JPH06189466A - Secondary battery system and its charging method - Google Patents

Secondary battery system and its charging method

Info

Publication number
JPH06189466A
JPH06189466A JP4338356A JP33835692A JPH06189466A JP H06189466 A JPH06189466 A JP H06189466A JP 4338356 A JP4338356 A JP 4338356A JP 33835692 A JP33835692 A JP 33835692A JP H06189466 A JPH06189466 A JP H06189466A
Authority
JP
Japan
Prior art keywords
charging
value
differential value
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4338356A
Other languages
Japanese (ja)
Inventor
Mamoru Mizumoto
守 水本
Katsunori Nishimura
勝憲 西村
Hidetoshi Honbou
英利 本棒
Akihiro Goto
明弘 後藤
Tatsuo Horiba
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4338356A priority Critical patent/JPH06189466A/en
Publication of JPH06189466A publication Critical patent/JPH06189466A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To avoid overcharge and prolong a charging/discharging cycle life by a method wherein a time differential value calculated from the charging current value of a charging circuit is compared with a predetermined comparing value and a charging operation is discontinued in accordance with the comparing and judging result. CONSTITUTION:A power is supplied to a battery 15 composed of lithium cells in which organic electrolyte is employed to charge the battery from an AC power supply 11 through a rectifier 12 and by a charging circuit 21. At that time, a charging current is measured periodically at certain time intervals by a current measuring circuit 22 and a clock circuit 24. The differential value of the charging current is calculated by a processing part 25 from the difference between two successive measured values or from the difference between two predetermined measured values. The calculated differential values of the charging current are successively compared with a predetermined comparing value by a comparing/judging circuit 26 and, when the differential value of the charging current exceeds the comparing value, a charging operation is discontinued by a switch 16. With this constitution, a full-charge state can be accurately detected and overcharge can be avoided, so that the decomposition of the organic electrolyte can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二次電池システム及び充
電方法に係り、特に複数個の電池を接続し、充電回路を
備えた二次電池システム及び充電方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery system and a charging method, and more particularly to a secondary battery system and a charging method having a charging circuit connected to a plurality of batteries.

【0002】[0002]

【従来の技術】大型の二次電池の用途としては、電気自
動車等の運輸関連の電源,無停電電源(略称UPS)等
の非常用電源、及び電力負荷平準化のため電力貯蔵用電
池がある。このうち電力貯蔵用電池は、深夜の余剰電力
を二次電池に蓄え(充電)、昼間の電力需要のピーク時
にこれを放出(放電)する。また、電気自動車において
も同様に深夜の電力を利用して電池に充電する。
2. Description of the Related Art Applications of large secondary batteries include transportation-related power sources such as electric vehicles, emergency power sources such as uninterruptible power sources (abbreviated UPS), and power storage batteries for leveling power loads. . Of these, the power storage battery stores (charges) surplus power at midnight in the secondary battery and discharges (discharges) it at the peak of daytime power demand. Similarly, in an electric vehicle, the battery is charged by using the electric power at midnight.

【0003】これらの電池の運転においては、例えば特
開平3−226233 号公報に記載されている分散型電力平準
化システムにおいて例示されているように、昼間の電力
需要に対してピークカットするモードで運転する。
In the operation of these batteries, for example, as illustrated in the distributed power leveling system described in Japanese Patent Application Laid-Open No. 3-226233, a peak cut mode is set for daytime power demand. drive.

【0004】[0004]

【発明が解決しようとする課題】ピークカットするモー
ドで運転する場合には、もし昼間の電力消費量が少ない
と、放電深度が100%でなく、ある程度の電池容量を
残したまま夜間の充電に移行する場合がある。このよう
な場合、従来の鉛あるいはニッケル−カドミウム電池等
の水溶液系電解液を用いた二次電池においては、過充電
状態において発生するガスを吸収,再結合するメカニズ
ムが作用する。従って、満充電状態で充電電流を流しつ
づけても電池に与える悪影響は小さい。浅い放電深度の
電池(残存する電池容量が比較的多い状態)と深い放電
深度(残存する電池容量が比較的少ない、電池容量をほ
ぼ使いきった状態、)の電池とを同じ充電条件で充電し
ても何ら不都合は生じない。
When operating in the peak cut mode, if the power consumption in the daytime is small, the depth of discharge is not 100%, and the battery is charged at night with some battery capacity left. Migrate in some cases. In such a case, in a conventional secondary battery using an aqueous electrolyte such as a lead or nickel-cadmium battery, a mechanism for absorbing and recombining gas generated in an overcharged state works. Therefore, even if the charging current is continuously supplied in the fully charged state, the adverse effect on the battery is small. Charge a shallow discharge depth battery (when the remaining battery capacity is relatively large) and a deep discharge depth battery (where the remaining battery capacity is relatively small, the battery capacity is almost exhausted) under the same charging conditions. However, no inconvenience occurs.

【0005】これに対して、有機電解液系リチウム二次
電池をこれらのシステムの駆動電源として使用すると、
エネルギー密度が高いために電池重量及び容積を小さく
できる利点がある。しかし、有機化合物を溶媒とする電
解液においては、過充電状態での充電を長時間継続する
と、溶媒である有機化合物の分解が起こり、該有機化合
物分子のフラグメンテーション(開裂反応)により各種
の炭化水素,一酸化炭素,二酸化炭素及び水素等が生成
するが、水溶液系電解液の場合と異なり、これらのガス
をもとの有機化合物に再結合することは困難である。有
機電解液はその組成に応じてそれぞれに固有の安定電位
幅、すなわち電解液が安定に存在しうる電位の範囲が存
在する。有機電解液系リチウム二次電池を構成する場合
には正極,負極それぞれの作動電位がこの安定電位幅内
に含まれていることが望ましい。充電においては正極の
電位が充電の進行と共に上昇するため、安定電位幅の上
限を充電電圧が越えないようにする。
On the other hand, when an organic electrolyte type lithium secondary battery is used as a driving power source for these systems,
Since the energy density is high, there is an advantage that the battery weight and volume can be reduced. However, in an electrolytic solution using an organic compound as a solvent, if charging in an overcharged state is continued for a long time, decomposition of the organic compound as a solvent occurs, and various hydrocarbons are generated by fragmentation (cleavage reaction) of the molecule of the organic compound. , Carbon monoxide, carbon dioxide, hydrogen, etc. are generated, but unlike the case of the aqueous electrolyte solution, it is difficult to recombine these gases with the original organic compound. The organic electrolytic solution has a unique stable potential width depending on its composition, that is, a potential range in which the electrolytic solution can exist stably. When constructing an organic electrolyte type lithium secondary battery, it is desirable that the operating potentials of the positive electrode and the negative electrode are included within this stable potential width. During charging, the potential of the positive electrode rises with the progress of charging, so the charging voltage should not exceed the upper limit of the stable potential width.

【0006】このため、有機電解液系リチウム二次電池
を充電する方法としては、定電流定電圧充電法(充電の
初期においては定電流充電を行い、充電電圧が設定値に
達した後は定電圧充電に移り、充電の進行と共に充電電
流の値は減少する。)が適している。これは有機電解液
の分解を抑制するために充電電圧の上限を、使用する有
機電解液の安定電位幅の上限以下に抑える充電方法であ
る。
Therefore, as a method of charging an organic electrolyte type lithium secondary battery, a constant current constant voltage charging method (constant current charging is performed at the initial stage of charging and constant charging is performed after the charging voltage reaches a set value). The value of the charging current decreases as the charging progresses and the charging progresses.) Is suitable. This is a charging method in which the upper limit of the charging voltage is suppressed below the upper limit of the stable potential range of the organic electrolyte to be used in order to suppress the decomposition of the organic electrolyte.

【0007】従来は、充電開始からの充電時間を設定し
て、定電流及び定電圧充電を行い、その合計時間が設定
値になったら充電を終了する方法が主に用いられてい
た。この方法では充電時間を基に、間接的に満充電状態
を把握していた。このため、充電に移行する前の電池の
放電深度の大きさに関わらず同じ条件で充電すると、放
電深度が浅い場合には過充電状態に至り、電解液の分解
反応が進行する。そのため、電解液量が減少して液涸れ
を起こし、電池の内部抵抗を増大させて電池容量を低下
させ、電池寿命を短縮することになる。
Conventionally, a method has been mainly used in which a charging time from the start of charging is set, constant current and constant voltage charging is performed, and the charging is terminated when the total time reaches a set value. In this method, the fully charged state is indirectly known based on the charging time. Therefore, when charging is performed under the same conditions regardless of the depth of discharge of the battery before shifting to charging, an overcharged state is reached when the depth of discharge is shallow, and the decomposition reaction of the electrolytic solution proceeds. Therefore, the amount of the electrolytic solution is reduced to cause liquid dripping, the internal resistance of the battery is increased, the battery capacity is reduced, and the battery life is shortened.

【0008】直前の放電における放電深度が浅い場合と
深い場合とで、次の充電における充電電流の変化の様子
を図4に示す。従来のように、一定の充電時間を設定し
て充電した場合は、放電深度が深い状態で定電流定電圧
充電を行った場合、定電流充電に要する時間が長くな
り、定電圧充電の期間は短くなる。しかし、放電深度が
浅い状態で定電流定電圧充電を行った場合、充電開始後
早い時間で定電圧充電に移行し、定電圧充電の期間が長
くなり、後に、一定の電流が流れ続けるフロート充電状
態が出現する。フロート状態が続く場合には、長時間に
わたり充電電流が流れるため、電解液の分解が顕著にな
り電池性能が低下する恐れがある。
FIG. 4 shows how the charging current changes in the next charging depending on whether the discharging depth in the immediately preceding discharging is shallow or deep. As in the conventional case, when charging is performed by setting a constant charging time, when constant current constant voltage charging is performed in a state where the depth of discharge is deep, the time required for constant current charging becomes long, and the constant voltage charging period is It gets shorter. However, when constant-current constant-voltage charging is performed in a state where the depth of discharge is shallow, the constant-voltage charging starts in a short time after the start of charging, the constant-voltage charging period becomes longer, and a constant current continues to flow afterwards. The state appears. When the floating state continues, the charging current flows for a long time, so that the decomposition of the electrolytic solution becomes remarkable and the battery performance may deteriorate.

【0009】本発明の目的は、複数個の電池を接続し、
充電回路を備えた二次電池システム及び充電方法におい
て、満充電を正確に検知し過充電を防いで、充放電サイ
クル寿命を長くした二次電池システム及び充電方法を提
供することにある。
An object of the present invention is to connect a plurality of batteries,
In a secondary battery system and a charging method provided with a charging circuit, a secondary battery system and a charging method are provided in which a full charge is accurately detected to prevent overcharging and the charge / discharge cycle life is extended.

【0010】[0010]

【課題を解決するための手段】本発明は、充電回路の充
電電流値から算出する時間微分値とあらかじめ設定され
た値とを比較判定し、判定結果により充電を停止する手
段を備えたことを特徴とする。また、所定の電圧で充電
しつつ、該充電回路に流れる充電電流を計測して時間微
分値を算出し、該時間微分値とあらかじめ設定された値
(0より小さい値とすることが望ましい。)とを比較し
て、該時間微分値が設定された値を越えた場合には満充
電であることを検知し、或いは充電を終了させることを
特徴とする。
The present invention comprises means for comparing and determining a time differential value calculated from a charging current value of a charging circuit and a preset value, and stopping charging according to the determination result. Characterize. Further, while charging with a predetermined voltage, the charging current flowing in the charging circuit is measured to calculate a time differential value, and the time differential value and a preset value (preferably a value smaller than 0). And when the time differential value exceeds the set value, it is detected that the battery is fully charged, or the charging is terminated.

【0011】充電電流の上限値は、例えば分散型電力平
準化システムにおける電池の場合には8時間の定電流充
電に相当する電流(0.125C )程度とすることが望
ましい。これは充電期間中の電流をほぼ平坦にすること
により、深夜の余剰電力の利用を効果的に進めるために
有効である。より短時間での充電が必要な用途において
は電流の設定を変更する必要がある。充電電圧の上限値
は使用する有機電解液の安定電位幅の上限を下回る値に
設定することが望ましい。
For example, in the case of a battery in a distributed power leveling system, the upper limit of the charging current is preferably about the current (0.125 C) equivalent to 8 hours of constant current charging. This is effective in effectively utilizing the surplus power at midnight by making the current almost flat during the charging period. In applications that require charging in a shorter time, it is necessary to change the current setting. It is desirable to set the upper limit of the charging voltage to a value lower than the upper limit of the stable potential width of the organic electrolyte used.

【0012】[0012]

【作用】図3に充電電圧と充電電流の変化の様子を示
す。定電流充電から定電圧充電に移行後は充電の進行と
共に充電電流は減少を続け、フロート状態(ほぼ満充電
状態となりほぼ一定の充電電流が流れる状態)になる。
[Operation] FIG. 3 shows how the charging voltage and the charging current change. After the transition from constant-current charging to constant-voltage charging, the charging current continues to decrease as the charging progresses, and becomes a float state (a state in which a substantially constant charging current flows and a substantially constant charging current flows).

【0013】この充電電流の時間微分値を演算手段によ
り算出すると図2のようになる。定電圧充電状態に移行
した時点で前記微分値は負の値となり、その後上昇を続
けてフロート状態では0付近となる。比較判定手段によ
り前記微分値と設定された比較値とを比較して該微分値
が設定値を越えた場合には、満充電であることが容易に
検知でき、充電を終了させることができる。前記比較値
は、満充電を越えて過充電状態に移行し電池性能が劣化
することを防ぐことを考慮して設定するのが望ましい。
例えば、0より小さく、微分値の経時変化からフロ−ト
状態になったと考えられる程度の値より、少し小さい値
にすることが考えられる。本発明では充電終了と判断さ
れた時点では、充電電流が充分小さくなっており、充電
電圧と開回路電圧の差がほとんど無視できるので、正確
に電池の満充電状態と判断することができ、満充電を越
えて過充電状態に移行することを防止できる。
When the time differential value of this charging current is calculated by the calculating means, it becomes as shown in FIG. The differential value becomes a negative value at the time of shifting to the constant voltage charging state, and then continues to rise and becomes close to 0 in the float state. When the differential value exceeds the set value by comparing the differential value with the set comparative value by the comparison / determination means, it can be easily detected that the battery is fully charged, and the charging can be terminated. It is desirable to set the comparison value in consideration of preventing the battery performance from deteriorating due to the overcharged state after the full charge.
For example, it may be set to a value smaller than 0 and a little smaller than the value at which it is considered that the floating state is caused by the change with time of the differential value. In the present invention, when it is determined that charging is completed, the charging current has become sufficiently small and the difference between the charging voltage and the open circuit voltage can be almost ignored, so it can be accurately determined that the battery is fully charged, and It is possible to prevent overcharging and shifting to an overcharged state.

【0014】[0014]

【実施例】本発明を実施例により更に具体的に説明す
る。本発明になる充電回路の例を図1に示す。交流電源
11から整流回路12を経て充電回路21により、有機
電解液を使用するリチウム電池によって構成される電池
群15に電力を供給して充電する。この時電流計測回路
22により充電電流を計測する。充電電流計測のタイミ
ングはクロック24により設定され、一定時間間隔で充
電電流を計測し、連続する2つの測定値の差、或いは所
定の測定値の差から演算部25により充電電流の微分値
を算出する。別にタイマ27により充電時間を制御す
る。演算部25により算出された充電電流の微分値の経
時変化の例を図2に示す。定電流充電中は微分値は0で
あり、この期間中充電電圧は上昇し、あらかじめ設定さ
れた充電上限電圧に到達すると定電圧充電状態に移行す
る。この時点で充電電流の微分値は有限な負の値とな
る。この時点で充電の制御を充電電流の微分値による制
御に移行する。時間の経過と共に微分値は増大し始め、
最終的にフロート充電状態ではほぼ0となる。算出され
た充電電流の微分値を順次比較判定回路26によりあら
かじめ定められた設定値と比較判定し、充電電流の微分
値が設定値を上まわった時点で、スイッチ16により充
電を停止する。もし充電期間中充電電流の微分値に変化
が検出されなければ、そのまま時間による制御を継続
し、所定の時間充電を継続して充電を終了する。
EXAMPLES The present invention will be described more specifically by way of examples. An example of the charging circuit according to the present invention is shown in FIG. By the charging circuit 21 from the AC power source 11 through the rectifier circuit 12, the battery group 15 composed of a lithium battery using an organic electrolytic solution is supplied with electric power to be charged. At this time, the charging current is measured by the current measuring circuit 22. The timing of charging current measurement is set by the clock 24, the charging current is measured at constant time intervals, and the differential value of the charging current is calculated by the calculation unit 25 from the difference between two consecutive measurement values or the difference between predetermined measurement values. To do. Separately, the timer 27 controls the charging time. FIG. 2 shows an example of changes with time of the differential value of the charging current calculated by the calculation unit 25. The differential value is 0 during constant current charging, and the charging voltage rises during this period, and when the preset charging upper limit voltage is reached, it shifts to the constant voltage charging state. At this time, the differential value of the charging current becomes a finite negative value. At this point, the charging control is shifted to the control based on the differential value of the charging current. The derivative value begins to increase with the passage of time,
Finally, it becomes almost 0 in the float charge state. The differential value of the calculated charging current is sequentially compared and judged by the comparison / determination circuit 26 with a preset value, and when the differential value of the charging current exceeds the set value, charging is stopped by the switch 16. If no change is detected in the differential value of the charging current during the charging period, the control by the time is continued as it is, the charging is continued for a predetermined time, and the charging is finished.

【0015】この方法によれば、充電電流の微分値の変
化により、電池の容量を推定して充電を行うことがで
き、満充電の検知が可能となる。従って、充電に入る前
の電池の残存容量の大小に関わらず、公称容量として規
定された所定の電気量まで正確に充電することができ
る。
According to this method, it is possible to estimate the capacity of the battery and perform charging by the change in the differential value of the charging current, and it is possible to detect full charge. Therefore, regardless of the size of the remaining capacity of the battery before charging, it is possible to accurately charge the battery to the predetermined amount of electricity defined as the nominal capacity.

【0016】[0016]

【発明の効果】本発明によれば、満充電を正確に検知で
き、満充電を越えて過充電状態を発生することなく電池
を充電することができるため、有機電解液の分解が抑制
され、電池の充放電サイクル寿命を伸ばすことが可能と
なる。
According to the present invention, the full charge can be accurately detected, and the battery can be charged without exceeding the full charge and generating an overcharged state, so that the decomposition of the organic electrolyte is suppressed, It is possible to extend the charge / discharge cycle life of the battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】二次電池システムにおける充電制御回路の構成
の概略図である。
FIG. 1 is a schematic diagram of a configuration of a charge control circuit in a secondary battery system.

【図2】定電流定電圧充電における、充電電流の微分値
の経時変化の概要図である。
FIG. 2 is a schematic diagram of changes with time of a differential value of a charging current in constant-current constant-voltage charging.

【図3】電流定電圧充電における、充電電流及び電圧の
経時変化の概要図である。
FIG. 3 is a schematic diagram of changes with time of charging current and voltage in constant current voltage charging.

【図4】定電流定電圧充電における、充電電流及び電圧
の経時変化に及ぼす放電深度の影響を表す概要図であ
る。
FIG. 4 is a schematic diagram showing the influence of the depth of discharge on the changes over time of the charging current and voltage in constant current constant voltage charging.

【符号の説明】[Explanation of symbols]

1…定電流充電状態、2…定電圧充電状態、3…充電電
流の経時変化、4…電池電圧の経時変化、5…深い放電
深度の電池を充電した場合、6…浅い放電深度の電池を
充電した場合、11…交流電源、12…整流回路、15
…電池群、16…スイッチ、21…充電回路、22…電
流計測回路、24…クロック、25…演算部、26…比
較判定回路、27…タイマ。
1 ... Constant current charging state, 2 ... Constant voltage charging state, 3 ... Charging current change with time, 4 ... Battery voltage change with time, 5 ... Deep discharge depth of battery, 6 ... Shallow discharge depth of battery When charged, 11 ... AC power supply, 12 ... Rectifier circuit, 15
... battery group, 16 ... switch, 21 ... charging circuit, 22 ... current measuring circuit, 24 ... clock, 25 ... arithmetic unit, 26 ... comparison / determination circuit, 27 ... timer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 明弘 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 堀場 達雄 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Akihiro Goto 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Tatsuo Horiba 7-chome, Omika-cho, Hitachi-shi, Ibaraki No. 1 Hitachi Ltd. Hitachi Research Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】有機電解液を使用するリチウム二次電池を
複数個接続した電池群と、該電池群を充電する充電回路
を備えた二次電池システムにおいて、該充電回路の充電
電流値から算出した時間微分値とあらかじめ設定された
比較値との比較判定結果により充電を停止する手段を備
えたことを特徴とする二次電池システム。
1. A secondary battery system including a battery group in which a plurality of lithium secondary batteries using an organic electrolytic solution are connected, and a charging circuit for charging the battery group, and calculated from a charging current value of the charging circuit. A secondary battery system comprising means for stopping charging according to a comparison determination result of the time differential value and a preset comparison value.
【請求項2】有機電解液を使用するリチウム二次電池を
複数個接続した電池群と、該電池群を充電する充電回路
を備えた二次電池システムにおいて、該充電回路の充電
電流を計測する電流計測手段と、該充電電流から時間微
分値を算出する演算手段と、該時間微分値とあらかじめ
設定された比較値とを比較判定する比較判定手段と、判
定結果により充電を停止する手段とを備えたことを特徴
とする二次電池システム。
2. In a secondary battery system including a battery group in which a plurality of lithium secondary batteries using an organic electrolyte are connected, and a charging circuit for charging the battery group, the charging current of the charging circuit is measured. A current measuring unit, a calculating unit that calculates a time differential value from the charging current, a comparison determining unit that compares and determines the time differential value and a preset comparison value, and a unit that stops charging according to the determination result. A secondary battery system characterized by being provided.
【請求項3】有機電解液を使用するリチウム二次電池を
複数個接続し、充電回路を備えた二次電池システムの充
電方法において、所定の電圧で充電しつつ、該充電回路
に流れる充電電流を計測して時間微分値を算出し、該時
間微分値とあらかじめ設定された比較値とを比較して、
該時間微分値が設定された値を越えた場合には満充電で
あることを検知することを特徴とする二次電池システム
の充電方法。
3. A charging method for a secondary battery system comprising a charging circuit, wherein a plurality of lithium secondary batteries using an organic electrolytic solution are connected, and a charging current flowing through the charging circuit while charging at a predetermined voltage. Is calculated to calculate a time differential value, and the time differential value is compared with a preset comparison value,
A method for charging a secondary battery system, comprising detecting that the battery is fully charged when the time differential value exceeds a set value.
【請求項4】有機電解液を使用するリチウム二次電池を
複数個接続し、充電回路を備えた二次電池システムの充
電方法において、所定の電圧で充電しつつ、該充電回路
に流れる充電電流を計測して時間微分値を算出し、該時
間微分値とあらかじめ設定された比較値とを比較して、
該時間微分値が設定された値を越えた場合には充電を終
了させることを特徴とする二次電池システムの充電方
法。
4. A charging method for a secondary battery system comprising a charging circuit, wherein a plurality of lithium secondary batteries using an organic electrolyte are connected, and a charging current flowing through the charging circuit while charging at a predetermined voltage. Is calculated to calculate a time differential value, and the time differential value is compared with a preset comparison value,
A charging method for a secondary battery system, wherein charging is terminated when the time differential value exceeds a set value.
JP4338356A 1992-12-18 1992-12-18 Secondary battery system and its charging method Pending JPH06189466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4338356A JPH06189466A (en) 1992-12-18 1992-12-18 Secondary battery system and its charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4338356A JPH06189466A (en) 1992-12-18 1992-12-18 Secondary battery system and its charging method

Publications (1)

Publication Number Publication Date
JPH06189466A true JPH06189466A (en) 1994-07-08

Family

ID=18317386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4338356A Pending JPH06189466A (en) 1992-12-18 1992-12-18 Secondary battery system and its charging method

Country Status (1)

Country Link
JP (1) JPH06189466A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100387501B1 (en) * 2000-12-28 2003-06-18 현대자동차주식회사 Method for correcting soc of battery
JP2007305461A (en) * 2006-05-12 2007-11-22 Matsushita Electric Ind Co Ltd Controlling method of charging or discharging for power storage device
WO2013021663A1 (en) 2011-08-10 2013-02-14 株式会社日立ソリューションズ Charger information distribution device
CN103161783A (en) * 2011-12-08 2013-06-19 通用汽车环球科技运作有限责任公司 System and method for determining accumulator fill

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796474A (en) * 1980-12-09 1982-06-15 Matsushita Electric Ind Co Ltd Charging method of enclosed type alkaline storage battery
JPH03500959A (en) * 1988-03-11 1991-02-28 ビースペーナ、ゲルハルト Method and circuit for charging storage batteries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796474A (en) * 1980-12-09 1982-06-15 Matsushita Electric Ind Co Ltd Charging method of enclosed type alkaline storage battery
JPH03500959A (en) * 1988-03-11 1991-02-28 ビースペーナ、ゲルハルト Method and circuit for charging storage batteries

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100387501B1 (en) * 2000-12-28 2003-06-18 현대자동차주식회사 Method for correcting soc of battery
JP2007305461A (en) * 2006-05-12 2007-11-22 Matsushita Electric Ind Co Ltd Controlling method of charging or discharging for power storage device
WO2013021663A1 (en) 2011-08-10 2013-02-14 株式会社日立ソリューションズ Charger information distribution device
EP2669860A1 (en) * 2011-08-10 2013-12-04 Hitachi Solutions, Ltd. Charger information distribution device
EP2669860A4 (en) * 2011-08-10 2015-02-18 Hitachi Solutions Ltd Charger information distribution device
CN103161783A (en) * 2011-12-08 2013-06-19 通用汽车环球科技运作有限责任公司 System and method for determining accumulator fill

Similar Documents

Publication Publication Date Title
JP3415740B2 (en) Battery charger
JP3964635B2 (en) Memory effect detection method and solution
US8655524B2 (en) Power supply system, vehicle provided with the same and control method of power supply system
US20200200834A1 (en) Rechargeable battery short circuit early detection device and rechargeable battery short circuit early detection method
US20060145658A1 (en) Method and device for battery charger and diagnosis with detectable battery energy barrier
JP2002369391A (en) Method and device for controlling residual capacity of secondary battery
JP2003132960A (en) Method for detecting charged state of storage battery used for power supply system, and method for deciding degradation of storage battery
KR100341754B1 (en) Controlling method for battery charge of electric vehicle
JPH0997629A (en) Plural lithium ion secondary battery charging method
JP2001351698A (en) Charged state detecting method for lead storage battery and deterioration judging method for the same
JPH09107604A (en) Charging control method of pack battery
JP2001338696A (en) Charging method of lead storage battery
JP2003338325A (en) Method of determining deteriorated condition of storage battery and method of charging it
JP2004079374A (en) Battery regeneration method and regeneration apparatus
JPH06189466A (en) Secondary battery system and its charging method
JP3678045B2 (en) Battery charging method
JP6699533B2 (en) Battery system
JP6624035B2 (en) Battery system
JP2003189498A (en) Charging method and charger of secondary battery
JP4331473B2 (en) Charge / discharge control device and charge / discharge control method for lead-acid battery
JP6265010B2 (en) Power storage system
JP3966810B2 (en) Storage battery full charge determination device, remaining capacity estimation device, full charge determination method, and remaining capacity estimation method
JPH08163786A (en) Method and apparatus for controlling charging of battery bank
JP3133220B2 (en) Charge control device for sealed battery
JP2000133322A (en) Charge/discharge system for secondary battery