JPH0868613A - Method and apparatus for inspection of component by image processing - Google Patents

Method and apparatus for inspection of component by image processing

Info

Publication number
JPH0868613A
JPH0868613A JP6227373A JP22737394A JPH0868613A JP H0868613 A JPH0868613 A JP H0868613A JP 6227373 A JP6227373 A JP 6227373A JP 22737394 A JP22737394 A JP 22737394A JP H0868613 A JPH0868613 A JP H0868613A
Authority
JP
Japan
Prior art keywords
component
image
inspection
parts
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6227373A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Fukushima
善幸 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Technica Co Ltd
Original Assignee
Micro Technica Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Technica Co Ltd filed Critical Micro Technica Co Ltd
Priority to JP6227373A priority Critical patent/JPH0868613A/en
Publication of JPH0868613A publication Critical patent/JPH0868613A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an image measuring and inspection method and its inspection apparatus in which the precise pitch interval, the height and the like of a component such as a connector component can be measured at high speed and with high accuracy. CONSTITUTION: While a component which is larger than the field of view of cameras 24, 25 is being moved, it is imaged in such a way that it is divided into a plurality of images having an overlapped part. The many divided images are image-processed, and the shape of the component and the arrangement of constituent components are inspected. The component as an object to be inspected is conveyed sequentially and continuously by a conveyance means 11, its position during its conveyance is detected by a sensor 15, and positional information on the component is output by a positional- information output means. Flashes of light of electronic flashes 19, 20, 21, 22 or the function of an electronic shutter are operated continuously or intermittently on the basis of the positional information on the component, and partial images of the component in every operation of the solid-state image sensing element cameras 24, 25 are imaged. The respective partial images are combined by an image processor, and the shape of the component and the arrangement of the constituent elements are inspected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品,機械部品等
の外観検査および測定を、電子カメラを利用して短時間
で精密に行うことができる検査方法および装置に関す
る。さらに詳しく言えば、被検査部品、例えば精密コネ
クタ部品に挿入されているコネクタ端子のピッチ間隔、
高さなどを部品を移動させながらストロボなどの閃光源
やカメラの電子シャッタ機能を用いることにより多画面
に分割して撮像し、高速かつ高精度に画像測定し、検査
する方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for inspecting and measuring the appearance of electronic parts, mechanical parts, etc. by using an electronic camera in a short time and precisely. More specifically, the component to be inspected, for example, the pitch interval of the connector terminals inserted in the precision connector component,
The present invention relates to a method and a device for dividing a multi-screen image by using a flash light source such as a strobe and an electronic shutter function of a camera while moving parts such as height, and measuring and inspecting the image at high speed and with high accuracy.

【0002】[0002]

【従来の技術】最近の半導体技術の進歩に伴い、各種装
置の小型化・薄型化と同時に、装置間・部品間のケーブ
ル接続端子の短小化および端子数の増加が進んでいる。
端子部品(コネクタ部品)のサイズも小型化と多端子化
の結果として、ますます端子そのものの小型化と端子間
のピッチ間隔の縮小傾向が進んでいる。例えば、従来装
置間に使用されていた50ピンコネクタはピン間約1.
5mmであり、ハーフピッチ50ピンコネクタはピン間
0.8mm、コネクタサイズは長さ約24mm×高さ約
5mm×幅約6mm程度に移行している。コネクタ部品
そのものは価格の安い製品であるが、電子部品としての
高精度の製作規格が要求されているため、全品検査を行
う必要がある。そしてその検査のために低コストの検査
装置でしかも高速検査が可能なものが強く要求されてい
る。
2. Description of the Related Art With recent advances in semiconductor technology, various devices have been made smaller and thinner, and at the same time, cable connection terminals between devices and parts have become shorter and the number of terminals has increased.
As the size of terminal parts (connector parts) has also become smaller and the number of terminals has increased, there is an increasing trend toward miniaturization of terminals themselves and reduction of the pitch interval between terminals. For example, the 50-pin connector used between conventional devices has a pin-to-pin distance of about 1.
It is 5 mm, and the half pitch 50-pin connector is 0.8 mm between pins, and the connector size is about 24 mm long × 5 mm high × 6 mm wide. Although the connector parts themselves are low-priced products, it is necessary to inspect all of them because high-precision manufacturing standards for electronic parts are required. For this inspection, there is a strong demand for a low-cost inspection device that can perform high-speed inspection.

【0003】[0003]

【発明が解決しようとする課題】従来のコネクタ部品の
場合は、端子間ピッチ検査の精度も0.3mm程度であ
るため、カメラによる目視検査、拡大鏡による検査、あ
るいは端子数が少なければ1視野にコネクタ部品全体画
像をとらえて測定することも可能であった。しかし、コ
ネクタ部品が一段と短小化してくると、その測定精度も
10〜15μm程度が要求されるようになってきてい
る。この場合には従来の1画面検査が困難となる。その
ため1つのコネクタを複数の検査装置で画像入力し、検
査して精度の向上をはかる必要がある。そのため従来
は、部品を停止させながら順次画像を入力し、順次検査
する方法がとられていた。そうしなければ、複数台のカ
メラを使用した高価な検査装置が必要になるからであ
る。部品の短小化によりその部品の部品検査に対しても
高精度な検査が要求されている。
In the case of the conventional connector parts, the accuracy of the inter-terminal pitch inspection is about 0.3 mm, so that the visual inspection by the camera, the inspection by the magnifying glass, or the one field of view if the number of terminals is small. It was also possible to measure the entire image of the connector parts. However, as the connector parts are further shortened, the measurement accuracy is required to be about 10 to 15 μm. In this case, the conventional one-screen inspection becomes difficult. Therefore, it is necessary to input the image of one connector with a plurality of inspection devices and inspect it to improve the accuracy. Therefore, conventionally, a method has been adopted in which images are sequentially input while the parts are stopped and sequentially inspected. Otherwise, an expensive inspection device using a plurality of cameras is required. Due to the miniaturization of parts, high-precision inspection is also required for parts inspection of the parts.

【0004】固体撮像素子カメラを用いた高精度な測定
検査を行う基本は、検査対象となる部品を1カメラ視野
におさめ、その1視野内部の画像解析により検査を行う
ことである。固体撮像素子カメラは40万画素程度のも
のが標準的に廉価なカメラとして利用されている。横分
解能=約640画素、縦分解能=約480ラインで構成
されたカメラである。そのため、10μm/画素で分解
能を計算すると、1視野の大きさは6.4mm×4.8
mmとなりコネクタ部品の端子数が多くなると視野に入
りきれなくなる。当然、被検査部品であるコネクタを複
数画面に分割し、検査しなければ高精度な検査が困難と
なる。
The basis of highly accurate measurement and inspection using a solid-state image pickup device camera is to place a component to be inspected in one camera visual field and perform the inspection by image analysis inside the one visual field. A solid-state image sensor camera having about 400,000 pixels is generally used as an inexpensive camera. The camera has a horizontal resolution of about 640 pixels and a vertical resolution of about 480 lines. Therefore, when the resolution is calculated at 10 μm / pixel, the size of one visual field is 6.4 mm × 4.8.
mm, the number of terminals of the connector component increases, and it becomes impossible to fit in the field of view. Naturally, it is difficult to perform highly accurate inspection unless the connector, which is the component to be inspected, is divided into a plurality of screens and inspected.

【0005】生産工程において、コネクタ部品は次から
次へと生産され、生産されたコネクタは検査工程へと連
続的に流れてくる。生産コストを下げるためにも高速な
検査で、生産の流れを止めない方式が望まれる。また、
部品単価そのものが廉価なため高額な検査装置を製作し
ては生産現場には使用されない。簡単な検査方式で廉価
な検査装置が望まれている。当然人手による検査では、
検査速度,検査のむら・正確さや人手の確保が困難であ
る。本発明の目的は上述のような点を考えて、例えばコ
ネクタ部品のピッチ間隔,高さ測定を高速に、高精度で
低価格に行う測定・検査方法を提供することにある。本
発明のさらに他の目的は、上述のような検査方法を実施
することができる検査装置を提供することにある。
In the production process, connector parts are produced one after another, and the produced connectors continuously flow to the inspection process. In order to reduce the production cost, it is desirable to have a system that does not stop the flow of production with high-speed inspection. Also,
Since the unit price of parts itself is low, even if an expensive inspection device is manufactured, it will not be used at the production site. An inexpensive inspection device with a simple inspection method is desired. Of course, in manual inspection,
It is difficult to secure inspection speed, inspection unevenness / accuracy, and manpower. In view of the above points, an object of the present invention is to provide a measurement / inspection method for performing, for example, pitch interval and height measurement of connector parts at high speed, with high accuracy and at low cost. Still another object of the present invention is to provide an inspection apparatus capable of implementing the inspection method as described above.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、本発明による画像処理による部品の検査方法は、カ
メラの視野よりも大きい部品を移動させながら重なり合
う部分をもつ複数の画像に分割して撮像し、分割された
多数の画像を画像処理して部品の形状および構成要素の
配列等についての検査をする検査方法であって、搬送手
段により検査対象である部品を順次連続搬送し、位置情
報出力手段により搬送中の位置をセンサにより検出し部
品の位置情報を出力し、ストロボ閃光または電子シャッ
タ機能を前記部品の位置情報に基づいて連続して間欠動
作させ、固体撮像素子カメラで前記動作ごとの部品の画
像を撮像し、画像処理装置により前記各部分画像を組み
合わせて部品の形状および構成要素の配列等についての
検査をするように構成されている。前記部品は搬送方向
に沿って、複数の測定点を持ち、前記部品の画像は重な
りあう部分に共通の測定点を含むように撮像される。同
時に複数画面を高精度に個体撮像素子カメラに取り込む
ため、カメラの電子シャッタ機能またはストロボ閃光を
用い、しかも取り込みタイミングを制御し、画像測定・
検査に合わせ、高速・高精度な処理を可能にする。前記
第2の目的を達成するために、本発明による画像処理に
よる部品の検査装置は、カメラの視野よりも大きい部品
を移動させながら重なり合う部分をもつ複数の画像に分
割して撮像し、分割された多数の画像を画像処理して部
品の形状および構成要素の配列等についての検査をする
検査方法を実施するための装置であって、部品を連続し
て予め知られた速度で連続搬送する部品の連続搬送手段
と、センサにより部品を検出してその部品の位置の情報
を出力する部品の位置情報出力装置と、前記搬送手段に
向けて配置されている固体撮像素子カメラと、ストロボ
閃光装置または前記固体撮像素子カメラの電子シャッタ
よりなる像取り込み手段と、前記部品の位置情報出力装
置からの情報に基づいて前記像取り込み手段を動作させ
前記固体撮像素子カメラに複数枚の画像を記録させるシ
ーケンサと、前記複数枚の画像を処理して部品の形状お
よび構成要素の配列等についてのデータを得る画像処理
装置とから構成されている。前記部品の位置情報出力装
置は、センサおよび部品の移動距離を示すロータリエン
コーダから構成できる。
In order to achieve the above object, a method of inspecting a part by image processing according to the present invention divides a part larger than the field of view of a camera into a plurality of images having overlapping portions. A method for inspecting the shape of a component, the arrangement of components, etc. by performing image processing on a large number of divided images, and sequentially transporting the component to be inspected by the transporting means, The information output means detects the position being conveyed by the sensor and outputs the position information of the component, and the stroboscopic flash or the electronic shutter function is operated intermittently continuously based on the position information of the component, and the operation is performed by the solid-state image sensor camera. An image of each part is taken, and the partial images are combined by an image processing device to inspect the shape of the part and the arrangement of the constituent elements. It has been made. The component has a plurality of measurement points along the transport direction, and the image of the component is imaged so as to include a common measurement point in the overlapping portion. At the same time, multiple screens are captured with high precision in the solid-state image sensor camera, so the camera's electronic shutter function or strobe flash is used, and the capture timing is controlled to measure images.
Enables high-speed and high-precision processing according to inspection. In order to achieve the second object, the device for inspecting a component by image processing according to the present invention divides and captures a plurality of images having overlapping portions while moving a component larger than the field of view of the camera. A device for carrying out an inspection method for performing image processing on a large number of images and inspecting the shape of components and the arrangement of components, etc., and the components for continuously conveying the components continuously at a known speed. Continuous transport means, a component position information output device that detects a component by a sensor and outputs information on the position of the component, a solid-state image sensor camera arranged toward the transport means, and a flash device. An image capturing means including an electronic shutter of the solid-state image sensor camera, and the solid-state image capturing means for operating the image capturing means based on information from a position information output device of the component. A sequencer for recording a plurality of images on the child camera, and an image processing apparatus for obtaining data about the sequence, and the like of the shape and components of the component by processing the plurality of images. The component position information output device can be configured by a sensor and a rotary encoder that indicates a moving distance of the component.

【0007】[0007]

【実施例】以下、本発明による部品の精密画像測定・検
査方法および装置の実施例を図面等を参照してさらに詳
細に説明する。検査方法と装置の実施例を説明するため
にこの実施例で測定の対象としたコネクタの構成を簡単
に説明する。図5は、この実施例で測定の対象としたコ
ネクタを示す斜視図である。プラスチック樹脂製のコネ
クタ本体部分40,41に複数のコネクタピン43,4
4,45,・・・が設けられている。次に説明する実施
例では両側のコネクタピン部分自体の形状(例えば変
形)、コネクタピン部分の本体に対する位置関係等が同
時に測定可能である。
Embodiments of the method and apparatus for measuring and inspecting precise images of parts according to the present invention will be described below in more detail with reference to the drawings. In order to explain the embodiment of the inspection method and apparatus, the structure of the connector to be measured in this embodiment will be briefly described. FIG. 5 is a perspective view showing a connector to be measured in this embodiment. A plurality of connector pins 43, 4 are attached to the connector body parts 40, 41 made of plastic resin.
4, 45, ... Are provided. In the embodiment described below, the shape (for example, deformation) of the connector pin portions themselves on both sides and the positional relationship of the connector pin portions with respect to the main body can be measured at the same time.

【0008】図1は本発明による画像処理による部品の
検査装置の実施例を示す正面図、図2は前記実施例の撮
像部近辺を示す平面図、図3は前記実施例装置の全体の
概略構成を示すブロック図である。図1,2,3に示さ
れているように、検査装置架体3には搬送支持台4が設
けられている。搬送支持台4には搬送部11が設けられ
おり、この搬送部を各図右方向から左方向に部品を連続
搬送する過程においてデータを取り込む。搬送部11の
表側にカメラ位置調整台1、裏側にカメラ調整台2が設
けられており、それぞれの調整台でカメラ24,カメラ
25が支持されている。
FIG. 1 is a front view showing an embodiment of an apparatus for inspecting parts by image processing according to the present invention, FIG. 2 is a plan view showing the vicinity of an image pickup portion of the embodiment, and FIG. 3 is a schematic view of the whole apparatus of the embodiment. It is a block diagram which shows a structure. As shown in FIGS. 1, 2, and 3, the inspection device frame 3 is provided with a transport support base 4. The transport support base 4 is provided with a transport unit 11, which takes in data in the process of continuously transporting parts from the right direction to the left direction in each figure. A camera position adjustment base 1 is provided on the front side of the transport unit 11, and a camera adjustment base 2 is provided on the back side, and the cameras 24 and 25 are supported by the respective adjustment bases.

【0009】搬送部11の右端にはローダ部10が、左
端にはアンローダ部12が設けられており、部品はロー
ダ部10から搬送部11に供給される。搬送部11の部
品駆動用ベルトは部品駆動用モータ部13により駆動さ
れる。搬送部11に沿って部品の位置検出用のセンサ1
4,15,16が順次配置されている。アンローダ部1
2は搬送部11から部品をアンロードし、不合格品ケー
ス5に送り込む。ストロボ閃光源(裏用)18は閃光ヘ
ッド部(反射裏用)19および閃光ヘッド部(透過裏
用)20を駆動する。ストロボ閃光源(表用)23は閃
光ヘッド部(反射表用)21および閃光ヘッド部(透過
表用)22を駆動する。
A loader unit 10 is provided at the right end of the transport unit 11 and an unloader unit 12 is provided at the left end thereof, and components are supplied from the loader unit 10 to the transport unit 11. The component driving belt of the transport unit 11 is driven by the component driving motor unit 13. Sensor 1 for detecting the position of a component along the transport unit 11
4, 15, 16 are sequentially arranged. Unloader section 1
In No. 2, the parts are unloaded from the transport unit 11 and sent to the rejected product case 5. The strobe flash light source (for back) 18 drives a flash head unit (for reflection back) 19 and a flash head unit (for transmission back) 20. A strobe flash light source (for front) 23 drives a flash head portion (for reflection table) 21 and a flash head portion (for transmission table) 22.

【0010】図3は本発明による装置の全体の構成を示
すブロック図である。この実施例における画像処理装置
26は中央演算制御装置(CPU)のほかに前記カメラ
からのデータを処理する高速画像処理部、画像インポー
ズ処理部および制御部を搭載している。画像処理装置2
6は周辺装置としてキーボード29,モニタ27,プリ
ンタ28を備えている。シーケンサ30は画像処理装置
26に接続されており、各センサからの情報およびロー
タリエンコーダ31からの情報により閃光ヘッド部1
9,20,21,22および固体撮像素子カメラ24,
25を選択的に駆動する。シーケンサ30でタイミング
を制御し、カメラからの電気信号は、画像処理装置26
で受け取られる。
FIG. 3 is a block diagram showing the overall construction of the apparatus according to the present invention. The image processing device 26 in this embodiment is equipped with a central processing unit (CPU), a high-speed image processing unit for processing data from the camera, an image impose processing unit, and a control unit. Image processing device 2
Reference numeral 6 includes a keyboard 29, a monitor 27, and a printer 28 as peripheral devices. The sequencer 30 is connected to the image processing device 26, and uses the information from the sensors and the information from the rotary encoder 31 to control the flash head unit 1.
9, 20, 21, 22 and solid-state image sensor camera 24,
25 is selectively driven. The sequencer 30 controls the timing, and the electric signal from the camera is transmitted to the image processing device 26.
Received at.

【0011】閃光源23は7μ秒程度の閃光時間幅をも
つストロボ放電管であり、放電された閃光は、光ファイ
バを通して2つのヘッド部21,22に送られ、ヘッド
の先端から出る閃光が被検査部品であるコネクタにあた
る。閃光タイミングはセンサ15によりコネクタ部品の
到来を検出し画像処理装置26が判断して、発光制御出
力をストロボ閃光源23に与え、閃光時間は7μ秒の閃
光発光をさせる。前記閃光源の代わりに電子シャッタ機
能を備えた個体撮像素子カメラを用い、そのシャッタ機
能で高精度な静止画像入力を行っても良い。さらに、閃
光源を用いる場合でも、閃光時間は7μ秒に限られるわ
けではなく、カメラの感度,被検査部品の材質などによ
り好ましい閃光時間をとることができる。
The flash light source 23 is a strobe discharge tube having a flash time width of about 7 μsec, and the discharged flash light is sent to the two head portions 21 and 22 through an optical fiber, and the flash light emitted from the tip of the head is covered. It is a connector that is an inspection part. The flash timing is detected by the image processing device 26 by detecting the arrival of the connector component by the sensor 15, and the light emission control output is given to the flash light source 23, and the flash light is emitted for 7 μsec. Instead of the flash light source, a solid-state image pickup device camera having an electronic shutter function may be used, and highly accurate still image input may be performed by the shutter function. Further, even when the flash light source is used, the flash time is not limited to 7 μsec, and a preferable flash time can be taken depending on the sensitivity of the camera, the material of the parts to be inspected and the like.

【0012】コネクタ部品33は、この検査装置の外部
から検査装置のローダ部10に乗せられる。センサ14
がこれを検知し、モータ13が作動し、コネクタを搬送
部11に送る。搬送部11はモータ13により駆動ベル
トが移動方向へ回転しており、コネクタはアンローダ部
12へ向かって移動する。搬送部にきたコネクタはセン
サ15に検知され、その情報が画像処理装置26へ通知
される。コネクタは移動しながら検査され、搬送部11
からアンローダ部12へ移る。アンローダ部にきたコネ
クタが合格品の場合は終端まで送られ、次の場所へ移さ
れる。不合格品の場合はセンサ16で検知され、イジェ
クタ17にて不合格品ケース5に空気制御で落とされ
る。
The connector part 33 is placed on the loader section 10 of the inspection device from outside the inspection device. Sensor 14
Detects this, the motor 13 operates, and sends the connector to the transport unit 11. A motor 13 rotates a drive belt of the transport unit 11 in the moving direction, and the connector moves toward the unloader unit 12. The connector that has arrived at the transport section is detected by the sensor 15, and the information is notified to the image processing apparatus 26. The connector is inspected while moving, and the transport unit 11
To the unloader unit 12. If the connector that came to the unloader section is acceptable, it is sent to the end and moved to the next location. In the case of a rejected product, it is detected by the sensor 16 and dropped by the ejector 17 into the rejected product case 5 by air control.

【0013】個体撮像素子カメラ24は、センサ15の
コネクタ検知信号、ストロボのヘッド21,22の閃光
にあわせて、コネクタの映像を画像処理装置へ送る。画
像処理装置26は搬送部の速度とロータリエンコーダ3
1の値からコネクタの移動距離を計算し、次の検査画面
の入力タイミングを知る。そして、閃光源23とカメラ
24から次の検査画面を入力する。この動作をコネクタ
の最終検査画面まで繰り返す。個体撮像素子カメラ25
は、カメラ24と同様な検査画像を画像処理装置26に
送る。コネクタの反対側(裏側)の検査画像を入力し、
画像処理装置26へ送る。閃光源18とそのヘッド部1
9,20も画像入力タイミングを画像処理装置26から
指示されて閃光する。
The solid-state image pickup device camera 24 sends the image of the connector to the image processing apparatus in accordance with the connector detection signal of the sensor 15 and the flash of the flash heads 21 and 22. The image processing device 26 controls the speed of the transport unit and the rotary encoder 3.
The moving distance of the connector is calculated from the value of 1, and the input timing of the next inspection screen is known. Then, the next inspection screen is input from the flash light source 23 and the camera 24. This operation is repeated until the final inspection screen of the connector. Individual image sensor camera 25
Sends an inspection image similar to that of the camera 24 to the image processing device 26. Enter the inspection image of the other side (back side) of the connector,
It is sent to the image processing device 26. Flash light source 18 and its head 1
9 and 20 are also flashed when the image processing device 26 instructs the image input timing.

【0014】本発明の検査方法においては、各図に示す
ように、コネクタ部品がローダ部10から搬送部11に
渡される。搬送部11にきた移動中の部品が個体撮像素
子カメラ24の第1画面の視野に入ることをセンサ1
5、ロータリエンコーダ31からの情報により画像処理
装置26が知り、ストロボ発光器23を制御し閃光させ
る。部品からの反射光または透過光を個体撮像素子カメ
ラ24でタイミング良く撮像する。カメラ24からの画
像電気信号を画像処理装置26が受信して、図4に示す
ようにまず第1の静止画像として取り込む。画像測定・
検査処理を行うとともに部品が移動し、第2画面の視野
に入るとき、位置補正およびストロボ閃光を制御する。
シーケンサ30でタイミングを制御し、カメラからの電
気信号を受け取る画像処理装置26とを有し、部品が移
動したままで測定・検査を行う。閃光源23の放電によ
る閃光は、光ファイバを通して2つのヘッド部21,2
2に送られ、ヘッド先端から出る閃光で被検査部品であ
るコネクタが照射される。閃光タイミングは、センサ1
5によりコネクタ部品の到来を検出し画像処理装置26
が判断して、発光制御出力をストロボ閃光源23に与え
る。
In the inspection method of the present invention, the connector parts are transferred from the loader section 10 to the transfer section 11 as shown in each drawing. The sensor 1 indicates that the moving parts coming to the transport unit 11 enter the visual field of the first screen of the solid-state image sensor camera 24.
5. The image processing device 26 is informed by the information from the rotary encoder 31 and controls the strobe light emitting device 23 to make it flash. An image of reflected light or transmitted light from the component is picked up by the solid-state image pickup device camera 24 with good timing. The image processing device 26 receives the image electrical signal from the camera 24 and first captures it as a first still image as shown in FIG. Image measurement
When the inspection process is performed and the part moves to enter the visual field of the second screen, position correction and strobe flashing are controlled.
The sequencer 30 controls the timing and has an image processing device 26 that receives an electrical signal from the camera, and performs measurement / inspection while moving the parts. The flash light generated by the discharge of the flash light source 23 is transmitted through the optical fiber to the two head portions 21 and 2.
2, and the connector, which is the component to be inspected, is illuminated by the flash of light emitted from the tip of the head. Flash timing is sensor 1
5, the arrival of connector parts is detected and the image processing device 26
Judges that the light emission control output is given to the flash light source 23.

【0015】コネクタ部品33は、この検査装置の外部
から検査装置のローダ部10に乗せられる。センサ14
がこれを検知し、モータ13が作動し、コネクタを搬送
部11に送る。搬送部11はモータ13により駆動ベル
トが移動方向へ回転しており、コネクタはアンローダ部
12へ向かって移動する。搬送部にきたコネクタはセン
サ15に検知され、その情報が画像処理装置26へ通知
される。コネクタは移動しながら検査され、搬送部11
からアンローダ部12へ移る。アンローダ部にきたコネ
クタが合格品の場合は終端まで送られ、次の場所へ移さ
れる。不合格品の場合はセンサ16で検知され、イジェ
クタ17にて不合格品ケース5に空気制御で落とされ
る。
The connector part 33 is placed on the loader section 10 of the inspection device from outside the inspection device. Sensor 14
Detects this, the motor 13 operates, and sends the connector to the transport unit 11. A motor 13 rotates a drive belt of the transport unit 11 in the moving direction, and the connector moves toward the unloader unit 12. The connector that has arrived at the transport section is detected by the sensor 15, and the information is notified to the image processing apparatus 26. The connector is inspected while moving, and the transport unit 11
To the unloader unit 12. If the connector that came to the unloader section is acceptable, it is sent to the end and moved to the next location. In the case of a rejected product, it is detected by the sensor 16 and dropped by the ejector 17 into the rejected product case 5 by air control.

【0016】個体撮像素子カメラ24は、センサ15の
コネクタ検知信号、ストロボのヘッド21,22の閃光
にあわせて、コネクタの映像を画像処理装置へ送る。画
像処理装置26は搬送部の速度とロータリエンコーダ3
1の値からコネクタの移動距離を計算し、次の検査画面
の入力タイミングを知る。そして、閃光源23とカメラ
24から次の検査画面を入力する。この動作をコネクタ
の最終検査画面まで繰り返す。個体撮像素子カメラ25
は、カメラ24と同様な検査画像を画像処理装置26に
送る。但し、コネクタの反対側(裏側)の検査画像を入
力し、画像処理装置26へ送る。閃光源18とそのヘッ
ド部19,20も画像入力タイミングを画像処理装置2
6から指示されて閃光する。
The solid-state image pickup device camera 24 sends the image of the connector to the image processing apparatus in accordance with the connector detection signal of the sensor 15 and the flash of the flash heads 21 and 22. The image processing device 26 controls the speed of the transport unit and the rotary encoder 3.
The moving distance of the connector is calculated from the value of 1, and the input timing of the next inspection screen is known. Then, the next inspection screen is input from the flash light source 23 and the camera 24. This operation is repeated until the final inspection screen of the connector. Individual image sensor camera 25
Sends an inspection image similar to that of the camera 24 to the image processing device 26. However, an inspection image on the opposite side (back side) of the connector is input and sent to the image processing device 26. The flash light source 18 and the head portions 19 and 20 of the flash light source 18 also set the image input timing to the image processing apparatus 2.
Flashes when instructed by 6.

【0017】図4の検査画面1,2は前記のようにして
入力された検査画像の一部である。画面中に示す矢印4
3,44,45,46,47が測定・検査対象となるコ
ネクタのピンの部分の画像を指している。検査画面1の
44と検査画面2の45は同一のピン(2番ピン)を指
している。この2番ピンが2つの画面間の共通部分とな
り、これにより検査画面1,2が連結され1つの画面と
同様にピンの高さ、ピン間の距離を高精度で計算し、測
定し、検査することができる。検査画面3以降も同様に
同一のピンを介して1つの連続画像とみなせるように結
合して、高分解能・高精度の測定を可能にする。部品の
移動による像のぶれは、閃光時間を10万分の1秒程度
にすることで無視できる。また移動中の部品の移動速度
の変動に伴うコネクタ位置ずれは、視野に入れることに
より画像処理補正を自動的に順次行い、続いて入力する
複数画面(視野)の位置ずれを最小限度に抑えることが
できる。順次入力されるコネクタ部品の1視野は約2.
4mm×1.8mm程度で、約4μm/画素以下の分解
能を有する。これらの高精度な画像が順次、画像処理さ
れコネクタピッチ、高さが測定される。
The inspection screens 1 and 2 in FIG. 4 are a part of the inspection image input as described above. Arrow 4 shown in the screen
Reference numerals 3, 44, 45, 46, and 47 indicate images of the pins of the connector to be measured / inspected. 44 on the inspection screen 1 and 45 on the inspection screen 2 indicate the same pin (pin 2). This No. 2 pin becomes a common part between the two screens, so that the inspection screens 1 and 2 are connected and the height of the pins and the distance between the pins are calculated, measured, and inspected with high accuracy as in the case of one screen. can do. Similarly, the inspection screens 3 and after are combined so that they can be regarded as one continuous image through the same pin, and high-resolution and high-accuracy measurement is possible. Image blurring due to movement of parts can be ignored by setting the flash time to about 1 / 100,000 second. Also, for connector position shifts due to fluctuations in the moving speed of moving parts, image processing correction is automatically performed sequentially by placing them in the field of view, and position shifts of subsequently input multiple screens (fields of view) are minimized. You can One field of view of connector parts input sequentially is about 2.
The size is about 4 mm × 1.8 mm, and the resolution is about 4 μm / pixel or less. These highly accurate images are sequentially image-processed to measure the connector pitch and height.

【0018】検査画面はモニタ27に表示される。検査
結果はプリンタ28によりプリントされ出力される。ま
た部品はシーケンサ制御で合格場所、不合格場所に分け
て送られる。検査規格はキーボード29を用いて設定さ
れ、検査開始、停止は操作パネル32から行われる。品
種による検査規格登録はフロッピーディスクを用いて保
存され、管理される。本発明方法によればこのように移
動したままのコネクタは、閃光源,カメラをタイミング
よく制御し、高分解能な連続画像として画像処理装置に
取り込み、画像測定・検査により高精度なピン間距離、
ピン高さを短時間で処理することができる。
The inspection screen is displayed on the monitor 27. The inspection result is printed and output by the printer 28. In addition, parts are sent separately to pass and fail locations by sequencer control. The inspection standard is set using the keyboard 29, and the inspection is started and stopped from the operation panel 32. Registration of inspection standards by product type is stored and managed using a floppy disk. According to the method of the present invention, the connector, which has been moved as described above, controls the flash light source and the camera at a timely timing, and takes them into the image processing device as a high-resolution continuous image, and accurately measures the inter-pin distance by the image measurement / inspection,
The pin height can be processed in a short time.

【0019】以上詳しく説明した実施例について、本発
明の範囲内で種々の変形を施すことができる。たとえ
ば、電子部品は前述したコネクタだけでなく、形状、端
子数など種類の異なるもの、精密加工された機構部品で
もよい。部品の形状検査内容により、上記の実施例のよ
うに反射光を利用する場合も、透過光を利用して測定・
検査を行う場合もある。どちらの方法でも本発明の高精
度画像測定・検査方法を実施することができる。本実施
例はコネクタの裏表の両側を検査するため、2組の精密
画像測定・検査装置を用いたが、検査速度や検査内容に
より2台のカメラを1台の画像処理装置に接続すること
も可能であり、カメラ台数は用途に応じて1台でも2台
以上でも何ら支障はない。本実施例は1つのコネクタを
複数画面に分割し、その各画面入力のタイミング補正に
全画面の画像結果を利用しているが、検査内容・精度に
より補正が必要ない場合もある。内容に応じて位置補
正、タイミング補正は行っても、行わなくても本発明の
方法には何ら支障はない。
Various modifications can be made to the embodiment described in detail above within the scope of the present invention. For example, the electronic component may be not only the above-mentioned connector but also one having a different shape and number of terminals, or a precision-machined mechanical component. Depending on the shape inspection of parts, even when using reflected light as in the above example, measurement using transmitted light
An inspection may be performed. Either method can implement the high-precision image measurement / inspection method of the present invention. In this embodiment, two sets of precision image measurement / inspection equipment were used to inspect both sides of the connector, but two cameras may be connected to one image processing equipment depending on the inspection speed and the inspection content. It is possible, and the number of cameras may be one or more than two depending on the application without any problem. In the present embodiment, one connector is divided into a plurality of screens, and the image result of the entire screen is used for the timing correction of each screen input, but the correction may not be necessary depending on the inspection content and accuracy. Whether the position correction and the timing correction are performed or not depending on the contents, the method of the present invention does not cause any problems.

【0020】[0020]

【発明の効果】本発明に係わる部品の精密画像測定・検
査方法および装置は上記のような構成であるため、以下
に記すような効果を有する。本発明における部品の精密
画像測定・検査方法および装置において、被検査部品を
移動したまま、停止させることなく測定・検査ができる
ため検査時間が短縮され、検査効率が上がり労働生産性
の向上に貢献するという優れた効果を有する。本発明に
おける部品の精密画像測定・検査方法および装置におい
て、電子シャッタ機能およびストロボ発光機能のどちら
も使用できるため、被検査部品の移動速度に合わせて、
電子シャッタ速度を制御したり、閃光時間を制御したり
でき、被検査対象となる部品の種類を増やせるという優
れた効果を有する。本発明における部品の精密画像測定
・検査方法および装置において、個体撮像素子カメラに
入力する光は被検査部品からの反射光でも、透過光でも
よく被検査対象となる部品形状の種類を増やせるという
優れた効果を有する。本発明における部品の精密画像測
定・検査方法および装置において、個体撮像素子カメラ
に1部品の外観を正確な位置補正のもとに複数視野に分
けて入力し、高精度分解能な静止画像として画像処理で
きるという優れた効果を有する。本発明における部品の
精密画像測定・検査方法および装置において、検査シス
テムの構成部分である個体撮像素子カメラが固定され、
被検査部品が生産ライン上で移動するため、価格上にも
システムの簡素化が生かされ、装置の維持経費の軽減、
修理の容易さが達成されるという優れた効果を有する。
The precision image measuring / inspecting method and apparatus for parts according to the present invention have the following effects because they are constructed as described above. In the method and apparatus for measuring and inspecting precise images of parts according to the present invention, since the parts to be inspected can be measured and inspected without stopping, the inspection time is shortened, the inspection efficiency is improved, and the labor productivity is improved. It has the excellent effect of In the precision image measuring / inspecting method and apparatus for a component according to the present invention, both the electronic shutter function and the stroboscopic light emitting function can be used, and therefore, according to the moving speed of the component to be inspected,
The electronic shutter speed can be controlled and the flash time can be controlled, which has an excellent effect that the types of parts to be inspected can be increased. In the method and apparatus for precise image measurement / inspection of a component according to the present invention, the light input to the solid-state image sensor camera may be reflected light from the component to be inspected or transmitted light, which is an excellent feature that can increase the types of component shapes to be inspected. Have the effect. In the method and apparatus for measuring and inspecting a precise image of a component according to the present invention, the appearance of one component is input to a solid-state image sensor camera in a plurality of fields of view based on accurate position correction, and image processing is performed as a high-resolution still image. It has an excellent effect that it can be done. In the method and apparatus for precise image measurement / inspection of parts in the present invention, a solid-state image sensor camera, which is a component of the inspection system, is fixed,
Since the parts to be inspected move on the production line, the simplification of the system is used in terms of price, and the maintenance cost of the device is reduced.
It has the excellent effect that ease of repair is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による画像処理による部品の検査装置の
実施例を示す正面図である。
FIG. 1 is a front view showing an embodiment of a component inspection apparatus by image processing according to the present invention.

【図2】前記実施例の撮像部近辺を示す平面図である。FIG. 2 is a plan view showing the vicinity of the image pickup unit of the embodiment.

【図3】前記実施例装置の全体の概略構成を示すブロッ
ク図である。
FIG. 3 is a block diagram showing an overall schematic configuration of the apparatus of the embodiment.

【図4】前記実施例における画像処理対象の静止画像図
(検査画面1,2)を示す略図である。
FIG. 4 is a schematic diagram showing still image views (inspection screens 1 and 2) of an image processing target in the embodiment.

【図5】本発明に係わる実施例装置の検査の対象例を示
すコネクタの斜視図である。
FIG. 5 is a perspective view of a connector showing an example of an object to be inspected by the embodiment apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 カメラ位置調整台(表用) 2 カメラ位置調整台(裏用) 3 検査装置架体 4 搬送支持台 5 不合格品ケース 10 ローダ部 11 搬送部 12 アンローダ部 13 部品駆動ベルト用モータ部 14,15,16 センサ(部品検知用) 17 イジェクタ 18 ストロボ閃光源(裏用) 19 閃光ヘッド部(反射裏用) 20 閃光ヘッド部(透過裏用) 21 閃光ヘッド部(反射表用) 22 閃光ヘッド部(透過表用) 23 ストロボ閃光源(表用) 24 個体撮像素子カメラ(表用) 25 個体撮像素子カメラ(裏用) 26 画像処理装置 27 モニタ 28 プリンタ 29 キーボード 30 シーケンサ 31 ロータリエンコーダ 32 操作パネル 33 検査対象物(コネクタ) 1 camera position adjustment stand (for front) 2 camera position adjustment stand (for back) 3 inspection device frame 4 transfer support stand 5 rejected product case 10 loader section 11 transfer section 12 unloader section 13 parts drive belt motor section 14, 15, 16 Sensor (for component detection) 17 Ejector 18 Strobe flash light source (for back) 19 Flash head part (for reflection back) 20 Flash head part (for transmission back) 21 Flash head part (for reflection table) 22 Flash head part (For transmission surface) 23 Strobe flash light source (for surface) 24 Solid-state image sensor camera (for front) 25 Solid-state image sensor camera (for back) 26 Image processing device 27 Monitor 28 Printer 29 Keyboard 30 Sequencer 31 Rotary encoder 32 Operation panel 33 Inspection object (connector)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カメラの視野よりも大きい部品を移動さ
せながら重なり合う部分をもつ複数の画像に分割して撮
像し、分割された多数の画像を画像処理して部品の形状
および構成要素の配列等についての検査をする検査方法
であって、 搬送手段により検査対象である部品を順次連続搬送し、 位置情報出力手段により搬送中の位置をセンサにより検
出し部品の位置情報を出力し、 ストロボ閃光または電子シャッタ機能を前記部品の位置
情報に基づいて連続して間欠動作させ、 固体撮像素子カメラで前記動作ごとの部品の部分画像を
撮像し、 画像処理装置により前記各部分画像を組み合わせて部品
の形状および構成要素の配列等についての検査をする画
像処理による部品の検査方法。
1. A component which is larger than the field of view of a camera is moved while being divided into a plurality of images having overlapping portions, and a plurality of divided images are subjected to image processing to form the shape of the component and the arrangement of constituent elements. In this inspection method, the parts to be inspected are successively conveyed by the conveying means, the position information outputting means detects the position being conveyed by the sensor, and the position information of the parts is output. The electronic shutter function is continuously operated intermittently based on the position information of the component, a solid-state image sensor camera captures a partial image of the component for each operation, and an image processing device combines the partial images to shape the component. And a method of inspecting a part by image processing for inspecting the arrangement of components and the like.
【請求項2】 カメラの視野よりも大きい部品を移動さ
せながら重なり合う部分をもつ複数の画像に分割して撮
像し、分割された多数の画像を画像処理して部品の形状
および構成要素の配列等についての検査をする検査方法
を実施するための装置であって、 部品を連続して予め知られた速度で連続搬送する部品の
連続搬送手段と、 センサにより部品を検出してその部品の位置の情報を出
力する部品の位置情報出力装置と、 前記搬送手段に向けて配置されている固体撮像素子カメ
ラと、 ストロボ閃光装置または前記固体撮像素子カメラの電子
シャッタよりなる像取り込み手段と、 前記部品の位置情報出力装置からの情報に基づいて前記
像取り込み手段を動作させ前記固体撮像素子カメラに複
数枚の画像を記録させるシーケンサと、 前記複数枚の画像を処理して部品の形状および構成要素
の配列等についてのデータを得る画像処理装置と、 から構成した画像処理による部品の検査方法を実施する
ための装置。
2. A component larger than the field of view of a camera is moved while being divided into a plurality of images having overlapping portions, and the plurality of divided images are image-processed to form the shape of the component and the arrangement of the constituent elements. Is a device for carrying out an inspection method for inspecting the parts, which continuously conveys the parts at a previously known speed, and a sensor for detecting the parts to detect the position of the parts. A position information output device for a component that outputs information, a solid-state image sensor camera that is arranged toward the conveying unit, an image capturing unit that is an electronic flash of a strobe flash device or the solid-state image sensor camera, and A sequencer for operating the image capturing means based on information from a position information output device to record a plurality of images on the solid-state image sensor camera; An image processing apparatus for processing the image of to obtain data on the shape of a part, an array of constituent elements, and the like;
JP6227373A 1994-08-30 1994-08-30 Method and apparatus for inspection of component by image processing Pending JPH0868613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6227373A JPH0868613A (en) 1994-08-30 1994-08-30 Method and apparatus for inspection of component by image processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6227373A JPH0868613A (en) 1994-08-30 1994-08-30 Method and apparatus for inspection of component by image processing

Publications (1)

Publication Number Publication Date
JPH0868613A true JPH0868613A (en) 1996-03-12

Family

ID=16859796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6227373A Pending JPH0868613A (en) 1994-08-30 1994-08-30 Method and apparatus for inspection of component by image processing

Country Status (1)

Country Link
JP (1) JPH0868613A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180161A (en) * 2005-12-27 2007-07-12 Showa Denko Kk Inspecting device of element piece and its application
KR100893149B1 (en) * 2007-01-19 2009-04-16 주식회사 힘스 Inspection apparatus for a connector-strip
JP2010034344A (en) * 2008-07-30 2010-02-12 Sumco Corp Method of measuring specific resistance value of semiconductor wafer
EP2329433A4 (en) * 2008-08-08 2014-05-14 Snap On Tools Corp Image-based inventory control system
US9041508B2 (en) 2008-08-08 2015-05-26 Snap-On Incorporated Image-based inventory control system and method
US9147174B2 (en) 2008-08-08 2015-09-29 Snap-On Incorporated Image-based inventory control system using advanced image recognition
US9741014B2 (en) 2015-04-15 2017-08-22 Snap-On Incorporated Automated asset management system with multiple sensing technologies
US10062050B2 (en) 2008-08-08 2018-08-28 Snap-On Incorporated Image-based inventory control system with automatic calibration and image correction

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180161A (en) * 2005-12-27 2007-07-12 Showa Denko Kk Inspecting device of element piece and its application
JP4650259B2 (en) * 2005-12-27 2011-03-16 株式会社村田製作所 Device piece inspection device and its use
KR100893149B1 (en) * 2007-01-19 2009-04-16 주식회사 힘스 Inspection apparatus for a connector-strip
JP2010034344A (en) * 2008-07-30 2010-02-12 Sumco Corp Method of measuring specific resistance value of semiconductor wafer
US9122999B2 (en) 2008-08-08 2015-09-01 Snap-On Incorporated Image-based inventory control system
US9041508B2 (en) 2008-08-08 2015-05-26 Snap-On Incorporated Image-based inventory control system and method
EP2329433A4 (en) * 2008-08-08 2014-05-14 Snap On Tools Corp Image-based inventory control system
US9147174B2 (en) 2008-08-08 2015-09-29 Snap-On Incorporated Image-based inventory control system using advanced image recognition
US9922413B2 (en) 2008-08-08 2018-03-20 Snap-On Incororated Image-based inventory control system using advanced image recognition
US10062050B2 (en) 2008-08-08 2018-08-28 Snap-On Incorporated Image-based inventory control system with automatic calibration and image correction
EP3496012A1 (en) * 2008-08-08 2019-06-12 Snap-On Incorporated Image-based inventory control system
US9741014B2 (en) 2015-04-15 2017-08-22 Snap-On Incorporated Automated asset management system with multiple sensing technologies
US10192197B2 (en) 2015-04-15 2019-01-29 Snap-On Incorporated Automated asset management system with multiple sensing technologies
US10922648B2 (en) 2015-04-15 2021-02-16 Snap-On Incorporated Automated asset management system with multiple sensing technologies

Similar Documents

Publication Publication Date Title
US6141040A (en) Measurement and inspection of leads on integrated circuit packages
US5550583A (en) Inspection apparatus and method
JP2002529711A (en) Electronic component assembling apparatus having stereo image line scanning sensor
WO2002014783A1 (en) Transparent liquid testing apparatus, transparent liquid testing method, and transparent liquid coating method
CN208505916U (en) A kind of glass detection machine
US20100295935A1 (en) On-head component alignment using multiple area array image detectors
JP4315536B2 (en) Electronic component mounting method and apparatus
KR960003873B1 (en) Method for displaying defect & the apparatus thereof
US6081613A (en) System for inspecting an appearance of a printed circuit board
JPH0868613A (en) Method and apparatus for inspection of component by image processing
US6445813B1 (en) System for inspecting an apparatus of a printed circuit board
JPH11271038A (en) Painting defect inspection device
KR200392078Y1 (en) Examining apparatus having function of examine the same time for multidirection
KR101719470B1 (en) The electronic component testing apparatus and testing method
JP2004170394A (en) Press plate inspection device and press plate inspection system
JP2001004339A (en) Illumination non-uniformity measuring method for picture recognition inspecting system and picture recognition inspecting method
JPH09511592A (en) Image forming device for three-dimensional objects
JPH04305774A (en) High-resolution visual apparatus for part inspection
JPH06341960A (en) Image processing method/device for pattern
JP3052493B2 (en) Visual recognition system
JP2934546B2 (en) Inspection method of cassette for chip mounting device and its inspection device
JP2000088762A (en) Visual inspection apparatus
JPH1164228A (en) Surface inspecting device
JPH0814855A (en) Inspection method for component mounting state
JPH10308598A (en) Calibration method of scan type sensor