JPH0878019A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH0878019A
JPH0878019A JP6238341A JP23834194A JPH0878019A JP H0878019 A JPH0878019 A JP H0878019A JP 6238341 A JP6238341 A JP 6238341A JP 23834194 A JP23834194 A JP 23834194A JP H0878019 A JPH0878019 A JP H0878019A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
iron oxide
containing iron
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6238341A
Other languages
Japanese (ja)
Inventor
Mikiya Yamazaki
幹也 山崎
Mayumi Uehara
真弓 上原
Yoshihiro Shoji
良浩 小路
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6238341A priority Critical patent/JPH0878019A/en
Publication of JPH0878019A publication Critical patent/JPH0878019A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE: To provide a nonaqueous electrolyte battery having practically usable large discharge capacity by using a lithium-containing iron oxide having a specified specific surface area or a specified average particle size as a positive electrode active material. CONSTITUTION: A nonaqueous electrolyte battery has a negative electrode using a material capable of absorbing/desorbing a lithium ion or metallic lithium as a negative electrode material and a positive electrode using a lithium- containing iron oxide represented by a composition formula of Lix FeOy (0<x<=1.5, 1.8<y<2.2) as a positive electrode active material. The lithium- containing iron oxide is required to have a BET specific surface area of 0.5 to 20.5m<2> /g, preferably 12 to 20m<2> /g. When average particle size is limited, the average particle size as determined by laser diffraction is 0.4 to 10μm, preferably 0.5 to 3μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質電池に係わ
り、詳しくは正極活物質として安価なリチウム含有鉄酸
化物を使用し、しかも放電容量の大きい非水電解質電池
を得ることを目的とした、リチウム含有鉄酸化物の改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly, to an inexpensive non-aqueous electrolyte battery using a lithium-containing iron oxide as a positive electrode active material and having a large discharge capacity. And an improvement of lithium-containing iron oxide.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
非水電解質電池の正極活物質の一つとして、組成式Li
x FeOy (0<x≦1.5、1.8<y<2.2)で
表されるリチウム含有鉄酸化物が、LiCoO2 、Li
NiO2 などに比べて原料コストが安いことから、見直
されつつある。而して、従来は、リチウム含有鉄酸化物
として、比表面積のかなり大きいもの(21m2 /g以
上のもの)が使用されていた。しかし、かかるリチウム
含有鉄酸化物を正極活物質として使用した従来の非水電
解質電池には、正極活物質の単位重量当たりの放電容量
が20〜30mAh/g程度と極めて小さいため、実用
化し得ないという問題があった。
2. Description of the Related Art In recent years,
As one of the positive electrode active materials for non-aqueous electrolyte batteries, the composition formula Li
The lithium-containing iron oxide represented by x FeO y (0 <x ≦ 1.5, 1.8 <y <2.2) is LiCoO 2 , Li.
Since the raw material cost is lower than that of NiO 2 etc., it is being reviewed. Thus, conventionally, a lithium-containing iron oxide having a considerably large specific surface area (21 m 2 / g or more) has been used. However, a conventional non-aqueous electrolyte battery using such a lithium-containing iron oxide as a positive electrode active material cannot be put into practical use because the discharge capacity per unit weight of the positive electrode active material is about 20 to 30 mAh / g. There was a problem.

【0003】本発明は、この問題を解決するべくなされ
たものであって、その目的とするところは、実用可能な
程度に大きな放電容量を有するリチウム含有鉄酸化物を
正極活物質とする正極を備えた非水電解質電池を提供す
るにある。
The present invention has been made to solve this problem, and an object thereof is to provide a positive electrode using a lithium-containing iron oxide having a practically large discharge capacity as a positive electrode active material. It is to provide a non-aqueous electrolyte battery provided.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水電解質電池(以下、「本発明電池」
と称する。)は、リチウムイオンを吸蔵及び放出するこ
とが可能な物質又は金属リチウムを負極材料とする負極
と、組成式Lix FeOy (0<x≦1.5、1.8<
y<2.2)で表されるリチウム含有鉄酸化物を正極活
物質とする正極とを備えた非水電解質電池において、前
記リチウム含有鉄酸化物のBET法による比表面積が
0.5〜20.5m2 /gであることを特徴とする。
[Means for Solving the Problems] The non-aqueous electrolyte battery according to the present invention (hereinafter, referred to as "the present battery") for achieving the above object.
Called. ) Is a substance capable of inserting and extracting lithium ions or a negative electrode using metallic lithium as a negative electrode material, and a composition formula Li x FeO y (0 <x ≦ 1.5, 1.8 <
In a non-aqueous electrolyte battery including a positive electrode using a lithium-containing iron oxide represented by y <2.2) as a positive electrode active material, the lithium-containing iron oxide has a specific surface area of 0.5 to 20 according to the BET method. It is characterized in that it is 0.5 m 2 / g.

【0005】BET(Brunauer-Emmett-Teller)法と
は、吸着等温線上で単分子層吸着量を求め、吸着分子の
断面積から表面積を決定して比表面積を算出する方法で
ある。
The BET (Brunauer-Emmett-Teller) method is a method in which the adsorption amount of a monomolecular layer is determined on the adsorption isotherm and the surface area is determined from the cross-sectional area of the adsorbed molecule to calculate the specific surface area.

【0006】本発明におけるリチウム含有鉄酸化物の比
表面積が0.5〜20.5m2 /gに限定されるのは、
後述する実施例に示すように、比表面積がこの範囲にあ
るものを使用した場合に大きな放電容量が得られるから
である。好適な比表面積は、12〜20m2 /gであ
る。
The specific surface area of the lithium-containing iron oxide in the present invention is limited to 0.5 to 20.5 m 2 / g.
This is because a large discharge capacity can be obtained when a material having a specific surface area within this range is used, as shown in Examples described later. A suitable specific surface area is 12 to 20 m 2 / g.

【0007】比表面積が0.5〜20.5m2 /gのリ
チウム含有鉄酸化物の平均粒径は、0.4〜10μmで
あり、また比表面積が12〜20m2 /gのリチウム含
有鉄酸化物の平均粒径は、0.5〜3μmである。
The lithium-containing iron oxide having a specific surface area of 0.5 to 20.5 m 2 / g has an average particle size of 0.4 to 10 μm, and the lithium-containing iron oxide has a specific surface area of 12 to 20 m 2 / g. The average particle size of the oxide is 0.5 to 3 μm.

【0008】上記平均粒径は、各粒子を球状と見做して
レーザー回折法により求められる50%体積基準の平均
粒径である。
The above average particle diameter is an average particle diameter on a 50% volume basis, which is determined by a laser diffraction method by regarding each particle as a spherical shape.

【0009】比表面積が大きくなるほど、すなわち平均
粒径が小さくなるほど、単位重量当たりの非水電解液と
の反応面積が大きくなるので、大きな放電容量が得られ
ると思われがちであるにもかかわらず、何故比表面積が
20.5m2 /gを超えた場合、すなわち平均粒径が
0.4μm未満の場合に放電容量が小さくなるのかにつ
いては、本発明者らにおいても必ずしも明らかではない
が、比表面積が20.5m2 /gを超えて大きくなり過
ぎると(すなわち平均粒径が0.4μm未満と小さくな
り過ぎると)、リチウム含有鉄酸化物と電解液とが反応
して電解液が分解するためと推察される。
The larger the specific surface area, that is, the smaller the average particle diameter, the larger the reaction area per unit weight with the non-aqueous electrolyte, so that a large discharge capacity tends to be obtained. The reason why the discharge capacity decreases when the specific surface area exceeds 20.5 m 2 / g, that is, when the average particle size is less than 0.4 μm is not necessarily clear to the present inventors, but If the surface area exceeds 20.5 m 2 / g and becomes too large (that is, the average particle size becomes too small, less than 0.4 μm), the lithium-containing iron oxide reacts with the electrolytic solution to decompose the electrolytic solution. It is supposed to be because.

【0010】本発明におけるリチウム含有鉄酸化物は、
例えば、炭酸リチウム(Li2 CO3 )と酸化鉄(III)
(Fe2 3 )とを、所定のモル比で混合した後、空気
中で加熱処理したものを、さらにその比表面積が0.5
〜20.5m2 /g、すなわち平均粒径が0.4〜10
μmの範囲内となるように粉砕することにより得られ
る。
The lithium-containing iron oxide in the present invention is
For example, lithium carbonate (Li 2 CO 3 ) and iron (III) oxide
(Fe 2 O 3 ) was mixed at a predetermined molar ratio and then heat-treated in air, and the specific surface area was 0.5.
~ 20.5 m 2 / g, that is, the average particle size is 0.4 to 10
It is obtained by pulverizing so as to be in the range of μm.

【0011】本発明における正極は、例えば、比表面積
又は平均粒径が特定の範囲内にあるリチウム含有鉄酸化
物と、アセチレンブラック、カーボンブラック等の導電
剤と、ポリテトラフルオロエチレン(PTFE)、ポリ
フッ化ビニリデン(PVdF)等の結着剤とを、通常、
重量比80〜90:5〜15:4〜15で混合して正極
合剤とした後、所定の圧力(通常、0.5〜2.5トン
/cm2 )で加圧成型することにより作製される。
The positive electrode in the present invention includes, for example, a lithium-containing iron oxide having a specific surface area or average particle diameter within a specific range, a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), Usually, a binder such as polyvinylidene fluoride (PVdF)
Produced by mixing at a weight ratio of 80 to 90: 5 to 15: 4 to 15 to form a positive electrode mixture, and then pressure molding at a predetermined pressure (usually 0.5 to 2.5 tons / cm 2 ). To be done.

【0012】本発明における負極材料は、リチウムイオ
ンを吸蔵及び放出することが可能な物質又は金属リチウ
ムである。リチウムイオンを吸蔵及び放出することが可
能な物質としては、Li−Al合金、Li−Sn合金、
Li−Pb合金等のリチウム合金;黒鉛、コークス等の
炭素材料;リチウム・ニオブ複合酸化物、リチウム・チ
タン複合酸化物等の正極に対して低い電位を示す金属酸
化物が例示される。炭素材料などの粉体は、例えば、こ
れと、結着剤と、必要に応じて加えられる導電剤とを、
通常、重量比80〜90:6〜15:4〜10程度で混
合して負極合剤として使用される。
The negative electrode material in the present invention is a substance or metallic lithium capable of inserting and extracting lithium ions. Examples of substances capable of inserting and extracting lithium ions include Li-Al alloys, Li-Sn alloys,
Examples include lithium alloys such as Li-Pb alloys; carbon materials such as graphite and coke; and metal oxides having a low potential with respect to the positive electrode such as lithium-niobium composite oxides and lithium-titanium composite oxides. The powder of a carbon material or the like may be prepared by, for example, adding this, a binder, and a conductive agent added if necessary,
Usually, the mixture is used at a weight ratio of 80 to 90: 6 to 15: 4 to 10 and used as a negative electrode mixture.

【0013】上述の如く、本発明は、正極活物質とし
て、特定範囲の比表面積又は平均粒径を有するリチウム
含有鉄酸化物を使用した点に特徴を有する。それ故、非
水電解質、セパレータ(液体電解質を使用する場合)な
どの電池を構成する他の部材については、従来、非水電
解質電池用として実用され、あるいは提案されている種
々の材料を使用することができる。
As described above, the present invention is characterized in that a lithium-containing iron oxide having a specific surface area or average particle diameter within a specific range is used as the positive electrode active material. Therefore, for other members constituting the battery such as the non-aqueous electrolyte and the separator (when the liquid electrolyte is used), various materials conventionally used or proposed for the non-aqueous electrolyte battery are used. be able to.

【0014】例えば、非水電解質の溶媒としては、エチ
レンカーボネート、ビニレンカーボネート、プロピレン
カーボネートなどの有機溶媒や、これらとジエチルカー
ボネート、ジメチルカーボネート、1,2−ジメトキシ
エタン、1,2−ジエトキシエタン、エトキシメトキシ
エタンなどの低沸点溶媒との混合溶媒が例示される。ま
た、固体電解質を用いることも可能である。
For example, as the solvent for the non-aqueous electrolyte, organic solvents such as ethylene carbonate, vinylene carbonate and propylene carbonate, and these and diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, A mixed solvent with a low boiling point solvent such as ethoxymethoxyethane is exemplified. It is also possible to use a solid electrolyte.

【0015】[0015]

【作用】本発明電池においては、特定の比表面積又は平
均粒径を有するリチウム含有鉄酸化物が正極活物質とし
て使用されているので、正極のリチウムイオンの吸蔵及
び放出量が多い。
In the battery of the present invention, the lithium-containing iron oxide having a specific surface area or average particle size is used as the positive electrode active material, so that the positive electrode has a large amount of occlusion and release of lithium ions.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0017】(実施例1) 〔正極の作製〕炭酸リチウム(Li2 CO3 )と酸化鉄
(III) (Fe2 3 )とを、モル比1:1で混合した
後、空気中において850°Cで20時間加熱処理し
て、塊状のLiFeO2 (リチウム含有鉄酸化物)を得
た。
Example 1 [Preparation of Positive Electrode] Lithium carbonate (Li 2 CO 3 ) and iron oxide
(III) (Fe 2 O 3 ) was mixed at a molar ratio of 1: 1 and then heat-treated in air at 850 ° C. for 20 hours to obtain massive LiFeO 2 (lithium-containing iron oxide). .

【0018】このLiFeO2 を石川式らいかい乳鉢で
8時間粉砕して平均粒径0.4μm(BET法による比
表面積20.5m2 /g)のLiFeO2 粉末を得た。
This LiFeO 2 was pulverized for 8 hours in an Ishikawa type mortar mortar to obtain LiFeO 2 powder having an average particle size of 0.4 μm (specific surface area by BET method: 20.5 m 2 / g).

【0019】比表面積の測定には、島津−マイクロメリ
テックス社製の比表面積測定装置2200型(容量法、
液体窒素の沸点における窒素吸着法)を使用した。
For measuring the specific surface area, a specific surface area measuring apparatus Model 2200 (capacity method, manufactured by Shimadzu Micromeritex Co., Ltd.
The nitrogen adsorption method at the boiling point of liquid nitrogen) was used.

【0020】上記LiFeO2 粉末と、導電剤としての
アセチレンブラックと、結着剤としてのポリフッ化ビニ
リデンとを、重量比90:6:4で混合して正極合剤を
調製し、この正極合剤を2トン/cm2 の圧力で直径2
0mmの円盤状に加圧成型した後、250°Cで2時間
熱処理して正極を作製した。
The above LiFeO 2 powder, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder were mixed at a weight ratio of 90: 6: 4 to prepare a positive electrode mixture, and this positive electrode mixture was prepared. With a pressure of 2 tons / cm 2 and a diameter of 2
After pressure-molding into a 0 mm disk shape, heat treatment was performed at 250 ° C. for 2 hours to produce a positive electrode.

【0021】〔負極の作製〕リチウム圧延板を直径20
mmの円盤状に打ち抜いて負極を作製した。
[Preparation of Negative Electrode] A rolled lithium plate having a diameter of 20
A negative electrode was produced by punching out into a disc shape of mm.

【0022】〔電解液の調製〕プロピレンカーボネート
(PC)と1,2−ジメトキシエタン(DME)との等
体積混合溶媒に、過塩素酸リチウム(LiClO4 )を
1モル/リットルの割合で溶かして非水電解液を調製し
た。
[Preparation of Electrolyte Solution] Lithium perchlorate (LiClO 4 ) was dissolved in a mixed solvent of equal volume of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) at a ratio of 1 mol / liter. A non-aqueous electrolyte was prepared.

【0023】〔非水電解質電池の組立〕上記の正負両極
及び非水電解液を使用して、扁平型の非水電解質電池
(本発明電池)BA1(電池寸法:直径24.0mm、
厚さ3.0mm)を組み立てた。なお、セパレータとし
ては、ポリプロピレン製の微多孔膜を使用し、これに先
の非水電解液を含浸させた。
[Assembly of Non-Aqueous Electrolyte Battery] A flat non-aqueous electrolyte battery (battery of the present invention) BA1 (battery size: diameter 24.0 mm, using the positive and negative electrodes and the non-aqueous electrolyte solution)
Thickness 3.0 mm) was assembled. As the separator, a polypropylene microporous film was used, which was impregnated with the above non-aqueous electrolyte solution.

【0024】図1は、組み立てた本発明電池BA1の断
面図であり、同図に示す本発明電池BA1は、正極1、
負極2、これらを互いに離間するセパレータ3、正極缶
4、負極缶5、正極集電体6、負極集電体7及びポリプ
ロピレン製の絶縁パッキング8などからなる。
FIG. 1 is a sectional view of the assembled battery BA1 of the present invention. The battery BA1 of the present invention shown in FIG.
The negative electrode 2, a separator 3 separating them from each other, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7, an insulating packing 8 made of polypropylene, and the like.

【0025】正極1及び負極2は、非水電解液を含浸し
たセパレータ3を介して対向して正負極缶4、5が形成
する電池ケース内に収納されており、正極1は正極集電
体6を介して正極缶4に、また、負極2は負極集電体7
を介して負極缶5に接続され、電池内部に生じた化学エ
ネルギーを正極缶4及び負極缶5の両端子から電気エネ
ルギーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed by positive and negative electrode cans 4 and 5 facing each other with a separator 3 impregnated with a non-aqueous electrolytic solution interposed therebetween. The positive electrode 1 is a positive electrode current collector. 6 to the positive electrode can 4 and the negative electrode 2 to the negative electrode current collector 7
It is connected to the negative electrode can 5 via the so that the chemical energy generated inside the battery can be taken out as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5.

【0026】(実施例2〜8)粉砕時間を、6、5、
4、3、2、1、0.5時間と変えて、順に平均粒径
0.5、1、2、3、5、8、10μm(比表面積は、
順に20、18、15、12、8、2、0.5m2
g)のLiFeO2 粉末を作製し、これらを平均粒径
0.4μm(比表面積20.5m2 /g)のLiFeO
2 粉末に代えて使用したこと以外は、実施例1と同様に
して、順に本発明電池BA2〜BA8を作製した。
(Examples 2 to 8) The grinding time was 6, 5,
4, 3, 2, 1, 0.5 hours, and the average particle size is 0.5, 1, 2, 3, 5, 8, 10 μm in order (specific surface area:
20, 18, 15, 12, 8, 2, 0.5m 2 /
g) LiFeO 2 powder was prepared, and these were made into LiFeO having an average particle size of 0.4 μm (specific surface area 20.5 m 2 / g).
Inventive batteries BA2 to BA8 were sequentially manufactured in the same manner as in Example 1 except that 2 powders were used instead.

【0027】(比較例1,2)粉砕時間を、10時間、
20分間と変えて、順に平均粒径0.3、12μm、
(比表面積は、順に21、0.3m2 /g)のLiFe
2 粉末を作製し、これらを平均粒径0.4μm(比表
面積20.5m2 /g)のLiFeO2 粉末に代えて使
用したこと以外は、実施例1と同様にして、順に比較電
池BC1、BC2を作製した。
(Comparative Examples 1 and 2) Grinding time was 10 hours,
Change to 20 minutes, average particle size 0.3, 12 μm,
(Specific surface areas are 21, 0.3 m 2 / g in that order) LiFe
Comparative battery BC1 was prepared in the same manner as in Example 1 except that O 2 powder was prepared and used in place of LiFeO 2 powder having an average particle size of 0.4 μm (specific surface area 20.5 m 2 / g). , BC2 were produced.

【0028】〔放電容量〕本発明電池BA1〜BA8、
比較電池BC1,BC2について、1mAで終止電圧
4.3Vまで充電した後、1mAで終止電圧3.0Vま
で放電した場合の正極活物質(LiFeO2 粉末)1g
当たりの放電容量を調べた。結果を図2及び図3に示
す。
[Discharge Capacity] Batteries BA1 to BA8 of the present invention,
Regarding Comparative Batteries BC1 and BC2, 1 g of a positive electrode active material (LiFeO 2 powder) in the case of charging to a final voltage of 4.3 V at 1 mA and then discharging to a final voltage of 3.0 V at 1 mA
The discharge capacity per hit was examined. The results are shown in FIGS. 2 and 3.

【0029】図2は、縦軸に正極活物質1g当たりの放
電容量(mAh/g)を、また横軸に正極活物質の平均
粒径(μm)をとって表したグラフである。また、図3
は、縦軸に正極活物質1g当たりの放電容量(mAh/
g)を、また、横軸に正極活物質の比表面積(m2
g)をとって表したグラフである。
FIG. 2 is a graph in which the vertical axis represents the discharge capacity (mAh / g) per 1 g of the positive electrode active material, and the horizontal axis represents the average particle size (μm) of the positive electrode active material. Also, FIG.
Is the discharge capacity per 1 g of the positive electrode active material (mAh /
g), and the horizontal axis indicates the specific surface area of the positive electrode active material (m 2 /
It is the graph which took and represented g).

【0030】図2より、平均粒径が0.4〜10μm、
すなわち比表面積が0.5〜20.5m2 /gのLiF
eO2 粉末を使用した本発明電池BA1〜BA8は、平
均粒径又は比表面積がこの範囲を外れるLiFeO2
末を使用した比較電池BC1,BC2に比し、放電容量
が大きいことが分かる。
From FIG. 2, the average particle size is 0.4 to 10 μm,
That is, LiF having a specific surface area of 0.5 to 20.5 m 2 / g
eO 2 powder present battery using BA1~BA8, the average particle size or than the comparative batteries BC1, BC2 having a specific surface area were used LiFeO 2 powder outside this range, it can be seen discharge capacity is large.

【0031】さらに、図2及び図3より、本発明電池B
A1〜BA8のなかでも、平均粒径が0.5〜3μm、
すなわち比表面積が12〜20m2 /gのLiFeO2
粉末を使用した本発明電池BA2〜BA5は、130m
Ah/gもの極めて大きな放電容量を有することが分か
る。表1に以上の結果をまとめて示す。
Further, referring to FIGS. 2 and 3, the battery B of the present invention is obtained.
Among A1 to BA8, the average particle size is 0.5 to 3 μm,
That is, a specific surface area of 12 to 20 m 2 / g of LiFeO 2
The batteries BA2 to BA5 of the present invention using powder are 130 m
It can be seen that it has an extremely large discharge capacity of Ah / g. Table 1 collectively shows the above results.

【0032】[0032]

【表1】 [Table 1]

【0033】上記実施例では、LiFeO2 粉末を正極
活物質として使用した場合を例に挙げて説明したが、こ
れ以外の上式で規制するリチウム含有鉄酸化物を正極活
物質として使用した場合にも同様の結果が得られた。
In the above examples, the case where LiFeO 2 powder is used as the positive electrode active material has been described as an example, but when other lithium-containing iron oxides regulated by the above formula are used as the positive electrode active material. Also obtained similar results.

【0034】また、上記実施例では、本発明を扁平型の
非水電解質電池に適用する場合について説明したが、電
池の形状に特に制限はなく、本発明は円筒型、角型、フ
ィルム型など、種々の形状の非水電解質電池に適用し得
るものである。
Further, in the above embodiments, the case where the present invention is applied to the flat type non-aqueous electrolyte battery has been described, but the shape of the battery is not particularly limited, and the present invention is a cylindrical type, a square type, a film type or the like. It can be applied to non-aqueous electrolyte batteries of various shapes.

【0035】さらに、上記実施例では、液体電解質(非
水電解液)を使用したが、固体電解質を使用することも
可能であり、固体電解質を使用することにより、液漏れ
の心配のない、ポジションフリーの信頼性の高い電池が
得られる。
Further, although the liquid electrolyte (non-aqueous electrolyte) is used in the above embodiment, it is also possible to use a solid electrolyte. By using the solid electrolyte, there is no fear of liquid leakage, Free and reliable battery can be obtained.

【0036】さらにまた、本発明は、一次電池、二次電
池を問わず適用可能なものである。
Furthermore, the present invention is applicable to both primary batteries and secondary batteries.

【0037】[0037]

【発明の効果】正極活物質として特定の平均粒径又は比
表面積を有するリチウム含有鉄酸化物が使用されている
ので、本発明電池は実用可能な程度の大きさの放電容量
を有する。
Since the lithium-containing iron oxide having a specific average particle diameter or specific surface area is used as the positive electrode active material, the battery of the present invention has a practically large discharge capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で組み立てた扁平型の非水電解質電池の
断面図である。
FIG. 1 is a cross-sectional view of a flat type non-aqueous electrolyte battery assembled in an example.

【図2】リチウム含有鉄酸化物(LiFeO2 )粉末の
平均粒径と放電容量の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the average particle size of lithium-containing iron oxide (LiFeO 2 ) powder and the discharge capacity.

【図3】リチウム含有鉄酸化物(LiFeO2 )粉末の
比表面積と放電容量の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the specific surface area of lithium-containing iron oxide (LiFeO 2 ) powder and the discharge capacity.

【符号の説明】[Explanation of symbols]

BA1 扁平型の非水電解質電池(本発明電池) 1 正極 2 負極 BA1 flat type non-aqueous electrolyte battery (battery of the present invention) 1 positive electrode 2 negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-chome, Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】リチウムイオンを吸蔵及び放出することが
可能な物質又は金属リチウムを負極材料とする負極と、
組成式Lix FeOy (0<x≦1.5、1.8<y<
2.2)で表されるリチウム含有鉄酸化物を正極活物質
とする正極とを備えた非水電解質電池において、前記リ
チウム含有鉄酸化物のBET法による比表面積が0.5
〜20.5m2 /gであることを特徴とする非水電解質
電池。
1. A negative electrode using, as a negative electrode material, a substance capable of inserting and extracting lithium ions or metallic lithium.
Composition formula Li x FeO y (0 <x ≦ 1.5, 1.8 <y <
In a non-aqueous electrolyte battery including a positive electrode using a lithium-containing iron oxide represented by 2.2) as a positive electrode active material, the lithium-containing iron oxide has a specific surface area of 0.5 according to the BET method.
~ 20.5 m 2 / g Non-aqueous electrolyte battery characterized by the above.
【請求項2】前記比表面積が12〜20m2 /gである
請求項1記載の非水電解質電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the specific surface area is 12 to 20 m 2 / g.
【請求項3】リチウムイオンを吸蔵及び放出することが
可能な物質又は金属リチウムを負極材料とする負極と、
組成式Lix FeOy (0<x≦1.5、1.8<y<
2.2)で表されるリチウム含有鉄酸化物を正極活物質
とする正極とを備えた非水電解質電池において、前記リ
チウム含有鉄酸化物のレーザー回折法による平均粒径が
0.4〜10μmであることを特徴とする非水電解質電
池。
3. A negative electrode using a substance capable of inserting and extracting lithium ions or metallic lithium as a negative electrode material,
Composition formula Li x FeO y (0 <x ≦ 1.5, 1.8 <y <
In a non-aqueous electrolyte battery including a positive electrode having a lithium-containing iron oxide represented by 2.2) as a positive electrode active material, the lithium-containing iron oxide has an average particle size of 0.4 to 10 μm measured by a laser diffraction method. And a non-aqueous electrolyte battery.
【請求項4】前記平均粒径が0.5〜3μmである請求
項3記載の非水電解質電池。
4. The non-aqueous electrolyte battery according to claim 3, wherein the average particle size is 0.5 to 3 μm.
JP6238341A 1994-09-05 1994-09-05 Nonaqueous electrolyte battery Pending JPH0878019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6238341A JPH0878019A (en) 1994-09-05 1994-09-05 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6238341A JPH0878019A (en) 1994-09-05 1994-09-05 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH0878019A true JPH0878019A (en) 1996-03-22

Family

ID=17028768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6238341A Pending JPH0878019A (en) 1994-09-05 1994-09-05 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0878019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017046A1 (en) * 1999-08-27 2001-03-08 Mitsubishi Chemical Corporation Positive electrode material for lithium secondary cell
JP2001196059A (en) * 1999-10-29 2001-07-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2002117845A (en) * 2000-10-06 2002-04-19 Toyota Central Res & Dev Lab Inc Lithium iron complex oxide for lithium secondary battery positive electrode active material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017046A1 (en) * 1999-08-27 2001-03-08 Mitsubishi Chemical Corporation Positive electrode material for lithium secondary cell
JP2001196059A (en) * 1999-10-29 2001-07-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
US6440606B1 (en) * 1999-10-29 2002-08-27 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte battery
JP4547748B2 (en) * 1999-10-29 2010-09-22 パナソニック株式会社 Non-aqueous electrolyte battery
JP2002117845A (en) * 2000-10-06 2002-04-19 Toyota Central Res & Dev Lab Inc Lithium iron complex oxide for lithium secondary battery positive electrode active material

Similar Documents

Publication Publication Date Title
US5308720A (en) Non-aqueous battery having a lithium-nickel-oxygen cathode
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2000215884A (en) Positive electrode for nonaqueous electrolyte battery, its manufacture, nonaqueous electrolyte battery using the positive electrode, and manufacture of the battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
JP2004362895A (en) Negative electrode material, and battery using it
JPH04249073A (en) Non-aqueous electrolyte secondary battery
JP3717544B2 (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP2011060610A (en) Silicon oxide and anode material for lithium ion secondary battery
KR101080619B1 (en) Negative electrode active material method of producing the same and nonaqueous electrolyte cell
JP2002246025A (en) Electrode active material for non-aqueous electrolyte secondary battery, and electrode and battery containing the same
JP2002270181A (en) Non-aqueous electrolyte battery
JP2003331840A (en) Positive pole active substance for lithium ion secondary battery and method of manufacturing the active substance, and lithium ion secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP3182296B2 (en) Non-aqueous electrolyte secondary battery
JPH09199172A (en) Nonaqueous electrolyte secondary battery
JPH0878019A (en) Nonaqueous electrolyte battery
JPH08180875A (en) Lithium secondary battery
JPH06111820A (en) Nonaqueous battery
JP3152497B2 (en) Non-aqueous electrolyte secondary battery
JP3615416B2 (en) Lithium secondary battery
JP3321541B2 (en) Lithium secondary battery
JP3030141B2 (en) Non-aqueous battery