagram showing an example of a wastewater treatment device for carrying out the present invention, and FIG. 2 is a schematic configuration diagram showing another example of the wastewater treatment device. 1...First processing tank, 2...Second processing tank, 3
...Third treatment tank, 4,5,6...Filling material, 7,
8, 9...diffuser, 10...blower, 30...
Inspection tank, 31... inspection device, 32... control device.

Claims (1)

【特許請求の範囲】 1 含窒素有機性廃水を接触酸化法を用いて好気
的に処理するにあたり、内部に汚泥が支持された
3個以上の処理槽を、BOD除去処理槽群と窒素
硝化処理槽群と余剰汚泥消化処理槽群とに割振
り、前記含窒素有機性廃水を前記BOD除去処理
槽群に導入すると共に同処理槽群に酸素を供給し
てBOD除去処理を施し、このBOD除去処理槽群
の処理水の全部もしくは一部を前記窒素硝化処理
槽群に導くと共に残部を前記余剰汚泥消化処理槽
群に導き、前記窒素硝化処理槽群では酸素を供給
しつつ窒素硝化処理を施し、この窒素硝化処理槽
群の処理水の一部を最終処理水として送出すると
共に残部を前記余剰汚泥消化処理槽群に導き、こ
の余剰汚泥消化処理槽群で好気性汚泥消化により
生ずる処理水を、前記BOD除去処理槽群およ
び/または前記窒素硝化処理槽群に返送しつつ前
記含窒素有機性廃水の処理を行ない、かつ、所定
期間経過毎に前記3個以上の処理槽の前記BOD
除去処理槽群と窒素硝化処理槽群と余剰汚泥消化
処理槽群とへの割振りを変更することを特徴とす
る含窒素有機性廃水の処理方法。 2 前記余剰汚泥消化処理槽群の処理水の返送量
および/または前記余剰汚泥消化処理槽群への酸
素供給量の制御が、前記窒素硝化処理槽群から送
出される最終処理水のPH、アルカリ度、UV、全
有機炭素量、全酸素要求量のうちの少なくとも一
つの検出値に基いてなされることを特徴とする特
許請求の範囲第1項記載の含窒素有機性廃水の処
理方法。
[Claims] 1. When nitrogen-containing organic wastewater is aerobically treated using a contact oxidation method, three or more treatment tanks each having sludge supported inside are combined into a BOD removal treatment tank group and a nitrogen nitrification treatment tank group. Allocate the nitrogen-containing organic wastewater to a treatment tank group and surplus sludge digestion treatment tank group, introduce the nitrogen-containing organic wastewater into the BOD removal treatment tank group, supply oxygen to the treatment tank group, perform BOD removal treatment, and remove this BOD. All or part of the treated water in the treatment tank group is led to the nitrogen nitrification treatment tank group, and the remainder is led to the surplus sludge digestion treatment tank group, where the nitrogen nitrification treatment is performed while supplying oxygen. A part of the treated water from this nitrogen nitrification treatment tank group is sent out as final treated water, and the remainder is led to the surplus sludge digestion treatment tank group, where the treated water generated by aerobic sludge digestion is , treating the nitrogen-containing organic wastewater while returning it to the BOD removal treatment tank group and/or the nitrogen nitrification treatment tank group, and removing the BOD of the three or more treatment tanks every predetermined period of time.
A method for treating nitrogen-containing organic wastewater, comprising changing the allocation to a removal treatment tank group, a nitrogen nitrification treatment tank group, and an excess sludge digestion treatment tank group. 2. Control of the amount of returned treated water from the surplus sludge digestion treatment tank group and/or the amount of oxygen supplied to the surplus sludge digestion treatment tank group is based on the pH and alkalinity of the final treated water sent out from the nitrogen nitrification treatment tank group. 2. The method for treating nitrogen-containing organic wastewater according to claim 1, wherein the method is carried out based on at least one of the following detected values: temperature, UV, total organic carbon content, and total oxygen demand.
JP58055896A 1983-03-31 1983-03-31 Treatment of organic waste water containing nitrogen Granted JPS59179195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58055896A JPS59179195A (en) 1983-03-31 1983-03-31 Treatment of organic waste water containing nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58055896A JPS59179195A (en) 1983-03-31 1983-03-31 Treatment of organic waste water containing nitrogen

Publications (2)

Publication Number Publication Date
JPS59179195A JPS59179195A (en) 1984-10-11
JPH0144398B2 true JPH0144398B2 (en) 1989-09-27

Family

ID=13011876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58055896A Granted JPS59179195A (en) 1983-03-31 1983-03-31 Treatment of organic waste water containing nitrogen

Country Status (1)

Country Link
JP (1) JPS59179195A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176494A (en) * 1988-01-05 1989-07-12 Iseki Tory Tech Inc Purifying device and its operation
JP5431437B2 (en) * 2011-10-26 2014-03-05 東西化学産業株式会社 Organic wastewater treatment equipment

Also Published As

Publication number Publication date
JPS59179195A (en) 1984-10-11

Similar Documents

Publication Publication Date Title
US4183809A (en) Process for removing organic substances and nitrogen compounds from waste water
US5961830A (en) Wastewater treatment method and plant
US5651892A (en) Biodegradeable effluent nutrient removal
MXPA97003625A (en) Method and plant for the treatment of wastewater
AU2007238520A1 (en) Method and system for nitrifying and denitrifying wastewater
US5543051A (en) Biological phosphorus removal from waste water
CN107108293A (en) The denitrogenation method and nitrogen rejection facility of nitrogenous effluent
JPS60238197A (en) Method of inhibiting variaton for whole day of phosphorus content in outflow flow from waste water treater
JP4426105B2 (en) Treatment process of wastewater containing specific components such as ammonia
JP2002172399A (en) Denitrification treatment method
JPH0144398B2 (en)
JPH09168796A (en) Removal of nitrogen in waste water
JPS6117559B2 (en)
JP2000024687A (en) Treatment of waste nitric acid
JPS62225296A (en) Biological nitrification and denitrification device
JPH03232590A (en) Treatment of sewage
JPS6222678B2 (en)
KR970069904A (en) Method and apparatus for simultaneous removal of biological nitrogen, phosphorus from sewage and waste water
JP3134145B2 (en) Wastewater biological denitrification method
JP2673488B2 (en) Method and apparatus for treating organic wastewater
JP3222014B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen
KR100318367B1 (en) Waste water treatment apparatus
JP2001212593A (en) Post-treatment method for ascending current anaerobic treatment apparatus
JPH09141294A (en) Biological nitrogen removing method
JP3396959B2 (en) Nitrification method and apparatus