JPH0873285A - Glazed ceramic substrate and its production - Google Patents

Glazed ceramic substrate and its production

Info

Publication number
JPH0873285A
JPH0873285A JP23217694A JP23217694A JPH0873285A JP H0873285 A JPH0873285 A JP H0873285A JP 23217694 A JP23217694 A JP 23217694A JP 23217694 A JP23217694 A JP 23217694A JP H0873285 A JPH0873285 A JP H0873285A
Authority
JP
Japan
Prior art keywords
transition metal
ceramic substrate
glass
metal oxide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23217694A
Other languages
Japanese (ja)
Inventor
Masahiko Okuyama
雅彦 奥山
Masaji Tsuzuki
正詞 都築
Masanori Nakanishi
正典 中西
Masahiro Kato
正博 加藤
Takaaki Hiraoka
敬章 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP23217694A priority Critical patent/JPH0873285A/en
Publication of JPH0873285A publication Critical patent/JPH0873285A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE: To enable to control surface resistance and bake at a low temp. and to obtain a glazed ceramic substrate having further excellent surface smoothness by adding and dispersing a transition metal oxide in a glass matrix to form a glazing layer. CONSTITUTION: A paste for printing is obtained by blending (A) the transition metal oxide powder, which is made by mixing and calcining two or more kinds of the transition metal oxides and pulverizing the calcined body into 0.3-5.0μm in average particle diameter, with (B) a glass powder, which contains 20-50% B2 O3 , 5-35%, Al2 O3 , 15-55% alkaline earth oxide and <=40% SiO2 so as to be >=90% in the total on the basis of oxide weight as reference, in the ratio of A/B=3/97-40/60 and adding to mix an ethyl cellulose based binder and an organic solvent. The glazed ceramic substrate having the glazing layer made by dispersing the transition metal oxide phase in the glass matrix is obtained by applying the paste on the ceramic substrate and baking at a lower temp. than the melting temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜技術、厚膜技術あ
るいはこれらの組合せによる配線を有する電子回路基板
に好適なグレ−ズドセラミック基板およびその製造方法
に関するものである。更に詳しくは、グレ−ズの上層及
び/または下層に配線を有し、さらに各種の機能部品、
例えばキャパシタ、レジスタ、インダクタ等を有するハ
イブリッド回路を形成するのに適したグレ−ズドセラミ
ック基板およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graded ceramic substrate suitable for an electronic circuit board having wirings formed by thin film technology, thick film technology, or a combination thereof, and a method for manufacturing the same. More specifically, it has wiring on the upper layer and / or lower layer of the glaze, and further has various functional parts,
The present invention relates to a graded ceramic substrate suitable for forming a hybrid circuit having a capacitor, a resistor, an inductor, etc., and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来よりセラミック基板の表面平滑性を
著しく向上したものとして、グレ−ズドセラミック基板
が知られている。このグレ−ズドセラミック基板は、ガ
ラスの優れた表面平滑性と共に、優れた蓄熱性と電気絶
縁性とを有するので、その特性を活かして例えば各種の
サ−マルヘッドに使用されている。
2. Description of the Related Art Conventionally, a graded ceramic substrate has been known as a substrate whose surface smoothness is remarkably improved. Since this graded ceramic substrate has excellent surface smoothness of glass as well as excellent heat storage and electrical insulation properties, it is used in various thermal heads, for example, by making use of its characteristics.

【0003】グレ−ズドセラミック基板は、サ−マルヘ
ッド以外の電子部品用途、特に薄膜ハイブリッド基板用
にも用いられるが、この分野の用途では近年、特に好ま
しい材料としてB23−Al23−アルカリ土類酸化物
−SiO2系等の低融点グレ−ズ組成物が提案されてい
る(特開平6−191883号)。又、ガラス程高い耐
熱性を要求されない用途には、電気絶縁性に優れるポリ
イミド樹脂多層基板が用いられている。
[0003] gray - Zudo ceramic substrate, Sa - thermal head other electronic component applications, in particular also used for thin film hybrid substrate, in recent years the application of this field, B 2 O 3 -Al 2 O 3 as a particularly preferred material A low melting point glaze composition such as an alkaline earth oxide-SiO 2 system has been proposed (JP-A-6-191883). In addition, a polyimide resin multilayer substrate having excellent electrical insulation properties is used for applications that do not require as high heat resistance as glass.

【0004】[0004]

【発明が解決しようとする課題】最近の電子機器、電子
部品の高機能化、高速化、小型化、高精度化及び信頼性
の向上といった要求に基づいて、薄膜プロセスを用いた
キャパシタ、レジスタ、インダクタ等の機能回路を組み
込んだ電子回路基板が望まれている。ところで従来、薄
膜用基板としてはセラミックスの研磨基板、あるいはセ
ラミックス基板表面にグレ−ズ層あるいはポリイミド層
を形成した基板が用いられている。これら薄膜用基板材
料は用途により、機能回路部等に電荷が溜まり回路機能
に悪影響を及すことがあった。このような帯電を防止す
るため、基板材料表面の表面抵抗を低め、わずかに漏電
流を発生させる方法がある。しかし、ポリイミド層の樹
脂の組成、グレ−ズ層のガラス組成を変更してみても、
わずかな漏電流を起こさせる表面抵抗値の適正化といっ
た電気特性の制御は困難であった。
SUMMARY OF THE INVENTION Capacitors and resistors using a thin film process have been developed in response to recent demands for higher functionality, higher speed, smaller size, higher accuracy and improved reliability of electronic devices and electronic components. An electronic circuit board incorporating a functional circuit such as an inductor is desired. By the way, conventionally, as a thin film substrate, a ceramic polishing substrate or a substrate in which a glaze layer or a polyimide layer is formed on the surface of the ceramic substrate is used. Depending on the application, these thin film substrate materials may have an adverse effect on the circuit function due to the accumulation of electric charges in the functional circuit section or the like. In order to prevent such electrification, there is a method in which the surface resistance of the substrate material surface is lowered and a slight leakage current is generated. However, even if the resin composition of the polyimide layer and the glass composition of the glaze layer are changed,
It was difficult to control electrical characteristics such as optimizing the surface resistance value that causes a slight leakage current.

【0005】以上に加え、はじめに基板に配線を形成
(1次メタライズ)後オ−バ−グレ−ズする場合など、
1次メタライズを伴う多層化の要求に対応するには、グ
レ−ズ焼き付け時に1次メタライズ層に影響を及ぼさな
いように、グレ−ズの焼き付け温度を低く抑える必要が
ある。更に、グレ−ズ層上に高精度の配線を形成する必
要性から、従来のグレ−ズ層、ポリミド層と同等の表面
平滑性も要求される。
In addition to the above, when wiring is first formed on the substrate (primary metallization) and then over-graded,
In order to meet the demand for multi-layering with primary metallization, it is necessary to keep the baking temperature of the glaze low so as not to affect the primary metallization layer during the glaze baking. Furthermore, since it is necessary to form highly accurate wiring on the glaze layer, surface smoothness equivalent to that of the conventional glaze layer and polyimide layer is also required.

【0006】[0006]

【問題を解決するための手段】本発明は上記課題を解決
するためになされたもので、例えばキャパシタ、レジス
タ、インダクタ等の薄膜機能回路の形成に適したグレ−
ズドセラミック基板及びその製造方法を提供する事を目
的とし、特に、帯電よる回路機能への障害の防止を目的
とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and is suitable for forming thin film functional circuits such as capacitors, resistors and inductors.
It is an object of the present invention to provide a sud ceramic substrate and a method for manufacturing the same, and particularly to prevent an obstacle to a circuit function due to charging.

【0007】この目的を達成するための請求項1の発明
は、ガラスマトリックスに平均粒子径0.3〜5.0μ
mの遷移金属酸化物相を分散してなるグレ−ズ層を有す
ることを特徴とするグレ−ズドセラミック基板を要旨と
する。
In order to achieve this object, the invention of claim 1 has an average particle diameter of 0.3 to 5.0 μm in a glass matrix.
A glazed ceramic substrate is characterized in that it has a glaze layer in which a transition metal oxide phase of m is dispersed.

【0008】請求項1の発明をより限定するものとし
て、請求項2の発明では、ガラスマトリックスと遷移金
属酸化物相との比率が、重量比で、97:3〜60:4
0の範囲に有ることを特徴とする。請求項3の発明は、
遷移金属酸化物相の少なくとも一部が2種以上の遷移金
属を含む遷移金属複酸化物であることを特徴とする。請
求項4の発明は、ガラスマトリックスが、酸化物重量基
準で、B23:20〜50%と、Al23:5〜35%
と、アルカリ土類酸化物:15〜55%と、Si02
40%以下とを含み、これらの合計が90%以上である
ことを特徴とする。
As a further limitation of the invention of claim 1, in the invention of claim 2, the weight ratio of the glass matrix to the transition metal oxide phase is 97: 3 to 60: 4.
It is characterized by being in the range of 0. The invention of claim 3 is
At least a part of the transition metal oxide phase is a transition metal composite oxide containing two or more kinds of transition metals. In the invention of claim 4, the glass matrix is based on the weight of the oxide, B 2 O 3 : 20 to 50% and Al 2 O 3 : 5 to 35%.
And, an alkaline earth oxide: 15 to 55% and, Si0 2:
40% or less, and the total of these is 90% or more.

【0009】請求項5の発明は、2種以上の遷移金属化
合物を混合し仮焼することによって2種以上の遷移金属
を含む遷移金属複酸化物の仮焼体とする工程と、該仮焼
体を粉砕することによって平均粒子径0.3〜5.0μ
mの遷移金属複酸化物粉末とする工程と、該遷移金属複
酸化物粉末とガラス粉末とからなる印刷用ペ−ストとす
る工程と、該ペ−ストをセラミック基板上に塗布し焼き
付ける工程とを有することを特徴とするグレ−ズドセラ
ミック基板の製造方法を要旨とする。。
According to a fifth aspect of the invention, a step of mixing two or more kinds of transition metal compounds and calcining the mixture to form a calcined body of a transition metal composite oxide containing two or more kinds of transition metals, and the calcining. By crushing the body, the average particle size is 0.3-5.0μ
a step of forming a transition metal complex oxide powder of m, a step of forming a printing paste composed of the transition metal complex oxide powder and a glass powder, and a step of coating and baking the paste on a ceramic substrate. A gist of the method for manufacturing a graded ceramic substrate is characterized by the following. .

【0010】請求項6の発明は、ガラス粉末と平均粒子
径0.3〜5.0μmの遷移金属酸化物粉末もしくは遷
移金属複酸化物粉末とからなる混合物とする工程と、該
混合物をガラス粉末が融解する温度で溶融し遷移金属酸
化物相が分散したガラス塊とする工程と、該ガラス塊を
粉砕し平均粒子径10μm以下のガラス粉末にする工程
と、該ガラス粉末からなるペ−ストをセラミック基板上
に塗布し溶融温度より低い温度で焼き付ける工程を有す
ることを特徴とするグレ−ズドセラミック基板の製造方
法を要旨とする。
According to the invention of claim 6, a step of forming a mixture of glass powder and a transition metal oxide powder or a transition metal double oxide powder having an average particle diameter of 0.3 to 5.0 μm, and the mixture is a glass powder. A step of forming a glass gob which is melted at a temperature at which is melted and a transition metal oxide phase is dispersed therein, a step of crushing the glass gob into a glass powder having an average particle diameter of 10 μm or less, A gist of a method for producing a graded ceramic substrate is characterized by including a step of coating on a ceramic substrate and baking at a temperature lower than a melting temperature.

【0011】ここで、前記セラミック基板としてはセラ
ミックであれば特に限定するものではなく、アルミナを
はじめ窒化珪素、窒化アルミニウム、炭化珪素、ムライ
ト、結晶化ガラス等広く利用可能である。
The ceramic substrate is not particularly limited as long as it is a ceramic substrate, and alumina, silicon nitride, aluminum nitride, silicon carbide, mullite, crystallized glass and the like can be widely used.

【0012】以下に、本発明のグレ−ズドセラミック基
板及びその製造方法を上記のように限定した理由を記
す。ガラスマトリックスに加える遷移金属酸化物の平均
粒子径を0.3〜5.0μmとしたのは、平均粒子径が
0.3μm未満であるとグレ−ズの焼き付け時にガラス
マトリックス中の泡抜けが悪く気泡が残存してしまい、
結果として電気特性のばらつきが生じてしまうためであ
る。また同時に、ガラスマトリックスを結晶化させる力
が強くなり、グレ−ズ層の緻密化が妨害される。一方、
平均粒子径が5μmを越えると、グレ−ズ表面に遷移金
属酸化物からなる凸部を形成して平滑性を悪化させるた
めである。なお遷移金属酸化物の平均粒子径は0.4〜
3.5μmがより好ましい。
The reasons why the glazed ceramic substrate of the present invention and the method for manufacturing the same are limited as described above will be described below. The average particle size of the transition metal oxide added to the glass matrix is set to 0.3 to 5.0 μm, because when the average particle size is less than 0.3 μm, bubbles do not escape in the glass matrix when the glaze is baked. Air bubbles remain,
This is because variations in electrical characteristics will occur as a result. At the same time, the force for crystallizing the glass matrix becomes stronger, which hinders the densification of the glaze layer. on the other hand,
This is because when the average particle diameter exceeds 5 μm, a convex portion made of a transition metal oxide is formed on the glaze surface to deteriorate the smoothness. The average particle size of the transition metal oxide is 0.4 to
3.5 μm is more preferable.

【0013】ガラスマトリックスと遷移金属酸化物相と
の比率が、重量比率で97:3〜60:40の範囲とし
たのは、遷移金属酸化物相が3%未満では電気特性に対
する効果が発現できず、40%を越えると絶縁性が極度
に劣化し、また添加物量がガラスマトリックスに対して
多量なため表面平滑性が悪化するためである。特に重量
比率が95:5〜80:20であると、電気特性的にも
表面平滑性においてもよく調和し、より好ましい。また
仮焼により作製した遷移金属複酸化物を用いると、遷移
金属酸化物の添加による表面抵抗値の低下等の電気的特
性の変化が安定して発現され好ましい。さらに、同量の
遷移金属酸化物と遷移金属複酸化物を添加して比較する
と、遷移金属複酸化物を添加した方が表面抵抗値の低下
が大きく、また表面粗さも小さくなり好ましい。
The weight ratio of the glass matrix to the transition metal oxide phase is in the range of 97: 3 to 60:40, because the transition metal oxide phase of less than 3% can exert an effect on electrical characteristics. If it exceeds 40%, the insulating property is extremely deteriorated, and since the amount of the additive is large relative to the glass matrix, the surface smoothness is deteriorated. In particular, when the weight ratio is 95: 5 to 80:20, it is more preferable in terms of electrical characteristics and surface smoothness. Further, it is preferable to use a transition metal complex oxide prepared by calcination, because changes in electrical characteristics such as a decrease in surface resistance value due to the addition of the transition metal oxide are stably exhibited. Further, when the transition metal oxide and the transition metal double oxide are added in the same amount for comparison, the addition of the transition metal double oxide is preferable because the surface resistance value is largely decreased and the surface roughness is small.

【0014】ガラスマトリックスの組成としては、10
00℃以下で焼き付け可能であれば特に限定されない。
しかし、アルカリ金属、鉛を含まないアルカリ土類ホウ
珪酸塩ガラス(アルカリ土類−ホウ酸−シリカ系ガラ
ス)が好ましい。これは、アルカリ金属、鉛を含有する
ガラスは、流動性が高く、遷移金属酸化物粒子との濡れ
性も良好であるが、遷移金属酸化物粒子を浸食し溶解し
易く、さらに消失させ易いため、表面抵抗値がばらつき
易くなるためである。
The composition of the glass matrix is 10
It is not particularly limited as long as it can be baked at 00 ° C or lower.
However, alkaline earth borosilicate glass containing no alkali metal or lead (alkaline earth-boric acid-silica glass) is preferable. This is because glass containing an alkali metal or lead has high fluidity and has good wettability with the transition metal oxide particles, but the transition metal oxide particles are easily eroded and dissolved, and are easily lost. This is because the surface resistance value is likely to vary.

【0015】特に好ましくは、アルカリ金属、鉛を含ま
ず、B23、Al23が多く、適量なSiO2を含有し
たガラス系がよい。同ガラス系は、遷移金属酸化物と適
度に濡れて馴染みがよいため、気泡(ボイド)を形成す
ることなく緻密なグレ−ズ層を形成する。また遷移金属
酸化物を溶解し過ぎることもなく、また遷移金属酸化物
の分散性も良好で、表面抵抗値が安定したものとなる。
また部分的に遷移金属酸化物がガラス中に溶出しても、
ガラスが結晶化することなく、良好な表面状態を得る。
このようなガラス系として、例えば酸化物重量基準で、
23:20〜50%と、Al23:5〜35%と、ア
ルカリ土類酸化物(MgO、CaO、SrO、Ba
O):15〜55%と、Si02:40%以下とを含
み、これらの合計が90%以上となるガラス材料があ
り、さらに副成分としてZnO、P25、V25などを
添加してもよい。この様なガラス組成は融点が低く、ま
た1次メタライズ層との反応が少なく多層化が可能で、
かつ良好な表面平滑性を示す。
Particularly preferably, a glass system containing no alkali metal or lead, containing a large amount of B 2 O 3 , Al 2 O 3 and containing an appropriate amount of SiO 2 . The glass system is appropriately wet with the transition metal oxide and has a good compatibility therewith, and thus forms a dense glaze layer without forming bubbles (voids). Further, the transition metal oxide is not dissolved too much, the dispersibility of the transition metal oxide is good, and the surface resistance value becomes stable.
Moreover, even if the transition metal oxide is partially dissolved in the glass,
A good surface condition is obtained without crystallizing the glass.
As such a glass system, for example, on the basis of oxide weight,
B 2 O 3: and 20~50%, Al 2 O 3: 5~35% and alkaline earth oxides (MgO, CaO, SrO, Ba
O): and 15 to 55%, Si0 2: and a 40% or less, there is a glass material these sum is 90% or more, further ZnO as the minor component, such as P 2 O 5, V 2 O 5 You may add. Such a glass composition has a low melting point, has little reaction with the primary metallized layer, and can be formed into a multilayer structure.
And shows good surface smoothness.

【0016】[0016]

【作用】本発明の遷移金属酸化物を添加したグレ−ズド
セラミック基板は、従来からのグレ−ズドセラミック基
板とその電気的特性が大きく異なるものである。即ち、
薄膜機能回路を形成する場合、回路間にわずかな漏電流
を起こさせ、帯電を防止し、よって回路部の帯電による
不具合の発生防止が可能なグレ−ズドセラミック基板で
ある。この帯電を防止する程度にわずかな漏電流を発生
させるのに適当な表面抵抗値としては、105〜1011
Ωが好ましく、108〜1010Ωがより好ましい。
The transition-metal oxide-added graded ceramic substrate of the present invention is significantly different in electrical characteristics from the conventional graded ceramic substrate. That is,
When a thin film functional circuit is formed, it is a graded ceramic substrate capable of causing a slight leakage current between the circuits to prevent charging and thus prevent the occurrence of defects due to charging of the circuit section. An appropriate surface resistance value for generating a slight leakage current to the extent that this charging is prevented is 10 5 to 10 11
Ω is preferable, and 10 8 to 10 10 Ω is more preferable.

【0017】以上の特性の発揮には、遷移金属酸化物と
ガラスマトリックスとの適度な分散程度が重要であり、
導体あるいは半導体として働く遷移金属酸化物が、電気
絶縁性のガラスマトリックス中に適当な大きさ、量で均
一に分布することにより、望むべき電気特性値及び表面
の平滑性を実現することが可能となるものと思われる。
特にB23−Al23−アルカリ土類酸化物−Si02
系の低融点グレ−ズ組成物は、遷移金属酸化物粒子との
適度な濡れ性を有するため、気泡等の欠陥の少ない良好
なグレ−ズ層が得られるものと考えられる。
In order to exert the above characteristics, a proper degree of dispersion of the transition metal oxide and the glass matrix is important,
The transition metal oxide acting as a conductor or a semiconductor can be uniformly distributed in an electrically insulating glass matrix in an appropriate size and amount to achieve desired electrical characteristic values and surface smoothness. It seems to be.
In particular B 2 O 3 -Al 2 O 3 - alkaline earth oxides -Si0 2
Since the low melting point glaze composition of the system has appropriate wettability with the transition metal oxide particles, it is considered that a good glaze layer with few defects such as bubbles can be obtained.

【0018】[0018]

【実施例】以下に、本発明の範囲のグレ−ズドセラミッ
ク基板、及びその製造方法の実施例を記載するととも
に、本発明の範囲外のものについても比較例として記載
する。 実施例1〜4 表1、表2の実施例1〜4の遷移金属酸化物組成となる
ように、各遷移金属酸化物を調合する。
EXAMPLES Examples of the graded ceramic substrate and the manufacturing method thereof within the scope of the present invention will be described below, and those outside the scope of the present invention will also be described as comparative examples. Examples 1 to 4 Each transition metal oxide is prepared so as to have the transition metal oxide composition of Examples 1 to 4 in Table 1 and Table 2.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】各遷移金属酸化物の混合物をポットミルに
より湿式粉砕して、平均粒子径0.4〜3.8μmの遷
移金属酸化物粉末とした。重量組成でB23:27%、
Al23:26%、SiO2:15%、CaO:14
%、SrO:4%、BaO:14%からなる平均粒子径
3.1μmのガラス組成物粉末と遷移金属酸化物粉末と
を、重量比(ガラス組成物:遷移金属酸化物)で90:
10の比率としてポットミルにて湿式混合し、エチルセ
ルロ−ス系バインダ及び有機溶媒とを加え、混合して遷
移金属酸化物を添加した印刷用のガラスペ−ストを調製
した。この遷移金属酸化物を添加したガラスペ−スト
を、純度97%のAl23からなる50mm×50mm×
0.635mmのアルミナ基板表面に印刷した後、850
℃で10分間焼き付けて、グレ−ズ厚み20μmのグレ
−ズドセラミック基板を作製した。また表面抵抗値を測
定するために所定の形状の配線パタ−ンを、スパッタ−
リング法にてTi−Cu薄膜で形成し、更にNiメッキ
して作製し、表面抵抗値を測定した。すると、従来のグ
レ−ズでは>1017Ωであったものが、いずれも109
Ωとなり、明確な抵抗の低減効果が確認された。またグ
レ−ズ面の平滑性も良好(Ra≦0.1μm)で、色は
灰色〜黒色であった。またグレ−ズ部をX線回折分析に
よって相解析を行ったところ、それぞれ添加した遷移金
属酸化物相が確認された。
The mixture of each transition metal oxide was wet pulverized by a pot mill to obtain a transition metal oxide powder having an average particle diameter of 0.4 to 3.8 μm. B 2 O 3 by weight composition: 27%,
Al 2 O 3 : 26%, SiO 2 : 15%, CaO: 14
%, SrO: 4%, BaO: 14%, a glass composition powder having an average particle diameter of 3.1 μm and a transition metal oxide powder in a weight ratio (glass composition: transition metal oxide) of 90:
The mixture was wet mixed in a pot mill at a ratio of 10 and an ethyl cellulose binder and an organic solvent were added and mixed to prepare a glass paste for printing to which a transition metal oxide was added. A glass paste to which this transition metal oxide was added was made of Al 2 O 3 having a purity of 97% and was 50 mm × 50 mm ×
850 after printing on the surface of 0.635mm alumina substrate
It was baked at 10 ° C. for 10 minutes to prepare a glazed ceramic substrate having a glaze thickness of 20 μm. Also, in order to measure the surface resistance value, a wiring pattern of a predetermined shape was used.
A Ti-Cu thin film was formed by a ring method, and then Ni plating was performed to manufacture the film, and the surface resistance value was measured. Then, in the conventional glaze, which was> 10 17 Ω, is 10 9 in all cases.
Ω, and a clear resistance reduction effect was confirmed. The smoothness of the glaze surface was good (Ra ≦ 0.1 μm), and the color was gray to black. When the phase analysis of the glaze part was performed by X-ray diffraction analysis, the transition metal oxide phases added were confirmed.

【0022】実施例5〜9 表1、表2の実施例5〜9の遷移金属酸化物組成となる
ように各遷移金属酸化物を調合し、湿式粉砕して平均粒
子径1.2μmの遷移金属酸化物粉末とした。重量組成
でB23:27%、Al23:26%、SiO2:15
%、CaO:14%、SrO:4%、BaO:14%か
らなるガラス組成物粉末と遷移金属酸化物粉末とを、重
量比(ガラス組成物:遷移金属酸化物)で97:3、9
5:5、80:20、70:30、60:40の比率と
してポットミルにて湿式混合し、エチルセルロ−ス系バ
インダ及び有機溶媒とを加え、混合して遷移金属酸化物
を添加した印刷用のガラスペ−ストを調製した。この遷
移金属酸化物を添加したガラスペ−ストを、純度97%
のAl23からなる50mm×50mm×0.635mmのア
ルミナ基板表面に印刷した後、850℃で10分間焼き
付けて、グレ−ズ厚み20μmのグレ−ズドセラミック
基板を作製した。これらの表面抵抗値を測定した結果い
ずれも105〜1011Ωと、明確な抵抗の低減効果が確
認された。また、グレ−ズ面の平滑性も良好(Ra≦
0.1〜0.2μm)で、色は灰色〜黒色であった。
Examples 5 to 9 Each transition metal oxide was prepared so as to have the composition of the transition metal oxides of Examples 5 to 9 shown in Tables 1 and 2, and wet-ground to make a transition having an average particle diameter of 1.2 μm. A metal oxide powder was used. By weight composition, B 2 O 3 : 27%, Al 2 O 3 : 26%, SiO 2 : 15
%, CaO: 14%, SrO: 4%, BaO: 14%, and a transition metal oxide powder in a weight ratio (glass composition: transition metal oxide) of 97: 3,9.
Wet-mixing in a pot mill at a ratio of 5: 5, 80:20, 70:30, 60:40, adding an ethyl cellulose-based binder and an organic solvent, mixing and adding a transition metal oxide for printing. A glass paste was prepared. The glass paste added with the transition metal oxide had a purity of 97%.
After printing on the surface of an alumina substrate of 50 mm × 50 mm × 0.635 mm made of Al 2 O 3 of the above, it was baked at 850 ° C. for 10 minutes to prepare a graded ceramic substrate having a thickness of 20 μm. As a result of measuring these surface resistance values, a clear resistance reduction effect was confirmed, which was 10 5 to 10 11 Ω. Also, the smoothness of the glaze surface is good (Ra ≦
0.1 to 0.2 μm) and the color was gray to black.

【0023】[0023]

【図1】[Figure 1]

【0024】図1は実施例7のグレ−ズドセラミック基
板のグレ−ズ部破面の反射電子線像を示す。白い部分が
遷移金属酸化物相で、黒い部分がガラスマトリックスで
ある。写真より遷移金属酸化物相が1〜2μmの大きさ
でガラスマトリックス中に均一に分散していることがわ
かる。
FIG. 1 shows a backscattered electron beam image of the fractured surface of the glaze portion of the glazed ceramic substrate of Example 7. The white part is the transition metal oxide phase and the black part is the glass matrix. From the photograph, it can be seen that the transition metal oxide phase having a size of 1 to 2 μm is uniformly dispersed in the glass matrix.

【0025】実施例10〜12 表1、表2の実施例10〜12の遷移金属酸化物組成と
なるように、各遷移金属酸化物を調合した。この調合物
を湿式混合した後、1200℃×1時間の仮焼を行い遷
移金属複酸化物とした。遷移金属複酸化物の生成につい
ては、X線回折分析で確認を行ったところ、NiCr2
4、FeCr24、CoCr24、NiFe24、C
oFe24、Fe2TiO5等の、2種以上の遷移金属を
含む複酸化物の生成が見られた。得られた仮焼物はポッ
トミルにより湿式粉砕して、平均粒子径2.1〜3.5
μmの遷移金属複酸化物粉末とした後は、実施例1と同
様にして、グレ−ズドセラミック基板を作製した。この
グレ−ズ層についても、表面抵抗値を測定した結果、い
ずれも109Ωと、明確な抵抗の低減効果が確認され
た。またグレ−ズ面の平滑性もRa≦0.1μmと良好
であった。またグレ−ズ部をX線回折分析によって相解
析を行ったところ、それぞれ仮焼によって生成した遷移
金属複酸化物相が確認された。
Examples 10 to 12 Each transition metal oxide was prepared so as to have the transition metal oxide composition of Examples 10 to 12 in Tables 1 and 2. This formulation was wet mixed and then calcined at 1200 ° C. for 1 hour to obtain a transition metal composite oxide. The generation of the transition metal complex oxide was subjected to confirmed by X-ray diffraction analysis, NiCr 2
O 4 , FeCr 2 O 4 , CoCr 2 O 4 , NiFe 2 O 4 , C
Formation of complex oxides containing two or more transition metals such as oFe 2 O 4 and Fe 2 TiO 5 was observed. The obtained calcined product was wet pulverized by a pot mill to have an average particle size of 2.1 to 3.5.
After forming the transition metal mixed oxide powder having a size of μm, a graded ceramic substrate was prepared in the same manner as in Example 1. As for the glaze layer, the surface resistance value was measured, and as a result, a clear resistance reducing effect of 10 9 Ω was confirmed. The smoothness of the glaze surface was Ra ≦ 0.1 μm, which was good. Further, the glaze portion was subjected to a phase analysis by X-ray diffraction analysis, and as a result, a transition metal complex oxide phase produced by calcination was confirmed.

【0026】実施例13〜15 表1、表2の実施例13〜15の遷移金属酸化物組成と
なるように、各遷移金属酸化物を調合した。この調合物
をポットミルにより湿式粉砕した後、1200℃で1時
間仮焼を行った。これをポットで湿式粉砕し、平均粒子
径2.1μmの遷移金属複酸化物粉末とした。重量組成
でB23:27%、Al23:26%、SiO2:15
%、CaO:14%、SrO:4%、BaO:14%か
らなるガラス組成物粉末と遷移金属複酸化物粉末とを、
重量比(ガラス組成物:遷移金属酸化物)で95:5、
90:10、80:20の各比率とした混合物を、90
0℃で30分間の熱処理によりガラス部を再溶融し、急
冷の後、ポットミルにて湿式粉砕、乾燥して平均粒子径
3μmとした。これにエチルセルロ−ス系バインダ及び
有機溶媒とを加え、混合して遷移金属複酸化物を添加し
た印刷用のガラスペ−ストを調製した。この遷移金属複
酸化物を添加したガラスペ−ストを、純度97%のAl
23からなる50mm×50mm×0.635mmのアルミナ
基板表面に印刷した後、850℃で10分間焼き付け
て、グレ−ズ厚み20μmのグレ−ズドセラミック基板
を作製した。このグレ−ズ層について、表面抵抗値を測
定した結果、いずれも107〜1010Ωと、明確な抵抗
の低減効果が確認された。またポアが少なく、ガラス部
の再溶融を行わなかった同組成のものと比較して、グレ
−ズ面の平滑性はRa≦0.07μmと一段と良好であ
った。
Examples 13 to 15 Each transition metal oxide was prepared so as to have the transition metal oxide composition of Examples 13 to 15 in Tables 1 and 2. This formulation was wet-milled with a pot mill and then calcined at 1200 ° C. for 1 hour. This was wet pulverized in a pot to obtain a transition metal composite oxide powder having an average particle diameter of 2.1 μm. By weight composition, B 2 O 3 : 27%, Al 2 O 3 : 26%, SiO 2 : 15
%, CaO: 14%, SrO: 4%, BaO: 14%, and a transition metal complex oxide powder.
95: 5 by weight ratio (glass composition: transition metal oxide),
A mixture of 90:10 and 80:20 was used as 90% mixture.
The glass portion was remelted by heat treatment at 0 ° C. for 30 minutes, quenched, wet-ground in a pot mill and dried to have an average particle size of 3 μm. An ethyl cellulose-based binder and an organic solvent were added thereto and mixed to prepare a glass paste for printing in which a transition metal complex oxide was added. The glass paste added with the transition metal complex oxide was treated with Al having a purity of 97%.
After printing on the surface of an alumina substrate of 2 O 3 having a size of 50 mm × 50 mm × 0.635 mm, it was baked at 850 ° C. for 10 minutes to prepare a glazed ceramic substrate having a glaze thickness of 20 μm. As a result of measuring the surface resistance value of this glaze layer, a clear resistance reduction effect of 10 7 to 10 10 Ω was confirmed. The smoothness of the glaze surface was Ra ≦ 0.07 μm, which was much better than that of the same composition in which the pores were small and the glass portion was not remelted.

【0027】[0027]

【比較例】[Comparative example]

比較例1 実施例1のガラス組成物のみで遷移金属酸化物を添加せ
ず、グレ−ズ用のガラスペ−ストを作製し、その他につ
いては実施例1と同一条件でグレ−ズドセラミック基板
を作製した。グレ−ズ部の表面抵抗値は1017Ω以上あ
り、高い絶縁性を有した。
Comparative Example 1 A glass paste for a grade was produced without adding a transition metal oxide only with the glass composition of Example 1, and a graded ceramic substrate was produced under the same conditions as in Example 1 except for the above. did. The glaze portion had a surface resistance value of 10 17 Ω or more, and had a high insulating property.

【0028】比較例2,3 表1、表2の比較例2、3の遷移金属酸化物組成となる
ように、各遷移金属酸化物を調合した。この調合物をポ
ットミルにより湿式粉砕して、平均粒子径1.2μmの
遷移金属酸化物粉末とした。この遷移金属酸化物粉末
と、実施例1のガラス組成物粉末とを、重量比(ガラス
組成物:遷移金属酸化物)で99.5:0.5及び5
0:50とした以外は実施例1と同一条件でグレ−ズド
セラミック基板を作製した。比較例2のガラス組成物:
遷移金属酸化物の重量比が99.5:0.5としたもの
について表面抵抗値を測定した結果、従来のグレ−ズ並
の1016Ωであり、抵抗の低減効果はほとんど見られな
かった。一方、重量比が50:50とした比較例3で
は、表面抵抗は105Ω未満で絶縁性に劣り、また表面
粗さもRa>0.3μmと望むべき平滑なグレ−ズ面は
得られなかった。
Comparative Examples 2 and 3 Each transition metal oxide was prepared so as to have the transition metal oxide composition of Comparative Examples 2 and 3 in Tables 1 and 2. This preparation was wet-milled with a pot mill to obtain a transition metal oxide powder having an average particle diameter of 1.2 μm. The weight ratio (glass composition: transition metal oxide) of this transition metal oxide powder to the glass composition powder of Example 1 was 99.5: 0.5 and 5.
A graded ceramic substrate was manufactured under the same conditions as in Example 1 except that the ratio was 0:50. Glass composition of Comparative Example 2:
The surface resistance of the transition metal oxide having a weight ratio of 99.5: 0.5 was measured. As a result, it was 10 16 Ω which was comparable to that of the conventional glaze, and the effect of reducing the resistance was hardly seen. . On the other hand, in Comparative Example 3 in which the weight ratio was 50:50, the surface resistance was less than 10 5 Ω and the insulating property was poor, and the surface roughness was Ra> 0.3 μm, and the desired smooth glaze surface was not obtained. It was

【0029】比較例4,5 表1、表2の比較例4、5の遷移金属酸化物組成となる
ように、各遷移金属酸化物を調合した。この調合物を湿
式混合した後、1200℃×1時間の仮焼を行い、一部
を遷移金属複酸化物とした。得られた仮焼物はポットミ
ルにより湿式粉砕して、平均粒子径0.15μmと7.
0μmの2種の遷移金属複酸化物粉末とした。平均粒子
径0.15μm、及び7.0μmの遷移金属複酸化物とし
た以外は実施例1と同一条件で、グレ−ズドセラミック
基板を作製した。平均粒子径0.15μmの遷移金属複
酸化物を添加した比較例4では、グレ−ズ内部のポアが
顕著となり緻密化できず、ガラスマトリックスが一部結
晶化している様であった。また平均粒子径7.0μmの
遷移金属複酸化物を添加した比較例5では、遷移金属酸
化物粒子に起因する突起のために充分な平滑面を得るこ
とができなかった。
Comparative Examples 4 and 5 Each transition metal oxide was prepared so as to have the transition metal oxide composition of Comparative Examples 4 and 5 in Tables 1 and 2. This formulation was wet mixed and then calcined at 1200 ° C. for 1 hour to partially form a transition metal composite oxide. The obtained calcined product was wet pulverized by a pot mill to obtain an average particle size of 0.15 μm and 7.
Two kinds of transition metal complex oxide powder having a size of 0 μm were used. A graded ceramic substrate was produced under the same conditions as in Example 1 except that the transition metal composite oxide having an average particle diameter of 0.15 μm and 7.0 μm was used. In Comparative Example 4 in which a transition metal complex oxide having an average particle diameter of 0.15 μm was added, pores inside the glaze became remarkable and the glass matrix could not be densified, and the glass matrix seemed to be partially crystallized. Further, in Comparative Example 5 in which a transition metal composite oxide having an average particle diameter of 7.0 μm was added, a sufficient smooth surface could not be obtained due to the protrusions caused by the transition metal oxide particles.

【0030】比較例6 ガラス組成物を重量組成でB23:2%、Al23:7
%、SiO2:58%、CaO:2%、SrO:24
%、BaO:4%、Y23:3%として、焼き付け温度
をこのガラス組成物に適切とされる1250℃とした他
は、実施例2と同一条件でグレ−ズドセラミック基板を
作製した。グレ−ズ表面の状態は、焼き付け時に発生し
た遷移金属酸化物に起因すると思われる発泡のために、
表面の平滑性を失っていた(Ra>1.0μm)。尚、
このガラス組成物と遷移金属酸化物の混合物を、実施例
2同様に850℃で焼成しても、ガラス組成物の軟化が
進まず、セラミック基板への固着もなされない状態であ
った。
Comparative Example 6 B 2 O 3 : 2% by weight composition, Al 2 O 3 : 7 by weight of glass composition
%, SiO 2 : 58%, CaO: 2%, SrO: 24
%, BaO: 4%, Y 2 O 3 : 3%, and a baking temperature of 1250 ° C., which is suitable for this glass composition, except that a graded ceramic substrate was produced under the same conditions as in Example 2. . The state of the glaze surface is due to foaming that is thought to be caused by the transition metal oxide generated during baking,
The smoothness of the surface was lost (Ra> 1.0 μm). still,
Even when the mixture of the glass composition and the transition metal oxide was fired at 850 ° C. as in Example 2, the glass composition was not softened and adhered to the ceramic substrate.

【0031】[0031]

【発明の効果】以上のように本発明の遷移金属酸化物を
添加したグレ−ズドセラミック基板は、電気特性の制
御、すなわち表面抵抗値の制御が可能で、かつ低温での
焼き付けが可能となり、更には良好な表面平滑性を有す
る。従って、各種のキャパシタ、レジスタ、インダクタ
等の機能回路を薄膜で形成する電子回路用基板として好
適に利用される。
As described above, the transition metal oxide-added graded ceramic substrate of the present invention is capable of controlling the electrical characteristics, that is, the surface resistance value, and can be baked at a low temperature. Furthermore, it has good surface smoothness. Therefore, it is suitably used as an electronic circuit substrate on which functional circuits such as various capacitors, resistors, and inductors are formed of thin films.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例7のグレ−ズドセラミック基板の、グ
レ−ズ部破面の組織を示す反射電子線像の写真である。
FIG. 1 is a photograph of a backscattered electron beam image showing a structure of a fractured surface of a glaze portion of a glazed ceramic substrate of Example 7.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 正博 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 (72)発明者 平岡 敬章 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masahiro Kato 14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi, Aichi Nihon Special Ceramics Co., Ltd. (72) Inventor Keisho Hiraoka 14-takatsuji-cho, Mizuho-ku, Nagoya, Aichi No. 18 Nihon Special Ceramics Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ガラスマトリックスに平均粒子径0.3
〜5.0μmの遷移金属酸化物相が分散してなるグレ−
ズ層を有することを特徴とするグレ−ズドセラミック基
板。
1. An average particle diameter of 0.3 in a glass matrix.
~ 5.0 μm transition metal oxide phase dispersed
A glazed ceramic substrate having a glazing layer.
【請求項2】 ガラスマトリックスと遷移金属酸化物相
との比率が、重量比で、97:3〜60:40の範囲に
有ることを特徴とする請求項1に記載のグレ−ズドセラ
ミック基板。
2. The graded ceramic substrate according to claim 1, wherein the weight ratio of the glass matrix to the transition metal oxide phase is in the range of 97: 3 to 60:40.
【請求項3】 遷移金属酸化物相の、少なくとも一部が
2種以上の遷移金属を含む遷移金属複酸化物であること
を特徴とする請求項1に記載のグレ−ズドセラミック基
板。
3. The graded ceramic substrate according to claim 1, wherein at least a part of the transition metal oxide phase is a transition metal double oxide containing two or more kinds of transition metals.
【請求項4】 ガラスマトリックスが、酸化物重量基準
で、B23:20〜50%と、Al23:5〜35%
と、アルカリ土類酸化物:15〜55%と、Si02
40%以下とを含み、これらの合計が90%以上である
ことを特徴とする請求項1に記載のグレ−ズドセラミッ
ク基板。
4. The glass matrix comprises, based on the weight of oxide, B 2 O 3 : 20 to 50% and Al 2 O 3 : 5 to 35%.
And, an alkaline earth oxide: 15 to 55% and, Si0 2:
40% or less, and the total of these is 90% or more, The graded ceramic substrate of Claim 1 characterized by the above-mentioned.
【請求項5】 2種以上の遷移金属化合物を混合し仮焼
することによって2種以上の遷移金属を含む遷移金属複
酸化物の仮焼体とする工程と、該仮焼体を粉砕すること
によって平均粒子径0.3〜5.0μmの遷移金属複酸
化物粉末とする工程と、該遷移金属複酸化物粉末とガラ
ス粉末とからなる印刷用ペ−ストとする工程と、該ペ−
ストをセラミック基板上に塗布し焼き付ける工程とを有
することを特徴とするグレ−ズドセラミック基板の製造
方法。
5. A step of preparing a calcined body of a transition metal composite oxide containing two or more kinds of transition metals by mixing and calcining two or more kinds of transition metal compounds, and crushing the calcined body. A transition metal complex oxide powder having an average particle diameter of 0.3 to 5.0 μm, a printing paste comprising the transition metal complex oxide powder and a glass powder, and
A step of applying a strike on a ceramic substrate and baking it.
【請求項6】 ガラス粉末と平均粒子径0.3〜5.0
μmの遷移金属酸化物粉末もしくは遷移金属複酸化物粉
末とからなる混合物とする工程と、該混合物をガラス粉
末が融解する温度で溶融し遷移金属酸化物相が分散した
ガラス塊とする工程と、該ガラス塊を粉砕し平均粒子径
10μm以下のガラス粉末にする工程と、該ガラス粉末
からなるペ−ストをセラミック基板上に塗布し溶融温度
より低い温度で焼き付ける工程を有することを特徴とす
るグレ−ズドセラミック基板の製造方法。
6. Glass powder and average particle diameter 0.3 to 5.0
a step of forming a mixture consisting of a transition metal oxide powder or a transition metal double oxide powder of μm, and a step of forming a glass mass in which the mixture is melted at a temperature at which the glass powder melts and the transition metal oxide phase is dispersed, A step of crushing the glass gob into a glass powder having an average particle diameter of 10 μm or less; and a step of applying a paste made of the glass powder on a ceramic substrate and baking at a temperature lower than the melting temperature. -A method for manufacturing a pendant ceramic substrate.
JP23217694A 1994-08-31 1994-08-31 Glazed ceramic substrate and its production Pending JPH0873285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23217694A JPH0873285A (en) 1994-08-31 1994-08-31 Glazed ceramic substrate and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23217694A JPH0873285A (en) 1994-08-31 1994-08-31 Glazed ceramic substrate and its production

Publications (1)

Publication Number Publication Date
JPH0873285A true JPH0873285A (en) 1996-03-19

Family

ID=16935203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23217694A Pending JPH0873285A (en) 1994-08-31 1994-08-31 Glazed ceramic substrate and its production

Country Status (1)

Country Link
JP (1) JPH0873285A (en)

Similar Documents

Publication Publication Date Title
JP3240271B2 (en) Ceramic substrate
US4749665A (en) Low temperature fired ceramics
US4621066A (en) Low temperature fired ceramics
US5258335A (en) Low dielectric, low temperature fired glass ceramics
JPS5851362B2 (en) Dielectric powder composition
JPS59207851A (en) Dielectric glass in multilayer circuit and thick film circuit containing same
JPS63107838A (en) Glass-ceramic sintered body
JP2001084835A (en) Insulation composition, insulation paste, and laminated electronic part
US5283210A (en) Low temperature sintering low dielectric inorganic composition
JPH0873285A (en) Glazed ceramic substrate and its production
JPS6350345A (en) Glass ceramic sintered body
JPS63295473A (en) Dielectric material for circuit board
JPH0517211A (en) Substrate material and circuit substrate
JPS6221739B2 (en)
JPH06199541A (en) Glass-ceramic composition
JP2964725B2 (en) Composition for ceramic substrate
JPH03141153A (en) Inorganic composition having low-temperature sintering property and low dielectric constant
JPH11116272A (en) Glass powder for high frequency and electric insulating layer using same
JP2500691B2 (en) Low temperature sinterable low dielectric constant inorganic composition
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP3149613B2 (en) Ceramic substrate and method of manufacturing the same
JP2626478B2 (en) Method for producing capacitor material for low-temperature fired substrate
JPH0738214A (en) Glass ceramic board and manufacturing method
JPH03252353A (en) Low-dielectric constant inorganic composition capable of sintering at low temperature
JPH1160266A (en) Glass and glass ceramic material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511