JPH0879002A - Surface acoustic wave device - Google Patents

Surface acoustic wave device

Info

Publication number
JPH0879002A
JPH0879002A JP21145194A JP21145194A JPH0879002A JP H0879002 A JPH0879002 A JP H0879002A JP 21145194 A JP21145194 A JP 21145194A JP 21145194 A JP21145194 A JP 21145194A JP H0879002 A JPH0879002 A JP H0879002A
Authority
JP
Japan
Prior art keywords
temperature
piezoelectric substrate
acoustic wave
wave device
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21145194A
Other languages
Japanese (ja)
Other versions
JP3365070B2 (en
Inventor
Osamu Iwamoto
修 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP21145194A priority Critical patent/JP3365070B2/en
Publication of JPH0879002A publication Critical patent/JPH0879002A/en
Application granted granted Critical
Publication of JP3365070B2 publication Critical patent/JP3365070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To realize the highly precise operation of the surface acoustic wave device without disturbing the characteristic of the device by using a thermoelectric element so as to control temperature of the surface acoustic wave device. CONSTITUTION: A SAW filter is made up of an interdigital electrode transducer 2 and grating reflectors 3.4 formed on a surface of a piezoelectric substrate 1. A thermosensing element 5 is formed on the surface of the piezoelectric substrate 1 and the surface temperature of the piezoelectric substrate 1 is measured by means of a resistance change in the element 12. A Peltier element 6 is adhered to the rear side of the piezoelectric substrate 1 and the middle part of the Peltier element 6 is supported by a support section 7a of a support base 7. A drive voltage of the Peltier element 6 is controlled depending on the surface temperature of the photoelectric substrate 1 measured by the thermosensing element 5 to keep the temperature of the piezoelectric substrate 1 constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は弾性表面波(以下、SA
Wという。)装置に係り、特に高周波数振動子として使
用されるSAW共振器に適用する場合に好適な装置構造
に関する。
BACKGROUND OF THE INVENTION The present invention relates to surface acoustic waves (hereinafter referred to as SA
It is called W. The present invention relates to a device, and particularly to a device structure suitable when applied to a SAW resonator used as a high frequency oscillator.

【0002】[0002]

【従来の技術】従来、STカットの水晶基板の表面上に
相互に対向した一対の櫛歯電極から成るすだれ状電極変
換器(interdigital transducer:以下、ID変換器とい
う。)を構成したSAW共振器が製造されている。この
SAW共振器は、ID変換器に導入された電気信号によ
り発生する弾性表面波を所定周期で形成された櫛歯電極
により共振させ、この共振周波数の電気信号を取り出す
ことにより基準振動子として機能するものである。この
場合、ID変換器の両側に所定の間隔で一対のグレーテ
ィング反射器(grating reflector:以下、GT反射器と
いう。)を形成すると、両GT反射器の間に弾性表面波
に対する共振空洞が形成され、この共振空洞に弾性表面
波の定在波が立つ。ID変換器はこの定在波と強く結合
するので、安定した振動子を構成することができる。
2. Description of the Related Art Conventionally, a SAW resonator is provided which is composed of a pair of interdigital transducers (hereinafter referred to as an ID converter) composed of a pair of comb-teeth electrodes facing each other on the surface of an ST cut quartz substrate. Is manufactured. This SAW resonator functions as a reference oscillator by resonating a surface acoustic wave generated by an electric signal introduced into an ID converter with a comb-teeth electrode formed at a predetermined cycle and extracting an electric signal of this resonance frequency. To do. In this case, if a pair of grating reflectors (hereinafter referred to as GT reflectors) are formed on both sides of the ID converter at a predetermined interval, a resonance cavity for surface acoustic waves is formed between the GT reflectors. , A standing wave of surface acoustic wave stands in this resonance cavity. Since the ID converter is strongly coupled to this standing wave, a stable oscillator can be constructed.

【0003】このSAW共振器は、水晶基板の寸法で振
動数が決定される通常の水晶振動子とは異なり、表面波
の共振を利用するため結晶の表面20μm程度しか影響
を受けず、基板の厚さ等の制約がないので高周波数帯域
まで基本モード振動で駆動できるから、小型でスプリア
スモードの少ない圧電振動子を容易に実現できる。
[0003] This SAW resonator, unlike a normal crystal oscillator whose frequency is determined by the size of the crystal substrate, uses the resonance of the surface wave and therefore is affected only by about 20 μm of the surface of the crystal. Since there is no restriction on the thickness and the like, it is possible to drive up to the high frequency band by the fundamental mode vibration, so that it is possible to easily realize a small-sized piezoelectric vibrator with few spurious modes.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記S
AW共振器においては振動周波数に大きな温度依存性が
あり、振動周波数は温度に対して上に凸の2次曲線で示
される。この場合の2次曲線は−0.03ppm/℃2
(室温25℃における発振周波数を基準とする。)程度
の2次係数をもつ。このような温度特性は振動周波数の
精度を無効にするため、適切な温度制御を行う必要があ
る。しかし、SAW共振器の動作は水晶基板の表面近傍
の状態に大きく影響されるため、水晶基板の表面に温度
調節のための異物を接触させることができず、水晶基板
に効率的な温度調節を行うことが困難である。
However, the above S
In the AW resonator, the vibration frequency has a large temperature dependence, and the vibration frequency is represented by a quadratic curve that is convex with respect to temperature. The quadratic curve in this case is -0.03 ppm / ° C 2
It has a quadratic coefficient of about (based on the oscillation frequency at room temperature of 25 ° C.). Since such temperature characteristics invalidate the accuracy of the vibration frequency, it is necessary to perform appropriate temperature control. However, since the operation of the SAW resonator is greatly affected by the state near the surface of the crystal substrate, it is not possible to bring a foreign substance for temperature control into contact with the surface of the crystal substrate, and the temperature control of the crystal substrate is efficiently performed. Difficult to do.

【0005】そこで本発明は上記問題点を解決するもの
であり、その課題は、SAW共振器等のSAW装置の温
度調節を適切に行うことのできる新規の装置構成を実現
することにある。
Therefore, the present invention solves the above-mentioned problems, and an object thereof is to realize a new device configuration capable of appropriately adjusting the temperature of a SAW device such as a SAW resonator.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明が講じた手段は、圧電基板の表面上に形成され
所定の周期構造を備えた信号電極を有する弾性表面波装
置において、前記圧電基板の表面温度を測定する温度測
定手段と、前記圧電基板の裏面に一方の温度領域が熱的
に接合するように配置された熱電素子と、前記温度測定
手段の測定温度に応じて前記熱電素子を駆動し、前記表
面温度を制御する温度制御手段とを設けるものである。
Means for Solving the Problems The means taken by the present invention to solve the above-mentioned problems are provided in a surface acoustic wave device having a signal electrode formed on the surface of a piezoelectric substrate and having a predetermined periodic structure, Temperature measuring means for measuring the surface temperature of the piezoelectric substrate, a thermoelectric element arranged so that one temperature region is thermally joined to the back surface of the piezoelectric substrate, and the thermoelectric element according to the temperature measured by the temperature measuring means. Temperature control means for driving the element and controlling the surface temperature is provided.

【0007】この場合において、前記圧電基板、前記温
度測定手段、前記熱電素子及び前記温度制御手段を単一
のケーシング内に収容することが好ましい。
In this case, it is preferable that the piezoelectric substrate, the temperature measuring means, the thermoelectric element and the temperature control means are housed in a single casing.

【0008】また、前記圧電基板を、前記熱電素子を介
して支持部材に支持させることが望ましい。
Further, it is desirable that the piezoelectric substrate is supported by a supporting member via the thermoelectric element.

【0009】また、前記圧電基板を、その裏面の一部の
みを接触面として支持部材に支持させることが望まし
い。
Further, it is desirable that the piezoelectric substrate is supported by a supporting member with only a part of the back surface thereof serving as a contact surface.

【0010】そして、前記熱電素子を、前記圧電基板の
裏面上に複数分散配置することが好ましい。
It is preferable that a plurality of the thermoelectric elements are dispersedly arranged on the back surface of the piezoelectric substrate.

【0011】[0011]

【作用】請求項1によれば、水晶基板の裏面にペルチェ
素子の一方の温度領域が熱的に接合されていることによ
り、水晶基板の表面側の構造に妨げられることなく、し
かも表面上の弾性表面波に影響を与えることなく大きな
接触面を介して冷却若しくは加熱を行うことができるの
で、効率的かつ安定した温度制御を行うことができ、安
定したSAW装置の動作を実現できる。
According to the present invention, since one temperature region of the Peltier device is thermally bonded to the back surface of the crystal substrate, the structure on the front surface side of the crystal substrate is not hindered, and moreover, it is on the surface. Since cooling or heating can be performed via the large contact surface without affecting the surface acoustic waves, efficient and stable temperature control can be performed, and stable operation of the SAW device can be realized.

【0012】請求項2によれば、単一のケーシング内に
各構成要素を全て収容することにより、高性能のSAW
デバイスを構成できる。
According to the second aspect of the present invention, by accommodating all the constituent elements in a single casing, a high performance SAW is achieved.
You can configure the device.

【0013】請求項3によれば、圧電基板を熱電素子を
介して支持部材に支持させることにより、圧電基板の支
持部を温度制御部として兼ねることができるので構造が
簡素化されるとともに効率的な冷却若しくは加熱ができ
る。
According to the third aspect, by supporting the piezoelectric substrate on the supporting member via the thermoelectric element, the supporting portion of the piezoelectric substrate can also serve as the temperature control unit, so that the structure is simplified and efficient. It can be cooled or heated.

【0014】請求項4によれば、圧電基板をその裏面の
一部のみを介して支持することにより、圧電基板の周囲
から受ける応力を低減させることができ、安定した動作
を期すことができる。
According to the fourth aspect, by supporting the piezoelectric substrate only through a part of the back surface thereof, the stress received from the periphery of the piezoelectric substrate can be reduced, and stable operation can be expected.

【0015】請求項5によれば、圧電基板の裏面上に複
数の熱電素子を分散配置することにより、熱電素子間の
応力伝達が分断されるので、圧電基板に与える応力をさ
らに低減することができる。
According to the fifth aspect, since the stress transmission between the thermoelectric elements is divided by disposing the plurality of thermoelectric elements on the back surface of the piezoelectric substrate in a distributed manner, the stress applied to the piezoelectric substrate can be further reduced. it can.

【0016】[0016]

【実施例】次に図面を参照して本発明に係るSAW装置
の実施例を説明する。以下に説明するSAW装置は水晶
基板を使用したSAW共振器である。しかし、本発明は
SAW共振器に限らずSAWフィルター等の各種SAW
装置に適用できるものである。また、圧電基板について
も、水晶以外に、SAW装置の構成や用途に応じてLi
NbO3 、LiTaO3 等の種々の材質が採用される。
Embodiments of the SAW device according to the present invention will now be described with reference to the drawings. The SAW device described below is a SAW resonator using a crystal substrate. However, the present invention is not limited to SAW resonators and various SAW filters such as SAW filters.
It is applicable to the device. Also, regarding the piezoelectric substrate, other than quartz, depending on the configuration and application of the SAW device, Li
Various materials such as NbO 3 and LiTaO 3 are used.

【0017】〔第1実施例〕この実施例では、図1に示
すように、縦3mm、横6mm、厚さ400μm程度の
STカットの水晶基板1の表面にID変換器2、GT反
射器3,4、及び感温体5を形成し、水晶基板1の裏面
ほぼ全体にペルチェ素子6を貼着している。ペルチェ素
子6の中央部は支持台7の支持部7aに固着されてい
る。
[First Embodiment] In this embodiment, as shown in FIG. 1, an ID converter 2 and a GT reflector 3 are provided on the surface of an ST-cut quartz substrate 1 having a length of 3 mm, a width of 6 mm, and a thickness of 400 μm. , 4, and the temperature sensitive body 5 are formed, and the Peltier device 6 is attached to almost the entire back surface of the crystal substrate 1. The central portion of the Peltier element 6 is fixed to the support portion 7a of the support base 7.

【0018】支持部7aは水晶基板1及びペルチェ素子
6を支持台7に対して所定の間隔で離反させ、水晶基板
1に支持台7から応力伝達のないように構成されてお
り、水晶基板1に応力に起因する歪みが発生しないよう
にしている。
The supporting portion 7a is configured so that the crystal substrate 1 and the Peltier element 6 are separated from the support base 7 at a predetermined interval so that stress is not transmitted to the crystal base 1 from the support base 7. The strain caused by stress is prevented from occurring.

【0019】〔第2実施例〕図2には、上記実施例とは
異なる実施例の構造を示す。この実施例は上記第1実施
例と同様の水晶基板1、ID変換器2、GT反射器3,
4、感温体5及び支持台7を備えており、その説明は省
略する。本実施例では水晶基板1の裏面の中央部にペル
チェ素子6A、左右にペルチェ素子6B,6Cがそれぞ
れ貼着され、中央のペルチェ素子6Aは支持台7の支持
部7aに固着されている。
[Second Embodiment] FIG. 2 shows the structure of an embodiment different from the above embodiment. This embodiment has the same crystal substrate 1, ID converter 2, GT reflector 3, as in the first embodiment.
4, the temperature sensitive body 5 and the support base 7 are provided, and the description thereof will be omitted. In this embodiment, a Peltier element 6A is attached to the central portion of the back surface of the quartz substrate 1, and Peltier elements 6B and 6C are attached to the left and right sides, respectively, and the central Peltier element 6A is fixed to the support portion 7a of the support base 7.

【0020】図3(a)は上記第1実施例及び第2実施
例の全体構成を示す。上記図1及び図2に示されている
支持台7はベース8に固着されており、このベース上に
はICチップ9が実装されている。ベース8にはカバー
10が取付けられ、密封されるようになっている。な
お、ベース8及びカバー10で形成される内部空間には
窒素やアルゴン等の不活性ガスが充填される。ベース8
の下面からは内部回路に導電接続された複数の外部接続
端子11が突出形成されている。
FIG. 3A shows the overall construction of the first and second embodiments. The support base 7 shown in FIGS. 1 and 2 is fixed to a base 8, and an IC chip 9 is mounted on this base. A cover 10 is attached to the base 8 so as to be hermetically sealed. The internal space formed by the base 8 and the cover 10 is filled with an inert gas such as nitrogen or argon. Base 8
A plurality of external connection terminals 11 conductively connected to the internal circuit are formed to project from the lower surface of the.

【0021】水晶基板1上のID変換器2には、図3
(b)に示すようにそれぞれ櫛歯状に形成された対向電
極2a,2bが形成され、この対向電極2a,2bのそ
れぞれに信号線21,22がボンディングされている。
また、感温体5の両端にも検出線51,52が接続され
ている。これらの信号線21,22及び検出線51,5
2の他端は支持台7に形成された配線パターンを介して
ベース8上の配線パターンに接続され、ICチップ9内
に引き込まれている。
The ID converter 2 on the crystal substrate 1 has a structure shown in FIG.
As shown in (b), counter electrodes 2a and 2b each having a comb shape are formed, and signal lines 21 and 22 are bonded to the counter electrodes 2a and 2b, respectively.
Further, the detection lines 51 and 52 are also connected to both ends of the temperature sensitive body 5. These signal lines 21 and 22 and detection lines 51 and 5
The other end of 2 is connected to a wiring pattern on the base 8 through a wiring pattern formed on the support base 7 and is drawn into the IC chip 9.

【0022】ID変換器2の対向電極2a,2b及びG
T反射器3,4の格子電極はアルミニウム等その他の合
金を蒸着、スパッタリング等により被着することによっ
て形成されている。ID変換機2の対向電極2a,2b
及びGT反射器3,4の格子電極の形成周期は水晶基板
1の表面に立つ弾性表面波の波長λの半分に設定されて
いる。また、感温体5は蒸着により形成された白金など
の薄膜であり、温度により変化する薄膜の抵抗値から水
晶基板1の表面温度が検出されるようになっている。
Opposing electrodes 2a, 2b and G of the ID converter 2
The lattice electrodes of the T reflectors 3 and 4 are formed by depositing other alloy such as aluminum by vapor deposition, sputtering or the like. Opposing electrodes 2a, 2b of the ID converter 2
The period of forming the grating electrodes of the GT reflectors 3 and 4 is set to half the wavelength λ of the surface acoustic wave standing on the surface of the quartz substrate 1. The temperature sensitive body 5 is a thin film of platinum or the like formed by vapor deposition, and the surface temperature of the crystal substrate 1 is detected from the resistance value of the thin film which changes with temperature.

【0023】図4には上記各実施例の回路構成を示す。
水晶基板1に形成されたID変換器2と感温体5はIC
チップ9に接続されている。ID変換器2の信号線2
1,22からは所定周波数の振動波形が取り出される。
また、感温体5の検出線51,52を介して得られた感
温体の抵抗値に応じて水晶基板1の表面温度が検出され
る。ICチップ9は水晶基板1の表面温度と予め設定さ
れた基準温度との差を算出し、この温度差に応じてペル
チェ素子6の駆動電圧を出力する。
FIG. 4 shows the circuit configuration of each of the above embodiments.
The ID converter 2 and the temperature sensitive body 5 formed on the crystal substrate 1 are ICs.
It is connected to the chip 9. Signal line 2 of ID converter 2
A vibration waveform having a predetermined frequency is extracted from the reference numerals 1 and 22.
Further, the surface temperature of the crystal substrate 1 is detected according to the resistance value of the temperature sensing body obtained through the detection lines 51, 52 of the temperature sensing body 5. The IC chip 9 calculates the difference between the surface temperature of the crystal substrate 1 and a preset reference temperature, and outputs the drive voltage of the Peltier element 6 according to this temperature difference.

【0024】図5はペルチェ素子6の断面構造を示すも
のである。ペルチェ素子6は、アルミナ等で形成された
セラミック基板61及び62の間に、電極63,64と
Bi−Te系等のn型半導体65及びp型半導体66を
電気的には直列に、熱的には並列に接続したπ型構造を
複数配列させたものである。セラミック基板61は接着
剤67により水晶基板1に接着され、セラミック基板6
2は接着剤68により支持台7に接着されている。
FIG. 5 shows a sectional structure of the Peltier device 6. In the Peltier element 6, the electrodes 63, 64 and the n-type semiconductor 65 and p-type semiconductor 66 such as Bi-Te system are electrically connected in series between the ceramic substrates 61 and 62 made of alumina or the like, and are thermally connected. Is an array of multiple π-type structures connected in parallel. The ceramic substrate 61 is adhered to the crystal substrate 1 with an adhesive 67,
2 is adhered to the support base 7 with an adhesive 68.

【0025】上記第1実施例によれば、水晶基板1の裏
面上にペルチェ素子6を配置することにより、弾性表面
波に影響を与えることなく、しかも裏面上のいずれにも
ペルチェ素子を接触させることができるので、水晶基板
1全体の温度調節を行うことができる。この場合、水晶
基板1の支持は支持台7の支持部7aによりペルチェ素
子6を介してのみ行われているため周囲に他の接触部が
存在せず、構造が簡素化されるとともに効率的な冷却若
しくは加熱を行うことができる。ペルチェ素子6のセラ
ミック基板61は、上記駆動電圧の極性に応じて水晶基
板1の冷却と加熱を選択的に行い、上記駆動電圧の絶対
値に応じて冷却量若しくは加熱量が調整される。
According to the first embodiment, by arranging the Peltier element 6 on the back surface of the quartz substrate 1, the Peltier element is brought into contact with any surface on the back surface without affecting surface acoustic waves. Therefore, the temperature of the entire crystal substrate 1 can be adjusted. In this case, since the crystal substrate 1 is supported only by the support portion 7a of the support base 7 through the Peltier element 6, there is no other contact portion around the support portion 7 and the structure is simplified and efficient. Cooling or heating can be performed. The ceramic substrate 61 of the Peltier element 6 selectively cools and heats the crystal substrate 1 according to the polarity of the driving voltage, and the cooling amount or the heating amount is adjusted according to the absolute value of the driving voltage.

【0026】水晶基板1は、支持台7の支持部7aだけ
でペルチェ素子6を介して支持されているため、その表
面に支持台7若しくは他の部材からの応力を受けること
がないので、安定した特性を得ることができる。
Since the crystal substrate 1 is supported only by the support portion 7a of the support base 7 via the Peltier element 6, no stress is applied to the surface of the crystal base 1 from the support base 7 or other members, so that the crystal substrate 1 is stable. It is possible to obtain the desired characteristics.

【0027】第2実施例によれば、水晶基板1の裏面に
貼着されたペルチェ素子6A,6B,6Cが分割された
状態で形成されているため、第1実施例のように水晶基
板1と支持部7aに挟持されたペルチェ素子6を介して
水晶基板が応力を受ける恐れもなく、より安定した動作
を期待できる。
According to the second embodiment, since the Peltier elements 6A, 6B and 6C attached to the back surface of the crystal substrate 1 are formed in a divided state, the crystal substrate 1 as in the first embodiment. Further, stable operation can be expected without the crystal substrate being stressed through the Peltier element 6 sandwiched between the support portions 7a.

【0028】上記各実施例では、ペルチェ素子を水晶基
板の裏面に貼着したことにより、極めてコンパクトに温
度制御構造を構成でき、温度制御による装置全体の容積
の増大を抑制することができる。また、各実施例では温
度制御手段により温度の調節を行うことにより振動周波
数を変化させることも可能である。
In each of the above embodiments, the Peltier element is attached to the back surface of the quartz substrate, so that the temperature control structure can be constructed extremely compactly and the increase in the volume of the entire device due to the temperature control can be suppressed. Further, in each embodiment, it is possible to change the vibration frequency by adjusting the temperature by the temperature control means.

【0029】なお、上記支持部7aによる支持位置は水
晶基板1の裏面中央である必要はなく、中央から外れた
位置に形成されていてもよい。また、第2実施例のよう
に複数のペルチェ素子を設ける際のペルチェ素子の個数
や配置は任意である。感温体は上記実施例に示したもの
に限定されることなく、公知の種々の温度センサを温度
計測に適した場所であれば任意の場所に設置することが
できる。また温度制御はICチップ9の内部回路により
通常のPID制御方式等で行うことができ、或いは必要
に応じて他の方式を採用してもよい。さらに、ペルチェ
素子6の冷却若しくは加熱効果を高めるために、支持台
の周囲に若しくはペルチェ素子6B,6Cにおけるセラ
ミック基板62の下面上に放熱フィン等の補助部材を適
宜取付けてもよい。また、上記構造のペルチェ素子に限
らず公知の種々の熱電素子を使用できることは言うまで
もない。
The supporting position by the supporting portion 7a does not have to be the center of the back surface of the quartz substrate 1, but may be formed at a position deviated from the center. Further, when a plurality of Peltier elements are provided as in the second embodiment, the number and arrangement of Peltier elements are arbitrary. The temperature sensitive body is not limited to the one shown in the above embodiment, and various known temperature sensors can be installed at any place suitable for temperature measurement. Further, the temperature control can be performed by a normal PID control method or the like by the internal circuit of the IC chip 9, or another method may be adopted as necessary. Further, in order to enhance the cooling or heating effect of the Peltier element 6, an auxiliary member such as a heat radiation fin may be appropriately attached around the support base or on the lower surface of the ceramic substrate 62 in the Peltier elements 6B and 6C. Needless to say, various known thermoelectric elements can be used as well as the Peltier element having the above structure.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば以下
の効果を奏する。
As described above, the present invention has the following effects.

【0031】請求項1によれば、水晶基板の裏面にペル
チェ素子の一方の温度領域が熱的に接合されていること
により、水晶基板の表面側の構造に妨げられることな
く、しかも表面上の弾性表面波に影響を与えることなく
大きな接触面を介して冷却若しくは加熱を行うことがで
きるので、効率的かつ安定した温度制御を行うことがで
き、安定したSAW装置の動作を実現できる。
According to the first aspect, one temperature region of the Peltier element is thermally bonded to the back surface of the crystal substrate, so that the structure on the front surface side of the crystal substrate is not hindered and the temperature on the front surface of the crystal substrate is maintained. Since cooling or heating can be performed via the large contact surface without affecting the surface acoustic waves, efficient and stable temperature control can be performed, and stable operation of the SAW device can be realized.

【0032】請求項2によれば、単一のケーシング内に
各構成要素を全て収容することにより、高性能のSAW
デバイスを構成できる。
According to the second aspect of the present invention, the high performance SAW is achieved by accommodating all the components in a single casing.
You can configure the device.

【0033】請求項3によれば、圧電基板を熱電素子を
介して支持部材に支持させることにより、圧電基板の支
持部を温度制御部として兼ねることができるので構造が
簡素化されるとともに効率的な冷却若しくは加熱ができ
る。
According to the third aspect, by supporting the piezoelectric substrate on the supporting member via the thermoelectric element, the supporting part of the piezoelectric substrate can also serve as the temperature control part, so that the structure is simplified and efficient. It can be cooled or heated.

【0034】請求項4によれば、圧電基板をその裏面の
一部のみを介して支持することにより、圧電基板の周囲
から受ける応力を低減させることができ、安定した動作
を期すことができる。
According to the fourth aspect, by supporting the piezoelectric substrate only through a part of the back surface thereof, the stress received from the periphery of the piezoelectric substrate can be reduced, and stable operation can be expected.

【0035】請求項5によれば、圧電基板の裏面上に複
数の熱電素子を分散配置することにより、熱電素子間の
応力伝達が分断されるので、圧電基板に与える応力をさ
らに低減することができる。
According to the fifth aspect, by disposing a plurality of thermoelectric elements on the back surface of the piezoelectric substrate in a distributed manner, the stress transmission between the thermoelectric elements is divided, so that the stress applied to the piezoelectric substrate can be further reduced. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る第1実施例におけるSAW装置の
主要部分の構造を示す縦断面図である。
FIG. 1 is a vertical sectional view showing a structure of a main part of a SAW device in a first embodiment according to the present invention.

【図2】本発明に係る第2実施例におけるSAW装置の
主要部分の構造を示す縦断面図である。
FIG. 2 is a vertical sectional view showing a structure of a main part of a SAW device according to a second embodiment of the present invention.

【図3】上記各実施例の全体構成を示す斜視図(a)及
びカバーを取り去った状態の平面図(b)である。
FIG. 3 is a perspective view (a) showing an overall configuration of each of the above-described embodiments and a plan view (b) with a cover removed.

【図4】上記各実施例の回路構成を示すブロック図であ
る。
FIG. 4 is a block diagram showing a circuit configuration of each of the embodiments.

【図5】上記各実施例に取付けるペルチェ素子の構造を
示す拡大断面図である。
FIG. 5 is an enlarged cross-sectional view showing the structure of a Peltier device attached to each of the above embodiments.

【符号の説明】[Explanation of symbols]

1 水晶基板 2 ID変換器 3,4 GT反射器 5 感温体 6,6A,6B,6C ペルチェ素子 7 支持台 7a 支持部 8 ベース 9 ICチップ 10 カバー 1 Crystal Substrate 2 ID Converter 3,4 GT Reflector 5 Temperature Sensitive Body 6,6A, 6B, 6C Peltier Element 7 Support 7a Support 8 Base 9 IC Chip 10 Cover

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧電基板の表面上に形成され所定の周期
構造を備えた信号電極を有する弾性表面波装置におい
て、前記圧電基板の表面温度を測定する温度測定手段
と、前記圧電基板の裏面に一方の温度領域が熱的に接合
するように配置された熱電素子と、前記温度測定手段の
測定温度に応じて前記熱電素子を駆動し、前記表面温度
を制御する温度制御手段とを設けたことを特徴とする弾
性表面波装置。
1. A surface acoustic wave device having a signal electrode formed on the surface of a piezoelectric substrate and having a predetermined periodic structure, comprising: a temperature measuring means for measuring a surface temperature of the piezoelectric substrate; and a back surface of the piezoelectric substrate. A thermoelectric element arranged so that one temperature region is thermally joined, and a temperature control means for driving the thermoelectric element according to the temperature measured by the temperature measuring means and controlling the surface temperature are provided. A surface acoustic wave device.
【請求項2】 請求項1において、前記圧電基板、前記
温度測定手段、前記熱電素子及び前記温度制御手段は単
一のケーシング内に収容されていることを特徴とする弾
性表面波装置。
2. The surface acoustic wave device according to claim 1, wherein the piezoelectric substrate, the temperature measuring means, the thermoelectric element, and the temperature control means are housed in a single casing.
【請求項3】 請求項1において、前記圧電基板は、前
記熱電素子を介して支持部材に支持されていることを特
徴とする弾性表面波装置。
3. The surface acoustic wave device according to claim 1, wherein the piezoelectric substrate is supported by a supporting member via the thermoelectric element.
【請求項4】 請求項1において、前記圧電基板は、そ
の裏面の一部のみを接触面として支持部材に支持されて
いることを特徴とする弾性表面波装置。
4. The surface acoustic wave device according to claim 1, wherein the piezoelectric substrate is supported by a support member with only a part of the back surface of the piezoelectric substrate as a contact surface.
【請求項5】 請求項4において、前記熱電素子は、前
記圧電基板の裏面上に複数分散配置されていることを特
徴とする弾性表面波装置。
5. The surface acoustic wave device according to claim 4, wherein a plurality of the thermoelectric elements are dispersedly arranged on the back surface of the piezoelectric substrate.
JP21145194A 1994-09-05 1994-09-05 Surface acoustic wave device Expired - Fee Related JP3365070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21145194A JP3365070B2 (en) 1994-09-05 1994-09-05 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21145194A JP3365070B2 (en) 1994-09-05 1994-09-05 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPH0879002A true JPH0879002A (en) 1996-03-22
JP3365070B2 JP3365070B2 (en) 2003-01-08

Family

ID=16606170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21145194A Expired - Fee Related JP3365070B2 (en) 1994-09-05 1994-09-05 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP3365070B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145283B2 (en) 2002-10-29 2006-12-05 Seiko Epson Corporation Piezoelectric device and method for manufacturing the same
DE102007029393A1 (en) * 2007-06-26 2009-01-22 Epcos Ag Transformer arrangement has piezoelectric transformer and thermoelectric components coupled in transformer, and thermoelectric components are electrically controlled
US7674038B2 (en) * 2000-12-29 2010-03-09 Tesat-Spacecom Gmbh & Co. Kg Arrangement for temperature monitoring and regulation
JP2014112084A (en) * 2012-10-31 2014-06-19 Kyocera Corp Specimen liquid sensor unit, leader for specimen liquid sensor, and specimen liquid sensor
US20180226950A1 (en) * 2016-12-21 2018-08-09 Skyworks Solutions, Inc. Surface acoustic wave filter with temperature sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674038B2 (en) * 2000-12-29 2010-03-09 Tesat-Spacecom Gmbh & Co. Kg Arrangement for temperature monitoring and regulation
US7145283B2 (en) 2002-10-29 2006-12-05 Seiko Epson Corporation Piezoelectric device and method for manufacturing the same
DE102007029393A1 (en) * 2007-06-26 2009-01-22 Epcos Ag Transformer arrangement has piezoelectric transformer and thermoelectric components coupled in transformer, and thermoelectric components are electrically controlled
JP2014112084A (en) * 2012-10-31 2014-06-19 Kyocera Corp Specimen liquid sensor unit, leader for specimen liquid sensor, and specimen liquid sensor
JP2018063269A (en) * 2012-10-31 2018-04-19 京セラ株式会社 Specimen liquid sensor unit, reader for specimen liquid sensor, and specimen liquid sensor
US20180226950A1 (en) * 2016-12-21 2018-08-09 Skyworks Solutions, Inc. Surface acoustic wave filter with temperature sensor
US10263602B2 (en) * 2016-12-21 2019-04-16 Skyworks Solutions, Inc. Surface acoustic wave filter with temperature sensor
US10284177B2 (en) 2016-12-21 2019-05-07 Skyworks Solutions, Inc. Filter with over temperature protection
US11088675B2 (en) 2016-12-21 2021-08-10 Skyworks Solutions, Inc. Acoustic wave filter with temperature sensor
US11973491B2 (en) 2016-12-21 2024-04-30 Skyworks Solutions, Inc. Over temperature protection for acoustic wave filter

Also Published As

Publication number Publication date
JP3365070B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US9401693B2 (en) Methods and apparatus for temperature control of devices and mechanical resonating structures
US5339051A (en) Micro-machined resonator oscillator
Vig et al. Uncooled IR imaging array based on quartz microresonators
US5453652A (en) Surface acoustic wave device with interdigital transducers formed on a holding substrate thereof and a method of producing the same
JP3969824B2 (en) Angular velocity sensor
US8427035B2 (en) Vibration device and electronic device
US20100186515A1 (en) Pressure detection unit and pressure sensor
CN109245741A (en) A kind of infrared detector
US4459042A (en) Vibratory digital temperature sensor
EP0053341B1 (en) Digital temperature sensor
JP3365070B2 (en) Surface acoustic wave device
US6803698B2 (en) Acceleration sensor
JP2748740B2 (en) Temperature compensated oscillator and temperature detector
Jia et al. A micro-oven-controlled dual-mode piezoelectric MEMS resonator with±400 PPB stability over− 40 to 80° C temperature range
US6786095B2 (en) Acceleration sensor
US5604392A (en) Levitated crystal resonator
US5325719A (en) Magnetically driven resonant disc pressure transducer
JP3365069B2 (en) Surface acoustic wave device
JPH0526751A (en) Pressure sensor
US4472655A (en) Tuning fork flexural quartz resonator
JP3778046B2 (en) Temperature characteristic measuring jig for crystal vibrating device, temperature characteristic measuring apparatus equipped with the measuring jig, and temperature characteristic measuring method for crystal vibrating device
Dufilie et al. Performances of monolithic micro-oven heated SAW and STW resonators
Vig et al. Application of quartz microresonators to uncooled infrared imaging arrays
US9618399B1 (en) Frequency correction of oscillators and related apparatus and methods
JP3017753B2 (en) Composite piezoelectric element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091101

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101101

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111101

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121101

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121101

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131101

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees