JP2748740B2 - Temperature compensated oscillator and temperature detector - Google Patents

Temperature compensated oscillator and temperature detector

Info

Publication number
JP2748740B2
JP2748740B2 JP24962991A JP24962991A JP2748740B2 JP 2748740 B2 JP2748740 B2 JP 2748740B2 JP 24962991 A JP24962991 A JP 24962991A JP 24962991 A JP24962991 A JP 24962991A JP 2748740 B2 JP2748740 B2 JP 2748740B2
Authority
JP
Japan
Prior art keywords
oscillator
temperature
crystal
oscillators
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24962991A
Other languages
Japanese (ja)
Other versions
JPH04363913A (en
Inventor
清 佐藤
孝明 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP24962991A priority Critical patent/JP2748740B2/en
Publication of JPH04363913A publication Critical patent/JPH04363913A/en
Application granted granted Critical
Publication of JP2748740B2 publication Critical patent/JP2748740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、温度センサとして水晶
振動子を備えた温度補償発振器および温度検出装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature compensated oscillator having a crystal oscillator as a temperature sensor and a temperature detecting device.

【0002】[0002]

【従来の技術】温度補償発振器は、主発振器である電圧
制御発振器(VCO)と、主発振器の周辺温度を検出す
る温度検出装置と、その温度検出の結果に応じてVCO
の発振周波数の温度変化を補償して一定値に保持させる
ような制御電圧を発生しVCOに与える制御電圧供給手
段とを具備する。温度検出装置は、温度検出用の水晶振
動子を備える発振器を有し、その発振器出力電気信号の
周波数で検出温度を表わす。
2. Description of the Related Art A temperature-compensated oscillator includes a voltage-controlled oscillator (VCO) as a main oscillator, a temperature detecting device for detecting a peripheral temperature of the main oscillator, and a VCO according to a result of the temperature detection.
And a control voltage supply means for generating a control voltage for compensating for a temperature change of the oscillation frequency and maintaining the same at a constant value and applying the control voltage to the VCO. The temperature detecting device has an oscillator having a crystal oscillator for temperature detection, and the detected temperature is represented by the frequency of an electric signal output from the oscillator.

【0003】従来、温度検出用の圧電発振子としては、
プロシーディングス・オブ・ザ・フォーティサード・ア
ニュアル・シンポジウム・オン・フリケンシー・コント
ロール(Proceedings of the 43
rd Annual Symposium on Fr
eqency Control),1989年,51〜
54頁の論文に記載されているように、固有振動数の温
度係数が小さいATカットの水晶振動子と、固有振動数
の温度係数が大きい例えばYカットの水晶振動子とを組
合せたものが使われている。この場合、温度検出部は、
ATカットの水晶振動子による発振器の出力パルスを、
Yカットの水晶振動子による発振器の出力パルスの立上
り期間について計数し、予め設定した周期ごとに計数結
果をゼロにリセットする動作を繰返しながら、リセット
直前の計数結果を検出温度信号として送出する。
Conventionally, as a piezoelectric oscillator for detecting temperature,
Proceedings of the 43rd Annual Symposium on Frequency Control (Proceedings of the 43
rd Annual Symposium on Fr
equipment, 1989, 51-
As described in the article on page 54, a combination of an AT-cut crystal resonator having a small temperature coefficient of the natural frequency and a Y-cut crystal resonator having a large temperature coefficient of the natural frequency is used. Have been done. In this case, the temperature detector
The output pulse of the oscillator by the AT cut crystal oscillator is
While counting the rising period of the output pulse of the oscillator by the Y-cut crystal oscillator, and repeating the operation of resetting the count result to zero at every preset cycle, the count result immediately before the reset is transmitted as a detected temperature signal.

【0004】温度検出を2つの水晶発振子の組合せで行
う代りに、水晶振動子1つで行う回路が、プロシーディ
ングス・オブ・ザ・フォーティフォース・アニュアル・
シンポジウム・オン・フリケンシー・コントロール(P
roceedings ofthe 44th Ann
ual Symposium on Freqency
Control),1990年,597〜614頁の
論文に記載されている。この回路は、SCカットの水晶
振動子1つを温度検出用に備え、この水晶振動子を基本
波および高調波用の2つの発振回路で励振して、基本波
および3次高調波の両発振出力を発生し、両者の周波数
差を表わす信号を検出温度信号としている。
[0004] Instead of performing temperature detection with a combination of two crystal oscillators, a circuit that uses a single crystal oscillator is based on the Procedures of the Forty-Force Annual.
Symposium on Frequency Control (P
rosedings of the 44th Ann
ual Symposium on Frequency
Control), 1990, pp. 597-614. This circuit has one SC-cut crystal resonator for temperature detection, and this crystal resonator is excited by two oscillation circuits for a fundamental wave and a harmonic, thereby oscillating both a fundamental wave and a third harmonic. An output is generated, and a signal representing a frequency difference between the two is used as a detected temperature signal.

【0005】[0005]

【発明が解決しようとする課題】上述の2つの従来技術
の水晶振動子のうちの前者、すなわちATカットおよび
Yカットの2つの水晶振動子を組合せたものは、電源投
入や周囲温度の急変などで急激な温度変化が生じた場合
に、過渡的に温度検出誤差が増大するという問題点があ
る。すなわち、温度検出精度を高くするため、ATカッ
トの方の共振周波数(fA )とYカットの方の共振周波
数(fY )との比をかなり大きく設定する(例えば、f
A =1MHz,fY =10KHz)のが通常であるが、
この結果、Yカットの水晶振動子はATカットの水晶振
動子に比べて、体積がかなり大きくなり、熱容量も大き
くなる。従って、両者の熱時定数に大幅な差を生じ、急
激な温度変化が生じた場合、定常温度状態に到達するま
での過渡期間において、両者の温度差に起因する温度検
出誤差が生じるのを避け得ない。他方、上述の従来技術
の後者、すなわち1つのSCカットの水晶振動子により
基本波および3次高調波を発生させる構成のものでは、
上記の熱時定数差に起因する温度検出誤差の問題は無い
ものの、3次高調波の発生のための発振回路の消費電力
の増大という問題点が避けられない。すなわち、発振器
回路を構成する半導体装置の消費電力は発振周波数にほ
ぼ比例し増大するので、3次高調波用の発振器回路の消
費電力は、基本波用のそれのほぼ3倍の大きさになり、
両者を合計すると、基本波用のほぼ4倍の消費電力に達
する。
The former of the above two prior art crystal oscillators, that is, the combination of two crystal oscillators of AT-cut and Y-cut, is used for turning on the power or suddenly changing the ambient temperature. In the case where a rapid temperature change occurs, there is a problem that a temperature detection error transiently increases. That is, to increase the temperature detection accuracy is set considerably increase the ratio of the resonance frequency (f Y) towards the resonant frequency (f A) and Y-cut towards the AT-cut (e.g., f
A = 1MHz, f Y = 10KHz ) of it is normally
As a result, the volume and heat capacity of the Y-cut crystal resonator are considerably larger than those of the AT-cut crystal resonator. Therefore, when a large difference occurs between the thermal time constants of the two and a rapid temperature change occurs, avoid a temperature detection error due to the temperature difference between the two during a transitional period until reaching a steady temperature state. I can't get it. On the other hand, in the latter case of the above-described prior art, that is, in a configuration in which a fundamental wave and a third harmonic are generated by one SC-cut crystal resonator,
Although there is no problem of the temperature detection error caused by the difference of the thermal time constants, the problem of increasing the power consumption of the oscillation circuit for generating the third harmonic is unavoidable. That is, since the power consumption of the semiconductor device constituting the oscillator circuit increases almost in proportion to the oscillation frequency, the power consumption of the oscillator circuit for the third harmonic is almost three times as large as that for the fundamental wave. ,
When they are added together, the power consumption reaches almost four times that of the fundamental wave.

【0006】したがって本発明の目的は、上記熱時定数
を差に起因する温度検出誤差の発生を伴わず、また発振
回路の消費力の大幅な増大を要しない温度補償発振器お
よび温度検出装置を提供することである。
Accordingly, an object of the present invention is to provide a temperature-compensated oscillator and a temperature detection device which do not involve the occurrence of a temperature detection error due to the difference between the thermal time constants and do not require a large increase in the power consumption of the oscillation circuit. It is to be.

【0007】[0007]

【課題を解決するための手段】本発明の温度補償発振器
は、制御電圧に応答して発振周波数を変化させる電圧制
御発振器と、該電圧制御発振器の周辺の温度変化を表わ
す電気信号を発生する温度検出手段と、該電気信号に応
答して前記電圧制御発振器に対する前記温度変化の影響
を相殺するようなアナログ電圧を前記制御電圧として前
記電圧制御発振器に印加する制御電圧供給手段とを備え
る温度補償発振器において、前記温度検出手段が、互い
にほぼ等しい固有振動数と互いに相異なるカット角とを
もつ1対のATカットの水晶振動子と、これら水晶振動
子のおのおのの両面にそれぞれ膜状に形成された電極
と、これら電極の部分にて前記水晶振動子をそれぞれ保
持する複数の支持部材と、これら支持部材を保持して前
記水晶振動子を収容するケース部材と、前記水晶振動子
を共振回路にそれぞれ接続した第1および第2の発振器
と、これら発振器の発振周波数の差を表わす電気信号を
発してこれにより前記温度変化を表わす周波数差信号発
生回路とを含んでいることを特徴とする。
According to the present invention, there is provided a temperature compensated oscillator for changing an oscillation frequency in response to a control voltage, and a temperature for generating an electric signal representing a temperature change around the voltage controlled oscillator. A temperature compensation oscillator comprising: a detection unit; and a control voltage supply unit configured to apply, to the voltage control oscillator, an analog voltage that cancels an influence of the temperature change on the voltage control oscillator as the control voltage in response to the electric signal. Wherein the temperature detecting means is formed in a pair of AT-cut quartz oscillators having substantially equal natural frequencies and mutually different cut angles, and in a film shape on both surfaces of each of these quartz oscillators. Electrodes, a plurality of support members for holding the crystal unit at these electrode portions, respectively, and accommodating the crystal unit while holding these support members Case members, first and second oscillators each having the quartz resonator connected to a resonance circuit, and an electric signal indicating a difference between the oscillating frequencies of the oscillators, thereby generating a frequency difference signal indicating the temperature change. And a circuit.

【0008】本発明の温度検出装置は、固有振動数の対
温度変化が互いに異なる第1および第2の水晶振動子
と、これら水晶振動子を共振回路にそれぞれ接続した第
1および第2の発振器と、これら発振器の発振周波数に
応答して前記水晶振動子の近傍の温度変化を表わす電気
信号を発生する手段とを備える温度検出装置において、
前記第1および第2の水晶振動子が、互いにほぼ等しい
固有振動数と互いに相異なるカット角とをもつ1対のA
Tカットの水晶振動子片であり、かつ前記電気信号発生
手段が、前記第1および第2の発振器の出力パルスをそ
れぞれカウントアップおよびカウントダウンする可逆カ
ウンタをもっていることを特徴とする。
A temperature detecting device according to the present invention comprises a first and a second quartz oscillators whose natural frequency changes with respect to temperature are different from each other, and a first and a second oscillator respectively connecting these quartz oscillators to a resonance circuit. And a means for generating an electric signal representing a temperature change in the vicinity of the quartz oscillator in response to the oscillation frequency of these oscillators,
The first and second quartz resonators have a pair of A's having substantially equal natural frequencies and mutually different cut angles.
It is a T-cut quartz resonator element, and the electric signal generating means has a reversible counter for counting up and down the output pulses of the first and second oscillators, respectively.

【0009】[0009]

【実施例】次に、本発明について図面を参照して説明す
る。
Next, the present invention will be described with reference to the drawings.

【0010】図1は本発明の一実施例を示すブロック図
である。同図において、水晶振動子Q1およびQ2と、
これらをそれぞれ共振回路に含む発振器51および52
と、発振器51および52の発振出力のパルス数をそれ
ぞれカウントアップおよびカウントダウンするカウンタ
53とから成る温度検出装置にて、水晶振動子Q1およ
びQ2の近傍の温度変化を表わす信号を発生し、これを
読出し専用メモリ(ROM)54に送る。水晶振動子Q
1およびQ2は、それぞれカット角35°25′および
35°17′のATカット板であり、ほぼ相等しい固有
振動数をもつ。水晶振動子Q1およびQ2は、発振器5
1および52でそれぞれ励振され、周波数f1およびf
2の発振出力を生じさせる。カウンタ53は、この発振
器51および52の両出力信号の一方のパルスをカウン
トアップし、もう一方のパルスをカウントダウンする可
逆カウンタであり、予め設定した周期ごとに計数結果を
ゼロにリセットする動作を繰返しながら、リセット直前
の計数結果を示すディジタル信号を、読出し専用メモリ
(ROM)54へ読出しアドレス信号として送出する。
このリセットのタイミング指示には、発振器51および
52の両出力信号のうちの一方の分周パルスを使う。
FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, crystal oscillators Q1 and Q2,
Oscillators 51 and 52 each including these in a resonance circuit
And a counter 53 for counting up and down the number of oscillation output pulses of the oscillators 51 and 52, respectively, to generate a signal representing a temperature change near the crystal units Q1 and Q2. It is sent to a read only memory (ROM) 54. Quartz resonator Q
1 and Q2 are AT cut plates having cut angles of 35 ° 25 ′ and 35 ° 17 ′, respectively, and have substantially equal natural frequencies. Crystal oscillators Q1 and Q2 are connected to oscillator 5
1 and 52, respectively, and the frequencies f1 and f
2 is generated. The counter 53 is a reversible counter that counts up one pulse of both output signals of the oscillators 51 and 52 and counts down the other pulse, and repeats an operation of resetting the count result to zero at a preset cycle. Meanwhile, a digital signal indicating the counting result immediately before the reset is sent to the read-only memory (ROM) 54 as a read address signal.
For the reset timing instruction, one of the divided pulses of the output signals of the oscillators 51 and 52 is used.

【0011】図2は、上記の水晶振動子Q1およびQ2
の共振周波数の温度特性の例を、横軸に温度をとり、縦
軸に共振周波数の変化率(Δf/f)である相対周波数
をとって示した特性図である。水晶振動子Q1(カット
角35°25′のATカット)およびQ2(カット角3
5°17′のATカット)の共振周波数の温度変化に伴
う変化が曲線AT1およびAT2により示される。これ
らの特性の曲線AT1およびAT2から明らかなとお
り、カウンタ53が出力するディジタル信号の表示値、
すなわち周波数f1およびf2の差にリセット周期を乗
じた値は、温度の上昇に応じて単調増加(あるいは単調
減少)する。従って、カウンタ53からROM54へ与
えられる読出しアドレス信号により、検出温度を一意的
に表示することができる。
FIG. 2 shows the above-described quartz oscillators Q1 and Q2.
FIG. 3 is a characteristic diagram showing an example of a temperature characteristic of the resonance frequency of FIG. 1 with the horizontal axis representing temperature and the vertical axis representing relative frequency, which is the rate of change (Δf / f) of the resonance frequency. The quartz oscillators Q1 (AT cut with a cut angle of 35 ° 25 ') and Q2 (cut angle of 3
Curves AT1 and AT2 show the change of the resonance frequency (5 ° 17 ′ AT cut) with the temperature change. As is clear from these characteristic curves AT1 and AT2, the display value of the digital signal output from the counter 53,
That is, the value obtained by multiplying the difference between the frequencies f1 and f2 by the reset cycle increases (or decreases) monotonically as the temperature rises. Therefore, the detected temperature can be uniquely displayed by the read address signal given from the counter 53 to the ROM 54.

【0012】ROM54には、読出しアドレス信号に対
応する温度において、主発振器である電圧制御発振器
(VCO)56の発振周波数f0を一定に保持させるた
め印加すべき制御電圧のディジタル値を、予め書込んで
おく。カウンタ53から与えられる読出しアドレス信号
に応じてROM54から読出されたディジタルの制御電
圧は、ディジタル・アナログ変換器(DAC)55でア
ナログ電圧に変換されたあと、VCO56に制御電圧と
して印加され、VCO56の発振周波数f0を一定に保
持するよう制御する。
A digital value of a control voltage to be applied in order to keep the oscillation frequency f0 of the voltage controlled oscillator (VCO) 56 as a main oscillator constant at a temperature corresponding to the read address signal is written in the ROM 54 in advance. Leave. The digital control voltage read from the ROM 54 in response to the read address signal given from the counter 53 is converted into an analog voltage by a digital-to-analog converter (DAC) 55, and then applied to the VCO 56 as a control voltage. Control is performed to keep the oscillation frequency f0 constant.

【0013】図3(a),および(b),(c)は、こ
の実施例中の水晶振動子Q1およびQ2の一構成例を示
す側断面図および斜視図である。互いにほぼ等しい固有
振動数をもち互いに異なるカット角をもつ板状のATカ
ットの水晶振動子Q1およびQ2に相当する振動子片1
および2と、これら振動子片1,2の板面を平行にして
対向させ垂直に保持する後述の保持手段と、これらの素
子を収容する金属ケース8とを備える。振動子片1およ
び2のおのおのの両面には、電気的接続用の電極3,4
および5,6を金蒸着によりそれぞれ形成してある。振
動子片1および2の下端部は、金属ケース8の内底面に
下端を固着したT字状の導体材料による保持材7の上辺
部で挟持されており、更に振動子片1の電極4と振動子
片2の電極5とが保持材7の上辺部へ電気的に接続され
ている。振動子片1の電極3および振動子片2の電極6
は、金属ケース8の底面に絶縁部材11および12を介
して貫通固定した棒状の導体材料による端子9および1
0の上端の折曲げ部でそれぞれ挟持され、電気的に接続
されている。
FIGS. 3 (a), 3 (b) and 3 (c) are a side sectional view and a perspective view, respectively, showing one structural example of the quartz oscillators Q1 and Q2 in this embodiment. A vibrator element 1 corresponding to a plate-shaped AT-cut quartz crystal vibrator Q1 and Q2 having substantially equal natural frequencies and different cut angles.
, 2, holding means, described later, for holding the transducer pieces 1, 2, with their plate surfaces parallel and facing each other and holding them vertically, and a metal case 8 for accommodating these elements. Electrodes 3, 4 for electrical connection are provided on both sides of each of vibrator pieces 1 and 2.
And 5, 6 were formed by gold deposition, respectively. The lower ends of the vibrator pieces 1 and 2 are sandwiched by the upper side of a holding member 7 made of a T-shaped conductive material having a lower end fixed to the inner bottom surface of the metal case 8. The electrode 5 of the vibrator element 2 is electrically connected to the upper side of the holding member 7. Electrode 3 of vibrator element 1 and electrode 6 of vibrator element 2
Are terminals 9 and 1 made of a rod-shaped conductive material penetrated and fixed to the bottom surface of the metal case 8 via insulating members 11 and 12.
0, and are electrically connected to each other.

【0014】温度検出用の発振器へ接続するには、金属
ケース8の底面を配線基板(図示せず)上に乗せて、端
子9および10を配線接続する。振動子片1および2を
対向配置して垂直方向に保持してあるので、金属ケース
8の底面積すなわち配線基板上への実装持の占有面積を
小さくできる。
To connect to a temperature detecting oscillator, the terminals 9 and 10 are connected by wiring with the bottom surface of the metal case 8 placed on a wiring board (not shown). Since the vibrator pieces 1 and 2 are opposed to each other and held vertically, the bottom area of the metal case 8, that is, the area occupied by mounting on the wiring board can be reduced.

【0015】図4は、上記実施例の水晶振動子Q1およ
びQ2の他の構成例を示す側断面図である。互いにほぼ
等しい固有振動数をもち互いに異なるカット角をもつ板
状のATカット水晶の振動子片1および2と、これら振
動子片1および2の板面を同一平面上に揃え隣接して水
平に保持する後述の保持手段と、これらの素子を収容す
る金属ケース18とを備えている。振動子片1および2
の隣接側の端部は、金属ケース18の内底面に下端部を
固着した棒状の導体材による保持材17の上端部にて挟
持されるとともに電気的に接続されており、これと反対
側の端部は、金属ケース18の側面に絶縁部材21およ
び22を介して貫通固定した棒状の導体材料の端子19
および20の端部にてそれぞれ、挟持され電気的に接続
されている。この水晶振動子をプリント配線板に搭載し
てパッケージに組込む際には、ケース18の底面を配線
基板上に載せ、端子19および20の外側端部を下方に
折曲げて配線接続する。振動子片1および2が同一平面
に水平に保持されているので、配線基板上の高さが低減
でき、いわゆる平面実装に好適である。
FIG. 4 is a side sectional view showing another example of the structure of the crystal units Q1 and Q2 of the above embodiment. Vibrator pieces 1 and 2 made of plate-shaped AT-cut quartz having natural frequencies substantially equal to each other and having different cut angles, and the plate surfaces of these vibrator pieces 1 and 2 are aligned on the same plane and horizontally adjacent to each other. A holding means to be described later and a metal case 18 for housing these elements are provided. Transducer pieces 1 and 2
Are sandwiched and electrically connected at the upper end of a holding member 17 made of a rod-shaped conductive material having a lower end fixed to the inner bottom surface of the metal case 18. An end is a terminal 19 made of a rod-shaped conductor material which is fixed to the side surface of the metal case 18 through insulating members 21 and 22.
And 20 at the ends thereof and are electrically connected. When mounting this crystal unit on a printed wiring board and assembling it into a package, the bottom surface of the case 18 is mounted on a wiring board, and the outer ends of the terminals 19 and 20 are bent downward for wiring connection. Since the vibrator pieces 1 and 2 are horizontally held on the same plane, the height on the wiring board can be reduced, which is suitable for so-called planar mounting.

【0016】以上説明した水晶振動子Q1およびQ2の
構成例のいずれにおいても振動子片1および2は、固定
振動数がほぼ相等しいので、外形寸法もほぼ相当しくな
り、熱時定数をほぼ同一に揃えることができる。更に両
者を同一ケース内に近接し収容してあるので、使用中に
おける両者の温度は常に均一に保たれる。従って、AT
カットおよびYカットの2つの水晶振動子を組合せる従
来の発振子のような熱時定数の差に起因する温度検出誤
差は生じない。
In each of the above-described configuration examples of the crystal units Q1 and Q2, the vibrator pieces 1 and 2 have substantially the same fixed frequency, and therefore have substantially the same external dimensions and substantially the same thermal time constant. Can be aligned. Further, since both are housed close to each other in the same case, the temperature of both during use is always kept uniform. Therefore, AT
A temperature detection error does not occur due to a difference in thermal time constant as in a conventional oscillator in which two crystal oscillators of a cut and a Y-cut are combined.

【0017】また、振動子片1および2を接続して発振
する発振回路51および52は、ほぼ同じ周波数の基本
波で動作するので、両回路の消費電力も同じで済み、S
Cカットの水晶振動子を使う従来の場合のような高調波
発振に伴なう消費電力の増大を要しない。
The oscillation circuits 51 and 52 that oscillate by connecting the vibrator pieces 1 and 2 operate with fundamental waves having substantially the same frequency.
There is no need to increase power consumption associated with harmonic oscillation as in the conventional case using a C-cut crystal resonator.

【0018】なお、図3(a)および図4の構成例にお
いては、振動子片1および2のおのおのの片側の電極4
および5を共通接続してあるが、これら電極は分離して
個別に外部へ導いて接続する変形を行なっも差支えな
い。図1に例示したとおり水晶振動子Q1およびQ2
と、発振器51または52とを共通の接地接続で使用す
る場合には、上記の各構成例のように金属ケース内で共
通接続しておけば、配線基板での配線の複雑化を避けら
れる。
In the configuration examples shown in FIGS. 3A and 4, the vibrator pieces 1 and 2 each have an electrode 4 on one side.
Although the electrodes 5 and 5 are commonly connected, these electrodes may be separated and individually led to the outside and connected. As illustrated in FIG. 1, the crystal units Q1 and Q2
When the oscillator and the oscillator 51 or 52 are used with a common ground connection, if the common connection is made in the metal case as in each of the above-described configuration examples, the wiring on the wiring board can be prevented from becoming complicated.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、発
振周波数がほぼ等しくカット角が互いに異なる1対のA
Tカット水晶振動子を温度センサとして使うことによ
り、熱時定数差に起因する温度検出誤差の発生を避ける
ことができ、また温度検出用の発振器の消費電力の大幅
な増大を避けることができる。
As described above, according to the present invention, a pair of A's having substantially equal oscillation frequencies and different cut angles are provided.
By using a T-cut quartz resonator as a temperature sensor, it is possible to avoid occurrence of a temperature detection error due to a difference in thermal time constant, and to avoid a large increase in power consumption of an oscillator for temperature detection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のブロック図FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】本発明の実施例に使用される水晶振動子対の温
度特性図
FIG. 2 is a temperature characteristic diagram of a quartz oscillator pair used in an embodiment of the present invention.

【図3】(a)は本発明の実施例の水晶振動子の構成例
の側断面図、(b)および(c)は上記水晶振動子の構
成要素の斜視図
FIG. 3A is a side sectional view of a configuration example of a crystal resonator according to an embodiment of the present invention, and FIGS. 3B and 3C are perspective views of components of the crystal resonator.

【図4】本発明の実施例の水晶振動子の構成例の側断面
FIG. 4 is a side sectional view of a configuration example of a crystal resonator according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2 振動子片 3〜6 電極 7,17 保持材 8,18 金属ケース 9,10,19,20 端子 11,12,21,22 絶縁部材 51,52 発振器 53 カウンタ 54 読出し専用メモリ(ROM) 55 ディジタル・アナログ変換器(DAC) 56 電圧制御発振器(VCO) Q1,Q2 水晶振動子 1, 2 vibrator piece 3 to 6 electrode 7, 17 holding material 8, 18 metal case 9, 10, 19, 20 terminal 11, 12, 21, 22 insulating member 51, 52 oscillator 53 counter 54 read-only memory (ROM) 55 Digital-to-analog converter (DAC) 56 Voltage-controlled oscillator (VCO) Q1, Q2 Quartz resonator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−196634(JP,A) 特開 昭62−239707(JP,A) 特開 昭63−152223(JP,A) 特開 平2−57928(JP,A) 特開 昭55−138626(JP,A) 特開 昭59−95431(JP,A) 特開 昭48−52255(JP,A) 実開 昭60−184320(JP,U) (58)調査した分野(Int.Cl.6,DB名) H03L 1/02 H03H 9/205 G01K 7/32──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-196634 (JP, A) JP-A-62-239707 (JP, A) JP-A-63-152223 (JP, A) JP-A-2- 57928 (JP, A) JP-A-55-138626 (JP, A) JP-A-59-95431 (JP, A) JP-A-48-52255 (JP, A) Real opening 60-184320 (JP, U) (58) Field surveyed (Int.Cl. 6 , DB name) H03L 1/02 H03H 9/205 G01K 7/32

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 制御電圧に応答して発振周波数を変化さ
せる電圧制御発振器と、該電圧制御発振器の周辺の温度
変化を表わす電気信号を発生する温度検出手段と、該電
気信号に応答して前記電圧制御発振器に対する前記温度
変化の影響を相殺するようなアナログ電圧を前記制御電
圧として前記電圧制御発振器に印加する制御電圧供給手
段とを備える温度補償発振器において、前記温度検出手
段が、互いにほぼ等しい固有振動数と互いに相異なるカ
ット角とをもつ1対のATカットの水晶振動子と、これ
ら水晶振動子のおのおのの両面にそれぞれ膜状に形成さ
れた電極と、これら電極の部分にて前記水晶振動子をそ
れぞれ保持する複数の支持部材と、これら支持部材を保
持して前記水晶振動子を収容するケース部材と、前記水
晶振動子を共振回路にそれぞれ接続した第1および第2
の発振器と、これら発振器の発振周波数の差を表わす電
気信号を発してこれにより前記温度変化を表わす周波数
差信号発生回路とを含んでいることを特徴とする温度補
償発振器。
A voltage-controlled oscillator for changing an oscillation frequency in response to a control voltage; a temperature detecting means for generating an electric signal indicating a temperature change around the voltage-controlled oscillator; A temperature-compensated oscillator comprising: a control voltage supply unit configured to apply an analog voltage that cancels out the effect of the temperature change on the voltage-controlled oscillator as the control voltage to the voltage-controlled oscillator. A pair of AT-cut quartz oscillators having a frequency and a cut angle different from each other, electrodes formed in a film shape on both surfaces of each of the quartz oscillators, and the quartz oscillator at these electrode portions. A plurality of support members for respectively holding the crystal elements, a case member for holding the crystal members and holding the support members, and a resonance circuit First and second connected respectively to
And a frequency difference signal generating circuit for generating an electric signal indicating a difference between the oscillating frequencies of the oscillators and thereby indicating the temperature change.
【請求項2】 前記周波数差信号発生回路が、前記第1
および第2の発振器の出力パルス数をそれぞれカウント
アップおよびカウントダウンする可逆カウンタをもち、
かつ前記制御電圧供給手段が、前記制御電圧のとり得る
複数のディジタル値を複数のアドレスにそれぞれ予め格
納してあり前記可逆カウンタの出力に応答して前記複数
のアドレスの1つを選んでそのアドレスに格納された前
記ディジタル値を読出すリードオンリーメモリーと、そ
のディジタル値を前記アナログ電圧に変換する変換手段
とをもっている、請求項1記載の温度補償発振器。
2. The frequency difference signal generating circuit according to claim 1, wherein
And a reversible counter for counting up and counting down the number of output pulses of the second oscillator, respectively.
And the control voltage supply means stores in advance a plurality of digital values which the control voltage can take at a plurality of addresses, respectively, selects one of the plurality of addresses in response to an output of the reversible counter, and selects the address. 2. The temperature-compensated oscillator according to claim 1, further comprising: a read-only memory for reading the digital value stored in the memory; and a conversion unit for converting the digital value to the analog voltage.
【請求項3】 固有振動数の対温度変化が互いに異なる
第1および第2の水晶振動子と、これら水晶振動子を共
振回路にそれぞれ接続した第1および第2の発振器と、
これら発振器の発振周波数に応答して前記水晶振動子の
近傍の温度変化を表わす電気信号を発生する手段とを備
える温度検出装置において、前記第1および第2の水晶
振動子が、互いにほぼ等しい固有振動数と互いに相異な
るカット角とをもつ1対のATカットの水晶振動子片で
あり、かつ前記電気信号発生手段が、前記第1および第
2の発振器の出力パルスをそれぞれカウントアップおよ
びカウントダウンする可逆カウンタをもっていることを
特徴とする温度検出装置。
3. A first and second crystal oscillators whose natural frequency changes in temperature with respect to each other are different from each other; a first and a second oscillator each having the crystal oscillator connected to a resonance circuit;
Means for generating an electric signal indicating a temperature change in the vicinity of the crystal unit in response to the oscillation frequency of the oscillator, wherein the first and second crystal units are substantially equal to each other. A pair of AT-cut quartz-crystal vibrating pieces having a frequency and a cut angle different from each other, and wherein the electric signal generating means counts up and counts down output pulses of the first and second oscillators, respectively. A temperature detecting device having a reversible counter.
JP24962991A 1990-09-28 1991-09-27 Temperature compensated oscillator and temperature detector Expired - Lifetime JP2748740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24962991A JP2748740B2 (en) 1990-09-28 1991-09-27 Temperature compensated oscillator and temperature detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26133490 1990-09-28
JP2-261334 1990-09-28
JP24962991A JP2748740B2 (en) 1990-09-28 1991-09-27 Temperature compensated oscillator and temperature detector

Publications (2)

Publication Number Publication Date
JPH04363913A JPH04363913A (en) 1992-12-16
JP2748740B2 true JP2748740B2 (en) 1998-05-13

Family

ID=26539401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24962991A Expired - Lifetime JP2748740B2 (en) 1990-09-28 1991-09-27 Temperature compensated oscillator and temperature detector

Country Status (1)

Country Link
JP (1) JP2748740B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679782B2 (en) 1999-12-10 2011-04-27 富士通株式会社 Temperature sensor
US7649426B2 (en) 2006-09-12 2010-01-19 Cts Corporation Apparatus and method for temperature compensation of crystal oscillators
TWI465032B (en) * 2011-01-28 2014-12-11 Nihon Dempa Kogyo Co Oscillation device
JP6092540B2 (en) * 2011-08-01 2017-03-08 日本電波工業株式会社 Crystal oscillator
NL2007682C2 (en) * 2011-10-31 2013-05-06 Anharmonic B V Electronic oscillation circuit.
JP6118091B2 (en) * 2012-12-10 2017-04-19 日本電波工業株式会社 Oscillator
JP6045961B2 (en) * 2013-01-31 2016-12-14 日本電波工業株式会社 Crystal oscillator and oscillation device
JP2018080921A (en) * 2016-11-14 2018-05-24 日本電波工業株式会社 Temperature detector
JP2020145529A (en) 2019-03-05 2020-09-10 セイコーエプソン株式会社 Oscillator, electronic apparatus, and movable body
JP2020145528A (en) 2019-03-05 2020-09-10 セイコーエプソン株式会社 Oscillator, electronic apparatus, and movable body
JP7404760B2 (en) 2019-10-18 2023-12-26 セイコーエプソン株式会社 Oscillators, electronic equipment, and moving objects
JP2022139556A (en) 2021-03-12 2022-09-26 セイコーエプソン株式会社 vibrator and oscillator

Also Published As

Publication number Publication date
JPH04363913A (en) 1992-12-16

Similar Documents

Publication Publication Date Title
US5214668A (en) Temperature detector and a temperature compensated oscillator using the temperature detector
US4039969A (en) Quartz thermometer
US9077308B2 (en) Method for manufacturing a quartz crystal unit, quartz crystal oscillator and electronic apparatus
US7564326B2 (en) Electronic apparatus and manufacturing method of the same
US5925968A (en) Piezoelectric vibrator, piezoelectric vibrator device having the same and circuit device having the piezoelectric vibrator device
JP2748740B2 (en) Temperature compensated oscillator and temperature detector
US4144747A (en) Simultaneously resonated, multi-mode crystal force transducer
US8127426B2 (en) Electronic apparatus having quartz crystal oscillating circuits
JP2002335128A (en) Piezoelectric device
JP2013102315A (en) Piezoelectric device and electronic apparatus
US9203135B2 (en) Method for manufacturing quartz crystal resonator
Gerber et al. State of the art—Quartz crystal units and oscillators
US20060176120A1 (en) SC cut crystal microbalance
US11095302B2 (en) Frequency delta sigma modulation signal output circuit, physical quantity sensor module, and structure monitoring device
JP3365070B2 (en) Surface acoustic wave device
JP2005026843A (en) Piezoelectric device
JPH08316732A (en) Oscillator and its manufacture
JP2004120073A (en) Piezoelectric device, its manufacturing method, clock device and package therefor
JPH03252204A (en) Temperature compensated crystal oscillator
JPH10173475A (en) Piezoelectric oscillator
JP2003224425A (en) Temperature compensated piezoelectric oscillator
JP2001186020A (en) Oscillator and its frequency setting method
JP3017753B2 (en) Composite piezoelectric element
JPH06268442A (en) Temperature compensation type crystal oscillation circuit
JP3620451B2 (en) Package structure of piezoelectric device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980120