JP3945054B2 - In-cylinder direct injection internal combustion engine control device - Google Patents

In-cylinder direct injection internal combustion engine control device Download PDF

Info

Publication number
JP3945054B2
JP3945054B2 JP35237398A JP35237398A JP3945054B2 JP 3945054 B2 JP3945054 B2 JP 3945054B2 JP 35237398 A JP35237398 A JP 35237398A JP 35237398 A JP35237398 A JP 35237398A JP 3945054 B2 JP3945054 B2 JP 3945054B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35237398A
Other languages
Japanese (ja)
Other versions
JP2000179377A (en
Inventor
雅司 的場
茂 亀ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP35237398A priority Critical patent/JP3945054B2/en
Publication of JP2000179377A publication Critical patent/JP2000179377A/en
Application granted granted Critical
Publication of JP3945054B2 publication Critical patent/JP3945054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、筒内直接噴射式内燃機関の制御装置に関する。
【0002】
【従来の技術】
従来の筒内直接噴射式内燃機関の制御装置としては、例えば、特開平6−288283号公報に示すようなものがある。
この従来例は、ガソリンが選択的に吸収する波長のレーザ光を燃焼室内に導き、点火プラグ近傍の燃焼室内空間に透過させ、透過光強度を光電変換素子によって検出しこの透過光強度と筒内圧とに基づいて点火時期における空燃比を演算する。ここで噴射タイミング制御の結果、前記検出空燃比が前回に比してリッチ変化をしたか否かを判断し、リッチ変化を得た方向への噴射タイミングの補正を行うよう制御している(図14参照)。
【0003】
【発明が解決しようとする課題】
しかしながら、このような従来の筒内直接噴射式内燃機関の制御装置にあっては、燃料を圧縮行程噴射する場合、燃料噴射弁の噴霧形状のばらつきや噴霧形状の経時変化により、着火可能空燃比よりも濃空燃比となる可能性は充分にあり、そこで濃空燃比方向に燃料噴射時期を補正すると失火サイクルを生じることになる、また噴霧形状は背圧によって変化するため噴射時期を補正すると設定点火時期において前回検出した空燃比にならずに制御を繰返し、そのため応答性が低下する可能性がある、あるいは点火プラグ近傍の空燃比が設定点火時期近傍でサイクル毎に大きく変動する場合には噴射時期のみの制御では充分な燃焼安定性が得られない可能性があるという問題点がある。
本発明は上述の従来の問題点に着目してなされたものであって、点火プラグ近傍に設置される空燃比計測装置を備えた筒内直接噴射式内燃機関において、燃料噴射後における点火プラグ近傍の空燃比を1サイクル中において時系列的に検出し、点火時期、点火方法、燃料噴射時期の運転条件を、単独または複数同時に制御することにより上記問題点を解決することを目的としている。
【0004】
【課題を解決するための手段】
上述の目的達成のため、本発明請求項1〜4記載の発明では、点火プラグ近傍に設置される空燃比計測装置を備えた筒内直接噴射式内燃機関において、燃料噴射後における点火プラグ近傍の空燃比を1サイクル中に時系列的に検出し、運転条件を制御することを特徴とする。
特に請求項1記載の発明では、点火プラグ近傍に設置される空燃比計測装置により時系列的空燃比を計測し、適正空燃比となる時期を選択して点火時期とするよう制御することを特徴とする。
特に請求項2記載の発明では、点火プラグ近傍に設置される空燃比計測装置により時系列的空燃比を計測し、点火方法を1サイクル中に複数回点火する多重点火方式とするよう制御することを特徴とする。
特に請求項3記載の発明では、点火プラグ近傍に設置される空燃比計測装置により時系列的空燃比を計測し、燃料噴射時期を圧縮行程から吸気行程に変更する、あるいは吸気行程から圧縮行程に変更するよう制御することを特徴とする。
特に請求項4記載の発明では、点火プラグ近傍に設置される空燃比計測装置により時系列的空燃比を計測し、適正空燃比となる時期を選択して点火時期とする制御、点火方法を1サイクル中に複数回点火する多重点火方式とする制御、点火方法を通常よりも放電時間を長くする長放電方式とする制御、燃料噴射時期を圧縮行程から吸気行程に変更あるいは吸気行程から圧縮行程に変更する制御のうち、複数の制御を組み合わせて実施することを特徴とする。
請求項5記載の発明では、請求項1〜4記載の筒内直接噴射式内燃機関の制御装置において、予め設定される噴射時期−点火時期マップにより求められる最遅角点火時期を点火時期に設定するサイクルを、所定サイクル数以上の範囲において1サイクル混入させることを特徴とする。
【0005】
【作用】
請求項1〜4記載の発明では、点火プラグ近傍の時系列的空燃比を検出することにより、所定点火時期での空燃比の変化のみならず、燃料噴射後からの時系列的空燃比をも検出して、燃料噴霧形態を全体的に把握して制御することができる。
特に請求項1記載の発明では、噴霧の経時変化等により、所定タイミングでの点火プラグ近傍空燃比が変化した場合において、検出した時系列的空燃比に基づいて最適空燃比となる点火時期を設定することにより燃焼安定性を確保する。
特に請求項2記載の発明では、点火プラグ近傍空燃比の変動が大きい場合や、矩形的に着火可能空燃比範囲内の最濃空燃比あるいは最希薄空燃比となる場合において、複数回点火することにより燃焼安定性を確保する。
特に請求項3記載の発明では、燃料噴霧が変化して点火プラグ近傍に着火可能空燃比の燃料噴霧を安定的に供給できなくなった場合に、燃料の吸気行程噴射を行うことにより噴口付近に堆積したデポジットを除去して燃料噴霧形状の回復を図り、着火可能範囲空燃比の燃料を安定的に供給することができる。
特に請求項4記載の発明では、上記請求項1〜3に示す制御、及び、通常より放電時間を長くする制御のうち、複数の制御を同時に行うことにより燃焼安定性を確保することができる。
請求項5記載の発明では、予め設定される噴射時期−点火時期マップにより求められる最遅角点火時期を一旦点火時期に設定することにより、機関性能の悪化を抑制しつつ点火プラグ近傍の空燃比の略全体を把握して最適制御を行うことができる。
【0006】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて説明する。
(実施の形態1)
図1は、実施の形態1のシステム全体図である。
図に示すように、本実施の形態の筒内直接噴射式内燃機関の制御装置は、点火プラグ1と一体的に設置される空燃比検出部13により得られる光学情報と、燃焼室3に設置される筒内圧センサ11により得られる筒内圧とに基づいて、ECU10において各サイクルの燃料噴射時期からの初期設定点火時期あるいは最遅角点火時期までの時系列的空燃比を演算し、点火プラグ1近傍の空燃比を検出する。なお、4はピストン、6は吸気バルブ、7は排気バルブ、8は吸気ポート、9は排気ポート、12は空燃比計測装置、14はレーザ源、15は光電変換素子である。
【0007】
図13は本実施形態の点火時期制御のフロ−チャ−トであって、当初よりECU10内に持つ機関回転数および負荷毎の燃料噴射時期−点火時期マップにより決定されるタイミングで運転する際の空燃比を前記手法により検出し、機関の初期段階で得られている空燃比と比較して、同程度の空燃比であれば補正をせずにそのまま運転を縦続する。
しかし検出した空燃比が初期空燃比と大きく異なる場合、安定的な燃焼を得るために点火時期の補正を行う必要が生じ、図2に示すように最濃空燃比となるタイミングが進角側にずれる場合は点火時期までの検出で補正可能だが、図3に示すように最濃空燃比となるタイミングが遅角側にずれる場合は点火時期までの検出では不十分であり、再遅角点火時期まで一旦遅角させて空燃比を時系列的に検出して点火時期の補正を行う。
【0008】
次に、作用を説明する。
筒内直接噴射式内燃機関においては燃料噴射弁2と点火プラグ1との距離が短く、燃料噴霧5が直に点火プラグ1近傍を指向するため、点火プラグ1近傍の空燃比は燃料噴霧5の形態の影響を大きく受ける。
しかし燃料噴霧5内の燃料分布は均一ではないため、1サイクル中においても時系列的に見れば点火プラグ1近傍の空燃比は変動しており、タイミングによっては着火可能空燃比よりも濃空燃比となる場合も希薄空燃比となる場合もあり、あるいは運転中に燃料噴射弁2の噴口にデポジットが堆積することによる噴霧形状の経時変化により点火プラグ1近傍の空燃比が大きく変化する場合もある。
【0009】
そのため、筒内直接噴射式内燃機関においては燃料噴霧5の形態の経時変化を考慮して点火時期を決定する必要があり、検出した時系列的空燃比により最適空燃比となるように点火時期を設定する。また図3に示すように、点火時期を進角制御する場合は通常点火時期までの空燃比検出で制御可能であるが、進角制御すると燃費が悪化する等の不具合が生じる場合には遅角制御する必要が生じ、その際には予め設定される噴射時期−点火時期マップ(図4参照)により求められる最遅角点火時期を点火時期に設定するサイクルを、所定サイクル数以上の範囲において1サイクル混入させて運転し、機関性能の悪化を生じさせることなく時系列的燃料噴霧形態の略全体を把握することにより、より広範囲に空燃比を検出して適正な制御を行うことができ、点火を確実に行えるようにして燃焼安定性を確保する。
【0010】
(実施の形態2)
次に、実施の形態2について説明する。
図5〜図7に示す実施の形態2では、時系列的空燃比が着火可能空燃比範囲を含んで濃空燃比から希薄空燃比まで大きく変動する場合には不均一な燃料が点火プラグ近傍を通過していることを示しており、また空燃比が矩形的に濃空燃比限界あるいは希薄空燃比限界付近を示す場合には着火できるか否かの境界線上にあり、いずれの場合においても1回の点火では安定的に混合気に着火できない、あるいは着火できても火炎が拡散する際に希薄空燃比の部分で失火してしまう可能性があるため、1サイクル中に点火を複数回行うことにより失火を抑制するように制御して、点火を確実に行えるようにして燃焼安定性を確保する。
【0011】
(実施の形態3)
次に、実施の形態3について説明する。尚、実施の形態3は、前述の実施の形態1、2、及び、後述の実施の形態4のうち、少なくとも1つと組み合わせて実施する。
図8〜図10に示す実施の形態3では、時系列的空燃比が着火可能空燃比範囲を含んで濃空燃比から希薄空燃比まで大きく変動する場合には不均一な燃料が点火プラグ近傍を通過していることを示しており、また空燃比が矩形的に濃空燃比限界あるいは希薄空燃比限界付近を示す場合には着火できるか否かの境界線上にあり、いずれの場合においても通常の点火期間では安定的に混合気に着火できない、あるいは着火できても火炎が拡散する際に希薄空燃比の部分で失火してしまう可能性があるため、放電時間を通常よりも長くして長期間放電を行うことにより失火を抑制するように制御して、点火を確実に行えるようにして燃焼安定性を確保する。
【0012】
(実施の形態4)
次に、実施の形態4について説明する。
図11,図12に示す実施の形態4では、燃料を圧縮行程噴射する際に時系列的空燃比が系列的な変化をしない場合や、着火可能空燃比範囲よりも希薄空燃比側にしかならない、あるいは極端に濃空燃比になってしまう場合、燃料噴射弁の噴口部にデポジットが堆積することによる噴霧の経時変化が生じている可能性が高いため、燃料噴射時期を吸気行程として、筒内圧が低いことによる噴霧の貫徹力が相対的に強まり噴口内のデポジットを除去する効果あるいは噴霧が広がり噴口周辺のデポジットを除去する効果、および筒内流動が強いことによる噴口内残留燃料を気化する効果、等により燃料噴霧形状の回復を図るよう制御して、点火プラグ近傍に適正空燃比の燃料噴霧を供給できるようにして、点火を確実に行えるようにして燃焼安定性を確保する。
【0013】
【発明の効果】
以上説明してきたように、この発明によれば、筒内直接噴射式内燃機関の制御装置において、点火プラグ近傍に設置される空燃比計測装置により、1サイクル中の燃料噴射後における点火プラグ近傍の空燃比を時系列的に検出し、点火時期、点火方法、燃料噴射時期の運転条件を、単独または複数同時に制御することにより、燃焼安定性を確保することができる。
【図面の簡単な説明】
【図1】本発明実施の形態のシステム全体図である。
【図2】点火時期制御を示す図である。
【図3】空燃比検出範囲の違いによる点火時期制御を示す図である。
【図4】燃焼安定領域と各噴射時期における最遅角点火時期を示す図(噴射時期−点火時期マップ)である。
【図5】空燃比変動大の場合における多重点火制御を示す図である。
【図6】濃限界空燃比の場合における多重点火制御を示す図である。
【図7】希薄限界空燃比の場合における多重点火制御を示す図である。
【図8】空燃比変動大の場合における長放電制御を示す図である。
【図9】濃限界空燃比の場合における長放電制御を示す図である。
【図10】希薄限界空燃比の場合における長放電制御を示す図である。
【図11】空燃比変動大の場合における燃料噴霧経時変化検出を示す図である。
【図12】過希薄空燃比の場合における燃料噴霧経時変化検出を示す図である。
【図13】点火時期制御のフロ−チャ−トである。
【図14】従来列の制御を示すフロ−チャ−トである。
【符号の説明】
1 点火プラグ
2 燃料噴射弁
3 燃焼室
4 ピストン
5 燃料噴霧
6 吸気バルブ
7 排気バルブ
8 吸気ポート
9 排気ポート
10 ECU
11 筒内圧センサ
12 空燃比計測装置
13 空燃比検出部
14 レーザ源
15 光電変換素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a direct injection type internal combustion engine.
[0002]
[Prior art]
As a conventional control device for a direct injection type internal combustion engine, for example, there is one as shown in Japanese Patent Laid-Open No. Hei 6-288283.
In this conventional example, laser light having a wavelength that is selectively absorbed by gasoline is guided into the combustion chamber, transmitted through the combustion chamber space near the spark plug, and the transmitted light intensity is detected by a photoelectric conversion element. Based on the above, the air-fuel ratio at the ignition timing is calculated. Here, as a result of the injection timing control, it is determined whether or not the detected air-fuel ratio has changed rich compared to the previous time, and control is performed to correct the injection timing in the direction in which the rich change has been obtained (FIG. 14).
[0003]
[Problems to be solved by the invention]
However, in such a conventional control device for a direct injection type internal combustion engine, when the fuel is injected in a compression stroke, the air-fuel ratio which can be ignited due to the variation in the spray shape of the fuel injection valve and the change in the spray shape over time. Therefore, if the fuel injection timing is corrected in the direction of the rich air-fuel ratio, a misfire cycle will occur, and the spray shape changes depending on the back pressure, so the injection timing is corrected. The control is repeated without the previously detected air-fuel ratio at the ignition timing, so that the responsiveness may decrease, or if the air-fuel ratio in the vicinity of the ignition plug fluctuates from cycle to cycle near the set ignition timing There is a problem that sufficient combustion stability may not be obtained by controlling only the timing.
The present invention has been made paying attention to the above-mentioned conventional problems, and in a direct injection type internal combustion engine equipped with an air-fuel ratio measuring device installed in the vicinity of an ignition plug, in the vicinity of the ignition plug after fuel injection It is an object of the present invention to solve the above-mentioned problems by detecting the air-fuel ratio of the engine in a time series in one cycle and controlling the operation conditions of ignition timing, ignition method, and fuel injection timing individually or simultaneously.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, according to the first to fourth aspects of the present invention, in a direct injection type internal combustion engine equipped with an air-fuel ratio measuring device installed in the vicinity of a spark plug, in the vicinity of the spark plug after fuel injection. It is characterized in that the air-fuel ratio is detected in a time series in one cycle to control the operating conditions.
In particular, the invention according to claim 1 is characterized in that a time-series air-fuel ratio is measured by an air-fuel ratio measuring device installed in the vicinity of the spark plug , and control is performed so as to select a timing at which an appropriate air-fuel ratio is obtained and to set it as the ignition timing. And
In particular, in the second aspect of the invention, a time-series air-fuel ratio is measured by an air-fuel ratio measuring device installed in the vicinity of the spark plug, and the ignition method is controlled to be a multiple ignition method in which ignition is performed a plurality of times in one cycle. It is characterized by that.
In particular, in the invention described in claim 3, the time-series air-fuel ratio is measured by an air-fuel ratio measuring device installed in the vicinity of the spark plug, and the fuel injection timing is changed from the compression stroke to the intake stroke, or from the intake stroke to the compression stroke. It is characterized by controlling to change.
In particular, in the invention according to claim 4, the time series air-fuel ratio is measured by an air-fuel ratio measuring device installed in the vicinity of the spark plug, and the control and ignition method for selecting the timing when the appropriate air-fuel ratio is obtained and setting the ignition timing as 1 Control with multiple ignition system that ignites multiple times during a cycle, control with ignition method with long discharge system that makes discharge time longer than normal, change fuel injection timing from compression stroke to intake stroke, or from intake stroke to compression stroke Among the controls to be changed to the above, a plurality of controls are performed in combination .
According to a fifth aspect of the present invention, in the control apparatus for a direct injection type internal combustion engine according to the first to fourth aspects, the most retarded ignition timing obtained from a preset injection timing-ignition timing map is set as the ignition timing. One cycle is mixed in a range of a predetermined number of cycles or more.
[0005]
[Action]
In the first to fourth aspects of the invention, by detecting the time-series air-fuel ratio in the vicinity of the spark plug, not only the change in the air-fuel ratio at the predetermined ignition timing but also the time-series air-fuel ratio after fuel injection is obtained. It is possible to detect and control the fuel spray form as a whole.
In particular, in the first aspect of the invention, when the air-fuel ratio in the vicinity of the spark plug changes at a predetermined timing due to a change in the spray over time, the ignition timing that sets the optimal air-fuel ratio is set based on the detected time-series air-fuel ratio. This ensures combustion stability.
In particular, in the second aspect of the invention, ignition is performed a plurality of times when the fluctuation of the air-fuel ratio in the vicinity of the spark plug is large, or when the richest air-fuel ratio or the leanest air-fuel ratio within the ignitable air-fuel ratio range is rectangular. This ensures combustion stability.
In particular, in the invention according to claim 3 , when the fuel spray changes and it becomes impossible to stably supply the fuel spray of the ignitable air-fuel ratio in the vicinity of the spark plug, the fuel is deposited near the injection hole by performing the intake stroke injection. By removing the deposited deposit, the fuel spray shape can be recovered, and the fuel in the ignitable range air-fuel ratio can be stably supplied.
In particular, in the invention according to claim 4, combustion stability can be ensured by simultaneously performing a plurality of controls among the control shown in the above claims 1 to 3 and the control for making the discharge time longer than usual .
According to the fifth aspect of the present invention, an air-fuel ratio in the vicinity of the spark plug is suppressed while suppressing deterioration in engine performance by temporarily setting the most retarded ignition timing obtained from a preset injection timing-ignition timing map as the ignition timing. It is possible to perform optimal control by grasping almost the whole.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is an overall system diagram of the first embodiment.
As shown in the figure, the control device for a direct injection type internal combustion engine of the present embodiment is installed in the combustion chamber 3 with optical information obtained by an air-fuel ratio detection unit 13 installed integrally with the spark plug 1. Based on the in-cylinder pressure obtained by the in-cylinder pressure sensor 11, the ECU 10 calculates the time-series air-fuel ratio from the fuel injection timing of each cycle to the initial set ignition timing or the most retarded ignition timing, and the spark plug 1 Detect nearby air-fuel ratio. 4 is a piston, 6 is an intake valve, 7 is an exhaust valve, 8 is an intake port, 9 is an exhaust port, 12 is an air-fuel ratio measuring device, 14 is a laser source, and 15 is a photoelectric conversion element.
[0007]
FIG. 13 is a flowchart of the ignition timing control according to the present embodiment. When the engine is operated at the timing determined by the engine speed and the fuel injection timing-ignition timing map for each load in the ECU 10 from the beginning. The air-fuel ratio is detected by the above-described method, and if the air-fuel ratio is comparable to the air-fuel ratio obtained at the initial stage of the engine, the operation is continued as it is without correction.
However, if the detected air-fuel ratio is significantly different from the initial air-fuel ratio, it is necessary to correct the ignition timing in order to obtain stable combustion, and the timing at which the richest air-fuel ratio is reached is advanced as shown in FIG. If it is deviated, it can be corrected by detection until the ignition timing, but as shown in FIG. 3, if the timing at which the richest air-fuel ratio deviates to the retard side, detection until the ignition timing is insufficient, and the re-retard ignition timing The ignition timing is corrected by once delaying until the air-fuel ratio is detected in time series.
[0008]
Next, the operation will be described.
In a direct injection type internal combustion engine, the distance between the fuel injection valve 2 and the spark plug 1 is short, and the fuel spray 5 is directed directly to the vicinity of the spark plug 1. Greatly affected by form.
However, since the fuel distribution in the fuel spray 5 is not uniform, the air-fuel ratio in the vicinity of the spark plug 1 fluctuates in one cycle even in one cycle. Depending on the timing, the air-fuel ratio is richer than the ignitable air-fuel ratio. The air-fuel ratio in the vicinity of the spark plug 1 may change significantly due to the change in the spray shape over time due to deposits deposited at the injection port of the fuel injection valve 2 during operation. .
[0009]
For this reason, in a direct injection type internal combustion engine, it is necessary to determine the ignition timing in consideration of the temporal change of the form of the fuel spray 5, and the ignition timing is set so that the optimum air-fuel ratio is obtained by the detected time-series air-fuel ratio. Set. As shown in FIG. 3, when the ignition timing is controlled to advance, it can be controlled by detecting the air-fuel ratio until the normal ignition timing. In this case, a cycle in which the most retarded ignition timing determined by a preset injection timing-ignition timing map (see FIG. 4) is set as the ignition timing is set to 1 within a range of a predetermined number of cycles or more. By operating in a mixed cycle and grasping almost the entire time-series fuel spray form without causing deterioration in engine performance, it is possible to detect the air-fuel ratio in a wider range and perform appropriate control. To ensure combustion stability.
[0010]
(Embodiment 2)
Next, a second embodiment will be described.
In the second embodiment shown in FIGS. 5 to 7, when the time-series air-fuel ratio fluctuates greatly from the rich air-fuel ratio to the lean air-fuel ratio including the ignitable air-fuel ratio range, the non-uniform fuel moves near the spark plug. If the air-fuel ratio is rectangularly close to the rich air-fuel ratio limit or near the lean air-fuel ratio limit, it is on the boundary of whether or not ignition can be performed, and in either case, it is once In this ignition, the air-fuel mixture cannot be ignited stably, or even if it can be ignited, there is a possibility of misfiring at the lean air-fuel ratio when the flame diffuses. Control is performed to suppress misfire, and ignition can be performed reliably to ensure combustion stability.
[0011]
(Embodiment 3)
Next, Embodiment 3 will be described. The third embodiment is implemented in combination with at least one of the first and second embodiments described above and the fourth embodiment described later.
In the third embodiment shown in FIG. 8 to FIG. 10, when the time-series air-fuel ratio fluctuates greatly from the rich air-fuel ratio to the lean air-fuel ratio including the ignitable air-fuel ratio range, the non-uniform fuel is found in the vicinity of the spark plug. If the air-fuel ratio is rectangularly close to the rich air-fuel ratio limit or near the lean air-fuel ratio limit, it is on the boundary of whether or not ignition is possible. During the ignition period, the air-fuel mixture cannot be ignited stably, or even if it can be ignited, there is a possibility of misfiring at the lean air-fuel ratio when the flame diffuses. Control is performed so as to suppress misfire by performing discharge, so that ignition can be reliably performed and combustion stability is ensured.
[0012]
(Embodiment 4)
Next, a fourth embodiment will be described.
In the fourth embodiment shown in FIG. 11 and FIG. 12, when the fuel is injected in the compression stroke, the time-series air-fuel ratio does not change in series, or it is only on the lean air-fuel ratio side from the ignitable air-fuel ratio range. If the air-fuel ratio becomes extremely rich, or there is a high possibility that the spray will change over time due to deposits deposited at the injection port of the fuel injection valve, the cylinder pressure The effect of removing the deposits in the nozzle hole due to the relatively strong spray penetration force due to the low pressure, the effect of spreading the spray and removing the deposit around the nozzle hole, and the effect of vaporizing the residual fuel in the nozzle hole due to the strong in-cylinder flow By controlling the fuel spray shape to be recovered by, etc., it is possible to supply a fuel spray with an appropriate air-fuel ratio in the vicinity of the spark plug so that ignition can be reliably performed and combustion is stabilized. To secure.
[0013]
【The invention's effect】
As described above, according to the present invention, in the control device for a direct injection type internal combustion engine, the air fuel ratio measuring device installed in the vicinity of the spark plug allows the vicinity of the spark plug after fuel injection in one cycle. Combustion stability can be ensured by detecting the air-fuel ratio in time series and controlling the operating conditions of the ignition timing, ignition method, and fuel injection timing individually or simultaneously.
[Brief description of the drawings]
FIG. 1 is an overall system diagram of an embodiment of the present invention.
FIG. 2 is a diagram showing ignition timing control.
FIG. 3 is a diagram showing ignition timing control based on a difference in an air-fuel ratio detection range.
FIG. 4 is a diagram (injection timing-ignition timing map) showing the combustion stable region and the most retarded ignition timing at each injection timing.
FIG. 5 is a diagram showing multiple ignition control in the case of large air-fuel ratio fluctuations.
FIG. 6 is a diagram showing multiple ignition control in the case of a rich limit air-fuel ratio.
FIG. 7 is a diagram showing multiple ignition control in the case of a lean limit air-fuel ratio.
FIG. 8 is a diagram showing long discharge control in the case of large air-fuel ratio fluctuations.
FIG. 9 is a diagram showing long discharge control in the case of a rich limit air-fuel ratio.
FIG. 10 is a diagram showing long discharge control in the case of a lean limit air-fuel ratio.
FIG. 11 is a diagram showing fuel spray aging detection in the case of large air-fuel ratio fluctuations.
FIG. 12 is a diagram showing fuel spray aging detection in the case of a lean air / fuel ratio.
FIG. 13 is a flowchart of ignition timing control.
FIG. 14 is a flowchart showing control of a conventional row.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Spark plug 2 Fuel injection valve 3 Combustion chamber 4 Piston 5 Fuel spray 6 Intake valve 7 Exhaust valve 8 Intake port 9 Exhaust port 10 ECU
11 In-cylinder pressure sensor 12 Air-fuel ratio measuring device 13 Air-fuel ratio detector 14 Laser source 15 Photoelectric conversion element

Claims (5)

点火プラグ近傍に設置される空燃比計測装置を備えた筒内直接噴射式内燃機関において、
燃料噴射後における点火プラグ近傍の空燃比を1サイクル中に時系列的に検出し、
適正空燃比となる時期を選択して点火時期とするよう制御することを特徴とする筒内直接噴射式内燃機関の制御装置。
In a direct injection type internal combustion engine equipped with an air-fuel ratio measuring device installed in the vicinity of a spark plug,
The air-fuel ratio in the vicinity of the spark plug after fuel injection is detected in time series during one cycle,
A control apparatus for an in-cylinder direct injection internal combustion engine, wherein control is performed so that an ignition timing is selected by selecting a timing at which an appropriate air-fuel ratio is obtained .
点火プラグ近傍に設置される空燃比計測装置を備えた筒内直接噴射式内燃機関において、
燃料噴射後における点火プラグ近傍の空燃比を1サイクル中に時系列的に検出し、
点火方法を1サイクル中に複数回点火する多重点火方式とするよう制御することを特徴とする筒内直接噴射式内燃機関の制御装置。
In a direct injection type internal combustion engine equipped with an air-fuel ratio measuring device installed in the vicinity of a spark plug,
The air-fuel ratio in the vicinity of the spark plug after fuel injection is detected in time series during one cycle,
A control apparatus for an in-cylinder direct injection internal combustion engine, wherein the ignition method is controlled to be a multiple ignition system in which ignition is performed a plurality of times in one cycle .
点火プラグ近傍に設置される空燃比計測装置を備えた筒内直接噴射式内燃機関において、
燃料噴射後における点火プラグ近傍の空燃比を1サイクル中に時系列的に検出し、
燃料噴射時期を圧縮行程から吸気行程に変更する、あるいは吸気行程から圧縮行程に変更するよう制御することを特徴とする筒内直接噴射式内燃機関の制御装置。
In a direct injection type internal combustion engine equipped with an air-fuel ratio measuring device installed in the vicinity of a spark plug,
The air-fuel ratio in the vicinity of the spark plug after fuel injection is detected in time series during one cycle,
A control apparatus for a direct injection type internal combustion engine, wherein the fuel injection timing is controlled to be changed from a compression stroke to an intake stroke or from an intake stroke to a compression stroke .
点火プラグ近傍に設置される空燃比計測装置を備えた筒内直接噴射式内燃機関において、
燃料噴射後における点火プラグ近傍の空燃比を1サイクル中に時系列的に検出し、
適正空燃比となる時期を選択して点火時期とする制御、点火方法を1サイクル中に複数回点火する多重点火方式とする制御、点火方法を通常よりも放電時間を長くする長放電方式とする制御、燃料噴射時期を圧縮行程から吸気行程に変更あるいは吸気行程から圧縮行程に変更する制御のうち、複数の制御を組み合わせて実施することを特徴とする筒内直接噴射式内燃機関の制御装置。
In a direct injection type internal combustion engine equipped with an air-fuel ratio measuring device installed in the vicinity of a spark plug,
The air-fuel ratio in the vicinity of the spark plug after fuel injection is detected in time series during one cycle,
Control for selecting an appropriate air-fuel ratio and setting the ignition timing, control for setting the ignition method to a multiple ignition method for igniting a plurality of times in one cycle, and long discharge method for making the ignition method longer than usual. And a control device for a direct injection type internal combustion engine, wherein a combination of a plurality of controls is performed among the control to change the fuel injection timing from the compression stroke to the intake stroke or from the intake stroke to the compression stroke .
予め設定される噴射時期−点火時期マップにより求められる最遅角点火時期を点火時期に設定するサイクルを、所定サイクル数以上の範囲において1サイクル混入させることを特徴とする請求項1〜請求項4のいずれか1つに記載の筒内直接噴射式内燃機関の制御装置。Injection timing is set in advance - claim, characterized in that the cycle for setting a most retarded ignition timing obtained by the ignition timing map to the ignition timing, thereby one cycle mixed in a given cycle number at over 1 to claim 4 The control apparatus for a direct injection type internal combustion engine according to any one of the above.
JP35237398A 1998-12-11 1998-12-11 In-cylinder direct injection internal combustion engine control device Expired - Lifetime JP3945054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35237398A JP3945054B2 (en) 1998-12-11 1998-12-11 In-cylinder direct injection internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35237398A JP3945054B2 (en) 1998-12-11 1998-12-11 In-cylinder direct injection internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2000179377A JP2000179377A (en) 2000-06-27
JP3945054B2 true JP3945054B2 (en) 2007-07-18

Family

ID=18423632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35237398A Expired - Lifetime JP3945054B2 (en) 1998-12-11 1998-12-11 In-cylinder direct injection internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP3945054B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1406003B1 (en) 2001-07-02 2006-02-22 Hitachi, Ltd. Cylinder direct injection type internal combustion engine
JP2009024682A (en) * 2007-07-24 2009-02-05 Denso Corp Control device for spray guide type cylinder injection internal combustion engine
JP2010163905A (en) * 2009-01-13 2010-07-29 Toyota Motor Corp Fuel supply control device

Also Published As

Publication number Publication date
JP2000179377A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
US7007661B2 (en) Method and apparatus for controlling micro pilot fuel injection to minimize NOx and UHC emissions
US5642705A (en) Control system and method for direct fuel injection engine
JP4099396B2 (en) Method for raising the exhaust gas temperature of a spark ignition direct injection internal combustion engine
KR101016924B1 (en) Fuel injection control apparatus and fuel injection control method of internal combustion engine
EP1514013A1 (en) Method for controlling exhausted gas emissions
WO2016194184A1 (en) Control device for internal combustion engine and control method for internal combustion engine
JP2008190511A (en) Exhaust gas reduction device for direct injection gasoline engine
JP2005030228A (en) Fuel injection control device for cylinder direct injection spark ignition engine
US7658178B2 (en) Engine event-based correction of engine speed fluctuations
JP3952710B2 (en) Compression self-ignition internal combustion engine
JP3945054B2 (en) In-cylinder direct injection internal combustion engine control device
JP3965905B2 (en) Compression self-ignition internal combustion engine
JP2002276442A (en) Combustion control device for internal combustion engine
JP4143456B2 (en) Engine control apparatus and control method
JP3627546B2 (en) Direct cylinder injection spark ignition engine
JP2005240712A (en) Gas engine
JP2007138802A (en) Combustion condition detection device for internal combustion engine
US7198025B2 (en) In-cylinder injection type spark-ignition internal combustion engine
JP3944985B2 (en) Control device for direct injection internal combustion engine
JP3685103B2 (en) In-cylinder direct injection engine
JP4177108B2 (en) Method and apparatus for adjusting the valve opening time of a fuel injector of a direct injection internal combustion engine
JP2000080944A (en) Combustion control device for internal combustion engine
JP2018178891A (en) Control device of internal combustion engine
JP3945072B2 (en) Fuel injection control device for internal combustion engine
JP6747460B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

EXPY Cancellation because of completion of term