JPH0526751A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPH0526751A
JPH0526751A JP17965091A JP17965091A JPH0526751A JP H0526751 A JPH0526751 A JP H0526751A JP 17965091 A JP17965091 A JP 17965091A JP 17965091 A JP17965091 A JP 17965091A JP H0526751 A JPH0526751 A JP H0526751A
Authority
JP
Japan
Prior art keywords
diaphragm
pressure
oscillators
thin film
sapphire substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17965091A
Other languages
Japanese (ja)
Inventor
Muneki Ran
宗樹 蘭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP17965091A priority Critical patent/JPH0526751A/en
Publication of JPH0526751A publication Critical patent/JPH0526751A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a stable output with a high sensitivity even at a high- temperature region by forming an SAW oscillator consisting of a piezoelectric ceramic (AIN) thin film on a surface of a diaphragm which is formed on a sapphire substrate. CONSTITUTION:A diaphragm 3 is formed on a recessed portion 2 which is machined to a sapphire substrate 1 and an AIN thin film on it is subjected to CVD or sputtering, thus forming tooth-shaped delay linear SAW oscillators 4a and 4b. When a liquid is led to a pressure-introduction chamber and a pressure is applied to the diaphragm 3, an oscillation frequency of the oscillators 4a and 4b changes due to the distortion, thus enabling the output to be input to feedback amplifiers 5a and 5b through connection pads 6a and 6b for detecting frequency and then to be output as a pressure signal from an operation device 7. Sapphire with a high melting temperature is used as the substrate 1, and at the same time a piezoelectric ceramic is used as the oscillators 4a and 4b and Pt or a silicide or a nitride with a high melt-point metal is used as a lead wire, thus obtaining a stable output even at a high temperature near 800 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はサファイア基板を用いた
圧力センサに関し,高温域(700℃以上)における性
能改善をはかった圧力センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure sensor using a sapphire substrate, and more particularly to a pressure sensor with improved performance in a high temperature range (700 ° C. or higher).

【0002】[0002]

【従来の技術】従来,ダイアフラムを用いた高温用圧力
センサとしては, 図3に示すように,サファイア基
板20に形成したダイアフラム21上にSi薄膜22を
エピタキシャル成長させ,そのエピタキシャル層にピエ
ゾ抵抗素子(図示せず)を形成してダイアフラム21の
歪みに関連して変化する電気抵抗の変化から圧力を測定
する様にしたもの。 記載文献 Transducer 87 P316 Silicon on Sappire The key Tecnology for High Temperature Piezorestive Pressure Transducers 図4に示すように水晶基板30に形成したダイアフ
ラム31上にSAW発振器32を形成したもので,ダイ
アフラム31の歪みに関連してダイアフラム表面の弾性
定数や密度が変化する。それにともないSAW発振器3
2の伝搬速度が変化する。そして歪みがSAWの伝搬方
向へ拡がると発振周波数が変化するので,その発振周波
数の差を検出してダイアフラム31に印加される圧力の
強さを測定する。 記載文献 1980年 IEEE 発行 ULTRASONICS SYMPOSIOM P696 〜
P701 PROGRESS IN THE DEVELOPMENT OF SAW RESONATOR PRESSURE TRANSDUCERS
2. Description of the Related Art Conventionally, as a high temperature pressure sensor using a diaphragm, as shown in FIG. 3, a Si thin film 22 is epitaxially grown on a diaphragm 21 formed on a sapphire substrate 20, and a piezoresistive element ( (Not shown) is formed to measure the pressure from the change in electrical resistance that changes in association with the strain of the diaphragm 21. References Transducer 87 P316 Silicon on Sappire The key Tecnology for High Temperature Piezorestive Pressure Transducers As shown in FIG. 4, a SAW oscillator 32 is formed on a diaphragm 31 formed on a quartz substrate 30. The elastic constant and density of the diaphragm surface change. SAW oscillator 3 with it
The propagation velocity of 2 changes. When the strain spreads in the SAW propagation direction, the oscillation frequency changes, so the difference in the oscillation frequency is detected and the strength of the pressure applied to the diaphragm 31 is measured. References 1980 IEEE Published ULTRASONICS SYMPOSIOM P696 ~
P701 PROGRESS IN THE DEVELOPMENT OF SAW RESONATOR PRESSURE TRANSDUCERS

【0003】[0003]

【発明が解決しようとする課題】そして,のサファイ
ア上のSi薄膜にピエゾ効果を利用する圧力センサでは
425℃まで測定できたことが報告されている。また,
のセンサでは−50〜+100℃での測定結果報告さ
れているが,水晶のキュリ―ポイントが573℃である
ことから,例えば700℃以上の高温においては使用で
きないという問題がある。
It has been reported that the pressure sensor utilizing the piezo effect on the Si thin film on sapphire could measure up to 425 ° C. Also,
The sensor has reported the measurement results at -50 to + 100 ° C, but since the Curie point of the crystal is 573 ° C, there is a problem that it cannot be used at a high temperature of 700 ° C or higher.

【0004】本発明は,上記従来技術の問題点を解決す
る為に成されたもので,800℃近くの高温度でも高感
度で安定した出力を得ることが可能な圧力センサを提供
することを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and it is an object of the present invention to provide a pressure sensor capable of obtaining a stable output with high sensitivity even at a high temperature near 800 ° C. To aim.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する為に
本発明は,サファイア基板上にダイアフラムが形成さ
れ,前記ダイアフラムの表面にAlN薄膜からなるSA
W発振手段を形成したことを特徴とするものである。
In order to solve the above problems, the present invention is a SA in which a diaphragm is formed on a sapphire substrate and an AlN thin film is formed on the surface of the diaphragm.
The W oscillating means is formed.

【0006】[0006]

【作用】サファイアの融点は2030℃で,弾性材とし
てもすぐれている。また,圧電セラミックスであるAl
Nの最高使用温度は1800℃でキュリ―点がおよそ1
200℃と高いので高温(600〜1000℃)におけ
る性能劣化がない。
Function: The melting point of sapphire is 2030 ° C, and it is also an excellent elastic material. In addition, piezoelectric ceramics such as Al
The maximum operating temperature of N is 1800 ℃, and the Curie point is approximately 1.
Since it is as high as 200 ° C, there is no performance deterioration at high temperatures (600 to 1000 ° C).

【0007】[0007]

【実施例】図1は本発明の一実施例を示す断面構成図で
あり,1はサファイア基板である。このサファイア基板
1には機械加工により凹部2が形成され,表面にダイア
フラム3が形成されている。なお,ダイアフラムの加工
はCO2 レ―ザ等を用いてメンブレン(ダイアフラム薄
肉部)を孔を開けたサファイアのフレ―ムに融着して形
成することもできる。4a,4bは遅延線形のSAW発
振器であり,AlN(窒化アルミ…圧電セラミック)薄
膜をCVDやスパッタ等の方法を用いて形成する。な
お,SAW発振器は櫛歯状等の公知の形状とし,SAW
の形成位置はダイアフラムの曲げ応力の顕著な中央部
(引張り応力)と周辺部(圧縮応力)に設け,極性を逆
にして発振器の出力の差を検出することにより外部の温
度変動や電源電圧,経時変化等による影響を相殺する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view showing an embodiment of the present invention. The sapphire substrate 1 has a recess 2 formed by machining and a diaphragm 3 formed on the surface thereof. The diaphragm may be processed by using a CO 2 laser or the like to fuse the membrane (diaphragm thin portion) to the sapphire frame with holes. Reference numerals 4a and 4b are delay linear SAW oscillators, and an AlN (aluminum nitride ... Piezoelectric ceramic) thin film is formed by a method such as CVD or sputtering. The SAW oscillator has a known shape such as a comb shape,
The formation positions of the diaphragm are set at the central part (tensile stress) and the peripheral part (compressive stress) where the bending stress of the diaphragm is remarkable, and the polarity is reversed and the difference in the output of the oscillator is detected to detect external temperature fluctuations and power supply voltage. Offset the effects of changes over time.

【0008】この場合,SAW発振器はサファイアのR
面(0112)上に形成し,励振電極はAlN薄膜の上
に形成してインタデジタルトランス(IDT)とする。
また,電極材料としては耐熱性(800〜900℃)の
あるPtや高融点金属のシリサイド,窒化物等を使用す
る。5aはダイアフラムの周辺部に配置された発振器4
aの出力を接続パッド6aを介して入力し,周波数を検
出する帰還用増幅器,5bはダイアフラムの中央部に配
置された発振器4bの出力を接続パッド6bを介して入
力し,周波数を検出する帰還用増幅器である。7は帰還
用増幅器5a,5bからの周波数出力を入力して圧力信
号として出力する演算装置である。
In this case, the SAW oscillator is a sapphire R
It is formed on the surface (0112), and the excitation electrode is formed on the AlN thin film to form an interdigital transformer (IDT).
As the electrode material, Pt, which has heat resistance (800 to 900 ° C.), a refractory metal silicide, a nitride, or the like is used. Reference numeral 5a denotes an oscillator 4 arranged around the diaphragm.
A feedback amplifier for detecting the frequency by inputting the output of a through the connection pad 6a, and a feedback 5b for inputting the output of the oscillator 4b arranged at the center of the diaphragm through the connection pad 6b. Amplifier. Reference numeral 7 is an arithmetic unit for inputting the frequency output from the feedback amplifiers 5a and 5b and outputting it as a pressure signal.

【0009】9はダイアフラム3が形成された領域外
(フレ―ム部)のサファイア基板1上に形成されたAl
N薄膜からなるSAW発振器であり,このSAW発振器
はダイアフラム上の発振器とは膜厚を異ならせることに
より温度計として機能する。なお,SAW発振器の発振
周波数そのものの温度依存性は例えばAl2 3 の[1
100]面にAlN膜を形成した場合, kH〜3.75 …k;波数, H;AlNの膜厚 ではほとんど温度の依存性がなく,また,膜厚を厚くす
れば温度に関連して周波数が変化することが知られてい
る(1982年 IEEE 発行 340-1982 ULTRASONICS SYMP
OSIOM )。
Reference numeral 9 denotes Al formed on the sapphire substrate 1 outside the region (frame portion) where the diaphragm 3 is formed.
This SAW oscillator consists of N thin films, and this SAW oscillator functions as a thermometer by making the film thickness different from the oscillator on the diaphragm. The temperature dependence of the oscillation frequency itself of the SAW oscillator is, for example, that of Al 2 O 3 [1
When an AlN film is formed on the [100] plane, kH to 3.75 ... k; Wave number, H; AlN film thickness has almost no temperature dependency, and if the film thickness is increased, the frequency is related to temperature. Is known to change (1982 IEEE published 340-1982 ULTRASONICS SYMP
OSIOM).

【0010】10は発振器9からの信号に基づいて温度
信号を周波数で出力する増幅器である。図2は本発明の
圧力センサをケ―ス11に組込んだ状態を示す断面図で
ある。ここではサファイア基板1は貫通孔12を有する
第2のサファイア基板13に固着した後,ケ―ス11に
組込まれる。貫通孔13はダイアフラムのほぼ中央に配
置され圧力導入室14が形成されており,貫通孔13を
介して測定流体が導入される。15,16は支持部材で
あり,これらの支持部材15と16の間に圧力センサが
挟持されてケ―ス11に固定されている。圧力センサか
らの電気信号は例えばAuとシリサイドの合金からなる
超耐熱ケ―ブル17に接続される。18は超耐熱ケ―ブ
ルを外部に導く為の保持部材であり,Au等の材質で形
成されたブッシュ19により支持されている。
Reference numeral 10 is an amplifier which outputs a temperature signal at a frequency based on the signal from the oscillator 9. FIG. 2 is a sectional view showing a state in which the pressure sensor of the present invention is incorporated in the case 11. Here, the sapphire substrate 1 is fixed to a second sapphire substrate 13 having a through hole 12 and then assembled into the case 11. The through-hole 13 is arranged substantially at the center of the diaphragm to form a pressure introducing chamber 14, and the measurement fluid is introduced through the through-hole 13. Reference numerals 15 and 16 denote support members, and a pressure sensor is sandwiched between the support members 15 and 16 and fixed to the case 11. An electric signal from the pressure sensor is connected to a super heat resistant cable 17 made of an alloy of Au and silicide, for example. Reference numeral 18 is a holding member for guiding the super heat resistant cable to the outside, and is supported by a bush 19 made of a material such as Au.

【0011】上記の構成において,はじめに圧力が標準
状態(例えば零の状態)におけるSAW発振器の周波数
を検出しておく。次に,流体が圧力導入室に導かれダイ
アフラムに圧力が印加され,その圧力に関連してダイア
フラムが歪むとSAW発振器の発振周波数が変化するの
で印加圧力を知ることができる。この場合,本発明では
基板として溶融温度の高いサファイアを使用するととも
にSAW発振器として圧電セラミックスを,リ―ド線と
してPtや高融点金属のシリサイドや窒化物を用いてい
るので高温度でも高感度で安定した出力を得ることが可
能である。
In the above structure, first, the frequency of the SAW oscillator in the standard state (for example, zero state) is detected. Next, when the fluid is guided to the pressure introducing chamber and pressure is applied to the diaphragm and the diaphragm is distorted in association with the pressure, the oscillation frequency of the SAW oscillator changes, so the applied pressure can be known. In this case, in the present invention, sapphire having a high melting temperature is used as the substrate, piezoelectric ceramics is used as the SAW oscillator, and Pt or a refractory metal silicide or nitride is used as the lead wire. It is possible to obtain a stable output.

【0012】[0012]

【発明の効果】以上実施例とともに具体的に説明したよ
うに本発明の圧力センサによれば,ダイアフラムが形成
されたサファイア基板と,前記ダイアフラムの表面に形
成されたAlN(圧電セラミック)薄膜からなるSAW
発振手段を形成したので高温度でも高感度で安定した出
力を得ることが可能である。
According to the pressure sensor of the present invention as described in detail with reference to the embodiments, the sapphire substrate on which the diaphragm is formed and the AlN (piezoelectric ceramic) thin film formed on the surface of the diaphragm are formed. SAW
Since the oscillating means is formed, it is possible to obtain a stable output with high sensitivity even at a high temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の圧力センサの一実施例を示す斜視図で
ある。
FIG. 1 is a perspective view showing an embodiment of a pressure sensor of the present invention.

【図2】本発明の圧力センサをケ―スに組込んだ状態を
示す断面図である。
FIG. 2 is a cross-sectional view showing a state in which the pressure sensor of the present invention is incorporated in a case.

【図3】従来例を示す構成斜視図である。FIG. 3 is a configuration perspective view showing a conventional example.

【図4】他の従来例を示す構成斜視図である。FIG. 4 is a configuration perspective view showing another conventional example.

【符号の説明】[Explanation of symbols]

1 サファイア基板 2 凹部 3 ダイアフラム 4 SAW発振器 5 帰還用増幅器 6 接続パッド 7 演算装置 9 耐熱配線(コンタクト部) 10 増幅器 11 ケ―ス 12 第2サファイア基板 13 貫通孔 14 圧力導入室 16 空間 17 超耐熱ケ―ブル 18 ハ―メチックシ―ル部 19 ブッシュ 1 sapphire substrate 2 recess 3 diaphragm 4 SAW oscillator 5 Feedback amplifier 6 connection pad 7 arithmetic unit 9 Heat-resistant wiring (contact part) 10 amplifier 11 cases 12 Second sapphire substrate 13 through holes 14 Pressure introduction chamber 16 spaces 17 Super heat resistant cable 18 Hermetically sealed part 19 bush

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 サファイア基板にダイアフラムが形成さ
れ,前記ダイアフラムの表面にAlN薄膜からなるSA
W発振手段を形成したことを特徴とする圧力センサ。
1. A SA having a diaphragm formed on a sapphire substrate and an AlN thin film formed on the surface of the diaphragm.
A pressure sensor comprising W oscillating means.
【請求項2】 前記ダイアフラムが形成された領域外の
前記サファイア基板上にAlN薄膜からなる温度検出手
段を設けたことを特徴とする請求項1記載の圧力セン
サ。
2. The pressure sensor according to claim 1, further comprising temperature detecting means made of an AlN thin film provided on the sapphire substrate outside the region where the diaphragm is formed.
JP17965091A 1991-07-19 1991-07-19 Pressure sensor Pending JPH0526751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17965091A JPH0526751A (en) 1991-07-19 1991-07-19 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17965091A JPH0526751A (en) 1991-07-19 1991-07-19 Pressure sensor

Publications (1)

Publication Number Publication Date
JPH0526751A true JPH0526751A (en) 1993-02-02

Family

ID=16069485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17965091A Pending JPH0526751A (en) 1991-07-19 1991-07-19 Pressure sensor

Country Status (1)

Country Link
JP (1) JPH0526751A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040003616A (en) * 2002-07-03 2004-01-13 엘지이노텍 주식회사 Press sensing device using surface acoustic wave filter
KR100431767B1 (en) * 2002-06-08 2004-05-17 엘지이노텍 주식회사 Pressure sensor using of saw
JP2005214770A (en) * 2004-01-29 2005-08-11 Kyocera Corp Pressure sensor module
JP2005241461A (en) * 2004-02-26 2005-09-08 Kyocera Corp Pressure sensor module
JP2005267621A (en) * 2004-02-16 2005-09-29 Fuji Xerox Co Ltd Radio response device and radio response communication system
GB2426590A (en) * 2005-05-26 2006-11-29 Transense Technologies Plc SAW pressure sensor having substrate mounted across an aperture
JP2007333500A (en) * 2006-06-14 2007-12-27 Epson Toyocom Corp Pressure sensor and manufacturing method of same
JP2015230244A (en) * 2014-06-05 2015-12-21 株式会社デンソー Surface acoustic wave sensor
CN112945430A (en) * 2021-03-25 2021-06-11 西安交通大学 Surface acoustic wave high-temperature pressure sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431767B1 (en) * 2002-06-08 2004-05-17 엘지이노텍 주식회사 Pressure sensor using of saw
KR20040003616A (en) * 2002-07-03 2004-01-13 엘지이노텍 주식회사 Press sensing device using surface acoustic wave filter
JP4511207B2 (en) * 2004-01-29 2010-07-28 京セラ株式会社 Pressure sensor module
JP2005214770A (en) * 2004-01-29 2005-08-11 Kyocera Corp Pressure sensor module
JP2005267621A (en) * 2004-02-16 2005-09-29 Fuji Xerox Co Ltd Radio response device and radio response communication system
JP2005241461A (en) * 2004-02-26 2005-09-08 Kyocera Corp Pressure sensor module
JP4511216B2 (en) * 2004-02-26 2010-07-28 京セラ株式会社 Pressure sensor module
GB2426590B (en) * 2005-05-26 2009-01-14 Transense Technologies Plc Pressure sensor
GB2426590A (en) * 2005-05-26 2006-11-29 Transense Technologies Plc SAW pressure sensor having substrate mounted across an aperture
US7841241B2 (en) 2005-05-26 2010-11-30 Transense Technologies Plc Surface acoustic wave (SAW) based pressure sensor
JP2007333500A (en) * 2006-06-14 2007-12-27 Epson Toyocom Corp Pressure sensor and manufacturing method of same
JP2015230244A (en) * 2014-06-05 2015-12-21 株式会社デンソー Surface acoustic wave sensor
CN112945430A (en) * 2021-03-25 2021-06-11 西安交通大学 Surface acoustic wave high-temperature pressure sensor

Similar Documents

Publication Publication Date Title
JPH11271207A (en) Sensor, particularly, sensor for measuring viscosity and density of medium
JP4973718B2 (en) Pressure detection unit and pressure sensor
JPH0526751A (en) Pressure sensor
US4472656A (en) Temperature sensor and method using a single rotated quartz crystal
JP2008232886A (en) Pressure sensor
JP2004132913A (en) Pressure-sensitive element, and pressure sensor using the same
Myers et al. Passive substrate temperature compensation of doubly anchored double-ended tuning forks
CN106895803A (en) A kind of device and methods influenceed using two SAW resonator separation temperatures
CN109506808A (en) A kind of SAW temperature sensor and its design method with dullness and linear output character
JP3374775B2 (en) Vibration wave sensor
Risch Precision pressure sensor using quartz SAW resonators
Joshi Surface-acoustic-wave (SAW) flow sensor
JP2019174254A (en) AE sensor element and AE sensor
JPS62190905A (en) Surface acoustic wave device
JP2008076075A (en) Absolute pressure sensor
JPS60186725A (en) Pressure sensor
Dong et al. Self-temperature-testing of the quartz resonant force sensor
JP2008039662A (en) Acceleration sensor
JPH0879002A (en) Surface acoustic wave device
JP4784436B2 (en) Acceleration sensor
SU883681A1 (en) Pressure transducer with frequency output
JPS6282335A (en) Saw force sensor
JPH07198428A (en) Surface acoustic wave sensor
JPH10173477A (en) Tuning fork piezoelectric oscillator
JPH0643928B2 (en) Stress sensor