JPH0878061A - Charge control device for sealed battery - Google Patents

Charge control device for sealed battery

Info

Publication number
JPH0878061A
JPH0878061A JP6208927A JP20892794A JPH0878061A JP H0878061 A JPH0878061 A JP H0878061A JP 6208927 A JP6208927 A JP 6208927A JP 20892794 A JP20892794 A JP 20892794A JP H0878061 A JPH0878061 A JP H0878061A
Authority
JP
Japan
Prior art keywords
battery
current
charging
voltage
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6208927A
Other languages
Japanese (ja)
Other versions
JP3133220B2 (en
Inventor
Muneharu Ino
宗治 井野
Taketoshi Kato
豪俊 加藤
Tetsuya Kobayashi
徹也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP06208927A priority Critical patent/JP3133220B2/en
Publication of JPH0878061A publication Critical patent/JPH0878061A/en
Application granted granted Critical
Publication of JP3133220B2 publication Critical patent/JP3133220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To charge a battery neither too much nor too little whether the battery is new one or not or the like by combining the detection of sealed reaction with switching voltage setting responding to a detection result so as to conduct specified action. CONSTITUTION: Constant current charge by means of a current I1 is executed at first. When a battery voltage reaches a switching voltage V1 , the constant current charge by means of a weaker current I2 is executed. When the battery voltage reaches a switching voltage V2 , the constant current charge by means of a further weaker current I3 is executed. The charge is terminated for instance after the lapse of a predetermined time. When the capacity of the battery is assumed to be C, the current I1 is about 0.2 to 0.3C, the current I2 is about 0.1C, the I3 is about 0.05C, and a constant current charge current by means of the current I3 continues 5 hours for instance. The current I3 is desirable to be set to such a value that an oxygen recycle reaction in the battery with an adequate electrolyte amount is conducted sufficiently so as not to exhaust gas outward.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉛密閉電池等の密閉電
池を多段階定電流充電する充電器、特にその充電制御装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charger for charging a sealed battery such as a lead-sealed battery with multi-stage constant current, and more particularly to a charge control device for the charger.

【0002】[0002]

【従来の技術】鉛電池等の電池は電気自動車の電力源と
して用いられている。電気自動車が走行を継続するため
には所定の頻度で電池を充電しなければならない。電池
の充電方法としてはいくつかの方法が提案されており、
例えば実開平4−93454号公報には多段階定電流充
電の一例が示されている。
2. Description of the Related Art Batteries such as lead batteries are used as a power source for electric vehicles. In order for the electric vehicle to continue running, the battery must be charged at a predetermined frequency. Several methods have been proposed as battery charging methods,
For example, Japanese Utility Model Publication No. 4-93454 discloses an example of multi-stage constant current charging.

【0003】この従来技術においては、まず、比較的大
きな電流値にて定電流充電(第1段)が実行される。充
電の進行に伴い電池の電圧が上昇していき変曲点(所定
の切換電圧)に至ると、より小さな電流値にて定電流充
電(第2段)が実行される。第2段目の定電流充電は、
第1段目の定電流充電の継続時間又は電解液温度に応じ
て決定された時間の経過を以て、終了させる。このよう
な方法を採用することにより、電池におけるガス発生を
抑制することができる。
In this prior art, first, constant current charging (first stage) is executed with a relatively large current value. When the battery voltage rises with the progress of charging and reaches an inflection point (predetermined switching voltage), constant current charging (second stage) is executed with a smaller current value. The second stage constant current charging is
The constant current charging of the first stage is ended after the lapse of time or a time determined according to the electrolyte temperature. By adopting such a method, gas generation in the battery can be suppressed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな充電方法は密閉電池には適していない。例えば鉛密
閉電池においては、充電中に正極にて発生する酸素を負
極の鉛と反応させ最終的に水に戻すこと(酸素リサイク
ル反応)により、ガスを外部に排出しないようにしてい
る。しかし、この酸素リサイクル反応はどのような鉛密
閉電池でも十分に行われるかといえばそうではない。例
えば新品の電池においては電解液量が一般に適正量より
多いため、正極から酸素ガスが、負極から水素ガスが発
生し、外部に排出される。このように電解液量が適正化
されていない鉛密閉電池と、使いこなされた結果適正化
されている鉛密閉電池とでは、充電時の電圧が相違す
る。従って、電池の電圧が所定の切換電圧まで上昇した
ことを以てその段の定電流充電を終了させると、充電に
過不足が生じてしまう。
However, such a charging method is not suitable for a sealed battery. For example, in a lead-acid sealed battery, oxygen generated in the positive electrode during charging is reacted with lead in the negative electrode and finally returned to water (oxygen recycling reaction) so that gas is not discharged to the outside. However, it is not the case that this lead-oxygen recycling reaction is sufficiently performed in any lead-sealed battery. For example, in a new battery, the amount of electrolyte is generally larger than an appropriate amount, so that oxygen gas is generated from the positive electrode and hydrogen gas is generated from the negative electrode and is discharged to the outside. In this way, the lead-sealed battery in which the amount of the electrolyte is not optimized and the lead-sealed battery which is optimized as a result of being used properly have different voltages during charging. Therefore, if the constant current charging of that stage is terminated because the voltage of the battery has risen to a predetermined switching voltage, excess or deficiency will occur in charging.

【0005】本発明は、このような問題点を解決するこ
とを課題としてなされたものであり、鉛密閉電池等の密
閉電池における密閉反応に注目することにより、電池が
新品か否か等にかかわらず過不足のない充電を実現する
ことを目的とする。
The present invention has been made to solve the above problems, and pays attention to the sealed reaction in a sealed battery such as a lead sealed battery to determine whether the battery is new or not. The aim is to realize charging without excess or deficiency.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために、本発明は、密閉電池を定電流充電させ、密閉
電池の電圧が所定の切換電圧に至った時点で、より小さ
な電流値で密閉電池を定電流充電させる充電制御装置に
おいて、密閉電池内における密閉反応を検出する手段
と、密閉反応が生じていないとみなせる場合には高くな
り生じているとみなせる場合には低くなるよう、検出結
果に応じて切換電圧を設定する手段と、を備えることを
特徴とする。
In order to achieve such an object, the present invention is to charge a sealed battery with a constant current, and when the voltage of the sealed battery reaches a predetermined switching voltage, a smaller current value is set. In a charging control device for charging a sealed battery with a constant current, means for detecting a sealed reaction in the sealed battery, and high if it can be considered that the sealed reaction has not occurred, and low if it can be considered that it has occurred. Means for setting the switching voltage according to the detection result.

【0007】本発明は、前回充電の終期における密閉電
池の電圧から、あるいは密閉電池の電解液量又は電解液
比重から、密閉結果を検出することを特徴とする。
The present invention is characterized in that the sealing result is detected from the voltage of the sealed battery at the end of the previous charging, or from the amount of electrolytic solution or the specific gravity of the electrolytic solution of the sealed battery.

【0008】[0008]

【作用】本発明においては、密閉電池の多段階定電流充
電に当たってまず密閉電池内における密閉反応(例えば
酸素リサイクル反応)の有無が検出され、密閉反応が生
じるに至っていない場合には切換電圧が高く、至ってい
る場合には低く、設定される。一般に、密閉反応が生じ
ていない密閉電池では多段階充電終期の電池電圧(飽和
電圧)が高いから、切換電圧が低いと充電不足が生じる
恐れがある。逆に、密閉の反応が生じている密閉電池で
は飽和電圧が低くなるから、切換電圧が高いと過充電が
生じる恐れがある。本発明においては、電池が新品であ
る場合等、密閉反応が生じていない場合に切換電圧が高
く設定され、そうでない場合にはより低く設定される。
従って、本発明においては、電池が新品か否か等にかか
わらず過不足のない充電が実現される。
In the present invention, in multi-stage constant current charging of a sealed battery, the presence or absence of a sealed reaction (for example, oxygen recycling reaction) in the sealed battery is first detected, and if the sealed reaction does not occur, the switching voltage is high. , If it is reached, it will be set low. In general, a sealed battery in which a sealed reaction does not occur has a high battery voltage (saturation voltage) at the end of multi-stage charging, and thus a low switching voltage may cause insufficient charging. On the other hand, since the saturation voltage of the sealed battery in which the sealing reaction occurs is low, overcharge may occur if the switching voltage is high. In the present invention, the switching voltage is set high when the sealing reaction does not occur, such as when the battery is new, and is set lower when it is not.
Therefore, in the present invention, sufficient charging is realized regardless of whether the battery is new or not.

【0009】本発明においては、密閉反応の有無が例え
ば前回充電の終期における密閉電池の電圧、すなわち飽
和電圧から検出される。これにより、新たにセンサを付
加することなく、すなわち従来から設けられていた電池
電圧センサのみで、本発明を実現できる。無論、密閉反
応の有無は、電解液量又は電解液比重の直接検出によっ
て検出してもよく、この場合より正確な切換電圧設定が
可能になると共に、前回充電の終期における飽和電圧を
記憶する必要がなくなる。
In the present invention, the presence or absence of the sealed reaction is detected, for example, from the voltage of the sealed battery at the end of the previous charging, that is, the saturation voltage. As a result, the present invention can be realized without adding a new sensor, that is, only with the battery voltage sensor provided conventionally. Of course, the presence or absence of the closed reaction may be detected by directly detecting the amount of electrolyte or the specific gravity of the electrolyte. In this case, the switching voltage can be set more accurately, and the saturation voltage at the end of the previous charge must be stored. Disappears.

【0010】[0010]

【実施例】以下、本発明の好適な実施例について図面に
基づき説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings.

【0011】図1には、本発明の各実施例を実施するの
に適する装置の構成が示されている。この図に示される
電池1は鉛密閉電池であり、また電気自動車の駆動電力
源である。電池1の放電出力はインバータ2によって交
流に変換され車両の駆動源である交流モータ3に供給さ
れる。充電器4は指令等に応じ電池1を充電する充電器
である。充電制御回路5は、所定の多段階定電流充電方
式に則り充電器4の出力電流、すなわち電池1の充電電
流を制御する。電流センサ6は電池1の電流を検出し、
検出値は定電流充電を行うため充電制御回路5に供給さ
れる。さらに、比重センサ7は電池1の電解液比重を検
出し検出値を充電制御回路5に供給する。第1実施例を
実行する際には比重センサ7は必要でない。
FIG. 1 shows the construction of an apparatus suitable for carrying out each embodiment of the present invention. The battery 1 shown in this figure is a lead-sealed battery and is also a drive power source for an electric vehicle. The discharge output of the battery 1 is converted into an alternating current by the inverter 2 and supplied to the alternating current motor 3 which is the drive source of the vehicle. The charger 4 is a charger that charges the battery 1 according to a command or the like. The charging control circuit 5 controls the output current of the charger 4, that is, the charging current of the battery 1 according to a predetermined multi-step constant current charging method. The current sensor 6 detects the current of the battery 1,
The detected value is supplied to the charge control circuit 5 for performing constant current charging. Further, the specific gravity sensor 7 detects the electrolytic solution specific gravity of the battery 1 and supplies the detected value to the charge control circuit 5. The specific gravity sensor 7 is not necessary when carrying out the first embodiment.

【0012】図2には、本発明における充電制御の原理
が示されている。この図に示される手順は3段階定電流
充電の例である。すなわち、この図では、まず電流I
による定電流充電が実行され、電池1の電圧が切換電圧
に至るとより小さな電流Iによる定電流充電が実
行され、電池1の電圧が切換電圧Vに至るとより小さ
な電流Iによる定電流充電が実行され、例えば所定時
間の経過にて充電が終了される。電池1の容量をCとす
ると電流Iは例えば0.2〜0.3C程度、電流I
は0.1C程度、電流Iは0.05C程度であり、電
流Iによる定電流充電は例えば5時間継続される。電
流Iは、電解液量が適正な電池で酸素リサイクル反応
が十分に実施され外部へのガス排出が行われないような
値に設定するのが好ましい。
FIG. 2 shows the principle of charge control in the present invention. The procedure shown in this figure is an example of three-stage constant current charging. That is, in this figure, first, the current I 1
Constant current charging is performed, and when the voltage of the battery 1 reaches the switching voltage V 1 , constant current charging is performed by the smaller current I 2, and when the voltage of the battery 1 reaches the switching voltage V 2 , a smaller current I 3 is performed. The constant current charging is performed, and the charging is finished when a predetermined time elapses. If the capacity of the battery 1 is C, the current I 1 is, for example, about 0.2 to 0.3 C, and the current I 2 is
Is about 0.1 C and the current I 3 is about 0.05 C, and constant current charging with the current I 3 is continued for 5 hours, for example. The current I 3 is preferably set to a value such that the oxygen recycling reaction is sufficiently carried out in a battery having an appropriate amount of electrolyte and gas is not discharged to the outside.

【0013】本発明では、電池1の電解液量に応じて切
換電圧Vを変更している。すなわち、新品である等電
解液量が多い場合には切換電圧Vを高めの値、例えば
に設定し、電解液量が少ない場合には切換電圧V
を低めの値、例えばV2bに設定している。このよう
に、電解液量に応じて切換電圧Vを設定することによ
り、電池1の充電過不足を防止できる。具体的には、電
解液量が多く従って第3段定電流充電終了時の電圧(飽
和電圧)が例えばVと高い場合(B)には、切換電圧
をV2aに設定して充電不足を防ぎ、電解液量が少
なく従って飽和電圧が例えばVと低い場合(A)に
は、切換電圧VをV2bに設定して過充電を防いでい
る。
In the present invention, the switching voltage V 2 is changed according to the amount of the electrolytic solution of the battery 1. That is, the value of increasing the switching voltage V 2 when an equal amount of the electrolytic solution is new is high, for example, set to V 2 a, if the electrolyte amount is small switching voltage V
2 is set to a lower value, for example, V 2b . As described above, by setting the switching voltage V 2 according to the amount of the electrolytic solution, it is possible to prevent the battery 1 from being overcharged or deficient. Specifically, when the amount of electrolyte is large and therefore the voltage (saturation voltage) at the end of the third-stage constant current charging is as high as V b (B), the switching voltage V 2 is set to V 2a and charging is performed. prevent deficiency, if the saturation voltage electrolyte volume is small therefore, for example, V a and lower (a), is prevented overcharge by setting the switching voltage V 2 to V 2b.

【0014】図3には、本発明の第1実施例における充
電制御回路5の動作の流れが示されている。この実施例
では、記憶している切換電圧V及びVを読み出した
上で(100)、電流Iによる定電流充電が実行され
る(102)。電池1の電圧が切換電圧Vに至ると
(104,106)、より小さな電流Iによる定電流
充電が実行される(108)。電池1の電圧が切換電圧
に至ると(110,112)、より小さな電流I
による定電流充電が実行され、同時に内蔵する充電終了
タイマが5時間にセットされる(114)。タイマがカ
ウントアップすると(116,118)、充電制御回路
5は充電を終了させる(120)。その際、充電終了時
の電池1の電圧Vが充電制御回路5により検出され、
次回充電時に使用すべき切換電圧Vの値が次の式によ
り計算される(122)。計算の結果は充電制御回路5
内部に記憶される(124)。
FIG. 3 shows a flow of operations of the charge control circuit 5 in the first embodiment of the present invention. In this embodiment, the stored switching voltages V 1 and V 2 are read (100), and then constant current charging with the current I 1 is executed (102). When the voltage of the battery 1 reaches the switching voltage V 1 (104, 106), constant current charging with a smaller current I 2 is executed (108). When the voltage of the battery 1 reaches the switching voltage V 2 (110, 112), a smaller current I 3
The constant current charging by is executed, and at the same time, the built-in charging end timer is set to 5 hours (114). When the timer counts up (116, 118), the charging control circuit 5 ends charging (120). At that time, the voltage V B of the battery 1 at the end of charging is detected by the charging control circuit 5,
The value of the switching voltage V 2 to be used at the next charging is calculated by the following formula (122). The calculation result is the charge control circuit 5
It is stored internally (124).

【0015】[0015]

【数1】V=K・(V−V)+K 但しK、K、V:定数 このような動作により、比重センサ7等を付加すること
なく、切換電圧Vを適切な値に設定し充電の過不足を
防止できる。すなわち、図2に示されるように、電解液
量の多寡は飽和電圧の高低として現れるため、上述の式
にて、すなわち飽和電圧と定数Vの差に応じて切換電
圧Vを設定することにより、充電過不足が生じないよ
う電解液量に応じて充電切換を実行できる。無論、切換
電圧Vのみならず切換電圧Vも変更するようにして
もよく、切換電圧Vのみを変更するようにしてもよ
い。3段階定電流充電に限定されない。
## EQU1 ## V 2 = K 1 · (V B −V 0 ) + K 2 where K 1 , K 2 , V 0 : constant By such an operation, the switching voltage V 2 is added without adding the specific gravity sensor 7 or the like. Can be set to an appropriate value to prevent excess or deficiency of charging. That is, as shown in FIG. 2, since the amount of the electrolytic solution appears as the level of the saturation voltage, the switching voltage V 2 should be set by the above equation, that is, according to the difference between the saturation voltage and the constant V 0. As a result, charge switching can be executed in accordance with the amount of electrolytic solution so that neither overcharge nor undercharge occurs. Of course, not only the switching voltage V 2 but also the switching voltage V 1 may be changed, or only the switching voltage V 1 may be changed. It is not limited to three-step constant current charging.

【0016】図4には、本発明の第2実施例における充
電制御回路5の動作の流れが示されている。この実施例
では、まず比重センサ7により電解液比重が検出され
(126)、これに基づき切換電圧V及びVが決定
される(126)。切換電圧V及びVの演算式は、
上式の括弧内を電解液比重の検出値と適正量の差に置き
換えた式でよい。その後、ステップ102〜118が実
行され、充電が終了する(120)。
FIG. 4 shows an operation flow of the charge control circuit 5 in the second embodiment of the present invention. In this embodiment, first, the specific gravity sensor 7 detects the specific gravity of the electrolytic solution (126), and based on this, the switching voltages V 1 and V 2 are determined (126). The arithmetic expressions of the switching voltages V 1 and V 2 are
The expression in parentheses in the above expression may be replaced with the difference between the detected value of the electrolyte specific gravity and the appropriate amount. Then, steps 102 to 118 are executed, and the charging ends (120).

【0017】このような動作により、切換電圧V及び
を記憶することなく、切換電圧V及びVを適切
な値に設定し充電の過不足を防止できる。その際、電解
液比重を直接検出しているため第1実施例に比べ誤差要
因が少なくなり、正確な設定が可能になる。なお、切換
電圧Vのみ又は切換電圧Vのみを変更するようにし
てもよく、3段階定電流充電にも限定されない。
[0017] By this operation, without storing the switching voltage V 1 and V 2, the excess and deficiency of setting the switching voltage V 1 and V 2 to an appropriate value charging can be prevented. At that time, since the specific gravity of the electrolytic solution is directly detected, there are fewer error factors than in the first embodiment, and accurate setting is possible. Note that only the switching voltage V 1 or only the switching voltage V 2 may be changed, and the invention is not limited to the three-stage constant current charging.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
密閉電池の多段階定電流充電に当たってまず密閉電池内
の密閉反応を検出し、密閉反応が生じていないとみなせ
ない場合には切換電圧を高く、みなせる場合には低く設
定するようにしたため、電池が新品か否か等にかかわら
ず過不足のない充電を実現できる。
As described above, according to the present invention,
In multi-stage constant current charging of a sealed battery, the sealed reaction in the sealed battery is first detected, and the switching voltage is set high if it cannot be considered that the sealed reaction has not occurred, and set low if it can be considered. It is possible to realize proper charging regardless of whether the product is new or not.

【0019】また、本発明によれば、密閉反応の有無を
前回充電の終期における飽和電圧から検出するようにし
たため、新たにセンサを付加することなく上述の効果を
得ることができる。また、本発明によれば、密閉反応の
有無を電解液量又は電解液比重の直接検出によって検出
するようにしたため、より正確な切換電圧設定が可能に
なりかつ前回充電の終期における飽和電圧を記憶する必
要をなくして処理を簡易化することができる。
Further, according to the present invention, the presence or absence of the closed reaction is detected from the saturation voltage at the end of the previous charging, so that the above effect can be obtained without adding a new sensor. Further, according to the present invention, since the presence or absence of the closed reaction is detected by the direct detection of the amount of electrolyte or the specific gravity of the electrolyte, more accurate switching voltage setting becomes possible and the saturation voltage at the end of the previous charge is stored. The processing can be simplified by eliminating the need for

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る装置の構成を示すブロ
ック図である。
FIG. 1 is a block diagram showing a configuration of an apparatus according to an embodiment of the present invention.

【図2】本発明における充電制御の原理を示すタイミン
グチャートである。
FIG. 2 is a timing chart showing the principle of charge control in the present invention.

【図3】本発明の第1実施例における充電制御回路の動
作を示すフローチャートである。
FIG. 3 is a flowchart showing the operation of the charge control circuit in the first embodiment of the present invention.

【図4】本発明の第2実施例における充電制御回路の動
作を示すフローチャートである。
FIG. 4 is a flowchart showing an operation of a charge control circuit according to the second embodiment of the present invention.

【符号の説明】 1 電池 2 インバータ 3 モータ 4 充電器 5 充電制御回路 6 電流センサ 7 比重センサ[Explanation of symbols] 1 battery 2 inverter 3 motor 4 charger 5 charging control circuit 6 current sensor 7 specific gravity sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 徹也 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuya Kobayashi 1-1-1, Showa-cho, Kariya city, Aichi prefecture Nihon Denso Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 密閉電池を定電流充電させ、密閉電池の
電圧が所定の切換電圧に至った時点で、より小さな電流
値で密閉電池を定電流充電させる充電制御装置におい
て、 密閉電池内における密閉反応を検出する手段と、 密閉反応が生じていないとみなせる場合には高くなり生
じているとみなせる場合には低くなるよう、検出結果に
応じて切換電圧を設定する手段と、 を備えることを特徴とする充電制御装置。
1. A charging control device for charging a sealed battery with a constant current and, when the voltage of the sealed battery reaches a predetermined switching voltage, charging the sealed battery with a constant current at a smaller current value. A means for detecting the reaction, and a means for setting the switching voltage according to the detection result so that it is high if it can be considered that the closed reaction has not occurred and low if it can be considered that the closed reaction has not occurred. Charge control device.
【請求項2】 請求項1記載の充電制御装置において、
前回充電の終期における密閉電池の電圧から、密閉反応
を検出することを特徴とする充電制御装置。
2. The charging control device according to claim 1, wherein
A charging control device characterized by detecting a sealed reaction from the voltage of a sealed battery at the end of the previous charging.
【請求項3】 請求項1記載の充電制御装置において、
密閉電池の電解液量又は電解液比重から、密閉反応を検
出することを特徴とする充電制御装置。
3. The charging control device according to claim 1, wherein
A charging control device, which detects a sealed reaction from the amount of electrolytic solution or the specific gravity of electrolytic solution of a sealed battery.
JP06208927A 1994-09-01 1994-09-01 Charge control device for sealed battery Expired - Fee Related JP3133220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06208927A JP3133220B2 (en) 1994-09-01 1994-09-01 Charge control device for sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06208927A JP3133220B2 (en) 1994-09-01 1994-09-01 Charge control device for sealed battery

Publications (2)

Publication Number Publication Date
JPH0878061A true JPH0878061A (en) 1996-03-22
JP3133220B2 JP3133220B2 (en) 2001-02-05

Family

ID=16564436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06208927A Expired - Fee Related JP3133220B2 (en) 1994-09-01 1994-09-01 Charge control device for sealed battery

Country Status (1)

Country Link
JP (1) JP3133220B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065757A (en) * 2007-09-05 2009-03-26 Japan Aerospace Exploration Agency Power supply controller having charging function
JP2016226068A (en) * 2015-05-26 2016-12-28 トヨタ自動車株式会社 Charge control device
WO2023037599A1 (en) * 2021-09-09 2023-03-16 ウシオ電機株式会社 Power storage system and method for controlling charging thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065757A (en) * 2007-09-05 2009-03-26 Japan Aerospace Exploration Agency Power supply controller having charging function
JP2016226068A (en) * 2015-05-26 2016-12-28 トヨタ自動車株式会社 Charge control device
WO2023037599A1 (en) * 2021-09-09 2023-03-16 ウシオ電機株式会社 Power storage system and method for controlling charging thereof

Also Published As

Publication number Publication date
JP3133220B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
JP4523738B2 (en) Secondary battery remaining capacity control method and apparatus
JPH1080071A (en) Charging controller for electric automobile
JP6982787B2 (en) Fuel cell control device and its control method, fuel cell vehicle
JP3823503B2 (en) Secondary battery charging control method and charging device therefor
JP2001021625A (en) Capacity measuring device for battery using gassing voltage considering temperature
JP3849541B2 (en) Charge / discharge control method for battery pack
JPH10248175A (en) Method and apparatus for charging secondary battery
JP2007333474A (en) Open voltage detection device, and open voltage detection method
JP3133220B2 (en) Charge control device for sealed battery
JP6699533B2 (en) Battery system
JP6624035B2 (en) Battery system
JP3742137B2 (en) How to charge the battery
JP2003189498A (en) Charging method and charger of secondary battery
JP3730784B2 (en) Electronic equipment
JPH06189466A (en) Secondary battery system and its charging method
JP2010035285A (en) Imbalance reduction circuit, power supply unit and imbalance reduction method
JP2020171142A (en) Control device
JPH1198697A (en) Method and device for charge control for secondary battery of electric vehicle
JP2002048848A (en) Remaining capacity detector for accumulator
JPH08182215A (en) Charging method and charging apparatus for secondary battery
JP2000209789A (en) Charge/discharge control device for secondary battery
JPH1174001A (en) Charging method for lead-acid battery
JP4007945B2 (en) Charging method and program thereof
JP4120084B2 (en) Lead-acid battery charging method
JPH11355968A (en) Charging for storage battery and charger therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees