JPH08163786A - Method and apparatus for controlling charging of battery bank - Google Patents

Method and apparatus for controlling charging of battery bank

Info

Publication number
JPH08163786A
JPH08163786A JP6301167A JP30116794A JPH08163786A JP H08163786 A JPH08163786 A JP H08163786A JP 6301167 A JP6301167 A JP 6301167A JP 30116794 A JP30116794 A JP 30116794A JP H08163786 A JPH08163786 A JP H08163786A
Authority
JP
Japan
Prior art keywords
charging
battery
capacity
voltage
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6301167A
Other languages
Japanese (ja)
Other versions
JP3157688B2 (en
Inventor
Eiji Kadouchi
英治 門内
Yuichi Watanabe
勇一 渡辺
Megumi Kinoshita
恵 木下
Noboru Ito
登 伊藤
Kanji Takada
寛治 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30116794A priority Critical patent/JP3157688B2/en
Publication of JPH08163786A publication Critical patent/JPH08163786A/en
Application granted granted Critical
Publication of JP3157688B2 publication Critical patent/JP3157688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE: To control charging properly according to the state of battery bank such as the battery temperature, the progress of charging, etc., by conducting charging by constant power charging for a first charging period and constant current charging for a second charging period. CONSTITUTION: When charging is started, a battery bank 1 is supplied with a charging current by constant power as main charging from a charging apparatus 12. A temperature sensor 2 detects the temperature of a battery 1 at all times, and outputs the instantaneous value of the temperature as voltage, and the output is input to a CPU 8 as an instantaneous temperature data through an A/D converter 7. The CPU 8 reads the instantaneous temperature data at a plurality of times for a fixed period, and uses the mean value of the data as the temperature of the battery bank 1. A capacity reference value (the limit of charging capacity to the temperature of the battery bank 1) corresponding to the temperature of the battery bank 1 is read from a ROM. The CPU 8 reads the residual capacity of the battery bank 1 determined at all times. transmits a signal to the charging apparatus 12 and completes constant power charging when the residual capacity reaches the capacity reference value, and conducts constant current charging as supplement charging.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、密閉形ニッケル・水素
蓄電池等の集合体からなる組電池形態の、特に電気自動
車等の移動体に搭載される蓄電池について、その充電を
制御する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for controlling the charge of a storage battery in the form of an assembled battery composed of an assembly of sealed nickel-hydrogen storage batteries, etc., especially mounted on a mobile body such as an electric vehicle. Regarding

【0002】[0002]

【従来の技術】密閉型ニッケル・水素蓄電池は、エネル
ギー密度、出力密度、サイクル寿命等の基本特性に優
れ、電気自動車等の移動体の駆動用モータ等のための電
源として実用化への開発がすすんでいる。当該電池を電
気自動車用電源として用いる場合、所定の駆動出力を得
るためには電池容量が50〜120Ah程度で且つ10
0〜350V程度の総電圧が必要となる。ニッケル・水
素電池はその最小単位である1セルの出力電圧が1.2
V程度であるため、多数のセルを直列に接続して所要の
総電圧を得ている。例えば、セルを10個直列に接続し
て一つのモジュール電池とし、このモジュール電池を2
4個直列に接続すれば、合計240セルの組電池とな
り、288Vの総電圧が得られる。かかる組電池を充電
する場合は、単電池の場合と同様に、組電池の両端部間
に所定の充電電圧を印加して行い、充電の進行と共に組
電池の電圧や温度が上昇する点に着目して充電が完了し
たかどうかを判断する。
2. Description of the Related Art Sealed nickel-hydrogen storage batteries have excellent basic characteristics such as energy density, output density, cycle life, etc., and have been developed for practical use as a power source for driving motors of moving bodies such as electric vehicles. I am advancing. When the battery is used as a power source for an electric vehicle, the battery capacity is about 50 to 120 Ah and 10 to obtain a predetermined driving output.
A total voltage of about 0 to 350 V is required. The output voltage of a nickel-hydrogen battery is 1.2, which is the minimum unit.
Since it is about V, many cells are connected in series to obtain a required total voltage. For example, connecting 10 cells in series to form one module battery,
If four batteries are connected in series, a total of 240 cells will be obtained and a total voltage of 288V will be obtained. When charging such an assembled battery, pay attention to the point that the voltage and temperature of the assembled battery rises as charging progresses, as in the case of a single battery, by applying a predetermined charging voltage between both ends of the assembled battery. To determine if charging is complete.

【0003】しかしながら、上記のような組電池は多数
のセルの集合体であり、そのような多数のセルを互いに
物理的に完全に同一の個体に製造することは実質的に不
可能である。従って、組電池として直列に接続されてい
ても、各セルの放電の状態には個体差がある。また、組
電池としての空間的な配置構成により温度条件が異なる
等の、使用条件における微妙な差異もある。この結果、
放電の深さがセルによって、またモジュール電池によっ
て同一ではないのが現実である。従って、組電池全体に
対して充電を行っても、各セルについて見た場合、充電
の進度が同一ではない。すなわち、あるセルは電池容量
が100%にまで回復していても、他のセルはまだ90
%というような状態が起こる。従って、全てのセルにつ
いて100%以上の電池容量を持たせるためには、さら
に一律に補充電を行って全体に電池容量を引き上げる必
要がある。図12は、第1充電期間T1の後に充電条件
を変えて補充電たる第2充電期間T2をもつ2段階充電
方式を採用した場合の電池温度T、電池電圧V、充電電
流I及び電池温度の変化率dT/dtの特性を示すグラ
フである。第1充電期間から第2充電期間への充電電流
の切替えのタイミングは、電池温度T、電池電圧V又は
電池温度の変化率dT/dtの変化を捉えることにより
決定する。
However, the above-mentioned assembled battery is an assembly of a large number of cells, and it is substantially impossible to manufacture such a large number of cells into physically identical ones. Therefore, even if they are connected in series as an assembled battery, there are individual differences in the discharge state of each cell. There are also subtle differences in usage conditions, such as different temperature conditions depending on the spatial arrangement of the assembled battery. As a result,
In reality, the depth of discharge is not the same depending on the cell and the module battery. Therefore, even if the entire assembled battery is charged, the progress of charging is not the same when looking at each cell. That is, even if the battery capacity of one cell has recovered to 100%, that of another cell is still 90%.
The situation like% occurs. Therefore, in order to have a battery capacity of 100% or more for all cells, it is necessary to uniformly perform supplementary charging to raise the battery capacity as a whole. FIG. 12 shows the battery temperature T, the battery voltage V, the charging current I, and the battery temperature in the case of adopting the two-stage charging method in which the charging condition is changed after the first charging period T1 and the second charging period T2 is a supplementary charging. It is a graph which shows the characteristic of rate of change dT / dt. The timing of switching the charging current from the first charging period to the second charging period is determined by capturing the change in the battery temperature T, the battery voltage V, or the change rate dT / dt of the battery temperature.

【0004】[0004]

【発明が解決しようとする課題】ところが、電池温度に
よって充電できる電池容量の限度は一定ではない。従っ
て、この限度が下がっている状態において上記のような
従来の充電方法により一律に第2充電期間分の補充電を
行うと、かなり過充電になる場合があった。また、組電
池という特殊性のある電池については、前述のように個
々のセルの放電状態が一定でないが、その放電状態の個
体差が非常に小さい場合もある。すなわち、各セルの充
電前の放電の深さがほぼそろっていて、均一に充電が進
んでいる場合もある。かかる場合に一律に第2充電期間
分の補充電を行うと、エネルギーの無駄になり、全ての
セルについて過充電になってしまう。このように、従来
の充電方法では過充電になりやすく、組電池全体として
の過充電量が大きい。かかる過充電は電池の劣化を加速
するため電池の寿命が短くなるという問題点があった。
However, the limit of the battery capacity that can be charged by the battery temperature is not constant. Therefore, if the above-mentioned conventional charging method is used to uniformly perform the supplementary charging for the second charging period in a state where this limit is lowered, there is a case where it is considerably overcharged. Further, regarding a battery having a peculiarity of an assembled battery, the discharge state of each cell is not constant as described above, but the individual difference in the discharge state may be very small. That is, in some cases, the discharge depth before charging of each cell is almost the same, and the charging is progressing uniformly. In this case, if the supplementary charge for the second charge period is uniformly performed, energy is wasted and all cells are overcharged. As described above, the conventional charging method easily causes overcharge, and the amount of overcharge of the entire assembled battery is large. Such overcharging accelerates the deterioration of the battery and thus shortens the life of the battery.

【0005】この発明は上記のような問題点を解決する
ためになされたもので、組電池の状態、例えば電池温度
や充電の進行状態等に応じて適切に充電を制御すること
のできる方法及び装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and a method and a method capable of appropriately controlling charging according to the state of the assembled battery, for example, the battery temperature and the progress of charging. The purpose is to provide a device.

【0006】[0006]

【課題を解決するための手段】本発明による組電池の充
電制御方法は、複数の蓄電池の集合体からなる組電池の
充電制御方法であって、前記組電池に対して第1の条件
での主たる充電を行うステップと、前記組電池の電池温
度を検出し、前記組電池について、その残容量と、その
電池温度に対応する容量基準値とを求めるステップと、
前記残容量が前記容量基準値に達したとき充電電流を軽
減して第2の条件での補充電を行うステップとを備えた
ものである。
A charge control method for an assembled battery according to the present invention is a charge control method for an assembled battery composed of an assembly of a plurality of storage batteries, wherein the assembled battery is controlled under a first condition. A step of performing main charging, detecting the battery temperature of the assembled battery, obtaining a remaining capacity of the assembled battery and a capacity reference value corresponding to the battery temperature;
When the remaining capacity reaches the capacity reference value, the charging current is reduced to perform supplementary charging under the second condition.

【0007】また、組電池に対して第1の条件での主た
る充電を行うステップと、前記組電池の電池温度を検出
し、前記組電池について、その残容量と、その電池温度
に対応する容量基準値とを求め、かつ、前記モジュール
電池のそれぞれについて両端間の電圧とその電圧の変化
率とを求めるステップと、前記残容量が前記容量基準値
に達したときの前記電圧のモジュール間格差及び前記電
圧の変化率のモジュール間格差の少なくとも一方が所定
値を超えるときは充電電流を軽減して第2の条件での補
充電を行い、前記所定値を超えないときは充電を終了す
るステップとを備えたものである。
[0007] Further, the main charging of the assembled battery under the first condition, the battery temperature of the assembled battery is detected, the remaining capacity of the assembled battery, and the capacity corresponding to the battery temperature. Obtaining a reference value, and determining the voltage across each of the module batteries and the rate of change of the voltage, the inter-module difference of the voltage when the remaining capacity reaches the capacity reference value, and When at least one of the inter-module differences in the rate of change of the voltage exceeds a predetermined value, the charging current is reduced to perform supplementary charging under the second condition, and when the predetermined value is not exceeded, the charging is terminated. It is equipped with.

【0008】また、補充電を行うステップの後に、組電
池の両端間の電圧と、電池温度に対応する補充電時の電
圧基準値とを読み、その差が所定値以下であれば補充電
を継続し、所定値を超えていれば補充電を中止して警報
出力を発するステップをさらに有するものである。
After the step of performing supplementary charging, the voltage across the assembled battery and the voltage reference value for supplementary charging corresponding to the battery temperature are read, and if the difference is less than a predetermined value, supplementary charging is performed. The method further includes a step of continuing and stopping supplementary charging and issuing an alarm output if the predetermined value is exceeded.

【0009】また、本発明による組電池の充電制御装置
は、複数のモジュール電池の直列集合体からなる組電池
のための充電制御装置であって、前記組電池の充放電電
流を検出する電流検出手段と、前記電流検出手段によっ
て検出された電流を時間により積分処理して前記組電池
の電池容量の初期値に加減算することにより電池容量の
残容量を求める電池容量計測手段と、前記組電池の電池
温度を検出する電池温度検出手段と、前記残容量が、電
池温度に対応する容量基準値に達したとき所定の出力を
生じる判断手段と、前記組電池の両端に接続されて充電
を行い、前記出力を受けて充電電流を軽減しつつ補充電
を行う充電装置とを備えたものである。
The battery pack charge control device according to the present invention is a charge control device for a battery pack consisting of a series assembly of a plurality of module batteries, and a current detection device for detecting a charge / discharge current of the battery pack. Means, a battery capacity measuring means for integrating the current detected by the current detecting means by time, and adding / subtracting to / from the initial value of the battery capacity of the assembled battery to obtain the remaining capacity of the battery capacity; Battery temperature detection means for detecting the battery temperature, the remaining capacity, the determination means for producing a predetermined output when the capacity reference value corresponding to the battery temperature, and connected to both ends of the assembled battery to perform charging, And a charging device that receives the output to reduce the charging current and perform supplementary charging.

【0010】また、組電池の充放電電流を検出する電流
検出手段と、前記電流検出手段によって検出された電流
を時間により積分処理して前記組電池の電池容量の初期
値に加減算することにより電池容量の残容量を求める電
池容量計測手段と、前記組電池の電池温度を検出する電
池温度検出手段と、前記複数のモジュール電池のそれぞ
れの両端間の電圧を検出する電圧検出手段と、前記残容
量が、電池温度に対応する容量基準値に達したとき、前
記電圧のモジュール間格差及び前記電圧の変化率の少な
くとも一方が所定値を超えていれば第1の信号を、超え
ていなければ第2の信号をそれぞれ生じる判断手段と、
前記組電池の両端に接続されて充電を行い、前記第1の
信号を受けた場合は充電電流を軽減しつつ補充電を行
い、前記第2の信号を受けた場合は充電を終了する充電
装置とを備えたものである。
Further, the current detecting means for detecting the charging / discharging current of the assembled battery, and the current detected by the current detecting means are integrated by time to add / subtract to the initial value of the battery capacity of the assembled battery. Battery capacity measuring means for determining the remaining capacity of the capacity, battery temperature detecting means for detecting the battery temperature of the assembled battery, voltage detecting means for detecting the voltage across each of the plurality of module batteries, and the remaining capacity. When the capacity reference value corresponding to the battery temperature is reached, the first signal is output if at least one of the inter-module difference in the voltage and the rate of change of the voltage exceeds a predetermined value, and the second signal is output if not. And the determination means that generate the respective signals of
A charging device connected to both ends of the assembled battery for charging, performing supplementary charging while reducing the charging current when receiving the first signal, and ending charging when receiving the second signal. It is equipped with and.

【0011】また、組電池の充放電電流を検出する電流
検出手段と、前記電流検出手段によって検出された電流
を時間により積分処理して前記組電池の電池容量の初期
値に加減算することにより電池容量の残容量を求める電
池容量計測手段と、前記組電池の両端間の電圧を検出す
る電圧検出手段と、前記組電池の電池温度を検出する電
池温度検出手段と、前記残容量と、電池温度に対応する
容量基準値とを比較し、前記残容量が前記容量基準値に
達したとき第1の信号を出力する容量比較手段と、前記
電圧と、電池温度に対する補充電時の電圧基準値との差
を所定値と比較し、その差が所定値を超えていれば第2
の信号を出力する電圧比較手段と、前記組電池の両端に
接続されて充電を行い、前記第1の信号を受けた場合は
充電電流を軽減した補充電を開始し、前記第2の信号を
受けた場合は充電を中止する充電装置とを備えたもので
ある。
Further, the current detecting means for detecting the charging / discharging current of the assembled battery, and the current detected by the current detecting means are integrated by time to add / subtract to the initial value of the battery capacity of the assembled battery. Battery capacity measuring means for obtaining the remaining capacity of the capacity, voltage detecting means for detecting the voltage across the assembled battery, battery temperature detecting means for detecting the battery temperature of the assembled battery, the remaining capacity, and battery temperature And a capacity reference means for outputting a first signal when the remaining capacity reaches the capacity reference value, the voltage, and a voltage reference value at the time of supplementary charging with respect to the battery temperature. If the difference exceeds a predetermined value, then the second
Is connected to both ends of the assembled battery for charging, and when the first signal is received, supplementary charging with reduced charging current is started, and the second signal is output. And a charging device for stopping charging when received.

【0012】[0012]

【作用】本発明による組電池の充電制御方法では、当初
は、組電池に対して第1の条件での主たる充電を行い、
次に組電池の電池温度を検出し、組電池について、その
残容量と、その電池温度に対応する容量基準値とを求
め、残容量が容量基準値に達したとき充電電流を軽減し
て第2の条件での補充電を行う。
In the charge control method for the assembled battery according to the present invention, initially, the assembled battery is mainly charged under the first condition,
Next, the battery temperature of the assembled battery is detected, the remaining capacity of the assembled battery and the capacity reference value corresponding to the battery temperature are obtained, and the charging current is reduced when the remaining capacity reaches the capacity reference value. Supplementary charging is performed under the condition of 2.

【0013】また、組電池に対して第1の条件での主た
る充電を行い、次に組電池の電池温度を検出し、組電池
について、その残容量と、その電池温度に対応する容量
基準値とを求め、かつ、モジュール電池のそれぞれにつ
いて両端間の電圧とその電圧の変化率を求める。そし
て、残容量が容量基準値に達したときの電圧のモジュー
ル間格差及び電圧の変化率のモジュール間格差の少なく
とも一方が所定値を超えるときは充電電流を軽減して第
2の条件での補充電を行い、所定値を超えないときは充
電を終了する。
Main charging of the assembled battery under the first condition is performed, then the battery temperature of the assembled battery is detected, and the remaining capacity of the assembled battery and the capacity reference value corresponding to the battery temperature are detected. And the voltage across each of the module batteries and the rate of change of the voltage. When at least one of the inter-module difference in voltage and the inter-module difference in voltage change rate when the remaining capacity reaches the capacity reference value exceeds a predetermined value, the charging current is reduced to compensate for the second condition. Charging is performed, and if the predetermined value is not exceeded, charging is terminated.

【0014】また、補充電を開始した後に、組電池の両
端間の電圧と、電池温度に対応する補充電時の電圧基準
値とを読み、その差が所定値以下であれば補充電を継続
し、所定値を超えていれば補充電を中止して警報出力を
発する。
After starting the supplementary charge, the voltage across the assembled battery and the voltage reference value during supplementary charging corresponding to the battery temperature are read. If the difference is less than a predetermined value, supplemental charging is continued. If it exceeds the predetermined value, supplementary charging is stopped and an alarm output is issued.

【0015】また、本発明の組電池の充電制御装置は、
電池の充放電電流を電流検出手段により検出し、検出さ
れた電流を電池容量計測手段が時間により積分処理して
組電池の電池容量の初期値に加減算することにより電池
容量の残容量を求め、電池温度検出手段により組電池の
電池温度を検出する。そして、判断手段は、残容量が電
池温度に対応する容量基準値に達したとき所定の出力を
生じ、充電装置はこれによって充電電流を軽減した補充
電を行う。
Further, the battery pack charge control device of the present invention is
The charging / discharging current of the battery is detected by the current detecting means, and the detected current is integrated by time by the battery capacity measuring means to obtain the remaining capacity of the battery capacity by adding / subtracting to / from the initial value of the battery capacity of the assembled battery, The battery temperature of the assembled battery is detected by the battery temperature detecting means. Then, the determination means produces a predetermined output when the remaining capacity reaches the capacity reference value corresponding to the battery temperature, and the charging device thereby performs supplementary charging with reduced charging current.

【0016】また、本発明の組電池の充電制御装置は、
電池の充放電電流を電流検出手段により検出し、検出さ
れた電流を電池容量計測手段が時間により積分処理して
組電池の電池容量の初期値に加減算することにより電池
容量の残容量を求め、電池温度検出手段により組電池の
電池温度を検出する。さらに、電圧検出手段は複数のモ
ジュール電池のそれぞれの両端間の電圧を検出する。そ
して、判断手段は、残容量が電池温度に対応する容量基
準値に達したとき、電圧のモジュール間格差及び電圧の
変化率の少なくとも一方が所定値を超えていれば第1の
信号を、超えていなければ第2の信号をそれぞれ生じ、
充電装置は、第1の信号を受けて充電電流を軽減した補
充電を行い、第2の信号を受けた場合は充電を終了す
る。
Further, the battery pack charge control device of the present invention is
The charging / discharging current of the battery is detected by the current detecting means, and the detected current is integrated by time by the battery capacity measuring means to obtain the remaining capacity of the battery capacity by adding / subtracting to / from the initial value of the battery capacity of the assembled battery, The battery temperature of the assembled battery is detected by the battery temperature detecting means. Furthermore, the voltage detection means detects the voltage across each of the plurality of module batteries. When the remaining capacity reaches the capacity reference value corresponding to the battery temperature, the determination means exceeds the first signal if at least one of the difference between the modules of the voltage and the rate of change of the voltage exceeds a predetermined value. If not, each produces a second signal,
The charging device receives the first signal to perform supplementary charging with reduced charging current, and ends the charging when receiving the second signal.

【0017】また、電池の充放電電流を電流検出手段に
より検出し、検出された電流を電池容量計測手段が時間
により積分処理して組電池の電池容量の初期値に加減算
することにより電池容量の残容量を求め、電池温度検出
手段により組電池の電池温度を検出する。そして、容量
比較手段は、残容量と、電池温度に対応する容量基準値
とを比較し、容量が容量基準値に達したとき第1の信号
を出力し、電圧比較手段は、前記電圧と、電池温度に対
する補充電時の電圧基準値との差を所定値と比較し、そ
の差が所定値を超えていれば第2の信号を出力する。充
電装置は第1の信号を受けた場合は充電電流を軽減して
さらに補充電を行うが、第2の信号を受けた場合は充電
を中止する。
Further, the charging / discharging current of the battery is detected by the current detecting means, and the detected current is integrated by the battery capacity measuring means by time to add / subtract it to / from the initial value of the battery capacity of the assembled battery. The remaining capacity is obtained, and the battery temperature of the assembled battery is detected by the battery temperature detecting means. Then, the capacity comparison means compares the remaining capacity with a capacity reference value corresponding to the battery temperature, outputs a first signal when the capacity reaches the capacity reference value, and the voltage comparison means compares the voltage with the voltage. The difference between the battery temperature and the voltage reference value during supplementary charging is compared with a predetermined value, and if the difference exceeds the predetermined value, a second signal is output. When the charging device receives the first signal, the charging current is reduced to perform supplementary charging, but when the second signal is received, the charging is stopped.

【0018】[0018]

【実施例】【Example】

(実施例1)図1は、電気自動車等の移動体に搭載され
る、密閉型ニッケル・水素蓄電池の集合体からなる蓄電
池の内部回路図である。この電池1は複数(本実施例で
は例えば24個とする)のモジュール101、102、
103、...、及び124を直列接続して成る組電池
(以下組電池1という)であり、各モジュールはさらに
複数(通常10個)のセルの直列接続体により構成され
ている。図2は、本発明の組電池の充電制御装置等を示
すブロック回路図である。図2において、電圧検出回路
201〜224の一対の入力端子は、それぞれモジュー
ル101〜124の各両端部に接続され、各モジュール
101〜124の両端部間の電圧に比例したアナログ電
圧出力信号をA/D変換器7に入力する。モジュール1
02の内部には電池温度センサ2が設けられていて、そ
の出力はA/D変換器7に送られる。ここで、電池温度
センサ2は例えばサーミスタ温度センサである。なお、
電池温度センサ2をモジュール102内に設ける例を示
したが、これは一例として示したに過ぎず他のモジュー
ルに設けても良い。また2つ以上のモジュールに電池温
度センサ2を設けてCPU8においてその出力値の平均
又は最大をとる構成にすることもできる。
(Embodiment 1) FIG. 1 is an internal circuit diagram of a storage battery which is mounted on a moving body such as an electric vehicle and is composed of an assembly of sealed nickel-hydrogen storage batteries. The battery 1 includes a plurality of (for example, 24 in this embodiment) modules 101, 102,
103 ,. . . , And 124 are connected in series (hereinafter referred to as assembled battery 1), and each module is further composed of a series connection body of a plurality of (usually 10) cells. FIG. 2 is a block circuit diagram showing a battery pack charge control device and the like of the present invention. In FIG. 2, a pair of input terminals of the voltage detection circuits 201 to 224 are respectively connected to both ends of the modules 101 to 124, and an analog voltage output signal proportional to a voltage between both ends of the modules 101 to 124 Input to the / D converter 7. Module 1
A battery temperature sensor 2 is provided inside 02, and its output is sent to the A / D converter 7. Here, the battery temperature sensor 2 is, for example, a thermistor temperature sensor. In addition,
Although the example in which the battery temperature sensor 2 is provided in the module 102 has been described, this is shown as an example and may be provided in another module. Further, the battery temperature sensor 2 may be provided in two or more modules so that the CPU 8 takes an average or maximum output value.

【0019】組電池1の両端部の間には充電装置12、
及びスイッチ5と負荷6との直列体が接続されている。
負荷6は電気自動車におけるモータ等である。通常の走
行状態においてはスイッチ5が閉路され負荷6に電流を
供給し得る状態になっている。充電時にはスイッチ5を
開いて負荷6を切り離し、充電装置12によりDC充電
電圧を印加する。充電装置のプラグ13は、電気自動車
を停止させた状態で例えばAC200Vの電源に接続さ
れる。充電装置12が起動しているときは、そのことを
示す信号がA/D変換器7に送られる。負荷6に流れる
電流は例えばホール素子等の電流センサ3によって検出
されA/D変換器7に送られる。組電池1の両端間には
例えば抵抗分圧を利用した電圧センサ4が接続され、組
電池1の両端間の電圧(総電圧)に比例する電圧をA/
D変換器7に入力する。A/D変換器7のディジタル出
力信号はCPU8に送られる。CPU8には記憶装置と
してのROM9が接続されている。A/D変換器7、C
PU8及びROM9は充電制御回路10を構成する。そ
して、CPU8の出力は表示装置11に送られる。表示
装置11は例えば電気自動車の運転席正面に配置され、
運転者によって視認されるようになっている。
Between the both ends of the assembled battery 1, a charging device 12,
Also, a series body of the switch 5 and the load 6 is connected.
The load 6 is a motor or the like in an electric vehicle. In a normal traveling state, the switch 5 is closed to supply the current to the load 6. At the time of charging, the switch 5 is opened to disconnect the load 6, and the charging device 12 applies a DC charging voltage. The plug 13 of the charging device is connected to, for example, an AC 200V power source while the electric vehicle is stopped. When the charging device 12 is activated, a signal indicating that is sent to the A / D converter 7. The current flowing through the load 6 is detected by the current sensor 3 such as a Hall element and sent to the A / D converter 7. A voltage sensor 4 using, for example, resistance voltage division is connected between both ends of the assembled battery 1, and the voltage proportional to the voltage (total voltage) between both ends of the assembled battery 1 is A /
Input to the D converter 7. The digital output signal of the A / D converter 7 is sent to the CPU 8. A ROM 9 as a storage device is connected to the CPU 8. A / D converter 7, C
The PU 8 and the ROM 9 form a charge control circuit 10. Then, the output of the CPU 8 is sent to the display device 11. The display device 11 is arranged, for example, in front of a driver's seat of an electric vehicle,
It is visible to the driver.

【0020】次に、上記のように構成された充電制御装
置についてその動作を説明する。まず、図2において、
電気自動車の走行中は、スイッチ5が閉路され負荷6に
電流が流れる。電流センサ3は負荷電流を検出し、A/
D変換器7を介してCPU8に電流値に相当する信号を
送る。CPU8は、これを単位時間ごとに積分処理して
組電池1の容量[電流・時間]の消費量を求め、これを
初期容量(所定値)から減じて現時点に於ける残容量を
常に把握する。また、後述の充電中に於いては、充電装
置12から供給される充電電流を電流センサ3によって
検出し、同様にCPU8によって積分処理し、直前の容
量に逐次加算して充電中の残容量を把握する。
Next, the operation of the charging control device configured as described above will be described. First, in FIG.
While the electric vehicle is running, the switch 5 is closed and a current flows through the load 6. The current sensor 3 detects the load current, and A /
A signal corresponding to the current value is sent to the CPU 8 via the D converter 7. The CPU 8 integrates this for each unit time to obtain the consumption amount of the capacity [current / time] of the battery pack 1 and subtracts this from the initial capacity (predetermined value) to always grasp the remaining capacity at the present time. . Further, during charging, which will be described later, the charging current supplied from the charging device 12 is detected by the current sensor 3, and similarly, the CPU 8 performs integration processing, and the remaining capacity during charging is sequentially added to the immediately preceding capacity. Figure out

【0021】次に、充電制御方法について図3のフロー
チャートを参照しつつ、説明する。充電を行なう場合
は、図2のスイッチ5を開いて負荷6を切り離し、充電
装置12を起動させて充電を開始する。充電は第1充電
期間における定電力充電(主充電)と第2充電期間にお
ける定電流充電(補充電)とによって行われる。定電力
充電から定電流充電への切換え及び充電の停止は、CP
U8から充電制御装置12へ信号を送ることによって行
われる。まず、充電を開始すると、充電装置12から5
〜6kWの定電力による充電電流が組電池1に供給され
る(ステップS11)。一方、図2において、温度セン
サ2は常時電池温度を検出し、その瞬時値を電圧として
出力している。その出力はA/D変換器7を介してCP
U8に瞬時温度データとして入力される。ここでCPU
8は、瞬時温度データを一定周期で複数回読取り、その
平均値を電池温度Tに相当するデータ(以下単に電池温
度Tという)として読み取る(ステップS12)。
Next, the charging control method will be described with reference to the flowchart of FIG. For charging, the switch 5 shown in FIG. 2 is opened to disconnect the load 6, and the charging device 12 is activated to start charging. Charging is performed by constant power charging (main charging) in the first charging period and constant current charging (complementary charging) in the second charging period. To switch from constant power charging to constant current charging and to stop charging, use CP
This is done by sending a signal from U8 to the charging control device 12. First, when charging is started, the charging device 12 to 5
A charging current with a constant power of ˜6 kW is supplied to the assembled battery 1 (step S11). On the other hand, in FIG. 2, the temperature sensor 2 constantly detects the battery temperature and outputs the instantaneous value as a voltage. The output is CP through the A / D converter 7.
Input to U8 as instantaneous temperature data. CPU here
8 reads the instantaneous temperature data a plurality of times at a constant cycle, and reads the average value as data corresponding to the battery temperature T (hereinafter simply referred to as battery temperature T) (step S12).

【0022】次に、ステップS13において、電池温度
Tに対応する容量基準値AHrefをROM9(図2)か
ら読む。ここで、容量基準値について説明する。図4は
電池温度に対する電池容量の、過充電にならない範囲で
の上限値を示すグラフである。この例は電池容量が10
0[A・時間]の電池についての特性を示すものである
が、図に示すように100[A・時間]の能力を有する
電池であっても、常に100[A・時間]まで充電がで
きるとは限らず、温度によって容量限度が低下する。例
えば電池温度40℃では、95[A・時間]程度までし
か充電できないし、電池温度−20℃では76[A・時
間]程度までしか充電できない。なお、充電を行なえる
実用上の範囲は−20℃〜60℃である。このように、
その時の電池温度によって充電できる容量の限度が決ま
っている。この、電池温度に対する容量限度が、容量基
準値AHrefである。各種電池温度に対する容量基準値
AHrefは、図4のグラフに示す具体的な数値をあらか
じめROM9に記憶させておく。
Next, in step S13, the capacity reference value AH ref corresponding to the battery temperature T is read from the ROM 9 (FIG. 2). Here, the capacitance reference value will be described. FIG. 4 is a graph showing the upper limit value of the battery capacity with respect to the battery temperature in a range where overcharging does not occur. This example has a battery capacity of 10
The characteristics of a battery of 0 [A · hour] are shown, but as shown in the figure, even a battery having a capacity of 100 [A · hour] can always be charged to 100 [A · hour]. Not necessarily, but the capacity limit decreases with temperature. For example, when the battery temperature is 40 ° C., charging can be performed only up to about 95 [A · hour], and when the battery temperature is −20 ° C., charging can be performed only up to about 76 [A · hour]. The practical range in which charging is possible is -20 ° C to 60 ° C. in this way,
The battery capacity at that time determines the maximum chargeable capacity. The capacity limit for the battery temperature is the capacity reference value AH ref . As the capacity reference value AH ref for various battery temperatures, specific numerical values shown in the graph of FIG. 4 are stored in the ROM 9 in advance.

【0023】図3に戻って、ステップS13では、容量
基準値AHref[A・時間]の他に、CPU8が積分処
理によって常時把握している組電池1の残容量AH[A
・時間]を読む。次に、ステップS14では、残容量A
Hが容量基準値AHrefに達したかどうかを判断する。
達していればステップS15に進み、達していなければ
ステップS11に戻る。ステップS15では充電装置1
2(図2)に信号を送って定電力充電を終了させ、引き
続いて補充電たる定電流充電を行わしめる。定電流充電
では、微少な充電電流で、残容量が各モジュールについ
て100%〜110%になるように充電する。定電流充
電を所定時間行なえば充電は完了する。
Returning to FIG. 3, in step S13, in addition to the capacity reference value AH ref [A · time], the remaining capacity AH [A [A
・ Read [Time]. Next, in step S14, the remaining capacity A
It is determined whether H has reached the capacity reference value AH ref .
If it has reached, the process proceeds to step S15, and if it has not reached, the process returns to step S11. In step S15, the charging device 1
2 (FIG. 2) is sent to terminate the constant power charging, and then the constant current charging as the auxiliary charging is performed. In constant current charging, charging is performed with a minute charging current such that the remaining capacity of each module is 100% to 110%. Charging is completed when constant current charging is performed for a predetermined time.

【0024】上記のように、本来充電できる容量の上限
値を電池温度を考慮して判断することにより、容量限度
の低下する高温域(例えば40℃以上)や低温域(例え
ば−10℃以下)において、充電限度容量を相対的に低
く設定することになるので、著しく過充電になる事態を
未然に防ぐことができる。従って、過充電により電池に
与える損害が少なく、また、エネルギーの損失も少ない
ので、充電の効率が向上する。上記のように本来充電で
きる容量の上限値を電池温度を考慮して充電を行った場
合(A)と、本来充電できる容量の上限値を電池温度を
考慮せずに常に一定値(例えば100[A・時間])と
して、この一定値に達したときから補充電を開始する場
合(B)とについて、それぞれ充放電試験を行った。そ
して、1回の充電により走行できる距離がサイクル数
(充放電の回数)の増加に伴ってどのように変化するか
を調べた。なお、第1充電期間の充電電流値は10Aと
し、第2充電期間の充電電流は2Aで充電時間は3時間
とした。また充電時の電池温度は、主として日本国内に
おける1年を通じての気象条件を考慮して−20℃〜4
0℃の範囲とし、−20℃、0℃、20℃及び40℃の
順で繰り返し行った。放電は電気自動車のモータを疑似
負荷として行った。その試験結果を図5に示す。図5に
おいて、横軸はサイクル数を示し、縦軸は走行(可能)
距離[km]を示す。図より明らかなように、Aの場合
はサイクル数が200に達してもほぼ初期の走行距離を
維持しているが、Bの場合では、サイクル数の増加と共
に走行距離は急速に低下し、サイクル数100に至って
は初期の走行距離の半分以下になっている。このよう
に、温度による充電容量限度を考慮しない場合(Bの場
合)には、電池の劣化が早くなることがわかる。この原
因は特に高温域及び低音域での著しい過充電により電池
の劣化が加速されるからである。
As described above, by determining the upper limit of the originally chargeable capacity in consideration of the battery temperature, the high temperature range (for example, 40 ° C. or higher) and the low temperature range (for example, -10 ° C. or lower) where the capacity limit is lowered. In the above, since the charge limit capacity is set to be relatively low, it is possible to prevent the situation of remarkably overcharging. Therefore, overcharging causes less damage to the battery and less energy loss, so that charging efficiency is improved. As described above, when the upper limit value of the originally chargeable capacity is charged in consideration of the battery temperature (A), the upper limit value of the originally chargeable capacity is always a constant value (for example, 100 [ [A · time]), the charge / discharge test was performed for each of the case (B) in which the auxiliary charge was started when the constant value was reached. Then, it was investigated how the distance that can be traveled by one charge changes with the increase in the number of cycles (the number of times of charging and discharging). The charging current value in the first charging period was 10 A, the charging current in the second charging period was 2 A, and the charging time was 3 hours. In addition, the battery temperature during charging is -20 ° C to 4 ° C mainly considering the weather conditions throughout the year in Japan.
The temperature was set in the range of 0 ° C, and the steps were repeated in the order of -20 ° C, 0 ° C, 20 ° C, and 40 ° C. The electric discharge was performed by using the electric vehicle motor as a pseudo load. The test results are shown in FIG. In FIG. 5, the horizontal axis indicates the number of cycles, and the vertical axis indicates running (possible).
The distance [km] is shown. As is clear from the figure, in the case of A, the initial mileage is maintained even when the number of cycles reaches 200, but in the case of B, the mileage rapidly decreases with an increase in the number of cycles, and In the number of hundreds, it is less than half of the initial mileage. As described above, it is understood that the deterioration of the battery is accelerated when the charge capacity limit due to temperature is not taken into consideration (case B). This is because deterioration of the battery is accelerated due to significant overcharge particularly in the high temperature range and the low sound range.

【0025】(実施例2)次に、実施例2について説明
する。図6は、実施例2における充電制御方法を示すフ
ローチャートである。なお、回路構成は図2の実施例1
の構成と同じであるので、その説明を省略する。また、
図6のステップS21〜S23はそれぞれ図3のステッ
プS11〜S13と同一であるので、説明を省略する。
さて、図6のステップS24においては、組電池1(図
2)の残容量AHが容量基準値AHrefに対する所定の
値に達したか否かを判断する。例えば、残容量AHが容
量基準値AHrefの90%に達したか否かを判断する。
達していなければステップS21に戻る。達していれ
ば、ステップS25に進む。ステップS25では、図2
の電圧検出回路201〜224により検出されCPU8
に送られてくる24個のモジュール101〜124の各
電圧Vm1〜Vm24についてそれらの単位時間あたりの上
昇速度、すなわちdVmi/dt(i=1〜24)を求める。単
位時間とは例えば1分である。そして、ステップS26
において、残容量AHが容量基準値AHrefに達したか
どうかを判断する。達していなければステップS21に
戻り、既述の動作を繰り返す。残容量AHが容量基準値
AHrefに達したら、ステップS27に進み、2つの条
件について判断する。条件のうち1つは、モジュール1
01〜124の各電圧Vmi(Vm1〜Vm24)のモジュー
ル間格差が所定の値を超えているか否かである。また他
の1つは、dVmi/dtの値のモジュール間格差が所定
の値を超えているか否かである。これら所定の値の例と
しては、前者が0.01[V]であり、後者が0.00
25[V/分]である。2つの条件はアンド(AND)
条件として扱うが、必要によりオア(OR)条件として
扱うこともできる。条件が成立すればステップS28に
進み、充電装置12(図2)に信号を送って補充電たる
定電流充電を行わしめ、その後充電を終了する。一方、
ステップS27にて条件が成立しなければ充電装置12
に停止信号を送って、定電流充電を行うことなくそのま
ま充電を終了する。このように、各モジュール101〜
124の電圧及びそれらの変化率のどちらもが所定の値
より小さい場合、すなわち各モジュール101〜124
の電池容量がほぼ均一である場合にはさらに補充電を行
うことなく、充電を終了する。従ってその場合は過充電
にならない。
(Second Embodiment) Next, a second embodiment will be described. FIG. 6 is a flowchart showing the charging control method in the second embodiment. The circuit configuration is shown in FIG.
Since the configuration is the same as that of 1, the description thereof will be omitted. Also,
Since steps S21 to S23 of FIG. 6 are the same as steps S11 to S13 of FIG. 3, respectively, description thereof will be omitted.
Now, in step S24 of FIG. 6, it is determined whether or not the remaining capacity AH of the battery pack 1 (FIG. 2) has reached a predetermined value for the capacity reference value AH ref . For example, it is determined whether the remaining capacity AH has reached 90% of the capacity reference value AH ref .
If not reached, the process returns to step S21. If it has reached, it proceeds to step S25. In step S25, as shown in FIG.
Detected by the voltage detection circuits 201 to 224 of the CPU 8
For each of the voltages Vm1 to Vm24 of the 24 modules 101 to 124 sent to, the rate of increase per unit time, that is, dVmi / dt (i = 1 to 24) is obtained. The unit time is, for example, 1 minute. Then, step S26
At, it is determined whether the remaining capacity AH has reached the capacity reference value AH ref . If not reached, the process returns to step S21 and the above-described operation is repeated. When the remaining capacity AH reaches the capacity reference value AH ref , the process proceeds to step S27, and the two conditions are determined. One of the conditions is module 1
It is whether or not the inter-module difference of each voltage Vmi (Vm1 to Vm24) of 01 to 124 exceeds a predetermined value. The other one is whether or not the inter-module disparity in the value of dVmi / dt exceeds a predetermined value. As an example of these predetermined values, the former is 0.01 [V] and the latter is 0.00
25 [V / min]. Two conditions are AND
Although it is treated as a condition, it can be treated as an OR condition if necessary. If the conditions are satisfied, the process proceeds to step S28, a signal is sent to the charging device 12 (FIG. 2) to perform constant current charging as auxiliary charging, and then the charging is ended. on the other hand,
If the condition is not satisfied in step S27, the charging device 12
A stop signal is sent to, and charging is terminated without performing constant current charging. In this way, each module 101-
If both the voltage of 124 and the rate of change thereof are smaller than a predetermined value, that is, each of the modules 101 to 124
If the battery capacities are substantially uniform, the charging is terminated without further supplementary charging. Therefore, in that case, overcharging does not occur.

【0026】上記実施例2のように、定電流充電を常に
は行わない充電方法を採用した場合をCの場合として、
実施例1のAの場合と特性を比較する。図7は組電池1
(図2)のエネルギー効率(=(出力/入力)×10
0)がサイクル数の増加と共にどのように変化するかを
示すグラフである。このグラフより明らかなように、C
の場合は、Aの場合より平均的にエネルギー効率が数%
高い。これはAの場合は常に定電流充電によって補充電
されるため組電池1全体としての過充電量が大きく、エ
ネルギーの損失が大きいのに対し、Cの場合は定電流充
電をされない場合が多いからである。但し、Cの場合に
も、例えば3サイクルに1回程度の割合でモジュール間
の電圧格差が所定値より大きくなり、その結果定電流充
電(補充電)が行われるので、その時は一次的にエネル
ギー効率がAの場合と同程度にまで下がる。
A case where the charging method which does not always perform the constant current charging is adopted as in the case of the above-mentioned second embodiment is defined as a case of C,
The characteristics are compared with those of A of Example 1. Figure 7 shows the battery pack 1
Energy efficiency of (Fig. 2) (= (output / input) x 10
It is a graph which shows how 0) changes with an increase in the number of cycles. As is clear from this graph, C
In case of, energy efficiency is several% on average compared to case of A
high. This is because in the case of A, since it is always supplemented by constant current charging, the overcharge amount of the entire assembled battery 1 is large and the energy loss is large, whereas in the case of C, constant current charging is often not performed. Is. However, in the case of C as well, for example, the voltage difference between the modules becomes larger than a predetermined value at a rate of about once every three cycles, and as a result, constant current charging (complementary charging) is performed, so that at that time, the energy is temporarily The efficiency drops to the same level as in the case of A.

【0027】図8は、図5と同様の、サイクル数に対す
る走行距離の変化を示すグラフである。図8より明らか
なようにCの場合はAの場合よりさらに特性が改善され
ていることがわかる。Aの場合は前述のようにサイクル
数200程度までは初期の走行距離をほぼ維持するが、
サイクル数がさらに増えると徐々に低下し始め、サイク
ル数600に至っては走行距離は激減する。しかし、C
の場合はサイクル数が600に達してもなお初期の状態
の70〜80%程度の走行距離を維持している。これ
は、Cの場合は定電流充電(補充電)をされる回数がA
の場合より少ないため、電池の劣化が遅いからである。
なお、サイクル数の少ない初期の段階ではCの場合より
もAの場合の方が走行距離が若干大きくなることが多
い。これはAの場合は常に定電流充電をされているのに
対して、Cの場合は定電流充電が所定の条件のときしか
行われないため、電池容量に若干の差が生じるからであ
る。
FIG. 8 is a graph similar to FIG. 5, showing a change in the traveled distance with respect to the number of cycles. As is clear from FIG. 8, in the case of C, the characteristics are further improved as compared with the case of A. In the case of A, as mentioned above, the initial mileage is almost maintained up to about 200 cycles,
When the number of cycles further increases, the number of cycles starts to gradually decrease, and when the number of cycles reaches 600, the mileage sharply decreases. But C
In the case of, even if the number of cycles reaches 600, the traveling distance of about 70 to 80% of the initial state is still maintained. In the case of C, the number of times constant current charging (complementary charging) is performed is A
This is because the battery deterioration is slower than in the case of.
In the initial stage where the number of cycles is small, the traveling distance in A is often slightly larger than that in C. This is because the constant current charging is always performed in the case of A, whereas the constant current charging is performed in the case of C only under the predetermined condition, and thus a slight difference occurs in the battery capacity.

【0028】(実施例3)次に、実施例3について説明
する。図9はまだ劣化に至っていない正常な電池を第2
充電期間において定電流充電(補充電)する場合の、電
池温度とそのときの組電池1(図2)の端子間電圧値と
の関係を示すグラフである。このように、第2充電期間
開始後の正常な組電池1の電圧は電池温度に応じてほぼ
所定の値を有する。従って、ある電池温度に対して組電
池1の電圧は何Vであるべきかという基準電圧が設定で
きる。そこで、種々の電池温度に対する基準電圧を予め
ROM9(図2)に記憶させておく。図10は、前述の
Aの場合、Cの場合、そしてBの場合のそれぞれについ
て、サイクル数に対する電圧のずれの変化を示すグラフ
である。ここで、電圧のずれとは、図9の特性によって
決定されるところの、その時の電池温度に対する組電池
1の基準電圧からのずれ(+のずれ、すなわち増加)を
意味する。図10から明らかなように、Bの場合はサイ
クル数の増加と共に急速に電圧のずれが大きくなる。こ
れは電池の劣化が早いため内部抵抗が急速に増加してい
るからである。一方、Aの場合は、サイクル数が400
を超える頃から電圧のずれが急増する。Cの場合は電圧
のずれの増加が非常に遅いが、サイクル数600近傍で
は少し増加する。このように、電池の劣化は補充電時の
電圧が基準値からどの程度ずれているかを検出すること
により、知ることができる。このことに着目して充電を
制御したのが以下の方法である。
(Third Embodiment) Next, a third embodiment will be described. Figure 9 shows a normal battery that has not deteriorated yet.
It is a graph which shows the relationship between battery temperature and the voltage value between terminals of the assembled battery 1 (FIG. 2) at the time of constant current charge (complementary charge) in a charge period. As described above, the voltage of the normal assembled battery 1 after the start of the second charging period has a substantially predetermined value according to the battery temperature. Therefore, it is possible to set a reference voltage that is what voltage the voltage of the assembled battery 1 should be for a certain battery temperature. Therefore, reference voltages for various battery temperatures are stored in the ROM 9 (FIG. 2) in advance. FIG. 10 is a graph showing changes in the voltage shift with respect to the number of cycles in each of the case A, the case C, and the case B described above. Here, the voltage shift means a shift (shift of +, that is, increase) from the reference voltage of the assembled battery 1 with respect to the battery temperature at that time, which is determined by the characteristics of FIG. As is clear from FIG. 10, in the case of B, the deviation of the voltage rapidly increases as the number of cycles increases. This is because the internal resistance is rapidly increasing due to the rapid deterioration of the battery. On the other hand, in the case of A, the number of cycles is 400
The deviation of the voltage increases sharply from the time when the voltage exceeds the limit. In the case of C, the increase in the voltage shift is very slow, but it slightly increases in the vicinity of 600 cycles. In this way, the deterioration of the battery can be known by detecting how much the voltage at the time of supplementary charging deviates from the reference value. The following method controls the charging with this in mind.

【0029】図11は、実施例3における充電制御方法
を示すフローチャートである。なお、回路構成は図2の
実施例1の構成と同じであるのでその説明を省略する。
また、図11のステップS31〜S35はそれぞれ図3
のステップS11〜S15と同一であるので、説明を省
略する。図11において、ステップS35にて充電装置
12(図2)に信号を送って、定電流充電(補充電)が
開始されると、次のステップS36において組電池1の
電圧Vを読み、かつ、電池温度Tに対応する補充電時の
基準電圧Vrefを読む。次に、ステップS37において
V−Vrefの値を求め、それが所定値以下であるかどう
か判断する。所定値以下であればステップS38に進ん
で定電流充電をそのまま継続し、その後充電を終了す
る。一方、ステップS37において所定値を超えていれ
ばステップS39に進み、充電装置12に信号を送って
充電を中止し、表示装置11(図2)に警報出力を送
る。所定値を超えているのは、電池の容量の低下(劣
化)に伴って内部抵抗が大きくなり、充電時の電圧が上
昇しているからである。上記のようにして充電を中止す
る方法は、組電池1を構成する各モジュール101〜1
24(図2)において全体として均一に劣化が進行して
いる場合に、特に有効である。組電池1が全体として均
一に劣化した場合にはモジュール間の電圧格差が大きく
ならないため、電圧格差の増大を監視しても電池の劣化
を捉えることは困難だからである。
FIG. 11 is a flowchart showing a charge control method in the third embodiment. Since the circuit configuration is the same as that of the first embodiment shown in FIG. 2, its description is omitted.
In addition, steps S31 to S35 of FIG.
Since it is the same as steps S11 to S15, the description thereof will be omitted. In FIG. 11, when a signal is sent to the charging device 12 (FIG. 2) in step S35 to start constant current charging (complementary charging), the voltage V of the assembled battery 1 is read in the next step S36, and The reference voltage V ref at the time of supplementary charging corresponding to the battery temperature T is read. Next, in step S37, the value of V- Vref is obtained, and it is determined whether or not it is less than or equal to a predetermined value. If it is less than or equal to the predetermined value, the process proceeds to step S38, the constant current charging is continued as it is, and then the charging is ended. On the other hand, if the value exceeds the predetermined value in step S37, the process proceeds to step S39, a signal is sent to the charging device 12 to stop charging, and an alarm output is sent to the display device 11 (FIG. 2). The reason for exceeding the predetermined value is that the internal resistance increases as the capacity of the battery decreases (deteriorates), and the voltage during charging increases. The method of stopping charging as described above is performed by each of the modules 101 to 1 constituting the assembled battery 1.
24 (FIG. 2) is particularly effective when the deterioration progresses uniformly as a whole. This is because when the assembled battery 1 is uniformly deteriorated as a whole, the voltage difference between the modules does not increase, and it is difficult to detect the deterioration of the battery even if the increase in the voltage difference is monitored.

【0030】なお、上記実施例1〜3は密閉型ニッケル
・水素蓄電池の集合体からなる組電池を充電制御の対象
として説明したが、本発明の方法・装置は必ずしもこれ
に限るものではなく、鉛蓄電池やニッケル・カドミウム
蓄電池等の集合体からなる組電池に対しても適用可能で
ある。
Although the above-mentioned Examples 1 to 3 have been described with respect to the assembled battery composed of the assembly of the sealed nickel-hydrogen storage battery as the object of charge control, the method and apparatus of the present invention are not necessarily limited to this. It is also applicable to an assembled battery composed of an assembly such as a lead storage battery or a nickel-cadmium storage battery.

【0031】[0031]

【発明の効果】以上のように構成された本発明による組
電池の充電制御方法及び充電制御装置は、以下の効果を
奏する。
The charge control method and the charge control device for an assembled battery according to the present invention configured as described above have the following effects.

【0032】請求項1の組電池の充電制御方法では、最
初は、組電池に対して第1の条件での主たる充電を行
い、次に組電池の電池温度を検出し、組電池について、
その残容量と、その電池温度に対応する容量基準値とを
求め、残容量が容量基準値に達したとき充電電流を軽減
して第2の条件での補充電を行うので、電池温度を考慮
した適切な容量基準値に基づいて補充電への切り換えが
行われる。従って、補充電による充電量が大きすぎて著
しく過充電になるような事態を招かないので、電池の劣
化が遅くなり、電池の寿命を延ばすことができる。
In the charge control method for the assembled battery according to the first aspect, first, the assembled battery is mainly charged under the first condition, and then the battery temperature of the assembled battery is detected.
The remaining capacity and the capacity reference value corresponding to the battery temperature are obtained, and when the remaining capacity reaches the capacity reference value, the charging current is reduced to perform supplementary charging under the second condition. Switching to auxiliary charging is performed based on the appropriate capacity reference value. Therefore, the situation in which the amount of charge due to supplementary charging is too large and the battery is significantly overcharged does not occur, so that the deterioration of the battery is delayed and the life of the battery can be extended.

【0033】また、請求項2の組電池の充電制御方法で
は、モジュール電池のそれぞれについて両端間の電圧と
その電圧の変化率を求め、そして、残容量が容量基準値
に達したときの電圧のモジュール間格差及び電圧の変化
率のモジュール間格差の少なくとも一方が所定値を超え
るときは充電電流を軽減して第2の条件での補充電を行
い、所定値を超えないときは充電を終了するようにした
ので、モジュール電池の電圧のばらつきが少ないときに
はあえて補充電を行わない。従って、過充電になる場合
が少なくなるので、電池の劣化が遅くなって長寿命にな
る。
Further, in the charge control method for the assembled battery according to the second aspect, the voltage between both ends of each of the module batteries and the change rate of the voltage are obtained, and the voltage when the remaining capacity reaches the capacity reference value is calculated. When at least one of the inter-module disparity and the inter-module disparity of the voltage change rate exceeds a predetermined value, the charging current is reduced to perform supplementary charging under the second condition, and when it does not exceed the predetermined value, the charging is terminated. As a result, when the voltage variation of the module battery is small, the auxiliary charging is not intentionally performed. Therefore, the overcharge is less likely to occur, and the deterioration of the battery is delayed to prolong the service life.

【0034】また、請求項3の組電池の充電制御方法で
は、補充電を開始後に、組電池の両端間の電圧と、電池
温度に対応する補充電時の電圧基準値とを読み、その差
が所定値以下であれば補充電を継続し、所定値を超えて
いれば補充電を中止して警報出力を発するようにしたの
で、電池が劣化して内部抵抗が増加している場合にはそ
のことを迅速に検出して知らせることができ、また無駄
な補充電を行わずに済む。
Further, in the charge control method for the assembled battery according to the third aspect, after starting the auxiliary charging, the voltage across the assembled battery and the voltage reference value during the auxiliary charging corresponding to the battery temperature are read, and the difference between them is read. If the value is less than or equal to the predetermined value, supplementary charging is continued, and if it exceeds the predetermined value, supplementary charging is stopped and an alarm output is issued. This can be quickly detected and notified, and unnecessary use of supplementary charging can be avoided.

【0035】また、請求項4の組電池の充電制御装置で
は、電流検出手段により検出された電流を電池容量計測
手段が時間により積分処理して組電池の電池容量の初期
値に加減算することにより電池容量の残容量を求め、こ
の残容量が、組電池の電池温度に対応する容量基準値に
達したとき充電電流を軽減して補充電を開始する。従っ
て、電池温度を考慮した電池容量に基づいて充電条件の
切り換えが行われ、補充電による充電量が大きすぎて著
しく過充電になるような事態を招かない。この結果、電
池の劣化が遅くなり、電池の寿命を延ばすことができ
る。
Further, in the charge control device for the assembled battery according to the fourth aspect, the battery capacity measuring means integrates the current detected by the current detecting means by time to add or subtract the initial value of the battery capacity of the assembled battery. The remaining capacity of the battery capacity is obtained, and when the remaining capacity reaches the capacity reference value corresponding to the battery temperature of the assembled battery, the charging current is reduced and auxiliary charging is started. Therefore, the charging condition is switched based on the battery capacity in consideration of the battery temperature, and a situation in which the amount of charge by supplementary charging is too large and the battery is significantly overcharged does not occur. As a result, the deterioration of the battery is delayed and the life of the battery can be extended.

【0036】また、請求項5の組電池の充電制御装置
は、電流検出手段により検出された電流を電池容量計測
手段が時間により積分処理して組電池の電池容量の初期
値に加減算することにより電池容量の残容量を求め、こ
の残容量が電池温度に対応する容量基準値に達したと
き、電圧のモジュール間格差及び電圧の変化率の少なく
とも一方が所定値を超えていれば充電電流を軽減して補
充電を行い、所定値を超えていなければ即刻充電を終了
するように構成されている。この結果、モジュール電池
の電圧のばらつきが少ないときにはあえて補充電を行わ
ない。従って、過充電になる場合が少なくなるので、電
池の劣化が遅くなって長寿命になる。
Further, in the battery pack charge control device according to the present invention, the battery capacity measuring means integrates the current detected by the current detecting means by time to add or subtract the initial value of the battery capacity of the assembled battery. When the remaining capacity of the battery capacity is calculated and the remaining capacity reaches the capacity reference value corresponding to the battery temperature, the charging current is reduced if at least one of the difference between the modules of the voltage and the rate of change of the voltage exceeds a predetermined value. Then, the auxiliary charging is performed, and if the predetermined value is not exceeded, the charging is immediately terminated. As a result, when the voltage variation of the module battery is small, the supplementary charging is not intentionally performed. Therefore, the overcharge is less likely to occur, and the deterioration of the battery is delayed to prolong the service life.

【0037】また、請求項6の組電池の充電制御装置で
は、主たる充電によって組電池の残容量がその時の電池
温度に対応する容量基準値に達したとき充電電流を軽減
してさらに補充電を行う一方、組電池の電圧と、電池温
度に対する補充電時の電圧基準値との差を所定値と比較
し、その差が所定値を超えていれば補充電を中止する。
従って、電池が劣化して内部抵抗が増加している場合に
はそのことを迅速に検出して知らせることができ、また
無駄な補充電を行わずに済む。
Further, in the charge control device for the assembled battery according to the sixth aspect, when the remaining capacity of the assembled battery reaches the capacity reference value corresponding to the battery temperature at that time by the main charging, the charging current is reduced to further perform the supplementary charging. On the other hand, the difference between the voltage of the assembled battery and the voltage reference value at the time of supplementary charging with respect to the battery temperature is compared with a predetermined value, and if the difference exceeds the predetermined value, supplementary charging is stopped.
Therefore, when the battery is deteriorated and the internal resistance is increased, the fact can be detected and notified promptly, and useless auxiliary charging is not required.

【図面の簡単な説明】[Brief description of drawings]

【図1】組電池の内部回路構成を示す図である。FIG. 1 is a diagram showing an internal circuit configuration of an assembled battery.

【図2】本発明による組電池の充電制御装置の概略構成
を示すブロック回路図である。
FIG. 2 is a block circuit diagram showing a schematic configuration of a battery pack charge control device according to the present invention.

【図3】本発明の実施例1の充電制御方法を示すフロー
チャートである。
FIG. 3 is a flowchart showing a charge control method according to the first embodiment of the present invention.

【図4】組電池の電池温度に対応する本来の電池容量の
上限値を示すグラフである。
FIG. 4 is a graph showing the original upper limit value of the battery capacity corresponding to the battery temperature of the assembled battery.

【図5】実施例1に関して、組電池を搭載した電気自動
車の充電後の走行(可能)距離がサイクル数の増加にと
もなってどのように変化するかを示すグラフである。
FIG. 5 is a graph showing how the traveling (possible) distance after charging of an electric vehicle equipped with an assembled battery changes with an increase in the number of cycles for Example 1.

【図6】本発明の実施例2の充電制御方法を示すフロー
チャートである。
FIG. 6 is a flowchart showing a charge control method according to the second embodiment of the present invention.

【図7】実施例2に関して、組電池のエネルギー効率が
サイクル数の増加にともなってどのように変化するかを
示すグラフである。
FIG. 7 is a graph showing how the energy efficiency of the assembled battery changes with an increase in the number of cycles in Example 2.

【図8】実施例1及び2に関して、組電池を搭載した電
気自動車の充電後の走行(可能)距離がサイクル数の増
加にともなってどのように変化するかを示すグラフであ
る。
FIG. 8 is a graph showing how the traveling (possible) distance after charging of an electric vehicle equipped with an assembled battery changes with an increase in the number of cycles in Examples 1 and 2.

【図9】補充電時の電池温度と電圧の関係を示すグラフ
である。
FIG. 9 is a graph showing the relationship between battery temperature and voltage during supplementary charging.

【図10】図9に示す電圧からのずれがサイクル数の増
加にともなってどのように変化するかを示すグラフであ
る。
10 is a graph showing how the deviation from the voltage shown in FIG. 9 changes as the number of cycles increases.

【図11】本発明の実施例3の充電制御方法を示すフロ
ーチャートである。
FIG. 11 is a flowchart showing a charge control method according to the third embodiment of the present invention.

【図12】第1充電期間T1の後に充電条件を変えて補
充電たる第2充電期間T2をもつ2段階充電方式を採用
した場合の電池温度T、電池電圧V、充電電流I及び電
池温度の変化率dT/dtの特性を示すグラフである。
FIG. 12 shows the battery temperature T, the battery voltage V, the charging current I, and the battery temperature in the case of adopting a two-stage charging method having a second charging period T2 that is a supplementary charging by changing the charging condition after the first charging period T1. It is a graph which shows the characteristic of rate of change dT / dt.

【符号の説明】[Explanation of symbols]

1 組電池 2 温度センサ 3 電流センサ 4 電圧センサ 7 A/D変換器 8 CPU 9 ROM 10 充電制御回路 12 充電装置 101〜124 モジュール 201〜224 電圧検出回路 1 assembled battery 2 temperature sensor 3 current sensor 4 voltage sensor 7 A / D converter 8 CPU 9 ROM 10 charging control circuit 12 charging device 101-124 module 201-224 voltage detection circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 登 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 高田 寛治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Noboru Ito 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor, Kanji Takada 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の蓄電池の集合体からなる組電池の
充電制御方法であって、 前記組電池に対して第1の条件での主たる充電を行うス
テップと、 前記組電池の電池温度を検出し、前記組電池について、
その残容量と、その電池温度に対応する容量基準値とを
求めるステップと、 前記残容量が前記容量基準値に達したとき充電電流を軽
減して第2の条件での補充電を行うステップと、 を備えたことを特徴とする組電池の充電制御方法。
1. A charging control method for an assembled battery comprising an assembly of a plurality of storage batteries, the main charging being performed on the assembled battery under a first condition, and detecting a battery temperature of the assembled battery. Then, regarding the assembled battery,
Determining the remaining capacity and a capacity reference value corresponding to the battery temperature; reducing the charging current when the remaining capacity reaches the capacity reference value, and performing supplementary charging under the second condition. A charging control method for an assembled battery, comprising:
【請求項2】 複数の蓄電池を直列に接続してなるモジ
ュール電池の集合体からなる組電池の充電制御方法であ
って、 前記組電池に対して第1の条件での主たる充電を行うス
テップと、 前記組電池の電池温度を検出し、前記組電池について、
その残容量と、その電池温度に対応する容量基準値とを
求め、かつ、前記モジュール電池のそれぞれについて両
端間の電圧とその電圧の変化率とを求めるステップと、 前記残容量が前記容量基準値に達したときの前記電圧の
モジュール間格差及び前記電圧の変化率のモジュール間
格差の少なくとも一方が所定値を超えるときは充電電流
を軽減して第2の条件での補充電を行い、前記所定値を
超えないときは充電を終了するステップと、 を備えたことを特徴とする組電池の充電制御方法。
2. A charging control method for an assembled battery comprising a group of modular batteries formed by connecting a plurality of storage batteries in series, the main charging being performed on the assembled battery under a first condition. , Detecting the battery temperature of the assembled battery, for the assembled battery,
Obtaining the remaining capacity and a capacity reference value corresponding to the battery temperature, and determining the voltage between both ends of each of the module batteries and the rate of change of the voltage, and the remaining capacity is the capacity reference value. When at least one of the inter-module difference in the voltage and the inter-module difference in the rate of change of the voltage exceeds a predetermined value, the charging current is reduced to perform supplementary charging under the second condition, A method of controlling charging of an assembled battery, comprising: terminating charging when the value does not exceed a value.
【請求項3】 前記補充電を行うステップの後に、前記
組電池の両端間の電圧と、電池温度に対応する補充電時
の電圧基準値とを読み、その差が所定値以下であれば補
充電を継続し、所定値を超えていれば補充電を中止して
警報出力を発するステップをさらに有することを特徴と
する請求項1の組電池の充電方法。
3. After the step of performing the supplementary charge, the voltage across the assembled battery and the voltage reference value during supplementary charging corresponding to the battery temperature are read. 2. The method of charging an assembled battery according to claim 1, further comprising the step of continuing charging, stopping supplementary charging if a predetermined value is exceeded, and issuing an alarm output.
【請求項4】 複数の蓄電池の集合体からなる組電池の
ための充電制御装置であって、 前記組電池の充放電電流を検出する電流検出手段と、 前記電流検出手段によって検出された電流を時間により
積分処理して前記組電池の電池容量の初期値に加減算す
ることにより電池容量の残容量を求める電池容量計測手
段と、 前記組電池の電池温度を検出する電池温度検出手段と、 前記残容量が、電池温度に対応する容量基準値に達した
とき所定の出力を生じる判断手段と、 前記組電池の両端に接続されて充電を行い、前記出力を
受けて充電電流を軽減しつつ補充電を行う充電装置と、 を備えたことを特徴とする組電池の充電制御装置。
4. A charge control device for an assembled battery composed of an assembly of a plurality of storage batteries, comprising: current detection means for detecting a charge / discharge current of the assembled battery; and current detected by the current detection means. A battery capacity measuring unit for calculating a remaining capacity of the battery capacity by adding and subtracting an integral value to the initial value of the battery capacity of the assembled battery; a battery temperature detecting unit for detecting a battery temperature of the assembled battery; Judgment means for producing a predetermined output when the capacity reaches a capacity reference value corresponding to the battery temperature, and is connected to both ends of the assembled battery for charging, and receives the output to reduce the charging current and supplementary charge A charging control device for an assembled battery, comprising:
【請求項5】 複数のモジュール電池の直列集合体から
なる組電池のための充電制御装置であって、 前記組電池の充放電電流を検出する電流検出手段と、 前記電流検出手段によって検出された電流を時間により
積分処理して前記組電池の電池容量の初期値に加減算す
ることにより電池容量の残容量を求める電池容量計測手
段と、 前記組電池の電池温度を検出する電池温度検出手段と、 前記複数のモジュール電池のそれぞれの両端間の電圧を
検出する電圧検出手段と、 前記残容量が、電池温度に対応する容量基準値に達した
とき、前記電圧のモジュール間格差及び前記電圧の変化
率の少なくとも一方が所定値を超えていれば第1の信号
を、超えていなければ第2の信号をそれぞれ生じる判断
手段と、 前記組電池の両端に接続されて充電を行い、前記第1の
信号を受けた場合は充電電流を軽減しつつ補充電を行
い、前記第2の信号を受けた場合は充電を終了する充電
装置と、 を備えたことを特徴とする組電池の充電制御装置。
5. A charging control device for an assembled battery comprising a series assembly of a plurality of module batteries, the current detection means detecting a charging / discharging current of the assembled battery, and the current detection means detecting the current. A battery capacity measuring unit that calculates a remaining capacity of the battery capacity by adding and subtracting an initial value of the battery capacity of the assembled battery by integrating the current with time; and a battery temperature detection unit that detects a battery temperature of the assembled battery, Voltage detection means for detecting a voltage across each of the plurality of module batteries; and, when the remaining capacity reaches a capacity reference value corresponding to a battery temperature, an inter-module difference in the voltage and a change rate of the voltage. If at least one of the two exceeds a predetermined value, the first signal is generated, and if it is not exceeded, a second signal is generated. And a charging device that performs supplementary charging while reducing the charging current when receiving the first signal and terminates charging when receiving the second signal. Charge control device.
【請求項6】 複数のモジュール電池の直列集合体から
なる組電池のための充電制御装置であって、 前記組電池の充放電電流を検出する電流検出手段と、 前記電流検出手段によって検出された電流を時間により
積分処理して前記組電池の電池容量の初期値に加減算す
ることにより電池容量の残容量を求める電池容量計測手
段と、 前記組電池の両端間の電圧を検出する電圧検出手段と、 前記組電池の電池温度を検出する電池温度検出手段と、 前記残容量と、電池温度に対応する容量基準値とを比較
し、前記残容量が前記容量基準値に達したとき第1の信
号を出力する容量比較手段と、 前記電圧と、電池温度に対する電圧基準値との差を所定
値と比較し、その差が所定値を超えていれば第2の信号
を出力する電圧比較手段と、 前記組電池の両端に接続されて充電を行い、前記第1の
信号を受けた場合は充電電流を軽減した補充電を開始
し、前記第2の信号を受けた場合は充電を中止する充電
装置と、 を備えたことを特徴とする組電池の充電制御装置。
6. A charge control device for an assembled battery comprising a series assembly of a plurality of module batteries, the current detection means detecting a charge / discharge current of the assembled battery, and the current detection means. A battery capacity measuring means for obtaining a remaining capacity of the battery capacity by adding and subtracting an initial value of the battery capacity of the assembled battery by integrating the current with time; and a voltage detecting means for detecting a voltage between both ends of the assembled battery. A battery temperature detecting means for detecting a battery temperature of the assembled battery; and comparing the remaining capacity with a capacity reference value corresponding to the battery temperature, and when the remaining capacity reaches the capacity reference value, a first signal A capacity comparison means for outputting the voltage, and a voltage comparison means for comparing the difference between the voltage and a voltage reference value with respect to the battery temperature with a predetermined value, and outputting a second signal if the difference exceeds a predetermined value, Both of the battery pack A charging device that is connected to the battery for charging, starts supplementary charging with a reduced charging current when receiving the first signal, and stops charging when receiving the second signal. A battery pack charge control device characterized by the above.
JP30116794A 1994-12-05 1994-12-05 Charge control method and charge control device for assembled battery Expired - Lifetime JP3157688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30116794A JP3157688B2 (en) 1994-12-05 1994-12-05 Charge control method and charge control device for assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30116794A JP3157688B2 (en) 1994-12-05 1994-12-05 Charge control method and charge control device for assembled battery

Publications (2)

Publication Number Publication Date
JPH08163786A true JPH08163786A (en) 1996-06-21
JP3157688B2 JP3157688B2 (en) 2001-04-16

Family

ID=17893605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30116794A Expired - Lifetime JP3157688B2 (en) 1994-12-05 1994-12-05 Charge control method and charge control device for assembled battery

Country Status (1)

Country Link
JP (1) JP3157688B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999018626A1 (en) * 1997-10-06 1999-04-15 Matsushita Electric Industrial Co., Ltd. Battery power supply
JPH11195435A (en) * 1997-12-29 1999-07-21 Sony Corp Charging device
KR20010089252A (en) * 2000-03-14 2001-09-29 가나이 쓰토무 Electric power system
JP2011109824A (en) * 2009-11-18 2011-06-02 Sharp Corp Method for controlling charge, charge control computer program, device for controlling charge, secondary battery system, secondary battery power supply, and battery application device
CN103872709A (en) * 2012-12-10 2014-06-18 联想(北京)有限公司 Charging method and electronic device
JP2018152285A (en) * 2017-03-14 2018-09-27 株式会社東芝 Storage battery pack
JP2022502984A (en) * 2019-08-30 2022-01-11 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co., Ltd. Mobile terminal charging methods, devices, terminals, programs and storage media
CN115276193A (en) * 2022-09-29 2022-11-01 中赣通信(集团)有限公司 Charging pile segmented charging method and system based on power line carrier

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999018626A1 (en) * 1997-10-06 1999-04-15 Matsushita Electric Industrial Co., Ltd. Battery power supply
US6225788B1 (en) * 1997-10-06 2001-05-01 Matsushita Electric Industrial Co., Ltd. Battery power source device
US6344728B1 (en) 1997-10-06 2002-02-05 Matsushita Electric Industrial Co., Ltd. Battery power source supply with coolant flow
KR100530260B1 (en) * 1997-10-06 2005-11-22 마츠시타 덴끼 산교 가부시키가이샤 Battery power supply
JPH11195435A (en) * 1997-12-29 1999-07-21 Sony Corp Charging device
KR20010089252A (en) * 2000-03-14 2001-09-29 가나이 쓰토무 Electric power system
JP2011109824A (en) * 2009-11-18 2011-06-02 Sharp Corp Method for controlling charge, charge control computer program, device for controlling charge, secondary battery system, secondary battery power supply, and battery application device
CN103872709A (en) * 2012-12-10 2014-06-18 联想(北京)有限公司 Charging method and electronic device
JP2018152285A (en) * 2017-03-14 2018-09-27 株式会社東芝 Storage battery pack
US10673255B2 (en) 2017-03-14 2020-06-02 Kabushiki Kaisha Toshiba Battery pack and computer-implement battery pack control method
JP2022502984A (en) * 2019-08-30 2022-01-11 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co., Ltd. Mobile terminal charging methods, devices, terminals, programs and storage media
US11444477B2 (en) 2019-08-30 2022-09-13 Beijing Xiaomi Mobile Software Co., Ltd. Constant power charging method and device for mobile terminal
CN115276193A (en) * 2022-09-29 2022-11-01 中赣通信(集团)有限公司 Charging pile segmented charging method and system based on power line carrier
CN115276193B (en) * 2022-09-29 2022-12-23 中赣通信(集团)有限公司 Charging pile segmented charging method and system based on power line carrier

Also Published As

Publication number Publication date
JP3157688B2 (en) 2001-04-16

Similar Documents

Publication Publication Date Title
US8493031B2 (en) Equalization device, battery system and electric vehicle including the same, equalization processing program, and equalization processing method
US8497661B2 (en) Equalization device, equalization processing program, battery system, electric vehicle and equalization processing method
JP4523738B2 (en) Secondary battery remaining capacity control method and apparatus
US6642692B2 (en) Charge equalizing device for power storage unit
US7443138B2 (en) Battery control device for equalization of cell voltages
JP3934365B2 (en) Battery charge / discharge control method
US20140021923A1 (en) Electrical storage system, and control method for electrical storage system
US20030178970A1 (en) Battery control device
JPWO2002025761A1 (en) Hybrid power supply
KR101073277B1 (en) Method and apparatus of balancing cell in battery pack of hev
JPH1032936A (en) Control system and method for power supply
WO1995015604A1 (en) Method and apparatus for automatic equalization of series-connected batteries
JP2003219572A (en) Battery pack system
JP2003032908A (en) Capacitor battery pack, control method and controller thereof, and automotive storage system
KR100341754B1 (en) Controlling method for battery charge of electric vehicle
CN103563206A (en) Electricity storage system
JP2005151720A (en) Cell balance correcting device, secondary battery, method of correcting cell balance and cell balance correcting program
JP2008092656A (en) Power supply for vehicle
JP2010273413A (en) Device for controlling battery pack
WO2010010662A1 (en) Imbalance determination circuit, power supply device, and imbalance determination method
JP2001314046A (en) Charging apparatus and method of battery pack and electric vehicle
JPH08163786A (en) Method and apparatus for controlling charging of battery bank
JP2001186682A (en) Method of controlling discharge of battery
JP2003339124A (en) Power supply unit for vehicle
JP2006079962A (en) Capacity adjusting device for battery stack

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 13

EXPY Cancellation because of completion of term