JPH0874651A - Detecting device for inner state of cylinder of internal combustion engine - Google Patents

Detecting device for inner state of cylinder of internal combustion engine

Info

Publication number
JPH0874651A
JPH0874651A JP21485994A JP21485994A JPH0874651A JP H0874651 A JPH0874651 A JP H0874651A JP 21485994 A JP21485994 A JP 21485994A JP 21485994 A JP21485994 A JP 21485994A JP H0874651 A JPH0874651 A JP H0874651A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
ignition
fuel
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21485994A
Other languages
Japanese (ja)
Other versions
JP3603341B2 (en
Inventor
Tsutomu Nakada
勉 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP21485994A priority Critical patent/JP3603341B2/en
Publication of JPH0874651A publication Critical patent/JPH0874651A/en
Application granted granted Critical
Publication of JP3603341B2 publication Critical patent/JP3603341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To enable the states of the inside of a combustion chamber (whether or not ignition has occurred, ignition timing, air-fuel ratio, etc.) to be detected with high precision. CONSTITUTION: A laser beam source 12 is made to emit a laser beam the wavelengths of which are selectively absorbed by gasoline. After the laser beam is made to pass through a space within a combustion chamber 5 by a pair of opposite optical elements 10, 11 arranged to face the inside of the combustion chamber 5, it is introduced into a photoelectric conversion element 14. Since the laser beam is absorbed depending on the concentration of gasoline present in the space between the pair of optical element 10, 11 and thus the intensity of the transmitted beam impinging on the photoelectric conversion element 14 varies, the concentration of gasoline in the mixture, i.e., the air-fuel ratio within the combustion chamber 5 can be detected through the detection of this variation. Also, since the air-fuel ratio is suddenly leaned by ignition, the observation of variations in the air-fuel ratio allows determining whether or not ignition has occurred. Also, ignition timing and ignition delay can be detected through the detection of a crank angle position at the time of ignition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の燃焼室内
(以下、気筒内、筒内とも言う)における着火の有無、
着火時期、或いは混合気の空燃比等の状態を検出する筒
内状態検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the presence or absence of ignition in the combustion chamber of an internal combustion engine (hereinafter, also referred to as "in cylinder" or "in cylinder").
The present invention relates to an in-cylinder state detection device that detects an ignition timing or an air-fuel ratio of an air-fuel mixture.

【0002】[0002]

【従来の技術】例えば、機関の燃焼制御(空燃比制御、
点火時期制御、燃料供給時期制御等)を最適化するため
には、内燃機関の筒内状態(着火の有無、着火時期、空
燃比等)を知ることが重要であり、このため、従来よ
り、内燃機関の筒内状態を検出する装置が提案されてい
る。
2. Description of the Related Art For example, engine combustion control (air-fuel ratio control,
In order to optimize ignition timing control, fuel supply timing control, etc.), it is important to know the in-cylinder state of the internal combustion engine (whether ignition is present, ignition timing, air-fuel ratio, etc.). A device for detecting the in-cylinder state of an internal combustion engine has been proposed.

【0003】例えば、特開昭57−73647号公報に
は、内燃機関の気筒内に導入された混合気の着火の有無
(具体的には、プレイグニッション)を検出する装置が
開示されている。このものは、石英ガラス等で作られた
光ファイバーによって燃焼室内の光をセンサに導き、検
出される光の立上がりから着火を検出するようにしてい
る。
For example, Japanese Patent Application Laid-Open No. 57-73647 discloses a device for detecting the presence or absence (specifically, preignition) of ignition of an air-fuel mixture introduced into a cylinder of an internal combustion engine. In this device, light in the combustion chamber is guided to a sensor by an optical fiber made of quartz glass or the like, and ignition is detected from the rise of the detected light.

【0004】また、例えば、燃焼室内における燃焼光を
検出することにより燃焼室内の混合気の空燃比(A/
F)を測定する装置が知られており、特開平1−247
740号公報に開示される空燃比検出装置では、点火栓
に埋め込んだ光ファイバーによって燃焼光を取り出し、
該取り出した燃焼光を光電変換し、火炎発光スペクトル
に基づいて空燃比を検出する構成としてある。
Further, for example, the air-fuel ratio (A / A) of the air-fuel mixture in the combustion chamber is detected by detecting combustion light in the combustion chamber.
A device for measuring F) is known, and is disclosed in JP-A-1-247.
In the air-fuel ratio detection device disclosed in Japanese Patent No. 740, combustion light is taken out by an optical fiber embedded in a spark plug,
The extracted combustion light is photoelectrically converted, and the air-fuel ratio is detected based on the flame emission spectrum.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
特開昭57−73647号公報に開示されるのもので
は、着火に伴い発生する極僅かな光量の立上がりを光フ
ァイバーを介して検出する構成であるため、ノイズ等の
影響を受け易い。また、着火光と点火栓によるスパーク
放電光との判別も簡単ではなく、高精度な着火検出が困
難である。なお、上記特開平1−247740号公報に
開示のものも光ファイバーを介して燃焼室内の光を検出
できる構成であることから、着火検出装置として機能さ
せることも考えられるが、上記の特開昭57−7364
7号公報に開示されるのものと同様の問題がある。
However, the one disclosed in the above-mentioned Japanese Patent Laid-Open No. 57-73647 has a structure in which an extremely slight rise of the light amount caused by ignition is detected through an optical fiber. Therefore, it is easily affected by noise and the like. Further, it is not easy to distinguish between the ignition light and the spark discharge light from the spark plug, and it is difficult to detect ignition with high accuracy. It should be noted that the one disclosed in JP-A-1-247740 has a configuration capable of detecting the light in the combustion chamber through an optical fiber, so that it can be considered to function as an ignition detection device. -7364
There is a problem similar to that disclosed in Japanese Patent Publication No.

【0006】また、上記特開平1−247740号公報
の空燃比検出装置は、光ファイバーによって検出される
「着火後の比較的成長した燃焼光」を利用して空燃比を
検出するものであるが故に、以下のような問題がある。
即ち、図20に示すように、光ファイバーによって燃焼光
が取り出される領域(ホロコーン領域)内では、光ファ
イバーの端面に近いA領域での発光と共に、前記端面か
ら比較的遠いB領域での発光も全て取り出されることに
なる。
Further, since the air-fuel ratio detecting device disclosed in the above-mentioned Japanese Patent Laid-Open No. 1-247740 detects the air-fuel ratio by utilizing "combustion light that has grown relatively after ignition" detected by an optical fiber. , There are the following problems.
That is, as shown in FIG. 20, within the region (hollow cone region) where the combustion light is extracted by the optical fiber, not only the emission in the region A close to the end face of the optical fiber but also the emission in the region B relatively far from the end face is also extracted. Will be done.

【0007】ここで、前記A領域とB領域とでは、燃焼
室内におけるガス流動によって空燃比が異なる場合があ
り、空燃比が異なれば火炎発光スペクトルが異なる。ま
た、光ファイバー端面からの距離が異なれば、その強度
は距離の二乗に反比例して変化する。従って、光ファイ
バーで燃焼光を取り出す構成では、空燃比が異なり、ま
た、距離の異なる領域での発光が混ざって取り出される
ことになり、例えば火花点火式機関における点火限界の
決定因子である点火栓近傍のA領域の空燃比を正確に求
めたくても、B領域の発光が影響して高精度な空燃比検
出ができないという原理的な問題がある。
Here, the air-fuel ratio may be different between the A region and the B region depending on the gas flow in the combustion chamber, and the flame emission spectrum is different when the air-fuel ratio is different. Further, if the distance from the end face of the optical fiber is different, the intensity thereof changes in inverse proportion to the square of the distance. Therefore, in the configuration in which the combustion light is taken out by the optical fiber, the light emission in the region where the air-fuel ratio is different and the distance is different is mixed and taken out. For example, in the vicinity of the spark plug which is the determinant of the ignition limit in the spark ignition type engine. Even if it is desired to accurately obtain the air-fuel ratio in the area A, there is a theoretical problem that the light emission in the area B affects the detection of the air-fuel ratio with high accuracy.

【0008】このため、従来では、ホロコーン領域内で
は空燃比一定であると見做したり、火炎発光を取り込む
時間を短くすることで測定ホロコーン領域を距離方向に
狭めるなどして、燃焼光の取り出しによる空燃比検出を
実現させている。しかしながら、前述のようにホロコー
ン領域内の空燃比は一定とは限らないし、また、取込み
時間を短くすれば取り出される光強度が低下し、結果的
に測定精度が低下してしまうという問題があった。
For this reason, conventionally, it is considered that the air-fuel ratio is constant in the hollow cone area, and the measurement hollow cone area is narrowed in the distance direction by shortening the time for capturing the flame emission to take out the combustion light. To realize air-fuel ratio detection. However, as described above, the air-fuel ratio in the hollow cone region is not always constant, and if the intake time is shortened, the intensity of the light extracted decreases, resulting in a decrease in measurement accuracy. .

【0009】また、点火限界を決定する因子である点火
栓近傍の空燃比は、燃料噴霧の粒径の他、噴射タイミン
グに強く依存して時系列的な変動を示す。従って、着火
性向上のために点火時期における点火栓近傍の空燃比を
制御するためには、点火前における点火栓近傍の空燃比
を検出することが望まれるが、前記燃焼光に基づく空燃
比検出では、点火前の空燃比を検出することができず、
点火時期における点火栓近傍の空燃比を精度良く制御す
ることができないという問題がある。
Further, the air-fuel ratio in the vicinity of the spark plug, which is a factor that determines the ignition limit, shows a time-series variation that strongly depends on the injection timing in addition to the particle size of the fuel spray. Therefore, in order to control the air-fuel ratio near the spark plug at the ignition timing in order to improve the ignitability, it is desirable to detect the air-fuel ratio near the spark plug before ignition. Then, it is not possible to detect the air-fuel ratio before ignition,
There is a problem that the air-fuel ratio in the vicinity of the spark plug at the ignition timing cannot be accurately controlled.

【0010】このため、従来においては、気筒内におけ
る着火を高精度に検出できる装置はなく、また着火検出
と空燃比検出とを同時かつ高精度に行える装置はなかっ
た。従って、これら機関の筒内状態に基づいて高精度な
機関の燃焼制御を行うことができなかった。本発明は、
かかる従来の実情に鑑みなされたものであり、高精度に
着火検出、着火時期検出を行える内燃機関の筒内状態検
出装置、及びこれらと同時に燃焼室内の空燃比をも点火
前から高精度に検出することができる内燃機関の筒内状
態検出装置を提供することを目的とし、延いてはこれら
装置の検出結果に基づき機関の燃焼制御を最適化できる
ようにすることを目的とする。また、当該筒内状態検出
装置の高精度化を図ることも目的とする。
Therefore, conventionally, there is no device capable of detecting ignition in the cylinder with high precision, and no device capable of simultaneously performing ignition detection and air-fuel ratio detection with high precision. Therefore, highly accurate combustion control of the engine cannot be performed based on the in-cylinder state of these engines. The present invention
It is made in view of such a conventional situation, ignition detection with high accuracy, a cylinder state detection device of an internal combustion engine capable of ignition timing detection, and at the same time highly accurately detect the air-fuel ratio in the combustion chamber even before ignition. It is an object of the present invention to provide an in-cylinder state detection device for an internal combustion engine, which in turn can optimize combustion control of the engine based on the detection results of these devices. Another object is to improve the accuracy of the in-cylinder state detection device.

【0011】[0011]

【課題を解決するための手段】そのため、請求項1に記
載にかかる内燃機関の筒内状態検出装置は、着火の検出
を行うべく、図1に示すように、内燃機関の燃焼室内に
臨ませて発光側と受光側とからなる一対の光学素子を所
定間隙をもって対向配置し、光源で発光した光を前記一
対の光学素子を介して光電変換素子に導く透過光強度検
出手段と、前記透過光強度検出手段における前記光電変
換素子の出力の変動に基づいて燃焼室内の着火を検出す
る着火検出手段と、を含んで構成した。
Therefore, an in-cylinder state detecting device for an internal combustion engine according to a first aspect of the invention faces a combustion chamber of the internal combustion engine as shown in FIG. 1 in order to detect ignition. A pair of optical elements consisting of a light-emitting side and a light-receiving side are arranged to face each other with a predetermined gap, and transmitted light intensity detecting means for guiding the light emitted from the light source to the photoelectric conversion element via the pair of optical elements; Ignition detecting means for detecting ignition in the combustion chamber based on fluctuations in the output of the photoelectric conversion element in the intensity detecting means.

【0012】そして、請求項2に記載の発明では、着火
時期を検出すべく、機関のクランク角度を検出するクラ
ンク角検出手段と、前記着火検出手段の出力と、前記ク
ランク角検出手段の出力と、に基づいて着火時期を検出
する着火時期検出手段と、を含んで構成するようにし
た。請求項3に記載の発明では、着火(或いは着火時
期)の検出及び筒内の空燃比を検出すべく、請求項1に
記載の発明の構成、或いは請求項2に記載の発明の構成
に加えて、機関の筒内圧を検出する筒内圧検出手段と、
前記透過光強度検出手段における前記光電変換素子の出
力と前記筒内圧検出手段で検出された筒内圧とに基づい
て筒内の空燃比を検出する空燃比検出手段と、を含んで
構成した。
According to the second aspect of the invention, the crank angle detecting means for detecting the crank angle of the engine, the output of the ignition detecting means, and the output of the crank angle detecting means for detecting the ignition timing are provided. Ignition timing detection means for detecting the ignition timing based on the. In the invention of claim 3, in addition to the configuration of the invention of claim 1 or the configuration of the invention of claim 2, in order to detect ignition (or ignition timing) and detect the air-fuel ratio in the cylinder. A cylinder pressure detecting means for detecting the cylinder pressure of the engine;
And an air-fuel ratio detecting means for detecting an in-cylinder air-fuel ratio based on the output of the photoelectric conversion element in the transmitted light intensity detecting means and the in-cylinder pressure detected by the in-cylinder pressure detecting means.

【0013】請求項4に記載の発明では、前記透過光強
度検出手段における前記一対の光学素子を、機関の点火
栓に一体的に設けるようにした。請求項5に記載の発明
では、前記透過光強度検出手段における前記一対の光学
素子を加熱する加熱手段と、機関運転条件に応じて前記
加熱手段を選択的に動作させる運転条件による加熱制御
手段と、を設けるようにした。
According to a fourth aspect of the present invention, the pair of optical elements in the transmitted light intensity detecting means are provided integrally with the ignition plug of the engine. In the invention according to claim 5, heating means for heating the pair of optical elements in the transmitted light intensity detection means, and heating control means under operating conditions for selectively operating the heating means according to engine operating conditions. , Are provided.

【0014】請求項6に記載の発明では、前記透過光強
度検出手段における前記一対の光学素子を加熱する加熱
手段と、前記透過光強度検出手段における前記一対の光
学素子に対する燃料の付着状態を検知する燃料付着検知
手段と、該燃料付着検知手段で燃料の付着状態が検知さ
れたときに前記加熱手段を動作させる付着検知による加
熱制御手段と、を設けるようにした。
According to a sixth aspect of the present invention, heating means for heating the pair of optical elements in the transmitted light intensity detecting means, and a state of attachment of fuel to the pair of optical elements in the transmitted light intensity detecting means are detected. And a heating control means by adhesion detection for operating the heating means when a fuel adhesion state is detected by the fuel adhesion detection means.

【0015】[0015]

【作用】かかる構成を備えた請求項1に記載の発明にか
かる内燃機関の筒内状態検出装置によれば、前記透過光
強度検出手段において、光源からの発光は、燃焼室内に
臨む一対の光学素子の間隙を通って光電変換素子に導か
れる構成であり、前記間隙を通るときに、かかる空間に
存在する燃料によって減衰されることになる。そして、
当該減衰は燃料濃度によって変化する一方、当該燃料濃
度は着火により急激に希薄化するので、この減衰の仕方
(即ち、燃料濃度の検出値の変動)を観察すれば、着火
を検出できることになる。しかも、強制的に光源を用い
て燃料に吸収されやすい波長の光を発光させるので、従
来のような極僅かな光量の立上がりを検出するものに比
べ、ノイズ等の影響を受け難くすることができる。更
に、燃料に吸収されやすい透過光の波長と、スパーク放
電光の波長とは異なるので、スパーク放電による影響も
受けなくて済む。
According to the in-cylinder state detecting device for an internal combustion engine according to the present invention having the above structure, in the transmitted light intensity detecting means, the light emitted from the light source is a pair of optical elements facing the combustion chamber. The photoelectric conversion element is guided through the gap between the elements, and when passing through the gap, the fuel existing in the space is attenuated. And
While the attenuation changes depending on the fuel concentration, the fuel concentration is rapidly diluted by ignition, so that ignition can be detected by observing the manner of this attenuation (that is, fluctuation in the detected value of the fuel concentration). Moreover, the light source is forcibly used to emit light of a wavelength that is easily absorbed by the fuel, so that it is possible to make it less susceptible to noise and the like as compared with the conventional one that detects an extremely slight rise of the light amount. . Furthermore, since the wavelength of the transmitted light that is easily absorbed by the fuel is different from the wavelength of the spark discharge light, it is not necessary to be affected by the spark discharge.

【0016】従って、高精度に着火の検出が行えるの
で、例えば、火花点火式機関におけるプレイグニション
の検出が高精度に行え、延いては当該プレイグニション
の発生防止制御(点火時期制御や空燃比制御)等を高精
度に行えるようになる。請求項2に記載の発明では、請
求項1に記載の発明の構成に加えて、クランク角検出手
段を備えて、着火時期を検出できるようにして、例えば
火花点火式機関における着火遅れ期間(=着火時期−点
火時期、図18参照)を高精度に検出できるようにする。
これにより、例えば、実用機関における着火遅れ期間を
低減して着火性を向上させて機関運転性を向上させるよ
うな空燃比制御や点火時期制御の高精度化や、点火栓の
放電エネルギが最適となる着火遅れ期間が得られるよう
な空燃比制御や点火時期制御が行なえるようになる。さ
らに、圧縮着火式機関における着火遅れ(燃料の噴射開
始から着火するまでの期間、当該期間は予混合燃焼割合
を決定するもので、NOx生成量や騒音に大きな影響を
与える)の計測も可能であり、当該着火遅れ期間を縮小
するような燃料噴射ポンプの噴射率の制御(即ち、着火
し易い混合気を形成して着火遅れを短縮して予混合燃焼
割合を低減するために、燃料噴射開始初期の噴霧の微粒
化の促進、即ち、初期噴射圧力を増大させるような噴射
率パターンの変更制御等)を効果的かつ高精度に行うこ
とができるようになる。
Therefore, since ignition can be detected with high accuracy, for example, preignition in a spark ignition type engine can be detected with high accuracy, and control for preventing the occurrence of preignition (ignition timing control or air-fuel ratio control) can be performed. ) Etc. can be performed with high accuracy. According to a second aspect of the invention, in addition to the configuration of the first aspect of the invention, a crank angle detecting means is provided so that the ignition timing can be detected. For example, an ignition delay period (=) in a spark ignition type engine (= Ignition timing-ignition timing, see Fig. 18).
Thereby, for example, the accuracy of air-fuel ratio control and ignition timing control for improving the ignitability and improving the engine operability by reducing the ignition delay period in a practical engine and the discharge energy of the spark plug are optimized. Thus, the air-fuel ratio control and the ignition timing control can be performed so that the ignition delay period can be obtained. Furthermore, it is also possible to measure the ignition delay in the compression ignition type engine (the period from the start of fuel injection to the ignition, which determines the premixed combustion ratio, which greatly affects the NOx production amount and noise). Yes, control of the injection rate of the fuel injection pump to reduce the ignition delay period (i.e., fuel injection start in order to form an air-fuel mixture that is easy to ignite and shorten the ignition delay to reduce the premixed combustion ratio) Acceleration of atomization of the initial spray, that is, change control of the injection rate pattern for increasing the initial injection pressure, etc.) can be performed effectively and highly accurately.

【0017】請求項3に記載の発明では、筒内圧検出手
段を備えたことで、以下のような作用を奏することがで
きる。即ち、前記透過光強度検出手段において検出され
る透過光の減衰は、燃料濃度によって変化するが、この
ことは燃焼室内の圧力変化(換言すれば、燃焼室容積変
化)によっても変化することになる。そこで、前記間隙
を通った透過光が入射する光電変換素子の出力と筒内圧
検出手段で検出された筒内圧とに基づいて、筒内圧の要
因を除外して燃料濃度(空燃比)を検出できるようにし
た。従って、高精度な着火検出や着火時期検出と、当該
高精度な空燃比検出との組み合わせによって、上述の空
燃比制御や点火時期制御、或いは点火栓の放電エネルギ
の最適化制御が、より高精度に行なえるようになる。
According to the third aspect of the invention, since the in-cylinder pressure detecting means is provided, the following operation can be achieved. That is, the attenuation of the transmitted light detected by the transmitted light intensity detecting means changes depending on the fuel concentration, but this also changes depending on the pressure change in the combustion chamber (in other words, the combustion chamber volume change). . Therefore, the fuel concentration (air-fuel ratio) can be detected by excluding the factor of the in-cylinder pressure based on the output of the photoelectric conversion element on which the transmitted light passing through the gap is incident and the in-cylinder pressure detected by the in-cylinder pressure detecting means. I did it. Therefore, by combining the highly accurate ignition detection and ignition timing detection with the highly accurate air-fuel ratio detection, the above-mentioned air-fuel ratio control and ignition timing control, or the optimization control of the discharge energy of the spark plug, can be performed with higher accuracy. Will be able to do.

【0018】請求項4に記載の発明では、燃焼室内にお
ける空燃比検出においては、特に、点火栓近傍の空燃比
が点火限界に大きく影響するので、前記一対の光学素子
を点火栓に一体的に設けることで、点火栓近傍での着
火、着火時期、或いは空燃比を精度良く検出でき、ま
た、部品構成、組付等を簡略化できるようにした。特
に、光路が点火栓ギャップを横切るように配設すれば、
着火性に大きな影響を与える場所で、最も高精度に、着
火、着火時期、空燃比等を高精度に検出できることにな
り(プレイグニション等がなければ、通常、着火は、点
火後、かかる点火栓ギャップ内で開始するからであ
る)、延いては上述の空燃比制御や点火時期制御、或い
は点火栓の放電エネルギの最適化制御が、より高精度に
行なえるようになる。
In the fourth aspect of the present invention, when detecting the air-fuel ratio in the combustion chamber, the air-fuel ratio in the vicinity of the spark plug greatly affects the ignition limit, so that the pair of optical elements are integrated with the spark plug. By providing the ignition device, it is possible to accurately detect the ignition, ignition timing, or the air-fuel ratio in the vicinity of the spark plug, and to simplify the parts configuration, assembly and the like. Especially, if the optical path is arranged so as to cross the spark plug gap,
Ignition, ignition timing, air-fuel ratio, etc. can be detected with the highest accuracy in places that greatly affect ignitability (without preignition, etc. Since it is started in the gap), the air-fuel ratio control, the ignition timing control, or the optimization control of the spark plug discharge energy can be performed with higher accuracy.

【0019】請求項5、請求項6に記載の発明では、前
記一対の光学素子に液的燃料が付着すると、該付着燃料
によって光が吸収されることによって燃料濃度を精度良
く検出することができなくなる。そこで、前記一対の光
学素子を加熱する加熱手段を設け、前記燃料付着が予測
される機関運転条件のとき、又は、前記燃料付着状態を
検知して、前記加熱手段を動作させ、光学素子に付着し
た燃料を早期に気化させることができるようにした。
According to the fifth and sixth aspects of the invention, when the liquid fuel adheres to the pair of optical elements, the adsorbed fuel absorbs light, whereby the fuel concentration can be accurately detected. Disappear. Therefore, a heating means for heating the pair of optical elements is provided, and the engine is operated under the engine operating conditions where the fuel adhesion is predicted, or the fuel adhesion state is detected, and the heating means is operated to adhere to the optical element. It was made possible to vaporize the fuel that was made earlier.

【0020】[0020]

【実施例】以下に、本発明の実施例を説明する。本実施
例のシステム構成を示す図2において、内燃機関1の吸
気ポート2には燃料噴射弁3が設けられており、図示し
ないエアクリーナ,スロットル弁を介して吸入される空
気に対して前記燃料噴射弁3から間欠的に燃料が噴射供
給されて混合気が形成される。
EXAMPLES Examples of the present invention will be described below. In FIG. 2 showing the system configuration of the present embodiment, a fuel injection valve 3 is provided in an intake port 2 of an internal combustion engine 1, and the fuel injection is performed with respect to air taken in through an air cleaner and a throttle valve (not shown). Fuel is intermittently injected and supplied from the valve 3 to form an air-fuel mixture.

【0021】そして、前記混合気は、吸気弁4を介して
燃焼室5内に吸入され、点火栓6による火花点火によっ
て着火燃焼する。機関1からの排気は、図示しない排気
弁,触媒,マフラーを介して大気中に排出される。ここ
で、前記燃焼室5内の圧力(筒内圧)を検出する筒内圧
センサ(筒内圧検出手段)7が設けられると共に、前記
燃焼室5を構成するシリンダヘッド8に、点火栓6に一
体に、かつ光路が点火栓ギャップを横切るように透過光
強度検出手段を構成する円柱状の光学素子9が嵌挿・保
持されている。なお、ここでは、前記光学素子9を点火
栓6と一体として説明したが、これに限るものではな
く、それぞれ別個に燃焼室に臨ませて設けるようにして
もよい。
The air-fuel mixture is sucked into the combustion chamber 5 through the intake valve 4 and is ignited and burned by spark ignition by the spark plug 6. Exhaust gas from the engine 1 is discharged into the atmosphere via an exhaust valve, a catalyst, and a muffler (not shown). Here, an in-cylinder pressure sensor (in-cylinder pressure detection means) 7 for detecting the pressure in the combustion chamber 5 (in-cylinder pressure) is provided, and the cylinder head 8 forming the combustion chamber 5 is integrated with the spark plug 6. In addition, a cylindrical optical element 9 constituting the transmitted light intensity detecting means is inserted and held so that the optical path crosses the spark plug gap. Although the optical element 9 is described as being integrated with the spark plug 6 here, the optical element 9 is not limited to this and may be provided separately facing the combustion chamber.

【0022】前記円柱状の光学素子9の燃焼室5内に臨
む先端部には、図3に示すように、一対の光学素子(三
角プリズム)10,11が一体的に設けられている。前記一
対の光学素子10,11は、基体となる光学素子9の基端面
側から入射し、光学素子9の軸方向に沿って燃焼室5内
に向けて進む光ビームを、その先端に形成された光学面
によって他方の光学素子11に向けて反射させる発光側の
光学素子10と、該光学素子10に対して所定間隙を介して
対向配置され、前記光学素子10で反射された光ビームを
その先端に形成された光学面によって光学素子9に向け
て反射させる受光側の光学素子11とからなる。
As shown in FIG. 3, a pair of optical elements (triangular prisms) 10 and 11 are integrally provided at the tip of the cylindrical optical element 9 facing the combustion chamber 5. The pair of optical elements 10 and 11 are formed at their tips with a light beam which is incident from the base end face side of the optical element 9 serving as a base body and advances toward the inside of the combustion chamber 5 along the axial direction of the optical element 9. The optical element 10 on the light emitting side which is reflected by the optical surface toward the other optical element 11, and the optical element 10 which is arranged to face the optical element 10 with a predetermined gap therebetween, and which reflects the light beam reflected by the optical element 10. The optical element 11 on the light receiving side reflects the light toward the optical element 9 by the optical surface formed at the tip.

【0023】即ち、前記光ビームは、前記一対の光学素
子10,11によって燃焼室5内を経由しUターンして進む
構成となっており、前記光ビームは、前記光学素子10か
ら光学素子11に向けて進むときに、両者の間隙、即ち、
燃焼室内の空間(ここでは、点火栓ギャップを通過する
構成となっている)を通過することになり、吸入行程か
ら点火までの燃焼室5内に混合気が存在する状態のとき
には、前記光学素子10,11を介して光ビームを混合気中
に透過させることになる。
That is, the light beam is configured to travel in a U-turn through the combustion chamber 5 by the pair of optical elements 10 and 11, and the light beam travels from the optical element 10 to the optical element 11. When going towards, the gap between the two,
The optical element is passed through a space in the combustion chamber (here, it is configured to pass through the spark plug gap), and when the mixture exists in the combustion chamber 5 from the intake stroke to the ignition. The light beam is transmitted through the mixture through 10 and 11.

【0024】尚、前記光学素子9,10,11の材料として
は、石英やサファイヤなどを用いるが、耐熱,耐圧を考
慮すると、サファイヤを用いることが好ましい。図4及
び図5は、前記光学素子9,10,11を、サファイヤロッ
ド24,25により形成した例であるが、点火栓の中心電極
23cを挟んで点火栓先端部に突出するように一体的に設
けるようにし、サファイヤロッド24の先端側の45°光学
面で反射したレーザ光が、中心電極23cと接地電極23d
との間の火花間隙を通ってサファイヤロッド25側に入射
するようになっている。
Although quartz, sapphire or the like is used as the material for the optical elements 9, 10 and 11, sapphire is preferably used in consideration of heat resistance and pressure resistance. 4 and 5 show an example in which the optical elements 9, 10 and 11 are formed by sapphire rods 24 and 25.
The laser light reflected by the 45 ° optical surface on the tip side of the sapphire rod 24 is designed to be integrally provided so as to project to the tip of the spark plug with the center electrode 23c and the ground electrode 23d.
It is designed to be incident on the sapphire rod 25 side through the spark gap between and.

【0025】かかる構成によると、点火栓による着火性
を左右する空燃比をより的確に検出することができ、燃
焼室5内における空燃比ばらつきに影響されずに、高精
度な空燃比制御が可能である。尚、光学素子10,11(サ
ファイヤロッド24,25)を点火栓6に対して一体的に設
ける構成を上記に限定するものではない。但し、燃焼室
5内における局所空燃比を検出させる場合には、点火栓
6の火花間隙部の空燃比を検出させ、該検出結果に基づ
いて所期空燃比とすべく燃料噴射を制御させることが望
まれるので、図4,図5に示したように、点火栓6の火
花間隙を挟んで両側に光学素子10,11を配設し、燃焼室
5内における光路が前記火花間隙を横切るようにするこ
とが好ましい。
According to this structure, the air-fuel ratio that affects the ignitability by the spark plug can be detected more accurately, and highly accurate air-fuel ratio control is possible without being affected by the air-fuel ratio variation in the combustion chamber 5. Is. The configuration in which the optical elements 10 and 11 (sapphire rods 24 and 25) are integrally provided with the spark plug 6 is not limited to the above. However, in the case of detecting the local air-fuel ratio in the combustion chamber 5, the air-fuel ratio of the spark gap portion of the spark plug 6 is detected, and the fuel injection is controlled based on the detection result so as to obtain the desired air-fuel ratio. Therefore, as shown in FIGS. 4 and 5, the optical elements 10 and 11 are arranged on both sides of the spark gap of the spark plug 6 so that the optical path in the combustion chamber 5 crosses the spark gap. Is preferred.

【0026】前記光ビームとしては、使用するガソリン
燃料が選択的に吸収する波長の光を用いる。具体的には
赤外光であり、本実施例では、波長が赤外光領域に含ま
れる3.39μmのレーザ光を用いている。そして、かかる
レーザ光を発するレーザ源(光源)12から出射されるレ
ーザビームは、ミラーやプリズム等からなる光学素子13
によって前記光学素子9の軸に平行な方向に屈曲され、
光学素子9の基端面に対して直角に入射して進む。そし
て、前記一対の光学素子10,11によってUターンして再
び光学素子9内を通り、基端面から直角に出射する。光
学素子9から出射したレーザビームは、光学素子13によ
って光電変換素子14に向けて屈曲されて、前記光電変換
素子14に入射する。
As the light beam, light having a wavelength that is selectively absorbed by the gasoline fuel used is used. Specifically, it is infrared light, and in this embodiment, laser light having a wavelength of 3.39 μm included in the infrared light region is used. The laser beam emitted from the laser source (light source) 12 that emits the laser light is an optical element 13 including a mirror and a prism.
Is bent in a direction parallel to the axis of the optical element 9 by
The light enters at a right angle to the base end face of the optical element 9 and proceeds. Then, it makes a U-turn by the pair of optical elements 10 and 11, passes through the optical element 9 again, and exits at a right angle from the base end face. The laser beam emitted from the optical element 9 is bent toward the photoelectric conversion element 14 by the optical element 13 and enters the photoelectric conversion element 14.

【0027】上記のレーザ源12、光学素子9,10,11
(24,25),13、光電変換素子14によって本実施例の透
過光強度検出手段が構成される。前記光電変換素子14の
出力及び筒内圧センサ7からの検出信号は、前記燃料噴
射弁3による燃料噴射を制御するためのマイクロコンピ
ュータを内蔵したコントロールユニット15に入力され
る。空燃比検出手段として機能するコントロールユニッ
ト15は、これらの検出信号に基づいて機関吸入混合気の
空燃比を検出し、該検出された空燃比に基づいて燃料噴
射を制御する。なお、コントロールユニット15は、本
発明の着火検出手段、着火時期検出手段としても機能す
る。
The above laser source 12 and optical elements 9, 10, 11
The (24, 25), 13 and the photoelectric conversion element 14 constitute the transmitted light intensity detecting means of this embodiment. The output of the photoelectric conversion element 14 and the detection signal from the in-cylinder pressure sensor 7 are input to a control unit 15 containing a microcomputer for controlling fuel injection by the fuel injection valve 3. The control unit 15 functioning as an air-fuel ratio detecting means detects the air-fuel ratio of the engine intake air-fuel mixture based on these detection signals, and controls the fuel injection based on the detected air-fuel ratio. The control unit 15 also functions as the ignition detecting means and the ignition timing detecting means of the present invention.

【0028】ここで、本実施例における透過光強度検出
手段を用いた空燃比検出、着火検出の原理を簡単に説明
する。機関1に使用されるガソリン燃料は、一般的に、
赤外光を選択的に吸収する性質があり、混合気において
は該混合気中におけるガソリン濃度に略比例して前記吸
収量が増大する。即ち、入射光強度をIO 、ガソリン濃
度をC、吸収係数をKとすると、吸収量Iは、I=IO
exp -KC として表すことができる。
Here, the principle of air-fuel ratio detection and ignition detection using the transmitted light intensity detection means in this embodiment will be briefly described. The gasoline fuel used for engine 1 is generally
It has a property of selectively absorbing infrared light, and in the air-fuel mixture, the amount of absorption increases substantially in proportion to the gasoline concentration in the air-fuel mixture. That is, when the incident light intensity is I O , the gasoline concentration is C, and the absorption coefficient is K, the absorption amount I is I = I O
It can be expressed as exp -KC .

【0029】従って、混合気に対して所定強度の赤外光
を照射し、ガソリンによって赤外光がどの程度吸収され
たかを検出できれば、混合気中のガソリン濃度、換言す
れば、混合気の空燃比を検出できることになる。一方、
着火により急激に空燃比は希薄化するので、空燃比変化
を観察すれば(詳細は後述する)、着火の有無、そして
クランク角度位置の検出結果との組合わせによって着火
時期を検出することができることになる。なお、強制的
に光源を用いて燃料に吸収されやすい波長の光を発光さ
せるようにしているので、従来のような極僅かな光量の
立上がりを検出するものに比べ、ノイズ等の影響を受け
難くすることができ、更に、燃料に吸収されやすい透過
光の波長と、スパーク放電光の波長とは異ならせれば、
スパーク放電による影響も受けなくて済む。
Therefore, if it is possible to irradiate the air-fuel mixture with infrared light of a predetermined intensity and detect how much infrared light is absorbed by the gasoline, the concentration of gasoline in the air-fuel mixture, in other words, the air-fuel ratio of the air-fuel mixture, is detected. The fuel ratio can be detected. on the other hand,
Since the air-fuel ratio dilutes rapidly due to ignition, it is possible to detect the ignition timing by observing the change in the air-fuel ratio (details will be described later) and the combination of the presence or absence of ignition and the crank angle position detection result. become. It should be noted that the light source is forcibly used to emit light having a wavelength that is easily absorbed by the fuel, so that it is less susceptible to noise and the like as compared to the conventional one that detects an extremely slight rise of the light amount. If the wavelength of the transmitted light that is easily absorbed by the fuel and the wavelength of the spark discharge light are different,
It is not affected by the spark discharge.

【0030】ここで、本実施例では、透過光強度検出手
段を構成する前記一対の光学素子10,11は、燃焼室5内
の空間を間隙として対向配置され、かかる間隙をレーザ
光が通過し、最終的に光電変換素子14に入射する構成で
あるから、前記間隙に存在する混合気中のガソリン濃度
に見合う量だけレーザ光が吸収され、かかる吸収によっ
て減衰したレーザ光が光電変換素子14に入射することに
なる。
Here, in the present embodiment, the pair of optical elements 10 and 11 constituting the transmitted light intensity detecting means are arranged so as to face each other with the space in the combustion chamber 5 as a gap, and the laser light passes through the gap. Since the laser light is finally incident on the photoelectric conversion element 14, the laser light is absorbed by an amount commensurate with the gasoline concentration in the air-fuel mixture existing in the gap, and the laser light attenuated by the absorption is converted into the photoelectric conversion element 14. It will be incident.

【0031】また、レーザ光(赤外光)の吸収量がガソ
リン濃度に比例するということは、燃焼室内における圧
力(筒内圧)変化によっても吸収量が変化することにな
る。そこで、筒内圧によるキャリブレーション特性を予
め測定しておき(図6参照)、前記光電変換素子14の出
力と、筒内圧センサ7で検出された筒内圧とをパラメー
タとする空燃比の演算特性(変換マップ)をコントロー
ルユニット15に予め設定しておくことで、混合気が吸入
される吸気行程から点火時期まで間において、燃焼室5
内での局所的な空燃比を演算できることになる(図7参
照)。
Further, the fact that the absorption amount of the laser light (infrared light) is proportional to the gasoline concentration means that the absorption amount also changes due to the change of the pressure (cylinder pressure) in the combustion chamber. Therefore, the calibration characteristic based on the in-cylinder pressure is measured in advance (see FIG. 6), and the calculation characteristic of the air-fuel ratio using the output of the photoelectric conversion element 14 and the in-cylinder pressure detected by the in-cylinder pressure sensor 7 as parameters ( By setting the conversion map) in the control unit 15 in advance, the combustion chamber 5 can be operated from the intake stroke when the mixture is sucked to the ignition timing.
It is possible to calculate the local air-fuel ratio in the inside (see FIG. 7).

【0032】なお、当該透過光強度検出手段を着火検出
装置、或いは着火時期検出装置として用いる場合には、
正確な空燃比の検出は必要ないので、前記筒内圧による
キャリブレーションもそれ程必要ない。即ち、急激な空
燃比変化さえ検出できれば十分であるからである。勿
論、より着火検出の精度を向上させたい場合には、正確
な空燃比の検出を行うようにして構わない。
When the transmitted light intensity detecting means is used as an ignition detecting device or an ignition timing detecting device,
Since accurate air-fuel ratio detection is not necessary, calibration with the in-cylinder pressure is not so necessary. That is, it is sufficient if even a rapid change in the air-fuel ratio can be detected. Of course, if it is desired to improve the accuracy of ignition detection, the air-fuel ratio may be accurately detected.

【0033】前述のようにして検出された空燃比(点火
栓6近傍の局所空燃比)は、コントロールユニット15に
よる噴射制御(噴射量制御,噴射時期制御)の制御情報
として用いられる。点火時期における点火栓近傍の空燃
比は、点火限界を決定することになり、特に、着火性が
悪化する希薄燃焼機関では重要な要素となるが、上記の
ようにして点火前の点火栓近傍における空燃比を検出で
きれば、点火栓近傍の空燃比を高精度に制御して、良好
な着火性を安定的に得ることが可能となる。
The air-fuel ratio (local air-fuel ratio in the vicinity of the spark plug 6) detected as described above is used as control information for injection control (injection amount control, injection timing control) by the control unit 15. The air-fuel ratio in the vicinity of the spark plug at the ignition timing will determine the ignition limit, and is an important factor especially in a lean-burn engine in which the ignitability deteriorates. If the air-fuel ratio can be detected, it becomes possible to control the air-fuel ratio in the vicinity of the spark plug with high accuracy and stably obtain good ignitability.

【0034】また、前記光電変換素子14で検出される透
過光強度は、一対の光学素子10,11の間隙における空燃
比状態のみに影響されるから、局所的な空燃比を他の燃
焼室内領域での空燃比に影響されずに、高精度に検出で
きる。前記空燃比の検出結果を用いた燃料噴射制御とし
ては、検出された空燃比を目標空燃比に一致させるべく
噴射量をフィードバック制御したり、また、空燃比変動
のリッチピーク時期が点火時期と重なるように噴射弁に
よる噴射タイミングを制御することで、点火栓近傍の空
燃比を所期状態に制御できる。尚、かかる噴射制御につ
いては、後に詳細に説明する。
Further, since the transmitted light intensity detected by the photoelectric conversion element 14 is influenced only by the air-fuel ratio state in the gap between the pair of optical elements 10 and 11, the local air-fuel ratio is changed to another combustion chamber area. It can be detected with high accuracy without being affected by the air-fuel ratio. As the fuel injection control using the detection result of the air-fuel ratio, the injection amount is feedback-controlled to match the detected air-fuel ratio with the target air-fuel ratio, and the rich peak timing of air-fuel ratio fluctuation overlaps with the ignition timing. By controlling the injection timing by the injection valve as described above, the air-fuel ratio near the spark plug can be controlled to a desired state. The injection control will be described later in detail.

【0035】一方、透過光強度検出手段を利用して行わ
れる着火検出結果に基づいて、例えば火花点火式機関に
おけるプレイグニションの検出が高精度に行えるから、
プレイグニションの発生防止制御(点火時期制御や空燃
比制御)が高精度に行えることになる。更に、着火時期
を検出するようにすれば、火花点火式機関における着火
遅れ期間(=着火時期−点火時期、図18参照)を高精度
に検出できるから、これにより、例えば、実用機関にお
ける着火遅れ期間を低減して着火性を向上させて機関運
転性を向上させるような空燃比制御や点火時期制御の高
精度化や、点火栓の放電エネルギが最適となる着火遅れ
期間が得られるような空燃比制御や点火時期制御が行な
えるようになる。なお、着火時期検出結果と空燃比検出
結果とを同時に利用した場合については、後述する。
On the other hand, based on the ignition detection result obtained by using the transmitted light intensity detecting means, for example, preignition in a spark ignition type engine can be detected with high accuracy.
Preignition generation prevention control (ignition timing control and air-fuel ratio control) can be performed with high accuracy. Furthermore, if the ignition timing is detected, the ignition delay period (= ignition timing-ignition timing, see FIG. 18) in the spark ignition type engine can be detected with high accuracy. The air-fuel ratio control and ignition timing control that improve the ignitability by improving the ignitability by shortening the period, and the air-fuel ratio that provides the ignition delay period that optimizes the spark plug discharge energy It becomes possible to perform fuel ratio control and ignition timing control. The case where the ignition timing detection result and the air-fuel ratio detection result are used at the same time will be described later.

【0036】ところで、上記のようにして、レーザ光を
導く光学素子10,11を燃焼室5内に臨ませて配設する
と、燃焼に伴う汚れが光学素子10,11に付着し、この汚
れ分がレーザ光を減衰させることによって、ガソリン燃
料によるレーザ光(赤外光)の吸収を精度良く検出する
ことができなくなる惧れがある。かかる汚れによる影響
を補正する方法としては、図8に示すように、排気行程
中の吸気弁が開く直前、即ち、混合気が吸引される直前
で燃焼室5内に燃料が殆どないときに、前記光電変換素
子14の出力A1 を取込む。そして、この出力A1を正規
化用の基準強度として、その後の吸気行程における空燃
比演算期間(例えば点火時期前の所定区間)における光
電変換素子14の出力Bn を、前記基準強度A1 で除算し
た値Bn /A1 を最終検出値とする。
By the way, when the optical elements 10 and 11 for guiding the laser light are arranged so as to face the inside of the combustion chamber 5 as described above, stains due to combustion adhere to the optical elements 10 and 11, and the amount of the stains is increased. There is a possibility that the absorption of the laser light (infrared light) by the gasoline fuel cannot be accurately detected by attenuating the laser light. As a method of correcting the influence of such dirt, as shown in FIG. 8, when there is almost no fuel in the combustion chamber 5 immediately before the intake valve is opened during the exhaust stroke, that is, immediately before the mixture is sucked, The output A 1 of the photoelectric conversion element 14 is taken in. Then, using this output A 1 as the reference intensity for normalization, the output Bn of the photoelectric conversion element 14 in the subsequent air-fuel ratio calculation period in the intake stroke (for example, a predetermined section before the ignition timing) is divided by the reference intensity A 1 . a value Bn / a 1 was the final detection value.

【0037】上記方法によれば、前記基準強度A1 は、
一対の光学素子10,11の間隙に燃料が殆ど存在しない条
件で検出されるから、主に光学素子10,11の汚れによる
影響(レーザ源の劣化による出力強度の低下を含む)で
変化するものと推定される。そして、汚れの進行によっ
て前記基準強度A1 が低下すれば、光電変換素子14の出
力Bn をより増大補正することになり、汚れによるレー
ザ光の減衰分を補償できることになる。
According to the above method, the reference intensity A 1 is
It is detected under the condition that almost no fuel is present in the gap between the pair of optical elements 10 and 11, so it changes mainly due to the contamination of the optical elements 10 and 11 (including the decrease of output intensity due to deterioration of the laser source). It is estimated to be. If the reference intensity A 1 decreases due to the progress of dirt, the output Bn of the photoelectric conversion element 14 is corrected to be increased, and the attenuation of the laser light due to dirt can be compensated.

【0038】しかしながら、上記補正方法によると、補
正演算が比較的簡便に行えるものの、汚れの検出を空燃
比演算と同時に行わせることができず、1サイクル毎に
1回の汚れ検出の後に、空燃比演算用の透過光強度の検
出が行われるから、空燃比演算時の汚れ状態に対してず
れを生じる惧れがあり、また、一対の光学素子10,11の
間隙に燃料が存在しないという仮定で汚れレベルを推定
するから、高精度な補正が望めない。
However, according to the correction method described above, although the correction calculation can be performed relatively easily, it is not possible to detect the dirt at the same time as the air-fuel ratio calculation. Since the transmitted light intensity for fuel ratio calculation is detected, there is a risk of deviation from the dirt state during air-fuel ratio calculation, and there is no fuel in the gap between the pair of optical elements 10 and 11. Since the dirt level is estimated by, high precision correction cannot be expected.

【0039】前記汚れによる影響を補正する別の方法と
しては、ガソリンに吸収されずに汚れ分のみに吸収され
て減衰する波長の光を発する光源を別途設け、該光源か
ら発した光ビームを、空燃比検出に用いるガソリンが吸
収する波長の光と同軸に光学素子10,11に通し、図9に
示すように、ガソリンに吸収される波長光の透過光強度
Bn と同時に、汚れ分によってのみ吸収される波長光の
透過光強度An を検出させ、前記汚れ分にのみ吸収され
る光の透過光強度An で前記透過光強度Bn を補正する
(Bn /An )ことで、ガソリンに吸収される波長域の
光の汚れによる減衰分を補正する方法がある。
As another method for correcting the influence of the dirt, a light source which emits light having a wavelength which is not absorbed by gasoline but is absorbed only by the dirt and attenuated is provided, and the light beam emitted from the light source is Passing through the optical elements 10 and 11 coaxially with the light of the wavelength absorbed by gasoline used for air-fuel ratio detection, as shown in FIG. 9, at the same time as the transmitted light intensity Bn of the light absorbed by gasoline, it is absorbed only by dirt. The wavelength absorbed by gasoline is detected by detecting the transmitted light intensity An of the light having a wavelength that is absorbed, and correcting the transmitted light intensity Bn with the transmitted light intensity An of the light that is absorbed only by the dirt (Bn / An). There is a method of correcting the attenuation due to the dirt of the light in the area.

【0040】かかる補正方法によると、空燃比演算に同
期してそのときの汚れ状態を推定することができ、ま
た、一対の光学素子10,11に存在する燃料の影響を受け
ずに汚れ検出が行えるので、演算負担は大きくなるもの
の高精度な汚れ補正が可能である。ここで、前述のよう
な汚れに対する補正を行いながら空燃比(ガソリン濃
度)を検出するコントロールユニット15の機能を、図10
のフローチャートに従って説明する。尚、前記図10のフ
ローチャートは、上記2つの補正方法に共通のものとし
て簡略化して示してある。
According to this correction method, it is possible to estimate the contamination state at that time in synchronization with the calculation of the air-fuel ratio, and the contamination can be detected without being affected by the fuel existing in the pair of optical elements 10 and 11. Since it can be performed, a high-precision stain correction can be performed although the calculation load increases. Here, the function of the control unit 15 for detecting the air-fuel ratio (gasoline concentration) while correcting the dirt as described above is shown in FIG.
It will be described according to the flowchart of The flowchart of FIG. 10 is simplified and shown as common to the above two correction methods.

【0041】この図10のフローチャートにおいて、ま
ず、S1では、汚れによるレーザ光の減衰レベルを示す
補正光強度An の検出を行わせる。具体的には、吸気弁
が開く直前のタイミングで光電変換素子14の出力を取り
込むか、又は、空燃比の演算期間内でガソリンに吸収さ
れずに汚れによってのみ吸収される波長の光の透過強度
を逐次取り込む。
In the flow chart of FIG. 10, first, in S1, the correction light intensity An indicating the attenuation level of the laser light due to dirt is detected. Specifically, the output of the photoelectric conversion element 14 is taken in at the timing immediately before the intake valve is opened, or the transmission intensity of light having a wavelength that is not absorbed by gasoline and is absorbed only by dirt within the calculation period of the air-fuel ratio. Sequentially take in.

【0042】次のS2では、空燃比演算のための透過光
強度Bn 検出を行わせる。そして、S3では、空燃比実
測用の透過光強度Bn を、汚れ分を補正するための光強
度An で除算して、該演算結果を汚れ分が補正された光
強度としてIにセットする。S4では、前記汚れ補正が
施された光強度Iと、筒内圧センサ7で検出された筒内
圧とに基づいてガソリン濃度C(空燃比)を演算する。
In the next step S2, the transmitted light intensity Bn for air-fuel ratio calculation is detected. Then, in S3, the transmitted light intensity Bn for air-fuel ratio measurement is divided by the light intensity An for correcting the stain amount, and the calculation result is set to I as the light intensity with the stain amount corrected. In S4, the gasoline concentration C (air-fuel ratio) is calculated based on the light intensity I after the stain correction and the in-cylinder pressure detected by the in-cylinder pressure sensor 7.

【0043】S5では、空燃比演算期間内で演算される
空燃比のデータナンバーを示すnを1アップし、次のS
6では、空燃比の実測期間(例えば点火時期前の所定区
間)内であるか否かを判別する。そして、実測区間でな
ければ、S7で前記データナンバーをリセットし、ま
た、実測区間内であれば、前記リセットを行うことなく
S1に戻り、汚れ補正を行いながら空燃比演算を繰り返
し、演算結果を時系列的に記憶する。
At S5, n indicating the data number of the air-fuel ratio calculated within the air-fuel ratio calculation period is incremented by 1, and the next S
At 6, it is determined whether or not it is within the actual measurement period of the air-fuel ratio (for example, a predetermined section before the ignition timing). Then, if it is not in the actual measurement section, the data number is reset in S7. If it is in the actual measurement section, the flow returns to S1 without performing the reset, and the air-fuel ratio calculation is repeated while performing the dirt correction, and the calculation result is obtained. Store in time series.

【0044】尚、前記汚れ分に影響される透過光強度A
n が所定以下に低下した場合には、所期の透過光強度検
出が不能であると判断し、所定のフェイルセーフモード
に移行させるようにすると良い。ところで、上記実施例
では、点火栓6の近傍に、一対の光学素子10,11を備え
た光学素子9(空燃比検出体)を配設する構成とした
が、これは、点火栓6の電極雰囲気の空燃比を制御して
点火限界を高めるためには、点火栓6(電極部)になる
べく近い位置で空燃比を検出することが望まれ、また、
部品点数の削減,組み立て性及び燃焼室を構成するシリ
ンダヘッドにおけるスペース効率を考慮すると、点火栓
6と前記一対の光学素子10,11とを一体化して設けるこ
とが好ましいからであり、これら利点を考慮しなくてよ
い場合(例えば試験室で実験等を行なう場合等)は、点
火栓6と前記一対の光学素子10,11とを一体化して設け
なくても勿論構わない。
It should be noted that the transmitted light intensity A influenced by the amount of dirt
If n is lower than a predetermined value, it is determined that the desired transmitted light intensity cannot be detected, and the predetermined fail-safe mode may be set. By the way, in the above embodiment, the optical element 9 (air-fuel ratio detecting body) including the pair of optical elements 10 and 11 is arranged near the spark plug 6, but this is the electrode of the spark plug 6. In order to control the air-fuel ratio of the atmosphere and raise the ignition limit, it is desired to detect the air-fuel ratio at a position as close as possible to the spark plug 6 (electrode portion).
This is because it is preferable to integrally provide the spark plug 6 and the pair of optical elements 10 and 11 in consideration of the reduction of the number of parts, the assemblability, and the space efficiency in the cylinder head forming the combustion chamber. When it is not necessary to take this into consideration (for example, when conducting an experiment in a test room), the spark plug 6 and the pair of optical elements 10 and 11 need not be integrally provided.

【0045】次に、上記実施例に示される構成によって
検出される空燃比を用いたコントロールユニット15によ
る空燃比フィードバック制御及び噴射タイミング制御の
様子を図11のフローチャートに従って具体的に説明す
る。図11のフローチャートにおいて、まず、S11では、
機関回転数Neをクランク角センサ60からの検出信号に
基づいて算出する。また、S12では、スロットルセンサ
(図示省略)で検出されたスロットル弁開度を機関負荷
の代表値として読み込む。なお、クランク角センサ60
は、例えば、図示しないディストリビュータに内蔵さ
れ、機関回転と同期して出力されるクランク単位角信号
が検出できるものであり、コントロールユニット15では
この信号を一定時間カウントして、又は、クランク基準
角信号の周期を計測して機関回転速度Neを検出するよ
うになっている。
Next, the state of the air-fuel ratio feedback control and injection timing control by the control unit 15 using the air-fuel ratio detected by the configuration shown in the above embodiment will be concretely described with reference to the flowchart of FIG. In the flowchart of FIG. 11, first, in S11,
The engine speed Ne is calculated based on the detection signal from the crank angle sensor 60. Further, in S12, the throttle valve opening detected by the throttle sensor (not shown) is read as a representative value of the engine load. The crank angle sensor 60
Is, for example, a built-in distributor (not shown) that can detect a crank unit angle signal output in synchronization with engine rotation, and the control unit 15 counts this signal for a certain period of time or a crank reference angle signal. The engine rotation speed Ne is detected by measuring the cycle of.

【0046】そして、S13では、図12に示すように、予
め機関負荷と機関回転数とに応じた運転領域別に目標空
燃比を設定したマップを参照し、目標空燃比AFRを設
定する。図12に示す目標空燃比AFRを記憶したマップ
は、理論空燃比よりも大幅にリーンな目標空燃比を設定
するリーン領域と、目標空燃比として理論空燃比を設定
する理論空燃比領域と、理論空燃比よりもややリッチな
目標空燃比を設定させるリッチ領域とに大きく分けられ
ている。
Then, in S13, as shown in FIG. 12, the target air-fuel ratio AFR is set by referring to the map in which the target air-fuel ratio is set in advance for each operating region corresponding to the engine load and the engine speed. The map that stores the target air-fuel ratio AFR shown in FIG. 12 is a lean region that sets a target air-fuel ratio that is significantly leaner than the theoretical air-fuel ratio, a theoretical air-fuel ratio region that sets the theoretical air-fuel ratio as the target air-fuel ratio, and a theoretical It is roughly divided into a rich region in which a target air-fuel ratio that is slightly richer than the air-fuel ratio is set.

【0047】次のS14では、現在の運転条件が、前記目
標空燃比AFRとして理論空燃比よりも大幅にリーンな
空燃比が設定されるリーン領域であるか否かを判別す
る。ここで、リーン領域であると判別されたときには、
S15へ進み、点火時期前の所定区間で、前述のように前
記光電変換素子14の出力と筒内圧センサ7との出力とに
基づいて演算された空燃比を時系列的に記憶させたデー
タから、前記所定区間内で変動する空燃比における最小
空燃比PAFM(空燃比演算区間内で最もリッチな空燃
比)を求める(図13参照)。
In the next step S14, it is determined whether or not the current operating condition is in the lean range where the target air-fuel ratio AFR is set to an air-fuel ratio which is significantly leaner than the theoretical air-fuel ratio. Here, when it is determined that the region is lean,
The process proceeds to S15, where the air-fuel ratio calculated based on the output of the photoelectric conversion element 14 and the output of the in-cylinder pressure sensor 7 is stored in a time series in a predetermined section before the ignition timing. The minimum air-fuel ratio PAFM (the richest air-fuel ratio in the air-fuel ratio calculation section) at the air-fuel ratio that varies within the predetermined section is obtained (see FIG. 13).

【0048】そして、S16では、前記目標リーン空燃比
AFRと前記最小空燃比PAFMとを比較し、目標空燃
比に対する最小空燃比PAFMのリッチ・リーンを判定
する。ここで、目標リーン空燃比よりも最小空燃比PA
FMが小さい(リッチである)と判別されたときには、
S17へ進み、前記空燃比検出が行われた所定区間内で最
小空燃比PAFMが得られたクランク角位置TPAFM
を求める。
Then, in S16, the target lean air-fuel ratio AFR is compared with the minimum air-fuel ratio PAFM to determine the rich lean of the minimum air-fuel ratio PAFM with respect to the target air-fuel ratio. Here, the minimum air-fuel ratio PA rather than the target lean air-fuel ratio
When it is determined that the FM is small (rich),
Proceeding to S17, the crank angle position TPAFM at which the minimum air-fuel ratio PAFM is obtained within the predetermined section where the air-fuel ratio detection is performed.
Ask for.

【0049】また、S18では、現状の点火時期TIGを
求め、次のS19では、前記空燃比が最小となるクランク
角位置TPAFMと現状の点火時期TIGとの偏差TD
IFFを演算する。更に、S20では、現状における噴射
制御の基準タイミングTINJ(噴射開始時期又は噴射
終了時期)を求める。
Further, in S18, the current ignition timing TIG is obtained, and in the next S19, the deviation TD between the crank angle position TPAFM at which the air-fuel ratio becomes the minimum and the current ignition timing TIG.
Calculate IFF. Further, in S20, the reference timing TINJ (injection start timing or injection end timing) of the current injection control is obtained.

【0050】そして、S21では、前記偏差TDIFFに
よって前記基準タイミングTINJを補正することで、
前記最小空燃比PAFMが得られるタイミングが点火時
期TIGに一致するように噴射時期を進・遅角補正す
る。即ち、理論空燃比よりも大幅にリーンな空燃比で燃
焼させる場合には、着火性が悪化するので、平均空燃比
としてはリーン空燃比であっても点火栓近傍の空燃比が
なるべくリッチである状態で点火させることが着火性を
高めることになる。そこで、点火を行っている時期の前
の所定区間における空燃比の変動を求め、空燃比が最も
リッチとなるタイミングが点火時期に重なるように、噴
射時期をずらすようにしている。具体的には、点火時期
TIGよりもクランク角度位置TPAFMが早く現れる
場合、偏差TDIFFに相当する量だけ噴射時期を遅角
補正する。
Then, in S21, the reference timing TINJ is corrected by the deviation TDIFF,
The injection timing is advanced / retarded so that the timing at which the minimum air-fuel ratio PAFM is obtained matches the ignition timing TIG. That is, when the combustion is performed at an air-fuel ratio that is significantly leaner than the stoichiometric air-fuel ratio, the ignitability deteriorates, so even if the average air-fuel ratio is lean, the air-fuel ratio near the spark plug is as rich as possible. Ignition in this state enhances ignitability. Therefore, the variation of the air-fuel ratio in the predetermined section before the ignition timing is obtained, and the injection timing is shifted so that the timing when the air-fuel ratio becomes the richest overlaps the ignition timing. Specifically, when the crank angle position TPAFM appears earlier than the ignition timing TIG, the injection timing is retarded by an amount corresponding to the deviation TDIFF.

【0051】尚、前記噴射時期の補正制御においては、
基本噴射時期を中心とする所定範囲内でのみ噴射時期の
変更を許可する構成とすると良い。また、運転状態が変
化した場合には、噴射時期を一旦その運転状態の基準タ
イミングTINJに戻し、再度クランク角度位置TPA
FMを点火時期TIGに一致させると良い。一方、点火
栓近傍空燃比を目標空燃比に一致させるための噴射量補
正が、リーン空燃比領域以外、及び、前記S16で最小空
燃比PAFMが目標空燃比よりもリーンであると判別さ
れたリーン空燃比領域のときに、S22〜S25において行
われる。
In the correction control of the injection timing,
It is preferable to allow the change of the injection timing only within a predetermined range around the basic injection timing. When the operating state changes, the injection timing is once returned to the reference timing TINJ of the operating state, and the crank angle position TPA is again set.
It is advisable to make FM coincide with the ignition timing TIG. On the other hand, the injection amount correction for matching the spark plug vicinity air-fuel ratio with the target air-fuel ratio is performed outside the lean air-fuel ratio region, and the lean air-fuel ratio PAFM is determined to be leaner than the target air-fuel ratio in S16. This is performed in S22 to S25 in the air-fuel ratio range.

【0052】S22では、前記点火時期前の所定区間内で
逐次演算された空燃比の平均値MAFMを演算する。次
のS23では、目標空燃比AFRと前記平均空燃比MAF
Mとの偏差AFDIFFを演算する。S24では、現状の
噴射量QTpをセットし、次のS25では、前記偏差AF
DIFFに対応して設定された補正噴射量QAFDIF
Fを前記噴射量QTpに加算して補正する。
At S22, the average value MAFM of the air-fuel ratio successively calculated within the predetermined section before the ignition timing is calculated. Next, in S23, the target air-fuel ratio AFR and the average air-fuel ratio MAF
The deviation AFDIFF from M is calculated. In S24, the current injection amount QTp is set, and in the next S25, the deviation AF is set.
Corrected injection amount QAFDIF set corresponding to DIFF
F is added to the injection amount QTp for correction.

【0053】かかる燃料噴射量の補正制御によると、1
サイクル毎に目標空燃比に対する実際の空燃比の偏差を
求め、該偏差に応じた補正を次のサイクルにおける燃料
噴射量に反映させることができるので、目標空燃比に対
して高い収束性を有するフィードバック制御が可能であ
る。上記のような噴射タイミングの制御及び噴射量の制
御においては、点火栓6の着火雰囲気の空燃比を高精度
に検出することが望まれるので、光学素子10,11として
点火栓6の電極間にレーザ光を通す構成として点火栓に
一体化させた図4及び図5に示した実施例の構成で透過
光強度を検出させることが望ましい。
According to the correction control of the fuel injection amount, 1
It is possible to obtain the deviation of the actual air-fuel ratio from the target air-fuel ratio for each cycle, and to correct the deviation according to the deviation in the fuel injection amount in the next cycle. It can be controlled. In the control of the injection timing and the control of the injection amount as described above, it is desired to detect the air-fuel ratio of the ignition atmosphere of the spark plug 6 with high accuracy, so that the optical elements 10 and 11 are provided between the electrodes of the spark plug 6. It is desirable to detect the transmitted light intensity with the configuration of the embodiment shown in FIGS. 4 and 5 which is integrated with an ignition plug as a configuration for passing laser light.

【0054】尚、上記では、偏差AFDIFFを噴射量
のデータに変換させたが、偏差AFDIFFから噴射量
の補正係数を設定し、該補正係数を基本噴射量に乗算し
て補正を施す構成であっても良い。また、本実施例で
は、燃料噴射弁3から噴射された燃料によって実際に燃
焼室内に吸引された混合気の空燃比を検出できるから、
例えば過渡運転時又は冷間時における壁流補正を空燃比
検出結果に基づいて適正化できる。即ち、燃料噴射弁3
から噴射供給される燃料には、衝突や壁面付着による輸
送遅れが生じ、過渡運転時や冷間時には、かかる遅れを
見込んだ増量補正が必要になるが、上記実施例の空燃比
検出装置によれば燃焼室内における空燃比が1サイクル
毎に検出できるので、増量補正の過不足を定量的に検出
でき、これによって過渡運転時用又は冷間時用の増量補
正量を適正化できるものである。
In the above description, the deviation AFDIFF is converted into the injection amount data. However, the correction coefficient of the injection amount is set from the deviation AFDIFF, and the basic injection amount is multiplied by the correction coefficient to perform the correction. May be. Further, in the present embodiment, the air-fuel ratio of the air-fuel mixture actually sucked into the combustion chamber by the fuel injected from the fuel injection valve 3 can be detected,
For example, wall flow correction during transient operation or cold can be optimized based on the air-fuel ratio detection result. That is, the fuel injection valve 3
The fuel injected and supplied from the fuel tank has a transportation delay due to collisions and adherence to the wall surface, and during transient operation or during cold, it is necessary to correct the fuel consumption increase in consideration of such delay. For example, since the air-fuel ratio in the combustion chamber can be detected for each cycle, excess or deficiency of the increase correction can be quantitatively detected, and thereby the increase correction amount for transient operation or cold operation can be optimized.

【0055】上記実施例における噴射タイミングの制御
では、点火前の空燃比変動の様子を時系列的に検出し、
該検出結果に基づいて空燃比がリッチ側にピークとなる
時期を求め、該リッチピーク時期と点火時期との偏差分
を噴射タイミングの補正量としたが、噴射タイミングを
進・遅角補正し、該補正結果による点火時期における空
燃比の変化方向を検出することで、点火時期における空
燃比がリッチピークとなる噴射タイミングを見つけ出す
構成としても良い。
In the control of the injection timing in the above embodiment, the state of the air-fuel ratio fluctuation before ignition is detected in time series,
The timing at which the air-fuel ratio peaks on the rich side is obtained based on the detection result, and the deviation amount between the rich peak timing and the ignition timing is used as the correction amount of the injection timing, but the injection timing is advanced / retarded, The injection timing at which the air-fuel ratio at the ignition timing becomes a rich peak may be found by detecting the changing direction of the air-fuel ratio at the ignition timing based on the correction result.

【0056】かかる噴射タイミング制御の実施例を、図
14のフローチャートに示す。まず、S51では、運転条件
に応じて予め設定されている基本噴射タイミング(噴射
開始クランク角又は噴射終了クランク角)をマップから
読み取る。そして、S52では、かかる基本噴射タイミン
グに応じた燃料噴射を行って、次のS53では、かかる燃
料噴射によって形成された混合気の空燃比を、前述のよ
うに光電変換素子14で検出される透過光強度と筒内圧と
に基づいて点火時期において演算する。
An example of such injection timing control is shown in FIG.
It is shown in the flowchart of 14. First, in S51, the basic injection timing (injection start crank angle or injection end crank angle) preset according to the operating conditions is read from the map. Then, in S52, fuel injection is performed in accordance with the basic injection timing, and in next S53, the air-fuel ratio of the air-fuel mixture formed by such fuel injection is detected by the photoelectric conversion element 14 as described above. The ignition timing is calculated based on the light intensity and the cylinder pressure.

【0057】S54では、前記S53で演算された空燃比
と、前回の点火時期における空燃比とを比較し、前回に
比べて点火時期における空燃比がリッチ方向に変化して
いるか否かを判別する。点火時期における空燃比がリッ
チ方向に変化しているときには、S55に進み、今回の点
火時期で演算された空燃比を前回空燃比として記憶させ
る。
At S54, the air-fuel ratio calculated at S53 is compared with the air-fuel ratio at the previous ignition timing to determine whether the air-fuel ratio at the ignition timing has changed in the rich direction as compared with the previous time. . When the air-fuel ratio at the ignition timing is changing in the rich direction, the routine proceeds to S55, where the air-fuel ratio calculated at this ignition timing is stored as the previous air-fuel ratio.

【0058】次いで、S56では、前回の噴射タイミング
補正で噴射タイミングを進めたか否かを判別する。ここ
で、噴射タイミングを進めた結果、点火時期の空燃比が
リッチ方向に変化したと判別されるときには、更に、噴
射タイミングを進めることで、よりリッチに点火時期の
空燃比が変化する可能性があるので、S57へ進んで、噴
射タイミングを所定微小角だけ進ませる噴射タイミング
の補正を行う。そして、S58では、噴射タイミングをよ
り進める補正を行った来歴を記憶させる。
Next, in S56, it is determined whether or not the injection timing was advanced by the previous injection timing correction. Here, when it is determined that the air-fuel ratio of the ignition timing has changed in the rich direction as a result of advancing the injection timing, the air-fuel ratio of the ignition timing may change more richly by advancing the injection timing. Therefore, the process proceeds to S57, and the injection timing for advancing the injection timing by a predetermined minute angle is corrected. Then, in S58, the history of correction that further advances the injection timing is stored.

【0059】一方、S54で、点火時期における空燃比が
前回に比べてリッチ方向に変化していないと判別された
ときには、S59へ進み、前回噴射タイミングを進める補
正を行ったかを判別する。噴射タイミングを進めた結
果、空燃比がリッチ方向に変化しなくなった場合には、
S60へ進み、逆に噴射タイミングを所定微小角度だけ遅
らせる補正を行い、次のS61では噴射タイミングを遅ら
せる補正を行った来歴を記憶させる。
On the other hand, when it is determined in S54 that the air-fuel ratio at the ignition timing has not changed in the rich direction compared to the previous time, the routine proceeds to S59, where it is determined whether or not the previous correction of advancing the injection timing has been performed. As a result of advancing the injection timing, if the air-fuel ratio does not change in the rich direction,
Proceeding to S60, on the contrary, the injection timing is corrected by delaying it by a predetermined minute angle, and in S61, the history of the correction of delaying the injection timing is stored.

【0060】また、S59で、噴射タイミングを遅らせた
結果、空燃比のリッチ方向への変化がなくなったと判別
された場合には、逆に、噴射タイミングを進めるべくS
57へ進む。即ち、例えば噴射タイミングを進めることに
よって点火時期における空燃比がリッチ方向に変化する
場合には、リッチ方向への変化が停止するまで徐々に噴
射タイミングを進めて行き、リッチ方向への変化が停止
すると今度は逆に遅らせることで、リッチピーク付近が
点火時期に一致するように噴射タイミングを制御するも
のである。
When it is determined in S59 that the air-fuel ratio does not change in the rich direction as a result of delaying the injection timing, conversely, in order to advance the injection timing, S
Continue to 57. That is, for example, when the air-fuel ratio at the ignition timing changes in the rich direction by advancing the injection timing, the injection timing is gradually advanced until the change in the rich direction stops and the change in the rich direction stops. This time, by conversely delaying, the injection timing is controlled so that the vicinity of the rich peak coincides with the ignition timing.

【0061】尚、上記のような噴射タイミングの進・遅
角補正が収束したときに、そのときの噴射タイミングを
運転条件別に学習記憶させるようにしても良い。上記実
施例では、レーザ光の透過光強度に基づいて検出された
空燃比に基づいて噴射タイミング又は噴射量を補正する
実施例を示したが、燃料噴射弁の噴孔を燃焼室内に臨ま
せて圧縮行程中に燃料噴射を行わせる構成の直噴式火花
点火機関(特願平4−17738号参照)における噴射
圧制御に、前記構成による空燃比検出結果を用いること
で、前記直噴式火花点火機関における着火性能を向上さ
せることができる。
When the advance / retard correction of the injection timing converges as described above, the injection timing at that time may be learned and stored for each operating condition. In the above-mentioned embodiment, the embodiment is shown in which the injection timing or the injection amount is corrected based on the air-fuel ratio detected based on the transmitted light intensity of the laser light, but the injection hole of the fuel injection valve is made to face the combustion chamber. By using the air-fuel ratio detection result of the above configuration for injection pressure control in a direct injection spark ignition engine (see Japanese Patent Application No. 4-17738) configured to perform fuel injection during the compression stroke, the direct injection spark ignition engine The ignition performance can be improved.

【0062】即ち、前記直噴式火花点火機関で希薄燃焼
を行わせる場合には、点火栓近傍の空燃比を他に比べて
リッチ化させる成層化が望まれ、そのためには、燃料噴
射弁による噴霧を点火栓近傍に指向させると良い。とこ
ろで、前記一対の光学素子10,11(サファイヤロッド2
4,25)の汚れに対する透過光強度の補正については既
述したが、冷間・始動時には燃料の気化性が悪化するた
めに、燃料が壁流となって燃焼室5内に流れ込み、燃焼
室5内に突き出た光学素子10,11に前記液状の燃料が付
着して、前記補正制御の限界を越える光強度の減衰が前
記液的付着燃料によって生じる惧れがある。
That is, in the case of performing lean combustion in the direct injection spark ignition engine, it is desired to stratify the air-fuel ratio in the vicinity of the spark plug to make it richer than others, and for that purpose, atomization by the fuel injection valve is required. Should be directed near the spark plug. By the way, the pair of optical elements 10 and 11 (sapphire rod 2
The correction of the transmitted light intensity with respect to the dirt of (4, 25) has already been described, but since the vaporization property of the fuel deteriorates during cold start, the fuel becomes a wall flow and flows into the combustion chamber 5, There is a possibility that the liquid fuel adheres to the optical elements 10 and 11 projecting into the inside 5, and the liquid fuel adheres to cause attenuation of light intensity exceeding the limit of the correction control.

【0063】そこで、例えば前記図3〜図5に示した一
対の光学素子10,11に対して、図15に示すように、光学
素子10,11の間隙の底面部(光学素子9の端面)に加熱
手段としてのヒータ(セラミックヒータ)31を付設し、
ヒータ電源線32を光学素子9内に埋設して外部に取り出
す構成とする。そして、前記液的燃料付着が予測される
機関運転条件のときや、演算された空燃比の変化から付
着状態が検知されたときに、コントロールユニット15に
よる制御によって前記ヒータ31に電源を供給して発熱さ
せ、かかる発熱によって光学素子10,11を暖めて、付着
した液的燃料を早期に気化させるようにする。
Therefore, for example, as shown in FIG. 15, with respect to the pair of optical elements 10 and 11 shown in FIGS. 3 to 5, the bottom surface of the gap between the optical elements 10 and 11 (the end surface of the optical element 9) is shown. A heater (ceramic heater) 31 as a heating means is attached to
The heater power supply line 32 is embedded in the optical element 9 and taken out to the outside. Then, when the liquid fuel adhesion is in an engine operating condition predicted, or when the adhesion state is detected from the change in the calculated air-fuel ratio, the control unit 15 controls the power supply to the heater 31. Heat is generated and the optical elements 10 and 11 are warmed by such heat generation so that the attached liquid fuel is vaporized early.

【0064】上記図15に示す光学素子10,11は、図3〜
図5に示される点火栓6とは異なるタイプのものである
が、図3〜図5に示されるような点火栓6と一体型の場
合にも同様にしてヒータ31を付設することが可能で、後
述するヒータ制御も、点火栓6に対する一体型,別体を
問わずに共通の仕様によって行われるものとする。具体
的なヒータ制御を様子を図16のフローチャートに従い、
図2及び図15を参照しつつ説明する。
The optical elements 10 and 11 shown in FIG.
Although it is of a different type from the spark plug 6 shown in FIG. 5, the heater 31 can be attached in the same manner even in the case of being integrated with the spark plug 6 as shown in FIGS. The heater control, which will be described later, is performed according to the common specifications regardless of whether the spark plug 6 is an integral type or a separate type. According to the flowchart of FIG. 16, the state of concrete heater control
This will be described with reference to FIGS. 2 and 15.

【0065】尚、前記図16のフローチャートに示される
コントロールユニット15のソフトウェア的機能が運転条
件による加熱制御手段,燃料付着検知手段及び付着検知
による加熱制御手段に相当し、本実施例では、かかる加
熱制御を行う条件判定のために、後述するように、水温
センサ61及びスタートスイッチ62(図2参照)の信号を
用いる。
The software function of the control unit 15 shown in the flow chart of FIG. 16 corresponds to the heating control means according to the operating conditions, the fuel adhesion detection means and the heating control means by the adhesion detection. In the present embodiment, such heating is performed. As will be described later, the signals from the water temperature sensor 61 and the start switch 62 (see FIG. 2) are used to determine the control condition.

【0066】図16のフローチャートにおいて、まず、S
31では、水温センサ61で検出される冷却水温度Twと所
定温度とを比較する。そして、機関温度を代表する冷却
水温度Twが所定温度よりも低いと判別された場合に
は、S32へ進み、スタートスイッチ62の信号に基づいて
計測される始動からの経過時間Taと所定時間とを比較
する。
In the flowchart of FIG. 16, first, S
At 31, the cooling water temperature Tw detected by the water temperature sensor 61 is compared with a predetermined temperature. Then, when it is determined that the cooling water temperature Tw representing the engine temperature is lower than the predetermined temperature, the process proceeds to S32, and the elapsed time Ta from the start measured based on the signal of the start switch 62 and the predetermined time To compare.

【0067】ここで、始動からの経過時間Taが所定時
間に達していないと判別された場合には、S33へ進んで
前記ヒータ31に電源を供給してヒータ31を発熱させるこ
とにより光学素子10,11を加熱する。即ち、冷間始動直
後の所定期間内においてヒータ31を発熱させて光学素子
10,11を加熱するものであり、これにより、液状の燃料
が燃焼室5内に流れ込んで光学素子10,11に付着して
も、かかる液的付着燃料を早期に気化させることがで
き、光学素子10,11を介してレーザ光を混合気中に通過
させて行われる空燃比検出の精度を冷間始動時にも保つ
ことができる。
Here, if it is determined that the elapsed time Ta from the start has not reached the predetermined time, the process proceeds to S33, the power is supplied to the heater 31 and the heater 31 is heated to generate the optical element 10. , 11 is heated. That is, the heater 31 is caused to generate heat within a predetermined period immediately after the cold start, and the optical element
This is for heating the liquids 10, 11 and by this, even if liquid fuel flows into the combustion chamber 5 and adheres to the optical elements 10, 11, such liquid fuel can be vaporized at an early stage. The accuracy of the air-fuel ratio detection performed by passing the laser light through the air-fuel mixture via the elements 10 and 11 can be maintained even during cold starting.

【0068】一方、希薄燃焼機関などでは吸気行程中に
燃料噴射を行わせる場合があり、かかる構成のときに
は、上記のような冷間始動直後でない場合であっても、
噴射された燃料が直接的に燃焼室5内に吸引されること
によって、光学素子10,11(サファイヤロッド24,25)
に液的燃料が付着する場合がある。ここで、前記液的燃
料の付着が発生すると、レーザ光が前記付着燃料によっ
て大幅に吸収されるようになることで、演算される空燃
比が急激にリッチ方向に変化する。
On the other hand, in a lean burn engine or the like, fuel injection may be performed during the intake stroke. With such a configuration, even if it is not immediately after cold start as described above,
The injected fuel is directly sucked into the combustion chamber 5 so that the optical elements 10 and 11 (sapphire rods 24 and 25)
Liquid fuel may adhere to the. Here, when the liquid fuel adheres, the laser light is largely absorbed by the adhered fuel, so that the calculated air-fuel ratio rapidly changes in the rich direction.

【0069】そこで、空燃比演算期間内で、演算された
空燃比の一次微分値AFDIFを求め(図17参照)、冷
却水温度Tw及び始動後時間Taが光学素子10,11に対
する液的燃料の付着条件になっていない場合であって
も、S34で前記一次微分値AFDIFと所定値とを比較
して、空燃比演算値の大きな変動が検知されたときに
は、光学素子10,11に対して液的燃料が付着しているも
のと推定し、S33へ進んでヒータ31に電源を供給する。
かかる空燃比微分値に基づく付着状態の検知が、コント
ロールユニット15による燃料付着検知手段としての機能
を示す。
Therefore, the calculated first-order differential value AFDIF of the air-fuel ratio is calculated within the air-fuel ratio calculation period (see FIG. 17), and the cooling water temperature Tw and the post-start time Ta are equal to those of the liquid fuel for the optical elements 10 and 11. Even if the adhesion condition is not satisfied, the primary differential value AFDIF is compared with a predetermined value in S34, and when a large change in the calculated air-fuel ratio value is detected, the liquid is fed to the optical elements 10 and 11. It is estimated that the static fuel is attached, and the process proceeds to S33, in which power is supplied to the heater 31.
The detection of the adhesion state based on such an air-fuel ratio differential value shows the function of the control unit 15 as the fuel adhesion detection means.

【0070】尚、前記空燃比の微分値AFDIFに基づ
くヒータ制御においては、微分値の変動によって頻繁に
ON・OFF制御されることを回避すべく、判定レベル
にヒステリシスを設けたり、一旦付着状態を検知したら
強制的に所定時間だけ継続的に通電させる構成とした
り、又は、微分値が判定レベル以下に所定時間以上安定
してことをON→OFF制御の条件とすることが好まし
い。
In the heater control based on the differential value AFDIF of the air-fuel ratio, in order to avoid frequent ON / OFF control due to the variation of the differential value, a hysteresis is provided in the determination level or the adhesion state is temporarily set. It is preferable that the ON-OFF control condition is such that the current is forcibly energized continuously for a predetermined time when detected, or that the differential value is stable below the judgment level for a predetermined time or more.

【0071】上記のようにして空燃比演算値の変動から
光学素子10,11に対する液的燃料の付着を検知する構成
であれば、冷却水温度Twなどの機関運転条件に相関し
ない燃料付着状態を検知でき、吸入行程中にずれ込んで
燃料噴射が行われるような機関においても、光学素子1
0,11に対する液的燃料の付着状態を早期に解消して空
燃比検出精度を維持できる。
As described above, in the case where the liquid fuel adhesion to the optical elements 10 and 11 is detected from the fluctuation of the calculated air-fuel ratio, the fuel adhesion state that does not correlate with the engine operating conditions such as the cooling water temperature Tw is detected. Even in an engine that can detect and inject fuel during the intake stroke, the optical element 1
The state of liquid fuel adhesion to 0 and 11 can be eliminated early to maintain the air-fuel ratio detection accuracy.

【0072】一方、冷間始動直後でなく、然も、空燃比
演算値が安定している場合には、S35へ進み、ヒータ31
に対する電源供給を停止し、無用な電力消費を避ける。
尚、図3〜図5に示すような構成によって点火栓に対し
て一体的に光学素子10,11(サファイヤロッド24,25)
を設ける場合に、上記ようにしてヒータ31による加熱制
御を行えば、光学素子10,11に対する液的燃料の付着は
点火栓6における電極部の燃料濡れを推定させることに
もなるので、光学素子10,11を加熱することで点火栓の
電極部も同時に加熱され、点火栓の濡れによる着火性の
悪化を回避できるという副次的な効果もある。
On the other hand, immediately after the cold start and when the calculated air-fuel ratio is still stable, the routine proceeds to S35, where the heater 31
Stop the power supply to and avoid unnecessary power consumption.
It should be noted that the optical elements 10 and 11 (sapphire rods 24 and 25) are integrally formed with the spark plug by the structure shown in FIGS.
When the heating control is performed by the heater 31 in the above-described manner, the adhesion of the liquid fuel to the optical elements 10 and 11 also makes it possible to estimate the wetting of the electrode portion of the spark plug 6 with the fuel. By heating 10 and 11, the electrode part of the spark plug is also heated at the same time, and there is a secondary effect that deterioration of ignitability due to wetting of the spark plug can be avoided.

【0073】尚、上記ヒータ制御では、機関温度を代表
するパラメータとして冷却水温度Twを用いたが、この
他、潤滑油の温度や吸気ポート部の温度などを用いても
良いことは明らかである。つづけて、本実施例における
着火検出の原理を、図18に基づいて詳しく説明すると共
に、着火時期検出結果と、空燃比検出結果と、を同時に
利用した制御の一例を、以下に説明する。
In the above heater control, the cooling water temperature Tw was used as a parameter representing the engine temperature, but it is obvious that the temperature of the lubricating oil, the temperature of the intake port, etc. may be used. . Next, the principle of ignition detection in the present embodiment will be described in detail based on FIG. 18, and an example of control that simultaneously uses the ignition timing detection result and the air-fuel ratio detection result will be described below.

【0074】前述したように、空燃比の検出結果は、筒
内の混合気が着火燃焼することで、急激にリーン化す
る。ここで、図18に、クランク角(CA)に対するA/
F、A/Fの微分値(A/F’)、筒内圧履歴を示す。
図18に示すように、混合気が着火燃焼すると、混合気中
に含まれるガソリン燃料が消費され、その結果、赤外線
を吸収するガソリンが減少し、A/Fとしては急激にリ
ーン化する。この履歴を微分すると極値を示す。つま
り、この極大値が着火を示し、この極大値が現れるクラ
ンク角(CA)が、着火時期となる。
As described above, the detection result of the air-fuel ratio suddenly becomes lean as the air-fuel mixture in the cylinder ignites and burns. Here, in FIG. 18, A / with respect to the crank angle (CA)
F, the differential value (A / F ') of A / F, and the in-cylinder pressure history are shown.
As shown in FIG. 18, when the air-fuel mixture is ignited and burned, the gasoline fuel contained in the air-fuel mixture is consumed, and as a result, the amount of gasoline that absorbs infrared rays decreases and the A / F rapidly becomes lean. Differentiating this history gives an extreme value. That is, this maximum value indicates ignition, and the crank angle (CA) at which this maximum value appears is the ignition timing.

【0075】ところで、点火時期は、コントロールユニ
ット15によって機関運転条件(回転速度、負荷、水温、
空燃比等)に基づき設定される値であるが、図18に示す
ように、点火してから着火開始するまでに所定時間かか
る場合があり、この遅れを着火遅れ期間(或いは時間)
(=着火時期−点火時期)と称する。本実施例では、筒
内の点火栓6近傍の空燃比と、当該着火遅れ期間と、を
同時に検出することができるので、図19に示すような、
空燃比に対する着火遅れ期間を、実用機関において検出
することが可能となる。
By the way, the ignition timing is controlled by the control unit 15 under engine operating conditions (rotational speed, load, water temperature,
It is a value set based on the air-fuel ratio, etc.), but as shown in FIG. 18, it may take a predetermined time from ignition to ignition start, and this delay is the ignition delay period (or time).
(= Ignition timing-ignition timing). In this embodiment, the air-fuel ratio in the vicinity of the spark plug 6 in the cylinder and the ignition delay period can be detected at the same time, and therefore, as shown in FIG.
The ignition delay period with respect to the air-fuel ratio can be detected by a practical engine.

【0076】この着火遅れ期間は、放電エネルギとも相
関があるので、図19に示す検出結果に基づいて、その実
用機関に対して必要最小の放電エネルギを求めることが
できる。従って、放電エネルギの大きさに影響される点
火栓6の耐久性、或いはバッテリ寿命等も向上させるこ
とができる。また、本実施例によれば、圧縮着火式機関
における着火遅れ(燃料の噴射開始から着火するまでの
期間、当該期間は予混合燃焼割合を決定するもので、N
Ox生成量や騒音に大きな影響を与える)の計測も可能
であり、当該着火遅れ期間を縮小するような燃料噴射ポ
ンプの噴射率の制御(即ち、着火し易い混合気を形成し
て着火遅れを短縮して予混合燃焼割合を低減するため
に、燃料噴射開始初期の噴霧の微粒化の促進、即ち、初
期噴射圧力を増大させるような噴射率パターンの変更制
御等)を効果的かつ高精度に行うことができ、延いては
排気エミッション、騒音の低減を図ることも可能とな
る。
Since this ignition delay period also has a correlation with the discharge energy, the minimum required discharge energy can be obtained for the practical engine based on the detection result shown in FIG. Therefore, the durability of the spark plug 6 affected by the magnitude of the discharge energy, the battery life, etc. can be improved. Further, according to the present embodiment, the ignition delay in the compression ignition type engine (the period from the start of fuel injection to the ignition, the period determines the premixed combustion ratio, N
It is also possible to measure Ox production amount and noise, and to control the injection rate of the fuel injection pump so as to reduce the ignition delay period (that is, to form an air-fuel mixture that is easy to ignite and set the ignition delay. In order to reduce the premixed combustion ratio by shortening, it is possible to promote the atomization of the spray at the initial stage of fuel injection, that is, the change control of the injection rate pattern that increases the initial injection pressure, etc., effectively and with high accuracy. Therefore, it is possible to reduce exhaust emission and noise.

【0077】[0077]

【発明の効果】以上説明したように請求項1に記載の発
明によれば、従来に比べ高精度に着火検出を行なうこと
ができ、例えば、火花点火式機関におけるプレイグニシ
ョンの検出が高精度に行え、延いては当該プレイグニシ
ョンの発生防止制御(点火時期制御や空燃比制御)が高
精度に行える。
As described above, according to the first aspect of the present invention, ignition detection can be performed with higher accuracy than in the prior art. For example, preignition detection in a spark ignition type engine can be performed with higher accuracy. Therefore, the preignition occurrence prevention control (ignition timing control and air-fuel ratio control) can be performed with high accuracy.

【0078】請求項2に記載の発明によれば、高精度に
着火時期を検出することができるので、例えば、機関運
転実験等において有効であると共に、例えば、実用機関
における着火遅れ期間を低減して着火性を向上させて機
関運転性を向上させるような空燃比制御や点火時期制御
の高精度化や、点火栓の放電エネルギが最適となる着火
遅れ期間が得られるような空燃比制御や点火時期制御が
行なえるようになる。また、圧縮着火式機関における着
火遅れの計測も可能であり、当該検出結果に基づいて、
例えば、燃料噴射ポンプの噴射率の制御を効果的かつ高
精度に行うことができる。
According to the second aspect of the present invention, the ignition timing can be detected with high accuracy, which is effective in, for example, engine operation experiments, and also reduces the ignition delay period in a practical engine, for example. The accuracy of the air-fuel ratio control and ignition timing control to improve the ignitability and engine operability, and the air-fuel ratio control and ignition to obtain the ignition delay period in which the discharge energy of the spark plug is optimized. The timing can be controlled. Also, it is possible to measure the ignition delay in the compression ignition type engine, and based on the detection result,
For example, it is possible to effectively and accurately control the injection rate of the fuel injection pump.

【0079】請求項3に記載の発明によれば、着火検出
或いは着火時期検出と、燃焼室内の局所空燃比と、を高
精度に同時に検出することができ、特に、点火栓の近傍
の空燃比を点火前に検出することが可能であるので、点
火時期における点火栓近傍の空燃比を高精度に制御し
て、点火栓による着火性を最良に維持できるという効果
がある。また、上述の空燃比制御や点火時期制御、或い
は点火栓の放電エネルギの最適化制御が、より高精度に
行なえる。
According to the third aspect of the present invention, the ignition detection or ignition timing detection and the local air-fuel ratio in the combustion chamber can be simultaneously detected with high accuracy. In particular, the air-fuel ratio in the vicinity of the spark plug can be detected. Can be detected before ignition, so that the air-fuel ratio in the vicinity of the spark plug at the ignition timing can be controlled with high accuracy, and the ignitability by the spark plug can be maintained at the optimum level. Further, the above-mentioned air-fuel ratio control, ignition timing control, or optimization control of the discharge energy of the spark plug can be performed with higher accuracy.

【0080】請求項4に記載の発明によれば、燃焼室内
における空燃比検出においては、特に、点火栓近傍の空
燃比が点火限界に大きく影響するので、前記一対の光学
素子を点火栓に一体的に設けることで、点火栓近傍での
着火、着火時期、或いは空燃比を精度良く検出でき、ま
た、部品構成、組付等を簡略化できるようにした。特
に、光路が点火栓ギャップを横切るように配設すれば、
着火性に大きな影響を与える場所で、最も高精度に、着
火、着火時期、空燃比等を高精度に検出でき、延いては
上述の空燃比制御や点火時期制御、或いは点火栓の放電
エネルギの最適化制御が、より高精度に行なえる。
According to the fourth aspect of the present invention, when detecting the air-fuel ratio in the combustion chamber, the air-fuel ratio in the vicinity of the spark plug greatly affects the ignition limit, so that the pair of optical elements are integrated with the spark plug. By such provision, it is possible to accurately detect ignition, ignition timing, or air-fuel ratio in the vicinity of the spark plug, and to simplify parts configuration, assembly and the like. Especially, if the optical path is arranged so as to cross the spark plug gap,
Ignition, ignition timing, air-fuel ratio, etc. can be detected with the highest accuracy in a place that greatly affects ignitability, and as a result, the above-mentioned air-fuel ratio control, ignition timing control, or spark plug discharge energy Optimization control can be performed with higher accuracy.

【0081】請求項5、請求項6に記載の発明によれ
ば、前記光学素子に対する液的燃料の付着が予測される
運転条件又は付着状態が検知されたときに、前記光学素
子を加熱することで、前記液的燃料の付着による空燃比
検出精度の悪化を回避できる。
According to the fifth and sixth aspects of the present invention, the optical element is heated when an operating condition or an attached state in which the liquid fuel is expected to be attached to the optical element is detected. Therefore, it is possible to avoid deterioration of the air-fuel ratio detection accuracy due to the adhesion of the liquid fuel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】本発明の一実施例を示すシステム概略図。FIG. 2 is a system schematic diagram showing one embodiment of the present invention.

【図3】光学素子を一体化させた点火栓を示す側面図。FIG. 3 is a side view showing an ignition plug in which an optical element is integrated.

【図4】図3の光学素子部の拡大図。FIG. 4 is an enlarged view of the optical element section of FIG.

【図5】図3の底面図。5 is a bottom view of FIG.

【図6】透過光強度と筒内圧とに対応する空燃比を示す
線図。
FIG. 6 is a diagram showing an air-fuel ratio corresponding to transmitted light intensity and in-cylinder pressure.

【図7】透過光強度と筒内圧の変化をクランク角に応じ
て示す線図。
FIG. 7 is a diagram showing changes in transmitted light intensity and in-cylinder pressure according to a crank angle.

【図8】吸気弁の開直前の光強度に基づく汚れ補正の特
性を示す線図。
FIG. 8 is a diagram showing characteristics of stain correction based on light intensity immediately before the intake valve is opened.

【図9】異なる波長の光を用いた汚れ補正の特性を示す
線図。
FIG. 9 is a diagram showing characteristics of stain correction using lights of different wavelengths.

【図10】汚れを補正を伴う空燃比演算の様子を示すフロ
ーチャート。
FIG. 10 is a flowchart showing a state of air-fuel ratio calculation accompanied by correction of dirt.

【図11】空燃比検出結果を用いた燃料噴射制御を示すフ
ローチャート。
FIG. 11 is a flowchart showing fuel injection control using the air-fuel ratio detection result.

【図12】目標空燃比のマップを示す線図。FIG. 12 is a diagram showing a map of a target air-fuel ratio.

【図13】燃料噴射制御のための空燃比検出の特性を示す
線図。
FIG. 13 is a diagram showing characteristics of air-fuel ratio detection for fuel injection control.

【図14】噴射タイミング制御の別の実施例を示すフロー
チャート。
FIG. 14 is a flowchart showing another embodiment of injection timing control.

【図15】光学素子にヒータを付設した実施例を示す構造
図。
FIG. 15 is a structural diagram showing an embodiment in which a heater is attached to an optical element.

【図16】ヒータのオン・オフ制御を示すフローチャー
ト。
FIG. 16 is a flowchart showing ON / OFF control of a heater.

【図17】空燃比検出データの微分値とヒータ制御との関
係を示す線図。
FIG. 17 is a diagram showing a relationship between a differential value of air-fuel ratio detection data and heater control.

【図18】空燃比検出データの微分値と着火遅れの関係を
示す線図。
FIG. 18 is a diagram showing the relationship between the differential value of the air-fuel ratio detection data and the ignition delay.

【図19】最適放電エネルギを示す図。FIG. 19 is a diagram showing optimum discharge energy.

【図20】従来の燃焼光による空燃比検出の問題点を説明
するための図。
FIG. 20 is a diagram for explaining a problem of conventional air-fuel ratio detection using combustion light.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 吸気ポート 3 燃料噴射弁 4 吸気弁 5 燃焼室 6 点火栓 7 筒内圧センサ 8 シリンダヘッド 9,10,11,13 光学素子 12 レーザ源 14 光電変換素子 15 コントロールユニット 21 ホルダ 23 点火栓本体 23c 中心電極 23d 接地電極 24,25 サファイヤロッド 31 ヒータ 60 クランク角センサ 61 水温センサ 62 スタートスイッチ 1 Internal Combustion Engine 2 Intake Port 3 Fuel Injection Valve 4 Intake Valve 5 Combustion Chamber 6 Spark Plug 7 Cylinder Pressure Sensor 8 Cylinder Head 9, 10, 11, 13 Optical Element 12 Laser Source 14 Photoelectric Conversion Element 15 Control Unit 21 Holder 23 Spark Plug Main unit 23c Center electrode 23d Ground electrode 24, 25 Sapphire rod 31 Heater 60 Crank angle sensor 61 Water temperature sensor 62 Start switch

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 21/59 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location G01N 21/59 Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の燃焼室内に臨ませて発光側と受
光側とからなる一対の光学素子を所定間隙をもって対向
配置し、光源で発光した光を前記一対の光学素子を介し
て光電変換素子に導く透過光強度検出手段と、 前記透過光強度検出手段における前記光電変換素子の出
力の変動に基づいて燃焼室内での着火を検出する着火検
出手段と、 を含んで構成したことを特徴とする内燃機関の筒内状態
検出装置。
1. A pair of optical elements consisting of a light emitting side and a light receiving side facing each other in a combustion chamber of an internal combustion engine with a predetermined gap therebetween, and light emitted from a light source is photoelectrically converted through the pair of optical elements. A transmitted light intensity detection unit that guides the element, and an ignition detection unit that detects ignition in the combustion chamber based on a change in the output of the photoelectric conversion element in the transmitted light intensity detection unit. In-cylinder state detection device for internal combustion engine.
【請求項2】機関のクランク角度を検出するクランク角
検出手段と、 前記着火検出手段の出力と、前記クランク角検出手段の
出力と、に基づいて着火時期を検出する着火時期検出手
段と、 を含んで構成したことを特徴とする請求項1に記載の内
燃機関の筒内状態検出装置。
2. A crank angle detecting means for detecting a crank angle of an engine; an ignition timing detecting means for detecting an ignition timing based on an output of the ignition detecting means and an output of the crank angle detecting means. The in-cylinder state detection device for an internal combustion engine according to claim 1, wherein the in-cylinder state detection device is configured to include.
【請求項3】機関の筒内圧を検出する筒内圧検出手段
と、 前記透過光強度検出手段における前記光電変換素子の出
力と前記筒内圧検出手段で検出された筒内圧とに基づい
て筒内の空燃比を検出する空燃比検出手段と、 を含んで構成したことを特徴とする請求項1または請求
項2に記載の内燃機関の筒内状態検出装置。
3. An in-cylinder pressure detecting means for detecting an in-cylinder pressure of an engine, and an in-cylinder pressure inside the cylinder based on an output of the photoelectric conversion element in the transmitted light intensity detecting means and an in-cylinder pressure detected by the in-cylinder pressure detecting means. An in-cylinder state detection device for an internal combustion engine according to claim 1 or 2, further comprising: an air-fuel ratio detecting means for detecting an air-fuel ratio.
【請求項4】前記透過光強度検出手段における前記一対
の光学素子を、機関の点火栓に一体的に設けたことを特
徴とする請求項1〜請求項3の何れか1つに記載の内燃
機関の筒内状態検出装置。
4. The internal combustion engine according to claim 1, wherein the pair of optical elements in the transmitted light intensity detecting means are provided integrally with an ignition plug of an engine. In-cylinder condition detection device.
【請求項5】前記透過光強度検出手段における前記一対
の光学素子を加熱する加熱手段と、 機関運転条件に応じて前記加熱手段を選択的に動作させ
る運転条件による加熱制御手段と、 を設けたことを特徴とする請求項1〜請求項4の何れか
1つに記載の内燃機関の筒内状態検出装置。
5. A heating means for heating the pair of optical elements in the transmitted light intensity detecting means, and a heating control means under operating conditions for selectively operating the heating means according to engine operating conditions are provided. The in-cylinder state detection device for an internal combustion engine according to any one of claims 1 to 4, characterized in that.
【請求項6】前記透過光強度検出手段における前記一対
の光学素子を加熱する加熱手段と、 前記透過光強度検出手段における前記一対の光学素子に
対する燃料の付着状態を検知する燃料付着検知手段と、 該燃料付着検知手段で燃料の付着状態が検知されたとき
に前記加熱手段を動作させる付着検知による加熱制御手
段と、 を設けたことを特徴とする請求項1〜請求項4の何れか
1つに記載の内燃機関の筒内状態検出装置。
6. A heating means for heating the pair of optical elements in the transmitted light intensity detecting means, and a fuel adhesion detecting means for detecting an adhesion state of fuel to the pair of optical elements in the transmitted light intensity detecting means, 5. A heating control means by adhesion detection for operating the heating means when the adhesion state of fuel is detected by the fuel adhesion detection means, any one of claims 1 to 4 is provided. An in-cylinder state detection device for an internal combustion engine according to item 1.
JP21485994A 1994-09-08 1994-09-08 In-cylinder state detection device for internal combustion engine Expired - Fee Related JP3603341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21485994A JP3603341B2 (en) 1994-09-08 1994-09-08 In-cylinder state detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21485994A JP3603341B2 (en) 1994-09-08 1994-09-08 In-cylinder state detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0874651A true JPH0874651A (en) 1996-03-19
JP3603341B2 JP3603341B2 (en) 2004-12-22

Family

ID=16662742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21485994A Expired - Fee Related JP3603341B2 (en) 1994-09-08 1994-09-08 In-cylinder state detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3603341B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006227003A (en) * 2005-02-08 2006-08-31 General Electric Co <Ge> Method and system of optical detection for polyphase combustion system
JP2007303351A (en) * 2006-05-10 2007-11-22 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JP2008128933A (en) * 2006-11-24 2008-06-05 Ntn Corp Lubricant deterioration detector and bearing with detector
JP2013513071A (en) * 2009-12-07 2013-04-18 マクアリスター テクノロジーズ エルエルシー Adaptive control system for fuel injectors and ignition systems
WO2015046875A1 (en) * 2013-09-25 2015-04-02 한국생산기술연구원 Air-fuel ratio measurement system comprising optical sensor
JP2016085074A (en) * 2014-10-23 2016-05-19 株式会社島津製作所 Gas analysis device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006227003A (en) * 2005-02-08 2006-08-31 General Electric Co <Ge> Method and system of optical detection for polyphase combustion system
EP1703206A2 (en) * 2005-02-08 2006-09-20 The General Electric Company Method and apparatus for the optical detection of multi-phase combustion products
JP2007303351A (en) * 2006-05-10 2007-11-22 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JP4673787B2 (en) * 2006-05-10 2011-04-20 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
JP2008128933A (en) * 2006-11-24 2008-06-05 Ntn Corp Lubricant deterioration detector and bearing with detector
JP2013513071A (en) * 2009-12-07 2013-04-18 マクアリスター テクノロジーズ エルエルシー Adaptive control system for fuel injectors and ignition systems
WO2015046875A1 (en) * 2013-09-25 2015-04-02 한국생산기술연구원 Air-fuel ratio measurement system comprising optical sensor
JP2016085074A (en) * 2014-10-23 2016-05-19 株式会社島津製作所 Gas analysis device

Also Published As

Publication number Publication date
JP3603341B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
Docquier et al. Combustion control and sensors: a review
US7877195B2 (en) Method for the estimation of combustion parameters
JPS5825584A (en) Method and device for forming actual combustion starting timing signal of compression ignition engine
US8050848B2 (en) Method and system for igniting a lean fuel mixture in a main chamber of an internal combustion engine
EP0358419A2 (en) Control system for an internal combustion engine
US5186146A (en) Combustion evaluation apparatus and combustion controller
JP4415269B2 (en) Laser ignition device for internal combustion engine
JP3603341B2 (en) In-cylinder state detection device for internal combustion engine
US8454353B2 (en) Method for evaluating the state of a fuel/air mixture
JP2932887B2 (en) Air-fuel ratio detection device for internal combustion engine
Sanders et al. Gas temperature measurements during ignition in an HCCI engine
JP3250491B2 (en) Air-fuel ratio detection device for internal combustion engine
JP4294603B2 (en) Laser ignition device for internal combustion engine
JP3368687B2 (en) Air-fuel ratio detection device for internal combustion engine
JP2001132511A (en) Air-fuel ratio control device for internal combustion engine
JP2917737B2 (en) Direct injection spark ignition engine
JP2008002279A (en) Combustion control device of laser ignition type internal combustion engine
JP3784768B2 (en) Gas concentration sensor
JP2921325B2 (en) Fuel injection control device for internal combustion engine
JPH048285Y2 (en)
JP2950107B2 (en) Control device for spark ignition engine
JP2003014640A (en) Fuel concentration measuring apparatus of engine
JP3945054B2 (en) In-cylinder direct injection internal combustion engine control device
JP4419788B2 (en) Laser ignition device for internal combustion engine
JPH04136455A (en) Detection of knocking and controller for internal combustion engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20040310

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040920

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees