JPH0873264A - Production of bismuth based 2212 phase superconductor - Google Patents

Production of bismuth based 2212 phase superconductor

Info

Publication number
JPH0873264A
JPH0873264A JP6208999A JP20899994A JPH0873264A JP H0873264 A JPH0873264 A JP H0873264A JP 6208999 A JP6208999 A JP 6208999A JP 20899994 A JP20899994 A JP 20899994A JP H0873264 A JPH0873264 A JP H0873264A
Authority
JP
Japan
Prior art keywords
superconductor
heat treatment
phase
less
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6208999A
Other languages
Japanese (ja)
Inventor
Shuichiro Shimoda
修一郎 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP6208999A priority Critical patent/JPH0873264A/en
Publication of JPH0873264A publication Critical patent/JPH0873264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To provide a producing method of a Bi based 2212 phase superconductor free from the generation of thermal decomposition by controlling the quantity of oxygen by heat treatment for a short time even when the film thickness of the Bi based 2212 phase semiconductor is increased. CONSTITUTION: A precursor which becomes a superconductor by firing or the superconductor is heat-treated at >=750 deg.C to <=860 deg.C in the midst of cooling in an atmosphere of <=0.2atm oxygen partial pressure after fired and cooled to <=200 deg.C at the rate of <=500 deg.C/hr while keeping the oxygen partial pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高い臨界電流が得られ
るBi系2212相超電導体の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Bi-based 2212 phase superconductor which can obtain a high critical current.

【0002】[0002]

【従来の技術】Bi系2212相超電導体は磁気シール
ド体、送電用ケーブル、電流リード等への実用化が期待
されており、臨界電流密度(以下Jcとする)などの超
電導特性の向上を目指した研究が行われている。
2. Description of the Related Art Bi-based 2212 phase superconductors are expected to be put to practical use as magnetic shields, power transmission cables, current leads, etc., and aim to improve superconducting characteristics such as critical current density (hereinafter referred to as Jc). Research is being conducted.

【0003】従来のBi系2212相超電導体は各出発
原料を混合、仮焼及び粉砕して前駆体を作製し、さらに
製造法に応じバインダなどを混合した後、所望の形状に
成形し、焼成して製造していた。
In the conventional Bi-based 2212 phase superconductor, starting materials are mixed, calcined and crushed to prepare a precursor, and a binder and the like are further mixed according to the manufacturing method, and then shaped into a desired shape and fired. Was manufactured.

【0004】また超電導特性の向上を目的に、Bi系2
212相超電導体より以前に発見されたY系酸化物超電
導体は、酸素量を変化させると電気抵抗が零になる温度
(以下Tcとする)も変化することから、Tcを向上さ
せるため一般的に焼成後に熱処理が行われていた。
In order to improve the superconducting characteristics, Bi system 2
The Y-based oxide superconductor discovered before the 212-phase superconductor is generally used to improve Tc because the temperature at which the electric resistance becomes zero (hereinafter referred to as Tc) also changes when the oxygen amount is changed. After firing, heat treatment was performed.

【0005】このようなことからBi系2212相超電
導体においても、例えば特開平2−199057号公報
に示されるように、Bi系2212相超電導体又はその
前駆体を焼成後、特定の条件で冷却あるいは再度熱処理
して過剰酸素を抜き、Tc及びJcを向上させる方法が
提案されている。また特開平5−145267号公報に
は分割体の接合時に、好ましくは450〜750℃の温
度で、酸素濃度15体積%(酸素分圧0.15気圧)以
下の雰囲気で熱処理して超電導特性を改善する方法が提
案されている。
From the above, also in the Bi type 2212 phase superconductor, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2-199057, after the Bi type 2212 phase superconductor or its precursor is fired, it is cooled under a specific condition. Alternatively, a method has been proposed in which heat treatment is performed again to remove excess oxygen to improve Tc and Jc. Further, in Japanese Patent Application Laid-Open No. 5-145267, when the divided bodies are joined, heat treatment is performed at a temperature of preferably 450 to 750 ° C. in an atmosphere having an oxygen concentration of 15% by volume (oxygen partial pressure of 0.15 atm) or less to obtain superconducting characteristics. A way to improve is proposed.

【0006】しかしながら両者の方法とも熱処理温度が
低いため、Bi系2212相超電導体の膜厚が薄い場合
は短時間で酸素量を制御できるが、膜厚が厚くなると長
時間熱処理する必要があり、厚い膜全体を均一な酸素量
に制御することが難しいという問題点があった。また上
記の特開平2−199057号公報に示される方法では
熱処理雰囲気が0.1気圧以下で温度が700℃を超え
るとBi系2212相超電導体結晶中の酸素量が適量と
ならず目的とする超電導体特性が得られない。一方特開
平5−145267号公報に示される方法では780℃
以上の温度で酸素濃度15体積%(酸素分圧0.15気
圧)以下の雰囲気でBi系2212相超電導体を熱処理
すると熱分解を始め、750℃以下ではこのような熱分
解がより起こりにくいので好ましく、750℃を超える
温度で、かつ酸素分圧が0.15気圧以下の雰囲気で熱
処理すると熱分解が起こるため好ましくないとされてい
る。
However, since the heat treatment temperature is low in both methods, the oxygen amount can be controlled in a short time when the film thickness of the Bi-based 2212 phase superconductor is thin, but when the film thickness becomes thick, it is necessary to perform heat treatment for a long time. There is a problem that it is difficult to control the uniform oxygen content in the entire thick film. Further, in the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2-199057, if the heat treatment atmosphere is 0.1 atm or less and the temperature exceeds 700 ° C., the amount of oxygen in the Bi-based 2212 phase superconductor crystal does not become an appropriate amount, which is an object. Superconductor characteristics cannot be obtained. On the other hand, in the method disclosed in Japanese Patent Laid-Open No. 5-145267, 780 ° C.
When the Bi-based 2212 phase superconductor is heat-treated in an atmosphere having an oxygen concentration of 15% by volume (oxygen partial pressure of 0.15 atm) or less at the above temperature, thermal decomposition starts, and at 750 ° C. or less, such thermal decomposition is less likely to occur. Preferably, heat treatment at a temperature exceeding 750 ° C. and an oxygen partial pressure of 0.15 atm or less causes thermal decomposition, which is not preferable.

【0007】本発明は、Bi系2212相超電導体の膜
厚が厚くなっても、短時間の熱処理で酸素量を制御し、
超電導特性を向上させ、熱分解が生じないBi系221
2相超電導体の製造法を提供するものである。
According to the present invention, even if the film thickness of the Bi-based 2212 phase superconductor is increased, the amount of oxygen is controlled by a short time heat treatment,
Bi system 221 that improves superconducting properties and does not cause thermal decomposition
A method for manufacturing a two-phase superconductor is provided.

【0008】[0008]

【課題を解決するための手段】本発明者らは、焼成後の
冷却過程でBi系2212相超電導体結晶の過剰酸素を
除いて超電導特性を向上させるため種々の条件で焼成後
の熱処理及び冷却を行いTc、Jc等の測定及びX線回
折、SEM(スキャニング・エレクトロン・マイクロア
ナライザ)観察等を行った結果、上記の高温、低酸素分
圧の雰囲気においても超電導体が熱分解を起こさず、し
かも優れた超電導特性を示す熱処理及び冷却条件を見い
出した。さらに厚い超電導膜を形成した場合でも短時間
で適正な酸素量に制御できることも見い出した。
Means for Solving the Problems In order to improve superconducting characteristics by removing excess oxygen of Bi-based 2212 phase superconductor crystal in the cooling process after firing, the present inventors have conducted heat treatment and cooling after firing under various conditions. As a result of performing Tc, Jc measurement, X-ray diffraction, SEM (scanning electron microanalyzer) observation, etc., the superconductor does not undergo thermal decomposition even in the above-mentioned high temperature and low oxygen partial pressure atmosphere. Moreover, heat treatment and cooling conditions exhibiting excellent superconducting properties have been found. It has also been found that even when a thicker superconducting film is formed, it is possible to control to an appropriate amount of oxygen in a short time.

【0009】本発明は、焼成後超電導体となる前駆体又
は超電導体を焼成後、冷却途中の750℃を超え860
℃以下の温度範囲で、かつ酸素分圧が0.2気圧未満の
雰囲気で熱処理を行い、次いで200℃以下の温度にな
るまでは上記の酸素分圧を維持しながら500℃/時間
以下の速度で冷却するBi系2212相超電導体の製造
法に関する。
According to the present invention, after the precursor or superconductor which becomes the superconductor after firing is fired, the temperature exceeds 750 ° C. and 860 ° C. during cooling.
Heat treatment is performed in a temperature range of ℃ or less and an oxygen partial pressure of less than 0.2 atm, and then a rate of 500 ℃ / hour or less while maintaining the above oxygen partial pressure until reaching a temperature of 200 ℃ or less. The present invention relates to a method for manufacturing a Bi-based 2212 phase superconductor that is cooled by.

【0010】本発明における熱処理雰囲気は、酸素分圧
が0.2気圧未満であることが必要とされ、0.005
〜0.1気圧の範囲であればより好ましく、0.01〜
0.05気圧の範囲であればさらに好ましい。熱処理雰
囲気の酸素分圧が0.2気圧以上では高温で最適酸素量
となっても冷却中に酸素を吸収するため酸素量が過剰に
なり超電導特性が低下するという欠点が生じる。
The heat treatment atmosphere in the present invention is required to have an oxygen partial pressure of less than 0.2 atm, and 0.005
To 0.1 atm is more preferable, and 0.01 to
More preferably, it is in the range of 0.05 atm. When the oxygen partial pressure of the heat treatment atmosphere is 0.2 atm or more, even if the optimum oxygen amount is obtained at a high temperature, the oxygen amount is excessive during the cooling, so that the oxygen amount becomes excessive and the superconducting property is deteriorated.

【0011】熱処理工程の温度は750℃を超え、86
0℃以下の範囲とされ、760〜840℃の範囲であれ
ばより好ましく、780〜820℃の範囲であればさら
に好ましい。温度が750℃以下ではBi系2212相
超電導体の膜厚が厚くなると長時間の熱処理が必要にな
り、860℃を超えるとBi系2212相超電導体が熱
分解を起こし易くなる。
The temperature of the heat treatment process exceeds 750 ° C. and is 86
The temperature is set to 0 ° C. or less, more preferably 760 to 840 ° C., further preferably 780 to 820 ° C. When the temperature is 750 ° C. or lower, long-time heat treatment is required when the film thickness of the Bi-based 2212 phase superconductor is large, and when the temperature exceeds 860 ° C., the Bi-based 2212 phase superconductor is likely to be thermally decomposed.

【0012】また冷却過程において、200℃以下の温
度になるまでは熱処理雰囲気の酸素分圧を0.2気圧未
満に保つ必要があり、200℃以下の温度になるまでに
熱処理雰囲気の酸素分圧を0.2気圧以上にするとBi
系2212相超電導体結晶が酸素を吸収しやすくなり、
超電導特性が低下する原因となる。
In the cooling process, it is necessary to keep the oxygen partial pressure of the heat treatment atmosphere below 0.2 atm until the temperature reaches 200 ° C. or lower, and the oxygen partial pressure of the heat treatment atmosphere before the temperature reaches 200 ° C. or lower. Is 0.2 atm or more, Bi
2212-phase superconductor crystal becomes easy to absorb oxygen,
This causes deterioration of superconducting properties.

【0013】熱処理工程の冷却速度は、200℃以下に
なるまでは500℃/時間以下であることが必要とさ
れ、好ましくは30〜300℃/時間である。500℃
/時間を超える速度で冷却すると冷却中の熱応力などで
超電導体等にマイクロクラックが発生し易くなる。
The cooling rate in the heat treatment step is required to be 500 ° C./hour or less until it becomes 200 ° C. or less, preferably 30 to 300 ° C./hour. 500 ° C
If cooling is performed at a rate exceeding / hour, micro cracks are likely to occur in the superconductor or the like due to thermal stress during cooling.

【0014】本発明はBi系2212相超電導体に関す
るものであるが、定比組成からずれた組成、主要元素の
一部をPb、Sb等の元素で置換した組成等にも適用す
ることができる。
Although the present invention relates to a Bi-based 2212 phase superconductor, it can be applied to a composition deviated from the stoichiometric composition, a composition in which a part of the main elements is replaced with an element such as Pb or Sb, and the like. .

【0015】本発明のBi系2212相超電導体を構成
するビスマス、ストロンチウム、カルシウム及び銅を含
む原料については特に制限はないが、例えば炭酸塩、酸
化物、シュウ酸塩、硝酸塩、金属アルコキシド等の1種
又は2種以上を用いることができる。
There are no particular restrictions on the raw materials containing bismuth, strontium, calcium and copper which compose the Bi-based 2212 phase superconductor of the present invention. For example, carbonates, oxides, oxalates, nitrates, metal alkoxides, etc. One kind or two or more kinds can be used.

【0016】焼成温度は、各原料の配合割合などにより
適宜選定されるが、800〜980℃の範囲で焼成する
ことが好ましく、また焼成雰囲気については、大気中、
酸素雰囲気中、空気気流中等で焼成することができる。
The firing temperature is appropriately selected depending on the blending ratio of each raw material, etc., but it is preferable to perform firing in the range of 800 to 980 ° C., and the firing atmosphere is in the air.
The firing can be performed in an oxygen atmosphere, an air stream, or the like.

【0017】[0017]

【実施例】以下に、本発明の実施例を説明するが、本発
明は実施例に制限されるものではない。なお%は重量%
を意味する。 実施例1〜8及び比較例1〜5 ビスマス、ストロンチウム、カルシウム及び銅の比率が
原子比で2:2:1:2の組成に成るように三酸化ビス
マス(高純度化学研究所製、純度99.9%)228.
3g、炭酸ストロンチウム(高純度化学研究所製、純度
99.9%)144.7g、炭酸カルシウム(高純度化
学研究所製、純度99.9%)49.0g及び酸化第二
銅77.9g(高純度化学研究所製、純度99.9%)
を秤量し、出発原料とした。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to the examples. Note that% is weight%
Means Examples 1 to 8 and Comparative Examples 1 to 5 Bismuth trioxide (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity: 99) so that the composition ratio of bismuth, strontium, calcium and copper is 2: 2: 1: 2 in atomic ratio. 9.9%) 228.
3 g, strontium carbonate (manufactured by Kojundo Chemical Laboratory, purity 99.9%) 144.7 g, calcium carbonate (manufactured by Kojundo Chemical Laboratory, purity 99.9%) 49.0 g and cupric oxide 77.9 g ( Made by Kojundo Chemical Research Institute, purity 99.9%)
Was weighed and used as the starting material.

【0018】上記の出発原料を合成樹脂製の容器内に合
成樹脂で被覆した鋼球ボール及び水300ccと共に充填
し、24時間湿式混合した後、スラリーを容器から取り
出し100℃で24時間乾燥して混合粉末を作製した。
この混合粉末をアルミナ匣鉢に入れ、電気炉を用いて大
気中で830℃で5時間仮焼し、粗粉砕後、合成樹脂製
の容器内にジルコニア製ボール、酢酸エチル300ccと
共に充填し、48時間湿式粉砕し、平均粒径5μmの仮
焼粉末を得た。
The above starting materials were filled in a synthetic resin container together with a steel ball covered with the synthetic resin and 300 cc of water, and after wet mixing for 24 hours, the slurry was taken out of the container and dried at 100 ° C. for 24 hours. A mixed powder was prepared.
This mixed powder was placed in an alumina mortar, calcined at 830 ° C. for 5 hours in the air using an electric furnace, coarsely crushed, and then filled in a synthetic resin container with zirconia balls and 300 cc of ethyl acetate. The powder was wet pulverized for an hour to obtain a calcined powder having an average particle size of 5 μm.

【0019】上記仮焼粉末100重量部にポリビニルブ
チラール樹脂(和光純薬製、試薬一級)8重量部、フタ
ル酸エステル(和光純薬製、試薬一級)3重量部及びブ
タノール50重量部(和光純薬製、試薬一級)を添加し
て混合した後、脱気を行い粘度15Pa・sのスラリー
を得た。このスラリーを厚さが180μmのポリエステ
ル製フィルム(東レ製)上に供給し、ドクターブレード
法で厚さ0.1mmの超電導体用グリーンシート(以下グ
リーンシートとする)、詳しくは焼成後超電導体となる
前駆体を作製し、幅3mm及び長さ25mmの形状に切断
し、次いでこの切断したグリーンシートを厚さ0.1mm
の銀基板の両側に一枚ずつ配し、温度60℃、圧力10
MPaの条件で15分の条件で圧着してグリーンシート
圧着基板を得た。
To 100 parts by weight of the above calcined powder, 8 parts by weight of polyvinyl butyral resin (manufactured by Wako Pure Chemical Industries, reagent grade 1), 3 parts by weight of phthalate ester (made by Wako Pure Chemical Industries, reagent grade 1) and 50 parts by weight of butanol (Wako Pure Chemical Industries, Ltd.) A medicinal product, first-grade reagent) was added and mixed, and then deaeration was performed to obtain a slurry having a viscosity of 15 Pa · s. This slurry is supplied onto a polyester film (manufactured by Toray) having a thickness of 180 μm, and a green sheet for a superconductor having a thickness of 0.1 mm (hereinafter referred to as a green sheet) is formed by a doctor blade method. Is made into a precursor, cut into a shape with a width of 3 mm and a length of 25 mm, and then the cut green sheet has a thickness of 0.1 mm.
One is placed on each side of the silver substrate, and the temperature is 60 ° C and the pressure is 10
A green sheet pressure-bonded substrate was obtained by pressure bonding under the condition of MPa for 15 minutes.

【0020】このグリーンシート圧着基板を電気炉内に
入れ、大気中で300℃までは50℃/時間、300℃
から880℃までは150℃/時間の速度で昇温し、8
82℃で0.5時間保持(焼成)した後、850℃まで
は2℃/時間の速度で冷却し、この後表1に示す温度ま
で100℃/時間の速度で冷却し、この温度で表1に示
す時間及び雰囲気で保持(熱処理)した後、雰囲気はそ
のままの状態で100℃/時間の速度で200℃以下に
なるまで冷却し、超電導体層の片側の1層の厚さが35
μmのBi系2212相超電導体を得た。
This green sheet pressure-bonded substrate was put in an electric furnace and heated to 300 ° C. in air at 50 ° C./hour, 300 ° C.
To 880 ° C, the temperature is raised at a rate of 150 ° C / hour,
After holding (calcining) at 82 ° C. for 0.5 hour, it was cooled down to 850 ° C. at a rate of 2 ° C./hour, then cooled to a temperature shown in Table 1 at a rate of 100 ° C./hour, and After holding (heat treatment) in the time and atmosphere shown in 1, the atmosphere was cooled at a rate of 100 ° C./hour to 200 ° C. or less, and the thickness of one layer on one side of the superconductor layer was 35.
A Bi-based 2212 phase superconductor having a thickness of μm was obtained.

【0021】得られたBi系2212相超電導体につい
てTc及び液体窒素温度(77.3K)、零磁場でのJ
cを四端子法により測定した。その結果を比較例と併せ
て表1に示す。
Regarding the obtained Bi-based 2212 phase superconductor, Jc at Tc and liquid nitrogen temperature (77.3K) at zero magnetic field was obtained.
c was measured by the four-terminal method. The results are shown in Table 1 together with the comparative example.

【0022】[0022]

【表1】 ※比較例1は熱処理なし[Table 1] * Comparative example 1 has no heat treatment

【0023】表1に示されるように本発明の実施例にな
るBi系2212相超電導体は、Tc及びJcに優れる
ことが示される。これに対し比較例のBi系2212相
超電導体は、本発明の実施例になるBi系2212相超
電導体に比較してTc及びJcが低いことが示される。
As shown in Table 1, it is shown that the Bi-based 2212 phase superconductor according to the embodiment of the present invention is excellent in Tc and Jc. On the other hand, the Bi-based 2212 phase superconductor of the comparative example has lower Tc and Jc than the Bi-based 2212 phase superconductor according to the embodiment of the present invention.

【0024】実施例9 グリーンシートの圧着数枚を4枚ずつに変えてグリーン
シート圧着基板とした以外は実施例4と同様の条件で加
熱圧着、焼成、熱処理及び冷却を行って超電導体層の片
側の厚さが140μmのBi系2212相超電導体を得
た。得られたBi系2212相超電導体について実施例
1〜8と同様の条件でTc及びJcを測定した結果、T
cは89.6K及びJcは1,840A/cm2であった。
Example 9 Except for changing the number of pressure-bonded green sheets to 4 sheets each to obtain a green-sheet pressure-bonded substrate, thermocompression bonding, firing, heat treatment and cooling were performed under the same conditions as in Example 4 to form a superconductor layer. A Bi-based 2212 phase superconductor having a thickness of 140 μm on one side was obtained. Tc and Jc of the obtained Bi-based 2212 phase superconductor were measured under the same conditions as in Examples 1 to 8
c was 89.6 K and Jc was 1,840 A / cm 2 .

【0025】比較例6 実施例9で得たグリーンシート圧着基板を電気炉内に入
れ、大気中で300℃までは50℃/時間、300℃か
ら800℃までは150℃/時間の速度で昇温し、88
2℃で0.5時間保持した後、850℃までは2℃/時
間、600℃までは100℃/時間の速度で冷却し、こ
こから電気炉内の雰囲気を酸素分圧を0.05気圧に変
えて1時間保持した後、200℃/時間の速度で200
℃以下になるまで冷却して、超電導体層の片側の4層の
厚さが0.2mmのBi系2212相超電導体を得た。得
られたBi系2212相超電導体について実施例1〜8
と同様の条件でTc及びJcを測定した結果、Tcは8
4.9K及びJcは630A/cm2であった。
Comparative Example 6 The green sheet pressure-bonded substrate obtained in Example 9 was placed in an electric furnace and heated in the air at a rate of 50 ° C./hour up to 300 ° C. and from 150 to 300 ° C. at a rate of 150 ° C./hour. Warm, 88
After holding at 2 ° C for 0.5 hours, the temperature in the electric furnace was cooled at a rate of 2 ° C / hour up to 850 ° C and 100 ° C / hour up to 600 ° C. And hold for 1 hour, then 200 at the rate of 200 ℃ / hour
It was cooled to ℃ or less, to obtain a Bi-based 2212 phase superconductor in which the thickness of the four layers on one side of the superconductor layer was 0.2 mm. Examples 1 to 8 of the obtained Bi-based 2212 phase superconductor
As a result of measuring Tc and Jc under the same conditions as above, Tc was 8
The 4.9 K and Jc were 630 A / cm 2 .

【0026】なお上記実施例及び比較例の試料は各条件
に応じて5個ずつ作製し、Tc及びJcは5個の平均値
で表わした。
Five samples were prepared for each of the above Examples and Comparative Examples according to each condition, and Tc and Jc are represented by an average value of five samples.

【0027】[0027]

【発明の効果】本発明によって得られるBi系2212
相超電導体は、熱分解が起きずに、膜厚が厚くても短時
間の熱処理で超電導特性を向上させることができるた
め、工業的に極めて好適なBi系2212相超電導体で
ある。
[Effect of the invention] Bi system 2212 obtained by the present invention
The phase superconductor is a Bi-based 2212 phase superconductor industrially extremely suitable because the superconducting property can be improved by heat treatment for a short time even if the film thickness is large without causing thermal decomposition.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA B Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 39/24 ZAA B

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 焼成後超電導体となる前駆体又は超電導
体を焼成後、冷却途中の750℃を超え860℃以下の
温度範囲で、かつ酸素分圧が0.2気圧未満の雰囲気で
熱処理を行い、次いで200℃以下の温度になるまでは
上記の酸素分圧を維持しながら500℃/時間以下の速
度で冷却することを特徴とするBi系2212相超電導
体の製造法。
1. After firing a precursor or a superconductor to be a superconductor after firing, heat treatment is performed in a temperature range of more than 750 ° C. and less than 860 ° C. and an oxygen partial pressure of less than 0.2 atm during cooling. A method for producing a Bi-based 2212 phase superconductor, which is performed and then cooled at a rate of 500 ° C./hour or less while maintaining the above oxygen partial pressure until the temperature reaches 200 ° C. or less.
JP6208999A 1994-09-02 1994-09-02 Production of bismuth based 2212 phase superconductor Pending JPH0873264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6208999A JPH0873264A (en) 1994-09-02 1994-09-02 Production of bismuth based 2212 phase superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6208999A JPH0873264A (en) 1994-09-02 1994-09-02 Production of bismuth based 2212 phase superconductor

Publications (1)

Publication Number Publication Date
JPH0873264A true JPH0873264A (en) 1996-03-19

Family

ID=16565637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6208999A Pending JPH0873264A (en) 1994-09-02 1994-09-02 Production of bismuth based 2212 phase superconductor

Country Status (1)

Country Link
JP (1) JPH0873264A (en)

Similar Documents

Publication Publication Date Title
JP2707499B2 (en) Manufacturing method of oxide superconductor
JPH0649626B2 (en) Oxide superconducting material
JP2609944B2 (en) Oxide material showing superconductivity and method for producing the same
JPH0873264A (en) Production of bismuth based 2212 phase superconductor
US5270292A (en) Method for the formation of high temperature semiconductors
JPH07257927A (en) Production of bi-containing superconductor
JP4481701B2 (en) Manufacturing method of oxide superconducting bulk material
JP2593475B2 (en) Oxide superconductor
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JPH07206443A (en) Bi-containing superconductor and its production
JP2698689B2 (en) Oxide superconducting material and manufacturing method thereof
JP2748942B2 (en) Oxide superconductor
JPS63282152A (en) Orientation of superconductor crystal
JPH02217316A (en) High-temperature superconductive material and its manufacture
JP2597579B2 (en) Superconductor manufacturing method
JP2748943B2 (en) Oxide superconductor
JPS63303851A (en) Sintered body of superconducting ceramic
JPS63270309A (en) Oxide superconductor
JPH02199057A (en) Production of bismuth-based oxide superconductor
JPH07115872B2 (en) Oxide superconductor and method for manufacturing the same
JPH0859342A (en) Production of high temperature superconductor
JPH01122921A (en) Method for treating oxide superconductor
JPH01212227A (en) Oxide superconducting material
LEAD-SUBSTITUTED SUPERCONDUCTIVITY AND
JPH09118522A (en) Oxide superconductor having high critical current density